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Abstract 28 

Type 2 Diabetes (T2D) diagnosis is based solely on glycemia, even though it is an endpoint of 29 

numerous dysmetabolic pathways. T2D complexity is challenging in a real-world scenario, thus 30 

dissecting T2D heterogeneity is a priority. Cluster analysis, which identifies natural clusters 31 

within multidimensional data based on similarity measures, poses as a promising tool to unravel 32 

Diabetes complexity. 33 

Herein, we aimed at scrutinizing and integrate the results obtained in most of the works up to date. 34 

We conclude that to correctly stratify subjects and to differentiate and individualize a preventive 35 

or therapeutic approach to Diabetes management, cluster analysis should be informed with more 36 

parameters than the traditional ones, such as etiological factors, pathophysiological mechanisms, 37 

other dysmetabolic co-morbidities, and biochemical factors i.e. the millieu. Ultimately the 38 

abovementioned factors may impact on Diabetes and its complications. 39 

Lastly, we propose another theoretical model, which we named the Integrative Model. We 40 

differentiate three types of components: etiological factors, mechanisms, and millieu. Each 41 

component encompasses several factors to be projected in separate 2D planes allowing an holistic 42 

interpretation of the individual pathology. 43 

Fully profiling the individuals, considering genomic and environmental factors, and exposure 44 

time, will allow the drive to precision medicine and prevention of complications. 45 

 46 

Keywords: diabetes; machine learning; cluster analysis; big data 47 
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Abbreviations 49 

BMI – body mass index 50 

CAD – coronary artery disease 51 

CKD – chronic kidney disease 52 

CV – cardiovascular 53 

DKD – diabetic kidney disease 54 

eGFR – estimated glomerular filtration rate 55 

GRS – genetic risk score 56 

HOMA-B – Homeostatic Model Assessment for beta-cell function 57 

HOMA-IR – Homeostatic Model Assessment for Insulin Resistance 58 

MARD – mild-age related Diabetes 59 

ML – machine learning 60 

MOD – mild-obesity related Diabetes 61 

MR – Mendelian Randomisation 62 

MRI – magnetic resonance imaging 63 

NAFLD – non-alcoholic fatty liver disease 64 

OAD – oral antidiabetic drugs 65 

OGTT – oral glucose tolerance test 66 

PAM – partition around medoids 67 

PD – Prediabetes 68 

SAID – severe autoimmune Diabetes 69 

SIDD – severe insulin-deficient Diabetes 70 

SIRD – severe insulin-resistant Diabetes 71 

SNPs – single nucleotide polymorphisms 72 

SOM – self organizing maps 73 

T1D – Type 1 Diabetes mellitus 74 

T2D – Type 2 Diabetes mellitus 75 

UACR – urine albumin creatinine ratio  76 
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1. Introduction 77 

In Diabetes glucose metabolism is affected due to individual or simultaneous changes in insulin 78 

secretion, action or metabolism. Diabetes is diagnosed based on glycemia and cut-off values were 79 

defined based on the presence of microvascular complications, namely retinopathy.1 However, 80 

dysglycemia, or the glucose altered metabolism, is not an all-or-nothing phenomenon on the 81 

contrary, it occurs continuously. Prediabetes (PD) is a less severe hyperglycemic state that depicts 82 

a higher risk of progression to Diabetes. Importantly, individuals with PD can develop Diabetes 83 

complications, whereas others with Diabetes may never develop them, showing the limitations of 84 

the current clinical classification.2 Therefore, glycemic levels are not sufficient to inform about 85 

the onset and severity of the condition. 86 

Notwithstanding all investment in Diabetes, specifically in Type 2 Diabetes mellitus (T2D), it is 87 

still one of the main non-communicable diseases, and its mortality increased 70% since 2000.3 88 

T2D is extremely heterogenous,4,5 both in its initial presentation and complications’ development, 89 

which is crucial to explain the sustained morbidity and increased mortality attributable to this 90 

condition.3,6 The empirical individualisation of therapy in Diabetes dates back to 19th century,7,8 91 

and is still practised. The latest therapeutic guidelines for T2D include several recent drugs that 92 

are giving better results regarding cardiometabolic complications9 and start to have an increased 93 

focus on the patient's co-morbidities.10 The concept of precision medicine has been proposed, 94 

aiming at defining the most effective approach for a similar group of patients regarding genetic, 95 

environmental, lifestyle, clinical factors, amongst others.6 However, further advances in the 96 

ability to define precise therapies for Diabetes also depend on the acquired knowledge regarding 97 

the heterogenity of the condition. 98 

As early as 1965, two major groups were acknowledged in Diabetes pathophysiology: insulin 99 

resistant and insulin deficient individuals.11 The two pathophysiological mechanisms associated 100 

with these groups were assumed to be related with two main organs: insulin secretion impairment 101 

in the pancreas; and insulin resistance at the skeletal muscle. Since then, much more complexity 102 

was added to Diabetes pathophysiology, especially to T2D.12 More recently, it has been shown 103 

that other organs and factors, such as the lung and microbiome, can impact on T2D onset and 104 
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progression.13–15 Additionally, it is currently accepted that T2D etiology encompasses thousands 105 

of low impactful genes, as well as environmental and lifestyle factors, that interact with each 106 

other.16 107 

Glucose metabolism is part of an intricate metabolic network where carbohydrates, lipids and 108 

other metabolic pathways should be considered as a whole and, when affected, result in 109 

dysmetabolism and/or hemodynamic alterations. Thus, depending on the affected mechanisms, 110 

Diabetes can appear in distinct dysmetabolic contexts. Interestingly, there are lipodystrophic 111 

phenotypes in which the inability of white adipose tissue to expand, despite diverse BMI values, 112 

causes ectopic fat deposition.17 These subjects are exposed to atherogenic dyslipidemia18 and, in 113 

the liver, development of fatty liver may progress to steatohepatitis19 that can be further impacted 114 

by different adipose tissue amounts and function. Despite showing similar patterns regarding 115 

hyperglycemia and hyperlipidemia, subjects with lipodystrophy, might require a distinct 116 

treatment.20 Another example relates to Diabetes and hypertension bidirectional association. Both 117 

conditions have several common pathophysiological mechanisms, namely hyperinsulinemia, 118 

increased sympathetic nervous activity, activation of renin-angiotensin-aldosterone system, 119 

endothelial dysfunction, etc.21 The onset of hypertension in subjects with Type 1 Diabetes (T1D) 120 

has been related with the onset of kidney dysfunction; however, in subjects with T2D, it can 121 

appear before22 and they can show a prehypertensive profile some years earlier.23 The causal 122 

association of T2D in hypertension was depicted in a Mendelian Randomisation (MR) study, but 123 

does not explain the onset of T2D in hypertensive subjects.24 However, a higher incidence of T2D 124 

in hypertensive subjects as compared with normotensive subjects is evident.24 The above-125 

described complexity, although easy to understand in concept, is very hard to demonstrate and 126 

tackle in clinical practice. Dissecting and understanding T2D heterogeneity is a priority to reverse 127 

the current scenario.25 128 

To tackle the overly complex clinical challenges, involving multiple etiological factors, organs 129 

and mechanisms, classical statistical analyses are frankly insufficient. Recent progress in memory 130 

and computation power allowed for the development and implementation of more complex 131 
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algorithms, including a collection of tools that can learn from data, named machine learning (ML). 132 

Specifically cluster analysis, using unsupervised learning algorithms (algorithms that deal with 133 

observations that do not have a label to learn from26) are promising tools to unravel Diabetes 134 

complexity. 135 

We will critically review distinct cluster analysis methodologies currently used to study Diabetes 136 

and integrate results from different studies. Since all analyses aimed at understanding 137 

Diabetes/T2D pathophysiology, we anticipate their conclusions to fit as pieces on a puzzle. 138 

Finally, we suggest a model that can be applied to Diabetes precision medicine and from a wider 139 

perspective to dysmetabolism overall. 140 

 141 

2. Advancement of Diabetes Management – travelling on the road to precision medicine 142 

The word Diabetes ("to go through" or siphon) is attributed to Apollonius of Memphis in Greece 143 

around 250BC. However, its clinical description and some complications date back to 3500 years 144 

ago in Egypt.27 Interestingly, two types of Diabetes - congenital and late onset - and their 145 

relationship to heredity, obesity, sedentariness and diet, were already recognized in medical 146 

treatments in ancient India.8,28 At the time Diabetes resulted in death and preventing it was the 147 

main goal. Additionally, complications of Diabetes, as peripheral neuropathy, gangrene and 148 

erectile dysfunction were described by an Arab doctor, Avicenna (AD 960-1037).27 Centuries 149 

later Matthew Dobson (1732-1784) and Michel Chevreul (1786-1889), through the application of 150 

chemistry to diagnosis, identified glucose as the sugar that was increased both in urine and serum 151 

of these patients.8 Arguing that glucose appeared in the urine because the body was unable to 152 

assimilate it, Dobson considered Diabetes a systemic disease rather than a kidney disease, as it 153 

was considered until then.28 These findings led to the research on the metabolism of 154 

carbohydrates. However, insulin was not yet available and treatments were based on 155 

individualisation of diets, rest or other lifestyle changes,7 unable to prevent death from acute 156 

complications. Neurological complications were also quite frequent, the association of 157 

neuropathy, vascular disease, plantar ulcers and gangrene with Diabetes was also described, rising 158 

the hypothesis that microvascular disease was the cause of some complications.28 159 
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In 1921-22 Banting and Best isolated insulin, one of the great discoveries in medicine, which has 160 

allowed most people with insulin-dependent Diabetes to be treated to this day. On the other hand 161 

it led to the distinction of T1D, in which people needed insulin, from T2D, in which insulin was 162 

present but uneffective.27 Since the problem in question was hyperglycemia, other therapeutic 163 

strategies would be developed based on glycemic control.27 In the 1950's the first sulfonylurea 164 

appeared - the first oral antidiabetic drug (OAD) for people with T2D.29 Metformin, the most used 165 

OAD, appeared a few years later with its mechanism of action only recently fully understood.30 166 

Since then, other groups have been made available as the involvement of other organs and 167 

mechanisms is known.10,12,29 In a paradigm of therapy which in the meantime has become 168 

evidence-based clinical guidelines began to be published, with the main therapeutic focus on 169 

glycemic control.31 It was also recognized that the reduction of complications implied 170 

simultaneous treatment of other diseases that represent risk factors for the same complications, 171 

such as dyslipidemia and hypertension.31 172 

The etiologic classification of Diabetes recognizes several types besides Type 1, Type 2 and 173 

gestational Diabetes.1 The recognition that there is still a high degree of heterogeneity leads to an 174 

effort to adapt the numerous drugs with distinct mechanisms to the patients who benefit most 175 

from them.32 Weight control, hypertension and dyslipidemia, among others, have gained 176 

increasing relevance along with glycemic control.10 Nowadays, these diseases are recognized as 177 

co-morbidities but treated as independent conditions. 178 

 179 

3. Cluster Analysis 180 

Cluster analysis is a ML methodology that uses a group of algorithms that can deal with non-181 

labelled data, named unsupervised learning (Figure 1). Cluster analysis aims to stratify population 182 

observations' in natural groups/clusters without needing a priori categorization. Within each 183 

cluster observations' similarity are maximized whilst minimized between clusters.33  184 

Distinct clustering algorithms have advantages and drawbacks related to computation time, the 185 

need for an a priori knowledge regarding the number of groups, and cluster shape in a 186 

multidimensionality space that they can find (Table 1).26 In (dys)glycemia, specifically in the 187 
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resolution of T2D heterogeneity, one should consider several parameters with distinct and specific 188 

characteristics (e.g. genes, environmental factors, biochemical analysis, omics, etc.). Therefore, 189 

it is natural that the best result is obtained using an ensemble of algorithms.  190 

Cluster analysis workflow implies taking several decisions (e.g. choosing the algorithm, variables 191 

to inform the cluster, similarity and distance measures, etc.). When algorithms are not able to find 192 

the best number of clusters (Table 2), there is the need to determine a priori a number of clusters.34 193 

Still, different measures can give a distinct optimal number of clusters and therefore should be 194 

carefully selected and interpreted. Of note, the found groups should be clinically relevant. 195 

Furthermore, aside from finding natural groups in data, cluster analysis is a powerful tool in data 196 

exploration and visualization. In the context of (dys)glycemia heterogeneity, by profiling the 197 

found groups, we can explore what characterizes them, posing a promising tool to explore and 198 

tackle (dys)glycemia complexity. 199 

 200 

4. Cluster Analysis Algorithm impact on Founded Clusters 201 

To perform a cluster analysis, impactful decisions must be made: inclusion and exclusion criteria, 202 

choice of variables, and the algorithm to perform the analysis, amongs others. Additionally, 203 

indexes that define the best number of clusters and distance metrics have to be selected.26 Cluster 204 

analysis used to date to tackle T2D and dysmetabolism have a dissimilar methodology that must 205 

be considered when interpreting and integrating the results (Table 2).35–38 206 

Hierarchical clustering and k-means are two of the most well-known clustering algorithms. 207 

Agglomerative hierarchical clustering26 is a simple algorithm that hierarchically joins nested 208 

clusters in a bottom-up way, with its agglomerative process visualized in a dendrogram. This 209 

process does not need the pre-specification of the optimal number of clusters, though it requires 210 

an a posteriori cut-off to define them. Furthermore, data can be analyzed at different cut-off 211 

values, allowing us to understand how observations aggregate. However it can only find clusters 212 

with specific shapes, it gives distinct solutions depending on the chosen aggregation methodology 213 

to join the observations and has a high computation cost.26 K-means is a simple and efficient 214 

algorithm. Besides not dealing well with categorical variables, the final solution is highly 215 
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impacted by its random initialization, requires an a priori specification of the number of clusters 216 

and, importantly, it is prone to find spherical clusters, even if this is not their natural shape.26 The 217 

latter can limit its use. Partition around medoids (PAM) is a k-medoids algorithm, that is less 218 

sensitive to noise than K-means, but with a higher computational cost.26 219 

K-means, PAM and hierarchical clustering have been used mainly when few parameters are used 220 

to tackle T2D.39 To perform more complex analyses, self-organising maps (SOMs) and 221 

topological based analysis have proven to be more efficient and able to find clusters that have 222 

non-spherical shapes.26,40 223 

Hierarchical SOMs, followed by hierarchical clustering,41 have been used to solve multiple 224 

intricate problems, including clustering analysis of T1D complications.40 SOM is a neural 225 

network-based algorithm, which maps observations to neurons in a grid that at the end will 226 

represent the cluster (cluster centroid).42 In summary, the first algorithm allows data 227 

dimensionality reduction, whereas the second enables the stratification and understanding of how 228 

the units agglomerate together. Aside from dealing with large and complex data, SOMs can find 229 

different cluster formats. Nonetheless, it has drawbacks as requiring too many parameters to be 230 

set and optimised, its computational cost and the number of clusters must be set a priori.42 231 

Network analysis is a graph-based method that assesses subjects (nodes) in relation to each other 232 

(edges).36 233 

The abovementioned algorithms are classified as hard clustering algorithms, i.e. they group the 234 

population to assign one subject only to one cluster. Contrarily, soft clustering uses algorithms 235 

that define the probability of one observation belonging to distinct clusters;43,44 thus, one subject 236 

can belong to multiple clusters at a given time. Despite computational cost and convergence 237 

drawbacks, soft clustering algorithms are extremely useful when an item can belong to more than 238 

one cluster, as is the case of clustering T2D related genes/SNP's and mechanisms.38 239 

 240 

5. Population and Parameter Set to resolve Type 2 Diabetes 241 

Clusters analyses to resolve T2D heterogeneity are also diverse regarding the analyzed 242 

population, set of parameters used to inform the cluster,40,43–45 thus impacting on the  groups 243 
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found. Methodological heterogeneity reveals the authors' distinct perspectives on Diabetes 244 

definition, where it stands within the wider dysmetabolism concept, and the number and type of 245 

parameters that allows a precision medicine approach to T2D. 246 

Although T2D is classically considered an affection of glucose metabolism, glucose metabolism 247 

occurs integrated with other substrates'.45 Glucose metabolism-related parameters though 248 

informing about groups with different conditions, do not give a broader perspective on 249 

metabolism nor account for the overall metabolic heterogeneity. T2D impact relies mainly on its 250 

complications' development that, in turn, relate to other factors.46 Herein, we distinguish 251 

etiological factors (e.g. time, genes, environmental factors, lifestyle factors), pathophysiological 252 

mechanisms (e.g. overall or organ-specific insulin resistance, insulin secretion, overall or organ-253 

specific insulin clearance), other dysmetabolic co-morbidities (e.g. hypertension, dyslipidemia), 254 

biochemical and other internal environment factors present in the organism or that the organism 255 

is exposed to, that is its millieu (e.g. glycemia, insulinemia, free fatty acids, blood pressure, body 256 

weight).  257 

Ahlqvist et al. performed a cluster analysis on a population of individuals recently diagnosed with 258 

Diabetes.35 The analysis considered six clinical parameters: the presence of GAD antibodies 259 

(GADA), age at diagnosis, HbA1c, BMI, HOMA-IR and HOMA-B. The analysis does not rely 260 

only on glycemia nor on insulin levels. Nevertheless, the population solely includes individuals 261 

that were diagnosed based on current criteria. The authors found five optimal clusters using the 262 

silhouette index and hierarchical clustering. One of these clusters, named severe autoimmune 263 

Diabetes (SAID), included GADA+ subjects. Afterwards, GADA+ subjects were excluded and 264 

the k-means algorithm was used to define the other 4 clusters: severe insulin-deficient Diabetes 265 

(SIDD); severe insulin-resistant Diabetes (SIRD); mild-obesity related Diabetes (MOD); and 266 

mild-age related Diabetes (MARD). These clusters were replicated in other northern European 267 

cohorts.35 In brief, SAID subjects showed an early-onset condition, low BMI and poor metabolic 268 

control. Subjects in SIDD cluster were similar to SAID but GADA-; these subjects showed a 269 

higher risk of having diabetic retinopathy. A variant in human leukocyte antigen (HLA) locus 270 

(rs2854275) was found to be associated with SAID but not with SIDD. 271 
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Interestingly, Zaharia et al. showed that, in a German population, individuals that were GADA- 272 

at baseline could be GADA+ after five years, determining that for better classification of 273 

autoimmune Diabetes other antibodies should be used.47 SIRD cluster included individuals with 274 

marked insulin resistance, high BMI and a high prevalence of non-alcoholic fatty liver disease 275 

(NAFLD). Of note, this cluster also revealed to have the highest β-cell function. Additionally, 276 

individuals in the SIRD cluster were at the highest risk of developing chronic kidney disease 277 

(CKD) and diabetic kidney disease (DKD, defined by persistent macroalbuminuria), despite 278 

proper glycemic control. Finally, subjects in MOD showed higher values of BMI but not insulin 279 

resistance, whereas MARD subjects were older, with only modest metabolic affection and were 280 

not associated with the evaluated Diabetes complications. These last two clusters included most 281 

of the population and still have a considerable proportion of subjects with Diabetes complications. 282 

Furthermore, not all Diabetes' complications were evaluated. In fact, it has been suggested that 283 

borderline Diabetes is associated with an increased risk of dementia and Alzheimer disease, which 284 

is potentiated when hypertension is present. Regarding gene loci, rs7903146 (a TCF7L2 SNP 285 

associated with T2D) was associated with SIDD, MOD and MARD; whereas rs10401969 (a 286 

TM6sf2 gene variant associated with NAFLD) was associated with SIRD but not with MOD.35 287 

The above-mentioned four subgroups of T2D have been overall replicated, using the same 288 

methodology as Ahlqvist et al., in distinct geographical locations and ethnicities. This further 289 

confirms the already known association of Diabetes with younger subjects, with lower BMI and 290 

more insulin deficiency in Asian and Indian populations.48,49 Moreover, 23% of subjects changed 291 

cluster in the five year follow-up.47 Particularly, people in the insulin-deficient cluster (SIDD) 292 

were changed to clusters with better insulin secretion (MOD and MARD). 293 

Li et al. performed topology-based cluster analysis of 2552 T2D subjects from several ethnicities, 294 

informed by 73 mixed features from electronic medical records derived clinical data.36 These 295 

features included biochemical and clinical parameters besides glycemia, thus approaching T2D 296 

in a wider (dys)metabolic context. This was a landmark study and one of the first studies to show 297 

the ability to deal with a high number of variables to stratify subjects with T2D. However, the 298 

stratification results depend on the parameters selected to inform the cluster rather than the chosen 299 
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population. It is not clear if the authors have found three Diabetes subtypes or three subtypes of 300 

patients that have Diabetes, considering the highly mixed chosen parameters to inform the 301 

analysis that also included several diseases codes and medications. The chosen methodology 302 

renders it difficult to validate it in different populations. 303 

To extend clusters' evaluation to subjects with normoglycemia and PD, we accounted for age as 304 

a surrogate of time exposition, anthropometry, and biochemical parameters (glycemia, insulin, c-305 

peptide and free fatty acids) in three-time points of an OGTT.37 In this study, we used a 306 

hierarchical SOM, followed by a hierarchical clustering algorithm. Subjects were then profiled 307 

concerning the abovementioned parameters and several mechanism's surrogate indexes, including 308 

overall and tissue-specific insulin resistance, insulin secretion, insulin clearance, NAFLD, and 309 

glomerular filtration rate (GFR). The sample had a limited number of subjects with non-treated 310 

T2D. Nonetheless, none of the subjects had Diabetes five years earlier. In this work, we found 311 

two main clusters: one that includes subjects with a median metabolic phenotype compared to the 312 

overall population; and the other with elevated insulin resistance and insulin secretion. However, 313 

these 2 clusters were highly heterogeneous when they were evaluated for a higher number of 314 

clusters. For example, despite the presence of a main insulin-resistant group, that comprised 315 

subjects with normoglycemia and dysglycemia it included subgroups that could be differentiated 316 

by their adipose tissue insulin resistance. Moreover, even though groups with lower estimated 317 

GFR (eGFR) were insulin resistant, not all insulin resistant groups showed this association. 318 

Additionally, we found that clusters including individuals with normo/dysglycemia and low 319 

eGFR could be further profiled and showed insulin resistance and NAFLD. Consistently, other 320 

groups have also shown that both high insulin resistance and NAFLD are related to kidney 321 

dysfunction in subjects with or without T2D.50 In Ahlqvist et al. the group of individuals that had 322 

the highest risk of developing CKD/DKD, even considering proper glycemic control, was the 323 

most insulin resistant one.35 324 

Furthermore, these subjects had the lowest GFR at baseline (when they had less than 12 months 325 

from diagnosis) on the German Diabetes Study cohort.47 The impact of insulin resistance and 326 

NAFLD on GFR seems to be, at least partially, independent from glycemia. Importantly, both 327 
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conditions can be associated with hyperinsulinemia and insulin is a known trigger and a target of 328 

kidney (dys)function that may have a role in the pathophysiology of T2D.51 Interestingly, the 329 

heterogeneity of affected mechanisms was not exclusive of people with T2D, including also 330 

subjects with PD and normoglycemia. Our work would benefit from being validated in other 331 

cohorts. Nevertheless, we highlight that T2D diagnosis should consider other parameters besides 332 

glycemia. In fact glucose levels impact is differently perceived by each individual. Therefore, it 333 

should include subjects with different ranges of glycemic values together with other parameters. 334 

An interesting complementary approach to dissect T2D heterogeneity is the use of genetic 335 

markers. Reasoning that genetic variants remain constant despite disease progression and 336 

treatment, unlike clinical variables, thus being more likely to reveal T2D causal mechanisms, a 337 

cluster analysis including T2D gene-traits associations, including 94 genetic variants and 47 traits 338 

was performed.38 Aside from genetic data the analysis was informed with clinical parameters, 339 

including surrogate indexes of insulin secretion and insulin resistance, as well as lipid parameters, 340 

that allowed for the identification of other insulin resistance-related groups. Importantly, in this 341 

work b-NMF, a soft clustering algorithm was used, allowing a SNP to be associated with more 342 

than one mechanism and one cluster. The authors identified five clusters of genetic loci – traits 343 

associations: two with variant-trait associations related to reduced β-cell function, distinct in pro-344 

insulin levels; and three insulin resistance-related, namely obesity mediated, lipodystrophy-like 345 

fat distribution and disrupted liver lipid metabolism. Of note, this is also a potentially complex 346 

approach. As more than 100 loci were already found to be associated with T2D, each one with a 347 

very slight impact on the increased risk of the disease and in dysmetabolism etiology, we should 348 

consider, along with genetic factors, their interactions with environmental and lifestyle factors. 349 

Interestingly, Udler et al. evaluated the Genetic Risk Score (GRS) association with relevant 350 

outcomes in each cluster. Coronary artery disease (CAD) was mostly associated with the 351 

lipodystrophy and Beta-cell clusters. Beta-cell cluster was also associated with ischemic stroke. 352 

Increased blood pressure was only associated with lipodystrophy cluster, which also showed an 353 

association with higher urine albumin-creatinine ratio (UACR). Liver/Lipid cluster was 354 
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associated with decreased renal function and diminished UACR. GRS outcomes were validated 355 

in T2D cohorts by profiling subjects' characteristics in top quantile GRS's subjects.38 356 

More recently, Wagner et al. focused on a german population considered at risk of developing 357 

Diabetes based on BMI, previous history and family history (TUEF/TULIP cohort).52 Besides 358 

OGTT-based measures reflecting blood glucose, insulin resistance and insulin secretion, liver, 359 

subcutaneous and visceral fat values measured by MRI, and HDL levels, polygenic risk score for 360 

Diabetes were also included. The defined six clusters were then evaluated in a larger cohort 361 

(Whitehall II). However to assign the latter individuals to the clusters, the authors used less 362 

profiling variables, still based on OGTT measurements. The authors reported a relocation rate of 363 

only 60% in the original cohort, which suggests that MRI fat measurements do not appear to be 364 

superior to measurements such as BMI and waist circumference.37 Importantly, progression to 365 

Diabetes, CKD, CV events and all cause mortality were assessed.52 Consistent with our findings,37 366 

Wagner et al. demonstrated that pathophysiological affection is already present before Diabetes 367 

diagnosis.52 Within the six defined clusters, three that were older and/or more obese showed 368 

higher glycemia (clusters 3, 5 and 6); one related with insulin deficiency and raised genetic risk 369 

(cluster 3); and two with insulin resistance (clusters 5 and 6). Cluster 6 showed a dissociation of 370 

both risks of progression to Diabetes and CKD in Whitehall II cohort. However, considering that 371 

GFR is not depicted in TULIP/TULIF and CKD progression models in Whitehall II were not 372 

adjusted to GFR at the baseline these results should be carefully interpreted. Cluster 4 is consistent 373 

with a metabolically health obese profile that includes younger subjects than the most 374 

dysmetabolic groups and did not show a protected profile overtime, namely regarding CV events. 375 

In fact, although clusters in TULIP/TULIF cohort differ in intima-media thickness, in the 376 

Whitehall II cohort, the clusters did not differ in CV outcomes risk, after adjustment for BMI and 377 

age, except for Cluster 2 that had a protected profile. Considering the relevance of CV events in 378 

Diabetes this highlights the importance of an enriched milieu to a better stratification.37 379 

 380 

6. What can we learn from cluster analysis? 381 
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Insulin secretion and resistance have been included in parameters informing cluster analyses. 382 

However there can be different mechanisms that lead to insulin deficiency and resistance.37 It has 383 

been suggested that insulin resistance can be considered a defensive mechanism against elevated 384 

insulin secretion due to a highly nutritional load in a sensitive β-cell.53 In distinct cluster analysis, 385 

most of the groups found to be insulin resistant were the ones with the highest insulin 386 

secretion.35,37 Nevertheless, the amount of circulating insulin depends not only on the cells' 387 

secretion capacity but on overall insulin metabolism and on insulin clearance.54 Changes in insulin 388 

clearance have also been linked to hyperinsulinemia.37,54 Insulin resistance has been associated 389 

with age and BMI. Interestingly, in work by Alqhvist et al., MARD and MOD groups differ from 390 

the SIRD in that they are less fat or younger, respectively, showing better metabolic control.35 391 

Several questions remain to be clarified concerning the mechanisms leading to insulin resistance. 392 

One concerns the mechanisms through which age and BMI impact on insulin resistance and 393 

whether this implies a different therapeutic approach. Secondly, in the setting of insulin 394 

resistance, it is known the association between liver and adipose tissue but whether insulin 395 

resistance develops through distinct pathways, implying distinct therapeutic approaches, remains 396 

elusive. Thirdly, when it comes to Diabetes complications, the majority of the results were 397 

obtained using patients undergoing treatments, which may, in its turn, promote complication’s 398 

onset.55 Finally, cluster analysis showed the association between GFR and albuminuria with 399 

insulin-resistant states;40,45,52,56 however, the presence of an association does not necessarily imply 400 

homogeneity between clusters, when it comes to kidney function, making this an etiological factor 401 

of the uttermost importance in Diabetes stratification. 402 

Udler using SNP and traits, in addition to HOMA-IR and HOMA-B, namely lipid profile, found 403 

three groups of insulin-resistant subjects that showed involvement of different mechanisms and 404 

organs.38 We and others have shown that distinct insulin resistance patterns can be present in 405 

subjects with normoglycemia and PD.37,52 406 

Altogether these support the view that, in order to stratify subjects to differentiate a preventive or 407 

therapeutic approach to Diabetes, one should inform the cluster analysis with more parameters 408 

reflecting other mechanisms metabolites and factors (e.g., lipids, blood pressure, insulin). 409 
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Additionally, Diabetes pathophysiology occurs continuously and people without Diabetes can 410 

already have Diabetes's complications, hinting to different susceptibilities to glycemic levels. This 411 

may be due to concomitant exposure to other factors such as hypertension or dyslipidemia, or due 412 

to the common underlying pathophysiologic mechanisms. 413 

 414 

7.  New models for an approach to Diabetes in precision medicine 415 

Cluster analysis is contributing to uncover the heterogeneity of Diabetes.35,37,38,47 However, its 416 

superiority over simple predictive models (e.g., predicting complications such as renal 417 

dysfunction) is being questioned.56 418 

McCarthy proposed the palette model to resolve T2D heterogeneity.57 The model defined 419 

component planes, such as mechanisms, etiological factors and others, that can be affected, 420 

comparing them to a palette hue. The characterization of subjects by their component planes 421 

places them in a bidimensional plane where the path from normoglycemia to Diabetes can be 422 

assessed for each individual. Importantly this model includes subjects with normoglycemia and 423 

dysglycemia, which have different affected mechanisms. Ahlqvist et al. suggested a model based 424 

on the assumption that there is a dominant pathway that gives at least to the majority of patients 425 

with Diabetes a well-defined "palette colour".58 Additionally, few clinical parameters render 426 

larger groups. 427 

In our view, a precision medicine model to approach Diabetes must consider glycemia and 428 

glucose metabolism, as well as other substrates and factors, that impact on dysglycemia and/or 429 

Diabetes complications onset and progression. Diabetes complications occur for different values 430 

of glycemia, impacted by the metabolic context of the individual. In fact, dysmetabolic factors 431 

interaction might potentiate the risk for specific conditions, as is the case of glycemia and blood 432 

pressure interaction in the development of Alzheimer's disease.55 Finally, the model must be 433 

holistic and applicable to different ethnicities. There are ethnicities that show a higher risk for the 434 

onset of T2D at younger ages and for lower BMI.48 Interestingly, subjects with an Asian genetic 435 

background seem to have diminished insulin secretory capacity, but one cannot exclude the 436 

environmental and culture-related factors.  437 
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We propose to paint another picture, the Integrative model (Figure 2). We consider that the 438 

approach can only be attained by being detailed in the metabolic characterization of the 439 

individuals, and by placing it in a wider context of dysmetabolism. Thus, we consider the path 440 

from normometabolism to dysmetabolism, in which dysglycemia is one axis among other factors 441 

that can impact on complications onset/progression and organ dysfunction. Therefore, the 442 

metabolic condition of each subject is approached in an integrated way. Also, we differentiate 443 

three types of components: etiological factors, mechanisms and millieu. Each encompasses 444 

several factors or axis that are projected in separate 2D planes. We postulate that, by deeply 445 

profiling a subject for one type of component, we can place him in the corresponding plan. 446 

Furthermore, we postulate that we can predict where the individual is in one plan by knowing the 447 

others. Ultimately it will allow placing each individual in a last plan where his metabolic state is 448 

known. It is natural that there are groups in the data. However, given the possible combinations 449 

of affected mechanisms and organs, it is clear that their number is too high for human 450 

understanding. 451 

This model differs from McCarthy's palette model in two main points: 1) it considers the path to 452 

dysmetabolism and not to hyperglycemia; 2) it separates the different etiological factors from the 453 

affected mechanisms and from the internal environment to which the person is exposed on 454 

different levels (Figure 3). The different planes are thus projected among themselves, giving us 455 

the possibility to know one when we fully evaluate the others. This differentiation can be relevant 456 

to prioritize the clinical approach to the individual and to delineate distinct integrated therapeutic 457 

and preventive strategies to be adopted in the different planes that nonetheless should be validated 458 

in clinical studies. 459 

Currently, in therapeutic individualization, therapy is first prescribed to hyperglycemia and then 460 

adapted according to the individual characteristics of each patient. In contrast, in precision 461 

medicine, the therapeutic approach is chosen after assigning the patient to a group that already 462 

considers the individual specificities. For example, in the individualized treatment of T2D, a 463 

subject without atherosclerotic disease or CKD but with hypertension and poorly controlled 464 

glycemia, when on metformin, can be medicated with one of five drugs (DPP4, GLP-1, SGLT-2, 465 



18 

thiazolidinediones, sulfonylureas). This will be chosen by each doctor considering some 466 

characteristics of the patient, such as weight. In addition, an antihypertensive is associated. In real 467 

life, situations are not so clear as in guidelines. For instance, what to do with a patient with T2D 468 

on metformin, with good glycemic control (average HbA1c 6.8%) but with evidence of early 469 

DKD and without other metabolic risk factors? How intensive and with which agents should he 470 

be treated to have the best health outcome? Is it better to use a SGLT-2 inhibitor or/and start an 471 

ACE2 inhibitor? Is this the best treatment for all the patients in this condition? Or what to do with 472 

another patient with 15 years of T2D, mostly with poor control (HbA1c >8.5%) under different 473 

antihyperglycemic medication, without other risk factors or evidence of Diabetes complications? 474 

Should we keep trying to put him in a good track of glycemic control? For what purpose? In a 475 

precision medicine approach, he would first be assigned into a group of people sharing common 476 

features of the overall metabolic condition, already accounting with all his specificities (including 477 

millieu, mechanisms and etiological factors) for which the optimal treatment of that group would 478 

be already tested, defined and can then be prescribed for that individual.  479 

In order to train and validate this theoretical model, datasets that consider the overall metabolism 480 

and deep phenotyping subjects in the distinct proposed planes are needed. Ultimately this model 481 

may be implemented in a decision support system that predicts where people are in their overall 482 

metabolism. This would assign the individual to a homogeneous group, eventually unravelling 483 

his metabolic footprint. 484 

 485 

8. Conclusion 486 

Precision medicine allows tailoring an approach or treatment to different individuals. In other 487 

words, a population is stratified into similar groups, considering relevant characteristics to the 488 

condition (e.g. T2D). Doing so for each group an appropriate therapeutic approach is defined. 489 

Although precision medicine approaches can make use of genetic data, they can also be based on 490 

many other types of clinical data. Observed complexity is solved with the help of mathematical 491 

algorithms that stratifies individuals into groups by similarity. 492 
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In the era of omics and digital health, in which we can extract and deal with thousands of features 493 

and use them to tailor care to Diabetes, it is not prudent to limit cluster analysis to a few already 494 

preestablished common mechanisms. Furthermore, these new strategies allow us to deal with 495 

blood glucose levels as a continuum, together with the overall milieu, surpassing the artificial 496 

glycemia-based cut-off approach. By fully profiling subjects regarding genomics, environmental 497 

factors and time exposition, we will be able to know which mechanism(s) is(are) affected and 498 

is(are) responsible for a dysmetabolic condition. This enables the use of drugs in a precise manner 499 

and the discovery of new ones. Additionally, prevention of complications, such as cardiovascular 500 

events, may be earlier and more effective. The great big challenge will be identifying which 501 

features are relevant to consider precise care and gather the data to perform these analyses. In a 502 

global village such as our world, we should gather robust clinical data working in a worldwide 503 

consortium. 504 
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Figures 632 

 633 

Figure 1 – Cluster analysis scheme. An heterogenous population regarding characteristics of 634 

interest is stratified by a chosen algorithm, that places them in a hyperplane, differentiating natural 635 

homogenous groups. 636 

 637 

 638 

Figure 2 – Integrative model of Diabetes. A) Subjects are deeply characterized regarding 639 

etiological factors (including genes, lifestyle and environmental factors), underlying 640 

physiopathological mechanisms and metabolic and hemodynamic factors that they are exposed 641 

to. They are placed correspondingly onto the Etiology, Mechanisms and Millieu plan. The 642 

location of a subject in each plan can be predicted by knowing their position in the others. 643 

Ultimately, etiology, mechanisms and milieu projects the subject onto the Metabolic Phenotype 644 

A
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plan where its health condition is assessed also considering Diabetes complications as 645 

nephropathy, retinopathy as well as cardiovascular complications. Each subject path through time 646 

in the Metabolic Phenotype plan can be analyzed but also predicted, leveraging therapeutic and 647 

preventive strategies. B) Etiology, Mechanisms and Millieu for each subject can be summarized 648 

and more easily visible on a radarplot. 649 

 650 

 651 

Figure 3 – From the Palette Model to the proposed Integrative Model. The Integrative model that 652 

we propose was based on the McCarthys’ Palette Model,57 but differs essentially in the path and 653 

in the component planes of the model.  654 
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Tables 655 

Table 1 - Clustering algorithms used in Diabetes studies. 656 

Hierarchical Partitioning 
• Agglomerative 26,41 • Hard clustering 

- k-means 41 
- k-medoids (Partition around Medoids - PAM) 52 
- Self-organising Maps (SOM) 37,41 

• Soft Clustering 
- Fuzzy c-mean 59 

  657 



26 

Table 2 – Advantages and drawbacks of clustering algorithms (Adapted from 26).  658 

Clustering 
Algorithm 

Advantages Disadvantages 

Hierarchical • Does not need pre-specification of the 
number of clusters 

• Accepts any kind of distance function 
• Visualisation of number of clusters  
• Agglomerative good at identifying small 

clusters, divisive better identifying large 
clusters 

• High computational cost, it does not scale 
properly 

• Difficult to alter once the analysis starts 
• Different clusters form according to the linkage 

function 
• More prone to identify spherical and convex 

clusters 
• Need to define the cophenetic distance cut-off 
• Sensitive to outliers 

k-means • Simple to implement and understand 
• Fast and efficient for large datasets 

• Require specification of the number of clusters 
• Sensitive to the randomly chosen seeds 
• Some implementations use only 
• More prone to identify spherical and convex 

clusters 
PAM • Simple to understand and implement 

• Less sensitive to noise and outliers than 
k-means 

• Allows using general dissimilarities of 
objects 

• Require specification of number of clusters 
• Sensitive to random initialization of medoids 
• Higher computational cost than k-means 
• More prone to identify spherical and convex 

clusters 
• Does not scale well for large datasets 

SOM • Easy to understand and interpret 
• Deals with large and complex data sets 
• Finds different clusters formats 

• Many parameters to be set and optimised 
• Computational expensive 
• When initialized randomly, it is sensitive to the 

initial seeds 
• The number of clusters must be previously 

defined 
b-NMF • Best results for an overlapped data set  

• Datapoint may belong to more than one 
cluster. 

• Require specification of the number of clusters  
• Computational cost 

PAM: partition around medoids; SOM: Self-Organizing Maps. 659 
 660 


