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Classical Monte Carlo simulation methods have been used to evaluate the internal partition function of diatomic
and triatomic van der Waals molecules. All simulation methods are simple to implement and are shown to
yield very accurate results for Ar‚‚‚O, Ar‚‚‚O2, and Ar‚‚‚CN when compared with the corresponding exact
quantum mechanical results. Their efficiencies are also examined.

1. Introduction

The calculation of the internal partition functionQint, and the
density of statesN, is an important topic which has a vast range
of applications. In fact, its accurate determination for a non-
separable potential is a long standing problem which goes back
to the foundations of statistical mechanics. The density of states
is required for the evaluation of reaction rate constants in
transition state theory (conventional or variational), while the
calculation ofQint is important, e.g., to study the equilibrium
properties of bound systems. In turn, its temperature dependence
is necessary to evaluate various thermodynamic quantities, such
as the Gibbs enthalpy and the Helmholtz function, which are
used as standard input for many models in astrophysics; see
ref 1. For example, the solution of the equation of state for cool
stellar atmospheres requires very accurate values ofQint.2,3

However, the calculation ofQint becomes particularly difficult
for systems involving weakly bound states such as van der
Waals (vdW) molecules. Indeed, the application of approximate
methods like the harmonic oscillator and rigid rotor (HO+RR)
approximation (which has been widely used to build up the
JANAF4 tables of thermodynamic functions) is expected to give
poor results for such floppy (anharmonic) molecules.

Recently, we have been interested in the study of thermo-
lecular association reactions of the general type

As prototypes, we have investigated5 the recombination reactions
for formation of the hydroperoxyl radical and ozone, i.e.

where M is a third body (this will be considered in this work to
be an argon atom), and most recently for the reaction6

The reaction leading to ozone formation is well-known to play
an important role in chemistry of the upper atmosphere,
particulary in relation to the ozone depletion problem. It comes
therefore as no surprise that several previous studies have been
reported for such a reaction. On the other hand, the reaction
yielding hydrogen cyanide has been the subject of a very detailed
study by one of us6 with a view to illustrate the range of validity
of the various mechanisms and thereby shed light on the

possibility of observing direct three-body collisions as argued
by Pack and co-workers.7,8

Several schemes have been proposed to explain the kinetics
of a recombination reaction, namely, the energy-transfer9 (ET)
mechanism, a mechanisminVolVing excited electronic states10

(EE), and theradical-complexor Chaperon5 (RC) mechanism
(see also ref 11 and references therein). For the purpose of this
work, we will focus our attention on the RC mechanism. When
applied to the general reaction 1, it involves the following steps:

Note that according to this mechanism, the low pressure limit
of the second-order rate constant for formation of the stable
triatomic molecule (HO2, O3, or HCN) assumes the form10

Thus, an accurate evaluation of the equilibrium constants for
processes 4 and 5 is essential to obtaink0 as a function of
temperature. In turn, the evaluation of theK2 andK3 equilibrium
constants requires the knowledge ofQint for the involved vdW
molecules. For simplicity, we concentrate on the Ar‚‚‚O, Ar‚‚
‚O2, and Ar‚‚‚(CN) vdW molecules and omit heretofore the “‚
‚‚” symbol.

In quantum statistical mechanics (QSM), the internal partition
function is represented by the following summation

whereεVj is the energy associated with the quantum state (V, j),
and the factor (2j + 1) accounts for the rotational degeneracy.
Note that eq 10 refers to a specific electronic state of the
molecule, and hence, it is assumed that no electronic excited
states are involved at the temperatures of interest. In other words,

A + BC + M f ABC + M (1)

X + O2 + M f XO2 + M (X ) H, O) (2)

H + CN + M f HCN + M (3)

A + M y\z
K2

M‚‚‚A (4)

BC + M y\z
K3

M‚‚‚BC (5)

M‚‚‚A + BC 98
k4

ABC + M (6)

A + M‚‚‚BC 98
k5

ABC + M (7)

M‚‚‚A + M‚‚‚BC 98
k6

ABC + 2M (8)

k0 ) (K2k4 + K3k5)[M] (9)

Qint ) ∑
Vj

(2j + 1) exp(âεVj) (10)
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the internal partition function assumes the form12

with the electronic partition function beingQe ) 1; Qvr stands
as usual for vibrational-rotational partition function. For the case
of a diatomic molecule, the quantum solution of eq 10 can be
obtained by calculating the vibrational-rotational quantum
states. However, for a larger system, such a calculation becomes
very difficult if not impossible.35 Although enormous progress
in computer technology has made feasible such vibrational-
rotational calculations, the problem of very large CPU times
remains. We therefore focus our attention in this work on the
calculation of the partition function using classical statistical
mechanics (CSM).

The details are organized as follows. In section 2, we show,
by comparing the classical solutions with the exact quantum
ones, that CSM leads to negligible errors in the case of a
diatomic molecule. Then, section 3 presents several Monte Carlo
(MC) simulation approaches to the partition functions of the
ArO diatomic vdW molecule (section 3.1) and triatomics ArO2

and ArCN (section 3.2). The conclusions are in section 4.

2. Classical Approaches to the Partition Function

For a system composed ofN particles confined to a volume
V, the classical expression forQint is

wheref is the number of internal degrees of freedom,H(p,q) is
the classical Hamiltonian,q ≡ {q1, q2, ..., qf} are generalized
coordinates,p ≡ {p1, p2, ..., pf} the corresponding conjugate
momenta, andâ ) -1/kT; the subscript “B” in the last integral
indicates that the integrations are only over the degrees of
freedom corresponding to a bound system. ForN atoms, the
total number of degrees of freedom is 3N, and hence the above
integration are over thef ) 3N - 3 internal degrees of freedom.
Note that by removing the coordinates of the center-of-mass
(thus, discarding the kinetic energy part due to translation of
the entire system), the allowed motions will be confined to
regions of phase space corresponding to a bound system. Note
also that this requirement depends on the system under
consideration, as it will be discussed in the following sections.
As usual,hf represents the volume of phase space corresponding
to a quantum state (cell).

For a diatomic molecule, the standard way to evaluate the
integral in eq 12 consists of adopting a system of spherical polar
coordinates (r,θ,φ); see Figure 1a. One then gets for the
corresponding Hamiltonian

where I and µ are the momentum of inertia and the reduced
mass of the system, respectively. Thus, the internal partition
function is given by

where the limits of integration for the variablesq andp (now
{r,θ,φ} and {pr,pθ,pφ}) are fixed from the condition that the
kinetic energy contribution to the Hamiltonian cannot exceed

in magnitude that of the potential energy part (we assume the
zero of potential energy to correspond to the separated atoms
limit). By integrating over the angles, one gets14-16 after some
algebraic manipulation

whereγ(a,b) is the incompleteγ function,17 andσ is the distance
for which V(σ) ) 0. The integral in eq 15 is a one-dimensional
integral and can be resolved easily by any conventional
numerical method. For some diatomic potential models such
as the generalized Lennard-Jones (m,n), Morse, and Woolley
curves, it is even possible to get the analytical solution of eq
15.18,19

To investigate the validity of the classical approach, we first
compare the diatomic results for the internal partition function
obtained from eq 15 with their accurate quantum analogs. For
this purpose, we have calculatedQint in eq 15 for ArO using
two different models: EHFACE220 (see also ref 21) and
Lennard-Jones (6-12) potential functions (the latter is defined
by22 Rmin ) 6.65a0 andε ) -0.0002798Eh). In turn, the exact
quantum value ofQint has been obtained from eq. 10 with the
εVj calculated by solving numerically the 1D nuclear Schro¨dinger
equation using the standard Numerov-Cooley algorithm.23,24

Classically, the integration of eq 15 for the EHFACE2 potential
function has been carried out using the trapezoidal method, while
for the Lennard-Jones (6-12) potential function, we have used
the analytical solution proposed by Gue´rin.18,19 From the
calculatedQint for ArO, we have then determined the equilibrium
constant (Keq ≡ K2) for reaction 4 by applying the standard
formalism of statistical mechanics.25 Table 1 shows the results
obtained from both the CSM and QSM approaches using the
above two potential energy curves over a wide range of
temperatures. Clearly, the agreement between the CSM and
QSM results are very good for a given potential. This warrants
in principle the use of the CSM simulation approach to compute
accurately the partition function of larger polyatomics.

Unfortunately, the CSM approach cannot be formulated
analytically for a polyatomic molecule when using a realistic
potential energy surface. Indeed, this problem has only been
solved (see ref 26) for the case where limqf∞|V(q)| ) ∞. In
particular, a difficulty which arises when formulating the
problem analytically refers to the choice of coordinate system.
Probably, the natural option for a triatomic molecule would be
to use bipolar coordinates.27 However, eq 12 cannot be
simplified to a one-dimensional integral as in the diatomic case,
and hence the viability of the CSM approach forQint depends
essentially on the efficiency of the numerical method which
deals with the multidimensional integral in eq 12. Usually, the
Monte Carlo simulation method is applied to multidimensional
integrals with good results and, for this purpose, we investigate
in the next section how it performs for diatomics and triatomics.

Qint ) QvrQe (11)

Qint ) 1

hf∫∫‚‚‚∫Bexp[âH(q,p)]dqdp (12)

H(q,p) ) 1
2I(pθ

2 +
pφ

2

sin2 θ) +
pr

2

2µ
+ V(r) (13)

Qint ) 1

h3∫0

∞∫0

π∫0

2π∫-∞

∞ ∫-∞

∞ ∫-∞

∞
exp

(âH)dθ dφ dr dpθ dpφ dpr (14)

TABLE 1: Equilibrium Constant for Ar + O h ArO (in
cm3 molecule-1) Calculated from Two Different Potential
Energy Curves Using the Methods Described in the Text

EHFACE2 LJ(6-12)

T/K classical quantum classical quantum

100 1.539× 10-22 1.450× 10-22 1.648× 10-22 1.607× 10-22

300 2.493× 10-23 2.352× 10-23 2.682× 10-23 2.632× 10-23

500 1.122× 10-23 1.058× 10-23 1.208× 10-23 1.187× 10-23

1000 3.875× 10-24 3.654× 10-24 4.173× 10-24 4.103× 10-24

Qint ) 8π2

h3
(2µkT)3/2∫σ

∞
exp[âV(r)]γ[3/2,âV(r)]r2 dr (15)
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3. The Monte Carlo Simulation Method

3.1. Calculation of Qint for ArO. As usual, the diatomic
molecule is described in phase space by the six Cartesian
coordinatesq(i) (i ) 1-6) and their associated momentap(i) (i
) 1-6). We further define the coordinates such thatQ(i)(i )
1-3) indicates the position of the center of mass of the molecule,
andQ(i)(i ) 4-6) the position of atom B with respect to atom
A; P(i)(i ) 1-6) are the corresponding conjugate momenta. It
therefore remains to define the conditions representative of the
bound system. Clearly, they correspond to situations where the
internal energy is smaller than or equal to the dissociation
energy, which impliesH(p,q) e 0 where

We emphasize that the reference potential energy corresponds
to the infinitely separated atoms and that we have not taken
into account any quasi-bound states of the molecule (for a
discussion on this topic, see ref 2). Three variants of the Monte
Carlo technique have then been investigated to calculateQint,
which are described next.

3.1.1. Crude Monte Carlo Technique.We define here for the
six coordinates a minimum and a maximum displacement,
namely,Qmin, Qmax, Pmin, and Pmax. The simulation has then
been carried out by defining

whereê is a random number in the range [0-1]; (i ) 4,6). At
this stage the Hamiltonian is calculated and the point accepted
in case its value is smaller than zero (bound state situation);
otherwise, it is rejected, i.e., exp(-âHi) ) 0, and a new point
sampled. The integral in eq 12 is then replaced by the standard
Monte Carlo summation

whereNtot is the total number of randomly generated points in
phase space,Nin the number of points satisfying the condition
[H(p,q) e 0], and the total sampled volumeVs is defined by

Of course, a crucial step in this “crude” Monte Carlo scheme is
the definition of the phase space volume to be randomly
sampled. In other words, the sampled volume should include
the true volume but be as close as possible to it. Unfortunately,
there is not an obvious way to accomplish this using Cartesian
coordinates. The choice ofPmin andPmax is suggested by itself:
Pmax ) (2µEd)1/2 and Pmin ) -Pmax, whereµ is the reduced
mass of the system, andEd is the dissociation energy of the
molecule. On the other hand, the selection of position coordi-
nates is arbitrary in the sense that they can assume any value
between-∞ and +∞. For practical purposes, one may fix a
priori such a range, say, by considering only distances smaller
than 30a0 or so since the interaction energy should be essentially
negligible outside this range. Such a selection impliesQint )
-15a0 and Qmax ) 15a0. Table 2 shows the results obtained

when these values are adopted to calculateQint. Clearly, the
efficiency of this crude MC method is poor (this is defined by
ε ) Nin/Ntot): ∼1%. However, this problem can be easily
overcome by increasing the number of trials. For example, by
using 107 trials, the calculated value becomes very close to the
QSM result.

As usual, the standard deviation error associated with eq 19
is given by

where the angle brackets denote taking the arithmetic mean over
the Ntot sampling points,

3.1.2. ImproVed Crude Monte Carlo Technique.Naturally, a
simple way to improve the efficiency of the crude Monte Carlo
simulation consists of decreasing as much as possible the
sampling volume. This can be partially fullfilled by choosing
an appropriate coordinate system for phase space sampling. For
example, to perform the coordinate space sampling, we first
recall that the Cartesian coordinates are related to the polar ones
through the relations

with the infinitesimal element of volume being given by

where the limits are 0e θ e π and 0e φ e 2π. Then, we
note that the angular part can be integrated analytically, and
hence the random sampling is reduced to the variablesr andp.
On the other hand, the volume of a sphere is proportional to
the cube of its radius, and hence a uniform sampling procedure
in r andp requires that the two variables are obtained from

Thus, an advantage of using such a coordinate system is that
the sampling volume can now be split on the product of two
spherical volumes. One has,

TABLE 2: A Comparison of the Classical MC and QSM
Results for Qint Obtained for the ArO vdW Molecule at T )
300 K Using the EHAFACE2 Potential Energy Curve

method Qint Ntot ε (%)

Aa 705.4( 6.8 106 1.1
Bb 701.0( 3.5 106 3.9
Cc 699.6( 2.6 106 100
QSMd 699.7

a Classical crude MC simulation method, this work.b Classical
improved MC simulation method, this work.c Classical Barker’s
method, this work.d Quantum statistical mechanical result, this work.

H(p,q) )
1

2µ
∑

i)4,6

P(i)2
+ V (Q4,Q5,Q6) (16)

Q(i) ) Qmin + (Qmax - Qmin)ê (17)

P(i) ) Pmin + (Pmax - Pmin)ê (18)

S) Vs

∑i)1
Nin exp(-âHi)

Ntot
(19)

Vs ) ∏
i)4

6

(Qmax
(i) - Qmin

(i) )(Pmax
(i) - Pmin

(i) ) (20)

σ ) Vsx〈exp2(-âHi)〉 - 〈exp(-âHi)〉
2

Ntot - 1
(20)

〈exp2(-âHi)〉 )
1

Ntot
∑
i)1

Nin

exp2(-âHi) (21)

〈exp(-âHi)〉 )
1

Ntot
∑
i)1

Nin

exp(-âHi) (22)

x ) rsin θ cosφ, y ) rsin θ sinφ, and z ) rcosθ
(23)

dV ) r2sin θ dθ dφ dr

r ) [rmin
3 + (rmax

3 - rmin
3 )ê]1/3 (24)

p ) [pmin
3 + (pmax

3 - pmin
3 )ê]1/3 (25)

van der Waals Molecules J. Phys. Chem. A, Vol. 103, No. 41, 19998305
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whereVQ represents the configuration space volume, andVP

the corresponding momentum space volume:

Although the definition ofpmax is the same as stated above,
pmin will now be zero. Concerning ther variable, its range can
be chosen such thatrmax corresponds to a distance for which
the interaction energy is negligible (say,rmax ) 15a0). In turn,
rmin must be chosen as small as possible but different from zero
(e.g.,rmin ) 0.01a0) to avoid an overflow due to the Coulombic
pole in the potential energy at the united atom limit of the
collapsed diatomic. We still use eq 19 to evaluate the integral
in eq 12, and eq 20 for the associated errors. Somewhat
surprisingly, the efficiency turns out to be only about 4 times
larger than that of the crude MC approach; see Table 2. This
can be understood from the fact that the sampling volume has
been reduced by a factor of 4; note that we have now two
spheres, with each of them having a volume nearly two times
smaller than that of the cube in which they are inscribed.

3.1.3. Barker’s Algorithm. The approach described in this
section is an adaptation of a method proposed by Barker28 which
has originally been suggested to calculate the sum and density
of states of a given molecule. As before, the main idea is to
choose the sampling volume to be as close as possible to the
integrated one such as to increase the efficiency of the method.
Of course, in the limit, one may achieve unit efficiency. In the
approaches described in the previous paragraphs, each random
variable was sampled independently from each other leading
to a uniform distribution. In this approach, the range of each
variable is instead considered to be a function of the variables
previously sampled. Thus, the obtained distribution is no longer
uniform, and weight factors need to be considered. For con-
venience, we report next the algorithm adopted, and provide
the final expression to calculate the integral in eq 12; further
details and formal demonstrations can be found in the original
work.28

The general procedure consists of the following steps: 1.
Define a boundary surface in then-dimensional spaceB )
F(ú(1),...,ú(n)) such that the integration domain is completely
contained in this surface. 2. Fix the range (úmax - úmin) for the
ú(1) variable, and theúmin

(j) value for all others (j ) 2, n). 3.
Sample at random the variable in the given range. 4. Calculate
the value ofúmax according to the boundary surface defined in
step 1 for the variablesú(j)(j ) 2, n), and repeat step 3 for all
these variables. 5. Calculate the weight for each sampled point
g according to

6. Calculate the integral according to

where fg ) exp(-H(q,p)/kT), and N is the total number of
sampled points. Clearly, we have nowN ≡ Ntot ≡ Nin, and hence
all points satisfy the conditionH e 0.

For a diatomic, the definition of the boundary surface is given
straightforwardly byH(p,r) ) 0, which impliesp2/2µ ) -V(r).
Following the above scheme, we then choosermin as the value
of σ in eq 15 andrmaxas the distance for which we may consider
the interaction energy to be negligible (in this work, we consider
rmax ) 15a0). Fixedpmin ) 0, we then chooser at random while
the value ofpmax is fixed from the boundary surface. The
sampling of the other variables (step 3) is done next using eqs
24 and 25. Regarding the weight factors, one should keep in
mind that we are using spherical coordinates, and hence the
weights must be calculated acording to eqs 27 and 28. The
standard deviation associated with eq 30 assumes now the
form28,29

Table 2 compares the results from the three sampling methods
described above, all based on 105 sampling points. Clearly the
best agreement with the exact quantum result is obtained with
Barker’s method. Similarly, for the same degree of precision,
the number of required sampling points is smallest for the
Barker’s approach and largest for the crude MC method. Note
that the efficiency of a MC method is usually defined as the
percentage of the physically acceptable points (those satisfying
the boundary conditions) among the total number of sampled
points. Obviously, Barker’s method leads always to 100%
efficiency, since all sampled points are physically acceptable.
Table 3 shows in turn the results obtained forQint over the range
of temperatures 100e T/K e 1000, while providing also a
comparison with the values obtained from other methods. As
observed, there is good agreement between all results.

3.2. Calculation of Qint for ArO 2 and ArCN. The first
difficulty which arises when one applies Barker’s procedure to
a triatomic system is to define the binding condition, i.e., the
region of phase space for which the internal energy is smaller
than the dissociation energy (Ed). Indeed, for a polyatomic
molecule, this definition is not unique, since there is more than
one dissociation channel. The problem gets simplified in the
case of a vdW molecule, since the natural choice will be to
assume as reference energy that associated to the atom+ bound
diatomic dissociation channel, e.g., ArO2(CN) f O2(CN) + Ar,
and hence, the values ofEd used in this work are for the ArO2
and ArCN,-122.9 cm-1 and-58.0 cm-1, respectively.

In a space-fixed Cartesian system of coordinates, a point in
phase space will be described byqi (i ) 1, 9) andpi (i ) 1, 9).
Since we are interested in the calculation ofQint, we adopt the
generalized coordinates described in ref 30 in such a way that
(Q4, Q5, Q6) identify the position of atom C with respect to

Veff ) VQVP (26)

VQ ) 4
3
π(rmax

3 - rmin
3 ) (27)

VP ) 4
3
π(pmax

3 - pmin
3 ) (28)

Wg ) ∏
j)1

n

[úmax
(j) - úmin

(j) ] (29)

S) ΣfgWg/N (30)

TABLE 3: Values of Qint for the ArO vdW Molecule over a
Wide Range of Temperatures: See Also the Text and Table
2

MC

T/K QSMa method Ab method Bc Method Cd

100 461.2 463.4( 4.6 462.1( 2.4 461.2( 1.9
200 629.3 633.9( 6.1 630.5( 3.2 629.3( 2.4
400 738.0 744.4( 7.2 739.4( 3.7 738.0( 2.8
500 762.2 768.9( 7.4 763.6( 3.8 762.1( 2.8
600 778.8 785.8( 7.6 780.2( 3.9 778.7( 2.9
700 790.9 798.0( 7.7 792.3( 4.0 790.8( 2.9
800 800.0 807.4( 7.8 801.5( 4.0 800.0( 3.0
900 807.3 814.7( 7.8 808.8( 4.0 807.2( 3.0

1000 813.1 820.7( 7.9 814.6( 4.1 813.0( 3.0

a Quantum statistical mechanical result, this work.b Classical crude
MC simulation method, this work.c Classical improved MC simulation
method, this work.d Classical Barker’s method this work.

σ2 ) [N(N - 1)]-1Σ(fgwg - S)2 (31)
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atom B, and (Q7, Q8, Q9) represents the position of atom A
relative to the center of mass of the diatomic BC. In this
coordinate system, the classical Hamiltonian for internal motion
assumes the form

while the boundary condition is defined byH(Q4, ..., Q9, P4,
..., P9) ) Ed. Because we want to compare the results of our
simulation with those obtained by solving the 2D quantum
problem, we then freeze the diatomic distancer at its equilibrium
value (re

(O2) ) 2.2818a0 and re
(CN) ) 2.214a0).

When adopting the crude and improved MC methods, the
efficiency obtained is in both cases very small (0.0001%) which
makes their error bars unacceptable. For this reason, we focus
on the results obtained by using Barker’s algorithm, since the
other methods are unlike to be of practical interest for systems
of high dimensionality. However, prior to discussing the results,
we need to introduce some further technical details.

First, as in the diatomic case, we adopt spherical polar
coordinates for both position and momenta to perform the
sampling (see Figure 1). The sampling in configuration space
for the Jacobi coordinateR is performed using eq 24, while the
other Jacobi coordinater is fixed at its equilibrium value. Since
the boundary condition is defined as usual byH(q,p) ) Ed and
the range for ther variable has been fixed (r is in our case held
as a constant value), we may follow the general recipe described
in the previous subsection. Specifically, the sampling of phase
space involves the following steps: 1. FixθR at its equilibrum
value (θR ) 90° for ArO2, andθR ) 100° for ArCN), Pr ) 0,
and PR ) 0. With r fixed at its equilibrium value, apply the
boundary condition to calculateRmax andRmin, and then sample
R. 2. Using theR value obtained from the previous step andPr

) PR ) 0, apply the boundary condition to obtainθRmax and
θRmin from which θR is then sampled. 3. From V(r, R, θR) and
PR ) 0, obtain Pr

max ) 2µ(Ed - V)]1/2 and samplePr. 4.
CalculatePR

max from PR
max ) [2µ(Ed - V - Pr

2/2µ)]1/2, and then
samplePR. 5. Determine the weight factors as

where

The results obtained when such a a procedure is applied to the
title triatomic systems are reported in Figures 2 and 3. Note
that the MC simulation has been performed at selected tem-
peratures, ranging from T) 100-5000 K, the number of
sampling points being 106. Figures 2 and 3 also present a
comparison between the MC simulation result (obtained by
solving the classical phase space integral) and the QSM internal
partition functions, which we discuss in the next paragraph.

To obtain the QSM results, we have adopted a quantum
reduced-dimensionality approach, and considered the distance
in the diatomic fixed at its equilibrium geometry. This should
be a good assumption since we are focusing on vdW molecules,
for which we have considered realistic double many-body
expansion31,32 (DMBE) potential energy surface described
elsewhere.5,33 The 2D problem has then been solved by using
the coupled-channels approach as implemented in the BOUND
computer code of Hutson.34,35Specifically, the coupled equations
have been propagated for the ArO2 molecule betweenRmin )
2.6 Å andRmax ) 14.0 Å with a step size ofdR ) 0.05 Å,
while for the rotational constant of O2 we have usedBe )
1.44563 cm-1.36 The total number of calculated vibrational-
rotational levels and maximum total angular momentum have
been found to be 1380 andJ ) 36, respectively. In turn, for
ArCN, we have used the results reported elsewhere6 using the
same methodology. The vibrational-rotational partition func-
tions were then calculated by carrying out the summation in eq
10 with j replaced by the total angular momentum quantum
numberJ of the complex which is obtained by coupling|jMj〉
(the total angular momentum quantum number of the diatomic
molecule; note that for O2 the Bose-Einstein statistics forbids
even rotational states) and|LML〉 (the end-over-end rotations
of the complex).37 Clearly, the plots in Figures 2 and 3 show
that an excellent agreement is obtained for both systems. In
fact, for both ArCN and ArO2, the bottom parts of Figures 2
and 3 indicate that the deviations between the MC simulation
and the exact QSM results are always smaller then 1%.

4. Conclusions

The modeling of chemical reactions requires a detailed
knowledge of the relevant partition functions over a wide range
of temperatures. In particular, the reliability of the calculated
properties for reactions such as those in eqs 2 and 3 depends
critically on the accuracy of the equilibrium constant for
formation of the intermediate species involved in the RC
mechanism. Since the evaluation ofQint is nontrivial and the
usual approximations (such as HO+RR, and related models)
breakdown in the case of vdW molecules, the classical MC
simulation approach suggested in the present work looks
promising. Indeed, in all cases the exact but more cumbersome
QSM calculations agree typically with the classical simulation
results within a few tenths of a percent or so.

We have also examined the efficiency in several variants of
the MC approach, and concluded that Barker’s algorithm is to
be recommended. It provides a general methodology to solve
multidimensional integrals and may find a wide application in

Figure 1. Transformation between the Cartesian (see the text) and
spherical polar coordinate systems: (a) (Q4,Q5,Q6) f (r,θr,φr), (b)
(Q7,Q8,Q9) f (R,θR,φR).

H )
1

2µBC
∑
i)4

6

Pi
2 +

1

2µA,BC
∑
i)7

9

Pi
2 + V (Q4, ...,Q9) (32)

wg ) VQ
r VQ

R VP
r VP

R (33)

VQ
r ) 4πr2 (34)

VQ
R ) 2πRmax

3 [cos(θRmin
) - cos(θRmax

)]/3 -

2πRmin
3 [cos(θRmax

) - cos(θRmax
)]/3 (35)

VP
r ) πPrmax

2 (36)

VP
R ) 4/3πPRmax

2 (37)
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statistical mechanics where such integrals are frequent. In
particular it may possibly be of interest to calculate sums of
states for transition states of any looseness, provided that one
is able to establish the adequate boundary conditions. Specially
notable is the fact that for the title systems the method is simple
to implement and the computational effort relatively small.
Hopefully, it will be equally useful to handle the general
polyatomic case.
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Figure 2. Top panels (a) and (b):Qint as a function of temperature
for the ArO2 vdW molecule. The solid line represents the exact-quantum
result, while the dots indicate the MC simulation results with errors
bars. Bottom parts c and d: relative error in percent between the QSM
and MC simulation results.

Figure 3. As in Figure 2 but for the ArCN vdWmolecule.
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