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ABSTRACT 
 

According to the "multiple-hit" hypothesis, several factors can act 

simultaneously in non-alcoholic fatty liver disease (NAFLD) progression. Increased 

nitro-oxidative (nitroso-oxidative) stress may be considered the main contributor 

involved in the development and risk of NAFLD progression to non-alcoholic 

steatohepatitis (NASH) characterised by inflammation and fibrosis. Moreover, it has 

been repeatedly postulated that mitochondrial abnormalities are also closely related to 

the development and worsening of liver steatosis and NAFLD pathogenesis. However, 

it is difficult to determine with certainty whether mitochondrial dysfunction or oxidative 

stress are primary events or a simple consequence of NAFLD development. On the one 

hand, increasing lipid accumulation in hepatocytes could cause a wide range of effects 

from mild to severe mitochondrial damages with a negative impact on cell fate. This can 

start the cascade of events, including an increase of cellular reactive nitrogen species 

(RNS) and reactive oxygen species (ROS) production that promotes disease progression 

from simple steatosis to more severe NAFLD stages. On the other hand, progressing 

mitochondrial bioenergetic catastrophe and oxidative stress manifestation could be 

considered accompanying events in the vast spectrum of abnormalities observed during 

the transition from NAFL to NASH and cirrhosis. This review updates our current 

understanding of NAFLD pathogenesis and clarifies whether mitochondrial dysfunction 

and ROS/RNS are culprits or bystanders of NAFLD progression. 
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1. NAFLD definition, description and epidemiology 

Non-alcoholic fatty liver disease (NAFLD) has an increasing incidence, 

commonly attributed to unhealthy lifestyles. NAFLD diagnosis is based on the presence 

of hepatic steatosis documented by imaging or histology and exclusion of excessive 

alcohol consumption, chronic or acute liver diseases, and other secondary causes of 

steatosis. Moreover, NAFLD is frequently referred to as a hepatic manifestation of 

metabolic syndrome. The prevalence of NAFLD and non-alcoholic steatohepatitis 

(NASH) has increased over the past decades and exceeded 25% of the adult population 

worldwide. There are differences between regions but NAFLD cannot be considered a 

Western countries disease exclusively anymore. NAFLD prevalence ranges from 13% 

in Africa to 30% in Asia and 32% in the Middle East. Europe and North America have 

reported a prevalence of 24%. Regional leaders have even higher prevalence, such as 

30% in China, 33% in India and 51% in Indonesia.1, 2 The incremental trends of the 

NAFLD epidemic in Western countries have slowed down compared to Asia but more 

significant numbers of patients with chronic disease account for a high incidence of 

progression into more advanced stage. It is reflected by an increase in disease burden 

measures related to cirrhosis and hepatocellular carcinoma (HCC) in patients with 

NAFLD or NASH compared to other chronic liver diseases. NASH has also gained 

importance as an underlying cause of end-stage liver disease and HCC among liver 

transplant candidates in Western countries.3, 3, 4 Projections for the NAFLD epidemic up 

to 2030 have been reported recently. Estimates show that the total prevalence of 

NAFLD will increase by 13-20% in Europe, 18% in the United States and 29% in 

China. The prevalence of NASH will increase by 43-49% in Europe and China and 56% 

in the United States.  

 Genetic analyses of patients with fatty liver demonstrated that inherited 

predisposition also plays a vital role in the development and progression of hepatic 

steatosis.5 Indeed, familial clustering and the result of twin studies showing greater 

concordance between monozygotic compared to dizygotic twins underscore the role of 

genetics in NAFLD.6 In recent years, we have learned that carriers of the common 

adiponutrin a.k.a. patatin-like phospholipase domain-containing protein 3 (PNPLA3) 

variant p.I148M are at increased risk of developing NAFLD7,	 liver fibrosis and 

cirrhosis8 as well as hepatocellular carcinoma (HCC).9 Other variants, for example, 

membrane-bound O-acyltransferase domain-containing 7 gene (MBOAT7) variant 

rs641738 C>T, transmembrane 6 superfamily member 2 gene (TM6SF2) variant p. 



E167K or glucokinase regulatory protein gene (GCKR) variant p. P446L have also been 

shown to enhance the NAFLD risk.10 PNPLA3, which is highly expressed on the 

intrahepatic lipid droplets, is involved in hydrolysis of triglycerides. This risk variant is 

most prevalent in Hispanics and is the least common in African Americans (17%). 

Previous studies indicate the PNPLA3 might have a lysophosphatidic acyltransferase 

activity11 or function as a lipase.12 It was also postulated that in hepatic stellate cells 

PNPLA3 has retinyl-palmitate lipase activity.13 TM6SF2 is, in turn, involved in the 

hepatic secretion of VLDL (very low-density lipoproteins). Carriers of the TM6SF2 

p.E167K variant have lower circulating VLDL, resulting in diminished cardiovascular 

risk and increased lipid contents in the liver.14 MBOAT7 possesses a 

lysophosphatidylinositol acyltransferase activity and is involved in anti-inflammatory 

processes by regulating arachidonic acid levels.15 NAFLD-associated genetic variant of 

MBOAT7 was linked to lower expression of MBOAT7 and its decreased function.16 

This already somewhat complicated picture of NAFLD genetics gained recently another 

level of complexity: variants in two genes, namely mitochondrial amidoxime reducing 

component 1 (MARC1)17 and hydroxysteroid 17-beta dehydrogenase 13 

(HSD17B13)18, were shown to have protective effects on liver status in the setting of 

NAFLD. Not surprisingly, polygenic risk scores, including the above-listed 

polymorphisms have been developed (for example as shown lately by Bianco et al.).19 

According to their inherited predisposition, these polygenic scores facilitate 

stratification of patients with fatty liver to develop progressive liver disease. However, 

genetic analyses of patients with NAFLD have not gained much attention in the clinic.5 

 

2. Diagnosis, Classification, Staging and Non-invasive Biomarkers of NAFLD 

2.1. Diagnosis and classification 

NAFLD diagnosis is based on the presence of hepatic steatosis documented by 

imaging or histology, and exclusion of excessive alcohol consumption or other 

secondary causes of steatosis. Clinical description broadens the perspective, and 

NAFLD is frequently referred to as a hepatic manifestation of metabolic syndrome. 

Liver biopsy is considered the gold standard in diagnosing of NASH and differentiation 

between various stages of the disease characterized by steatosis, inflammation, 

steatohepatitis, fibrosis, and cirrhosis. Non-invasive tests such as imaging studies and 

various biochemical indexes are less accurate and cannot replace biopsy. However, 



ultrasound examination is used to diagnose of hepatic steatosis in more than 90% of 

participants in extensive cohort studies.20  

2.2. Staging 

Depending on the pathological stage of the disease, the risk of progression and 

complications of NAFLD increases. Simple steatosis without hepatocyte injury that is a 

predominant presentation of the disease is associated with a limited risk of progression 

into more advanced stages, including steatohepatitis, fibrosis and cirrhosis. By 

definition, at least 5% of hepatic steatosis is required to establish the diagnosis and less 

than 5% of fatty infiltration is not considered NAFLD. NASH is defined as fatty 

infiltration exceeding 5% with concomitant inflammation and hepatocyte injury. At the 

time of diagnosis, various fibrosis degrees are present, ranging from no fibrosis up to 

cirrhosis.1 The staging of NASH is most commonly based on the pathological scores 

such as NAFLD Activity Score (NAS) or Steatosis Activity Fibrosis (SAF).21, 22 In NAS 

score each feature adds points to 0-8 total including 0-3 points for steatosis (in the range 

of <5%, 5-33%, 33-66% and >66%), 0-3 for lobular inflammation and 0-2 for 

ballooning. The diagnosis is NASH ≥5 points and not-NASH ≤2 points and a borderline 

diagnosis of NASH for 3-4 points. Fibrosis is classified as stages 0-4. Disease activity 

variations assessed with NAS correlate with progression or regression of fibrosis.23  

2.3. Non-invasive biomarkers of NAFLD 

Considering the fact that the alteration of specific proteins or peptides in 

patients' serum may be related to a specific disease, several groups also try to identify 

novel diagnostic biomarkers characteristic for different stages of NAFLD. To avoid an 

invasive liver biopsy, new reliable, non-invasive biomarkers that identify the disease's 

progression are urgently needed. Unfortunately, liver enzymes per se are not reliable 

and accurate predictors of NAFLD. Circulating extracellular vesicles (EVs), cell-

derived small membrane-surrounded structures seem to be a promising NAFLD and 

NASH biomarker. Hepatocyte-derived EVs contain hepatocyte markers as 

asialoglycoprotein receptor 1 (ASGPR1) and bile acyl-CoA synthetase (SLC27A5). It 

has been demonstrated that the level of hepatocyte-derived EVs correlates with NASH 

severity.24 

Many proteins25, and metabolites26 or lipidomic signatures27, 28 may act as 

NAFLD biomarker at different stages of the disease. For more information about them, 

see the most recent reviews.29, 30 Several studies demonstrated that circulating 

molecules, such as microRNA (miRNA) and cell-free nuclear material DNA or RNA, 



can also be considered as potential promising biomarkers. Mitochondria contain their 

own extranuclear genome, mitochondrial DNA (mtDNA), a 16.5Kb circular DNA 

molecule present as multiple copies in cells.31 MtDNA copies in single cells can range 

from hundreds to thousands of copies depending on the cell's bioenergetic needs. 

Moreover, mtDNA can dynamically change in response to physiological stimuli and 

under disease conditions. As part of the mitochondrial cell cycle, cellular mtDNA is 

constantly replicated and replaced via degradation. However, if the mitochondrial life 

cycle is disrupted and degradation of damaged mtDNA is impaired, mtDNA can leak 

out of the mitochondria into the cytosol or the peripheral circulation. Due to its 

resemblance to bacterial genomes, this cell-free (cf) mtDNA can activate inflammation 

via the TLR-9 pathway, leading to activation of TNF-alpha and a downstream 

inflammatory cytokine response.32 Dysregulation of circulating mitochondrial DNA 

(mtDNA) has been widely reported in the literature, and circulating mtDNA has been 

proposed to be a minimally invasive biomarker of mitochondrial dysfunction.32 

Elevated levels of cell-free (cf)-mtDNA in diabetic patients	 and changes in both hepatic 

and circulating mtDNA have been reported in both animal models and human studies of 

NAFLD.33, 34 A link between oxidative stress and leukocyte mtDNA was suggested in a 

cross-sectional study of a Chinese cohort showing that elevated mtDNA copy numbers 

in NAFLD patients positively correlated with the oxidative stress marker 8-oxo-

2'deoxyguanosine.35 Leakage of damaged mtDNA into the periphery from both hepatic 

tissue and fat cells has been shown to cause enhanced inflammation.34, 36 Therefore, 

combining the impact of oxidative stress on inducing maladaptive mtDNA replication, 

together with the inflammatory properties of (cf)-mtDNA in circulation, suggesting that 

circulating (cf)-mtDNA is a potential mediator of the chronic inflammation seen in 

NAFLD and could be a useful biomarker. Additionally, miRNAs, especially miR-122 

and miR34a, are also considered a promising diagnostic biomarker for NAFLD.29 

However, robust cross-sectional and longitudinal human studies are needed to 

understand the time course of (cf)-mtDNA and mi RNAs to evaluate their use as 

potential biomarkers of NAFLD.  

 

2.4. Dietary and animal models to study NAFLD development and progression 

 The complicated issue of NAFLD progression has been studied in in vitro model 

and in laboratory animals and humans. Studies performed in rodents or humans revealed 

the complexity of the factors involved in NAFLD development and progression. Several 



animal models and NAFLD-inducing diets are useful to study the pathogenesis of 

NAFLD progression to the more severe stages. Among the available diets the most 

popular are Choline-Deficient (CD) Diets, Semisynthetic Choline-Deficient L-Amino 

Acid-Defined (CDAA) Diet, Methionine- and Choline-Deficient (MCD) Diet, High-Fat 

(HF) Diets, High-Fat Diets combined with choline deficiency, Western Diets and 

Cholesterol supplemented Western diet.  

 

2.4.1. Choline deficiency-based diets: Choline-Deficient (CD) Diets, Semisynthetic 

Choline-Deficient L-Amino Acid-Defined (CDAA) Diet, Methionine- and Choline-

Deficient (MCD) Diets 

Choline deficiency-based diets induce a significant increase in liver triglycerides 

in rodents after some weeks of feeding.37, 38 Moreover, in rats, moderate periportal 

micro- and macrovesicular liver steatosis can be visible already after 4 weeks and could 

be further worsened by a prolonged feeding up to 12 weeks39 and slight signs of 

inflammation and fibrosis.39 Animals feed with CD diet very often do not show 

significantly increased weight gain.38, 38 Moreover, an increased incidence (~15%) of 

hepatocarcinogenesis has been observed in rats fed with CD diets for 52 weeks.38, 40 

Unfortunately, this model poorly reflects metabolic phenotype in patients. CDAA Diet 

represents a variation of choline deficiency diet, which is also deprived of L-amino 

acids. Compared to the choline-deficient diet, this diet is more effective inducing 

steatotic phenotype and liver triglyceride content.41 Longer feeding time with CDAA 

diet (up to 22 weeks) causes inflammation and pronounced fibrosis in mice42 as well as 

increased body weight, plasma triglycerides, and insulin resistance.42, 43 It has been 

observed that a combination of a CDAA diet with a fat-enriched diet (6–9 weeks of 

feeding) significantly worsens the fibrotic NASH phenotype in mice.44 Combination of 

choline deficiency with methionine deficiency (MCD diet) is one of the most popular, 

rapid, and reproducible nutritional rodent models of a NASH, however, as in the case of 

CD diet, the MCD model does not exhibit any of the metabolic features of human 

NAFLD. In mice, MCD diet causes weight loss (up to 40% in 10 weeks). The animals 

showed also low fasting blood sugar, peripheral insulin sensitivity, low serum insulin, 

and decreased blood triglyceride and cholesterol levels.45, 46, 47 In C57BL/6 mice MCD 

diet induces rapid and severe lobular inflammation and hepatocyte ballooning (already 

after 2–8 weeks) and early-onset fibrosis at 8–10 week of feeding.45 Macrovesicular 

steatosis, perisinusoidal fibrosis, hepatocyte ballooning, apoptosis and 



necroinflammation, as well as mitochondrial anomalies are also haracteristic for MCD-

induced NASH phenotype.48 Also as in the case of CD diet, its combination with HF 

diet shortens the time to 17 days to the appearance of extensive steatohepatitis with 

macro- and microvesicular steatosis and inflammatory foci.49 

 

2.4.2. High-Fat and Western Diets  

A major advantage of these models is their high similarity to the metabolic 

profile observed in humans suffering by NAFLD. In contrast to the above-described 

diets, in the case of HF diets, the progression of NAFLD is visible only after extensive 

feeding time (>34 weeks) and is characterized by less pronounced signs of 

inflammation.50 Only mice feed for a much longer time (approx. 50 weeks) developed 

increased inflammatory liver infiltration and minimal fibrosis. As in other diets, time of 

appearance NAFLD phenotype and degree of accompanying metabolic alterations 

depend on species, strain and sex of animals Moreover, high impact on observed 

NAFLD phenotype can have the FFA composition of HF diet (the content of saturated 

and unsaturated FFAs). For example, AKR/J mice fed with HF diet enriched in a trans-

fatty acid developed more pronounced steatosis and liver damage after 8–16 weeks 

compared to the mice feed with non-modified HF.51 Moreover, trans-fat-enriched HF 

diet significantly increased insulin resistance in mice.51 In rats, trans-fat-enriched HF 

diet also develops a more pronounced NAFL profile in comparison to standard HF diet, 

but without differences in liver damage.52 Western diets (WDs) mimics in rodents our 

Western dietary habits especially taking into account a high concentration of saturated 

fats and simple carbohydrates. It has been shown that a high intake of simple 

carbohydrates (fructose, sucrose or glucose) without combination with a high-fat diet is 

responsible for obesity and NAFL development in humans. Especially fructose, known 

for lipogenic properties, leads to visceral fat deposition, liver TG accumulation, and 

insulin resistance.53, 54 The combination of fructose and a HF diet provided to mice for 8 

weeks much faster induces steatosis than the HF diet alone. Such combined diet resulted 

in significant inflammation in the liver, however, without visible progression of liver 

damage.55, 56 Mice feed with sucrose-supplemented HF diet for 15 weeks exhibited 

similar NAFL pattern (as HF diet alone), but increased levels of AST and ALT 

suggested more serious liver damage.57 A study by Bortolin et al. (2018) performed on 

rats showed that 16 weeks of feeding with HF diet combined with sucrose caused 

significantly more pronounced steatosis, increased liver triglycerides, and obesity in 



comparison to the rats fed with the HF diet alone.58 In contrast to the study presented by 

Sampey et al.59, Bortolin and colleagues observed that in their study, rats fed with HF 

diet alone had the same body weight or fat white deposits as a control chow-diet 

group.58 The authors explained the importance of choosing the right control diet for the 

comparative experiments.59 In the literature, several other varieties of Western diets 

have been found in the context of NAFLD induction in rodents. For example, a) the 

"American Lifestyle-Induced Obesity Syndrome" (ALIOS) diet, being the combination 

of a HF diet (45 kcal% with 30% fat content from trans fatty acids) and fructose present 

in drinking water, induces significant steatosis, inflammation, and liver damage in male 

C57BL/6 mice fed with this diet for 16 weeks. In mice, no fibrosis was observed in liver 

histology. However, the fibrogenic response in the liver could be detected at the 

molecular level60; b) another example can be a combination of Western diet (HF diet – 

where 12% of FFA in which saturated combined with fructose in drinking water) 

supplemented with 2% cholesterol. The results observed for this diet were comparable 

to those for HF diet-fed only61; c) HF diet supplemented with cholesterol and cholate. In 

rodents, this diet leads to the development of NASH-like liver phenotype, including 

MDBs and ballooned hepatocytes. However, observed weight loss, increased insulin 

sensitivity, and lower serum TG levels are opposite to what is observed NAFLD/NASH 

patients48; d) Charlton's fast-food model. This diet is based on a high trans-fat-HF diet 

(40 kcal% of which 18% is trans-fat), 2% cholesterol, and 20% sucrose present in the 

food.62, 63  

It is important to mention that the diet composition impacts the observed 

phenotype, NAFLD progression, and its transition to NASH. Scientists should always 

consider an interplay between the genetic background, diet composition, and health 

conditions, including gut microbiota.64 Evidence shows that NAFLD is also associated 

with promoting abnormal gut microorganisms colonization, which may promote liver 

condition deterioration.65 Mice fed with High-fat/high-cholesterol (HFHC) diet for 14 

months suffered from gut dysbiosis, similar to the observed in hypercholesterolemic 

patients. Germ-free mice that have been gavage with stools from mice fed HFHC 

manifested hepatic lipid accumulation, inflammation, and enhanced cell proliferation. 

This suggests that the microbiota condition may already affect liver response to the 

studied diet and may impact the disease progression.66  

The rate of NAFLD manifestation and its progression in animal models also 

depends on their genetic background. Although most of the human NAFL predisposing 



genetic variants are not present and cannot mimic human disease in rodents, Newberry 

and colleagues recently created a mouse devoid of Tm6sf2 gene (human TM6SF2 

variant rs58542926) to study its impact on the development and progression of 

NAFLD.67 Tm6 LKO mice fed a high-fat diet for 3 weeks exhibited increased steatosis 

and fibrosis. This NAFLD phenotype was further exacerbated when mice were fed with 

high fat/fructose diet for 20 weeks.67 Among many different mice strains used in 

NAFLD studies, those naturally predisposed to diabetes type 2 (DM2) and NAFLD 

development e.g., Lepob/Lepob (ob/ob) or Leprfa/Leprfa rat model (fa/fa, also known 

as Zucker rats) do not need any particular treatment to observe NAFLD related changes 

in the liver.68, 69 Another genetic DM2 model is based on mutation in the Alms1 gene, 

which leads to the increased food intake, increased body weight and DM2. When these 

animals are fed for 20–24 weeks with HFD, NASH phenotype with signs of fibrosis 

was observed.70, 71 

It is necessary to underline that the above described dietary NAFLD models 

focus mostly on the metabolic situation observed in patients and may differ regarding 

clinical or morphologic aspects. Moreover, the accompanying diseases in humans can 

impact the rate of NAFLD progression, worsening liver function, and prognosis. More 

information about the above-described diets, their impact on metabolism, mitochondrial 

function and their efficacy to induce a NASH phenotype, as well as features that are 

similar in rodents and humans, is summarized in other sources e.g., in the review by 

Simoes et al (2019).72 

 

3. Metabolic comorbidities of NAFLD – mitochondrial abnormalities 

NAFLD is common among patients with metabolic syndrome. NAFLD 

prevalence rises with increasing body mass index (BMI) and the number of criteria 

defining metabolic syndrome.20 Type 2 diabetes is an independent risk factor for severe 

steatosis and fibrosis. Contrarily NAFLD has been shown to more than double the risk 

of type 2 diabetes.73 The association between NAFLD and other conditions has been 

reported including obstructive sleep apnea74, hyperuricaemia75 and even 

neurodegenerative disease76, and the list is not exhaustive. Therefore, a new definition 

of metabolic dysfunction-associated liver disease (MAFLD) has been recently proposed 

and combines hepatic steatosis with overweight or obesity, type 2 diabetes or two or 

more metabolic abnormalities.77 

3.1. Mitochondrial abnormalities in early NAFLD 



Steatosis per se represents a result of storing lipotoxic free fatty acids (FFAs) as 

stable intracellular triglyceride stores and seem to be an adaptive response of hepatocyte 

to excessive stress caloric supply. Hepatic lipid accumulation results from a balance 

between the mechanisms governing lipid intake and lipid clearance. The main pathways 

involved in these processes are the uptake of circulating lipids, de novo lipogenesis 

(DNL), fatty acid oxidation (FAO) and very low-density lipoprotein (VLDL) export.78 

In a NAFLD context, free fatty acids (FFAs) uptake is increased due to a higher amount 

of FFA influx from lipolysis in adipose tissue.79, 80 Accordingly, fatty acid transporter 

(FATP2 and FATP5) and translocase proteins (CD36) have been found increased in 

NAFLD and NASH patients.81, 82 Moreover, a higher FAs uptake and its intracellular 

transport inside hepatocytes is correlated with the upregulation of fatty acid-binding 

proteins FABP1, FABP4 and FABP583, 84, which thereby promotes the storage of 

harmful FAs and subsequent steatosis. A study using stable isotope traces has showed 

that 60% of hepatic lipid accumulation is derived from adipose tissue lipolysis. 

Although, other sources have to be taken into account as mentioned above, namely 

DNL (26%) and the diet (15%).85 DNL is a condition associated with hyperglycaemia 

and hyperinsulinemia86, 87, under the regulation of sterol regulatory element binding 

protein-1c and carbohydrate responsive element binding protein (ChREBP) in response 

to glucose and insulin.88, 89 Therefore, once active, these transcription factors induce de 

novo synthesis associated-FAs enzymes - acetyl-CoA carboxylase (ACC) and fatty acid 

synthase, as showed in NAFLD patients and in animal models.90, 91, 92 Importantly, it 

was showed that knockout of both ACC-1 and -2 isoforms caused a decrease in hepatic 

lipid accumulation, thereby protecting against the development of obesity, diabetes and 

NAFLD.93, 94 Interestingly, several works have associated ChREBP with higher 

mitochondrial oxidative phosphorylation efficiency and increased mitochondrial 

biogenesis.95 Another lipogenic enzyme that was showed to have a critical role during 

hepatic lipid accumulation is stearoyl-CoA desaturase 1 (SCD-1).96 By catalyzing the 

biosynthesis of monounsaturated fatty acids, SDC-1 prevents the intracellular 

accumulation of saturated fatty acids, which are described to promote endoplasmic 

reticulum (ER) stress, cellular apoptosis and in later stages, fibrosis.97, 98, 99 

A major transcriptional factor involved in regulating hepatic lipid metabolism is 

peroxisome proliferator-activated receptor-α (PPAR-α). Upon binding to FAs, activated 

PPAR-α promotes FAs consumption through FAO and ketogenesis.100 Although 

different NAFLD studies have reported FAO either increased, unchanged or 



decreased101, 102, 103, 104, 105, there is evidence that liver mitochondria are able to boost 

FAO in order to compensate for hepatic fat accumulation (DOI: 

10.1016/j.livres.2019.06.001). Additionally, the export of triglycerides in the form of 

VLDL particles also contributes to decreasing fat content. However, this process tends 

to stabilize and fail to prevent steatosis when hepatic total fat content reaches 10%.106 

Of note, mitochondria are not passive players in these scenarios, and they 

actively respond with several alterations to an increased lipid accumulation. During the 

early phase of adaptive responses to excessive lipids accumulation in hepatocyte 

cytosol, increased mitochondrial fatty acid oxidation (mFAO)107, induction of 

tricarboxylic acid (TCA) cycle and stimulation of oxidative phosphorylation 

(OXPHOS)108 could serve as a protective strategy to keep/control low-level FFA in the 

cytosol. Moreover, 5' AMP-activated protein kinase (AMPK), energy status sensor, 

inhibits de novo lipogenesis and increases fatty acid oxidation by decreasing malonyl-

CoA levels and preventing carnitine palmitoyltransferase 1 (CPT-1) inhibition.109 

Mitochondrial adaptation in NAFL can also be manifested as an increased 

mitochondrial mass in the liver.110 At the level of mitochondria, increased FAO is 

correlated with higher reactive oxygen species production, which may contribute to 

mitochondrial oxidative damage and subsequent mitochondrial impairment.111, 112 In 

steatotic livers, the activity of complex I is reduced approximately 35% and is 

accompanied with increased H2O2 generation. The inhibition of complex I can be 

explained by oxidization of cardiolipin, which is required for the proper function of 

complex I.113, 114 

Mitochondrial dysfunction can be also related to de-regulation of lipid 

homeostasis e.g., caused by carnitine palmitoyl transferase 1 (CPT1) inhibition in the 

presence of higher malonyl-CoA levels generated at the DNL pathway.115 Such de-

regulation is associated with the accumulation of lipid-derived toxic metabolites such as 

ceramides, diacylglycerols and dicarboxylic acids. These molecules are known to 

interfere with the mitochondrial function, insulin signaling pathway, and the induction 

of pro-inflammatory cytokines and ER stress. In particular, ceramides and dicarboxylic 

acids can inhibit electron transport chain and deplete cellular ATP levels, being 

ceramides depletion associated with higher OXPHOS complexes activities.116 Along 

NAFLD development, there is a direct correlation between mitochondrial FAO 

dysfunction and the development of hepatic steatosis117, 118, being PPAR-α found 

downregulated with disease progression and its severity.119, 120 



 

3.2. Mitochondrial involvement in progression to NASH 

Several factors have been proposed to participate in the pathogenesis of 

NAFLD. The most important among them seem to be genetic factors, nutrition habits, 

lipogenesis, insulin resistance, gut microbiota, inflammation, oxidative stress, and 

mitochondrial/metabolic remodeling. However, our knowledge about the factors 

responsible for the transition mode in each stage of NAFLD is still incomplete. Garcia-

Martinez et al., (2016), highlighted the potential involvement of mitochondria in the 

disease progression to NASH. The authors suggested mtDNA, considered a pro-

inflammatory molecule121, 122 when released from fatty liver-damaged hepatocytes, 

causes liver inflammation by TRL-9 activation. In this scenario, mtDNA-induced liver 

inflammation could be an important factor responsible for the transition to NASH.34 

Interestingly, Fu et al. (2017) proposed that replacement of dysfunctional mitochondria 

by exogenous HepG2-derived mitochondria may recover hepatocyte function in high-

lard-fat- and high-cholesterol feed mice.123 The experimental approach used by authors 

comprised intravenous injection of mitochondria isolated from HepG2 cells; however, 

how mitochondria entered the cells in different tissues and were able to maintain the 

integrity and restore metabolic activity was not explained .123 

Metabolic changes resulting from increasing hepatocyte FFA influx can be 

harmful and damage mitochondria through several mechanisms, including 

mitochondrial uncoupling and the induction of the mitochondrial permeability transition 

pore (mPTP) opening and oxidative stress. Chronic FFAs overload and disease 

progression is responsible for decreased CPT1-mediated FFA transport into 

mitochondria and defective mFAO. Alterations in mitochondrial respiratory chain 

complexes' level and activity have been observed in different NAFLD models124, 112, 125 

translates into decreased ATP level. Decreased ATP level could be responsible for the 

induction of endoplasmic reticulum (ER) stress and unfolded protein response (UPR) 

activation, which stimulates de novo lipogenesis pathways and further aggravates liver 

steatosis.126 Progression of NAFL to NASH is also accompanied by increased 

mitochondrial cholesterol accumulation127, leading to the cholesterol-induced alterations 

in the inner mitochondrial membrane's permeability. Such alterations in the properties 

of mitochondrial membranes can be a cause of mitochondrial glutathione (GSH) 

depletion described in NASH patients.128 In patients with more advanced forms of 

NAFLD decreased of mtDNA levels have been observed.34, 129  



It is not surprising that alterations in mitochondrial morphology and function can 

impact liver physiology. The direct link between remodeling of mitochondrial structure, 

metabolic dysfunction, and clinical phenotype development has been repeatedly 

demonstrated in several pathologies. In the range of adaptative response to the excessive 

FFA accumulation in the liver, in the initial NAFLD stages, observed metabolic 

changes are associated with an increase in mitochondrial mass, with or without 

increased mitochondrial fatty acid oxidation. Koliaki at al. (2015) described that 

maximal respiration rates measured in isolated mitochondria from obese patients with or 

without NAFL was 4.3- to 5.0-fold higher than lean individuals.130 This was also 

confirmed by Sunny et al 108, who showed that mitochondrial oxidative metabolism was 

increased in the livers of subjects with elevated intrahepatic triglycerides. The increase 

in mitochondrial oxidative metabolism involved a 2~fold induction of oxidative fluxes 

through the TCA cycle. This finding also demonstrated that even with a large 

accumulation of triglycerides in the liver, the TCA cycle is functional. Interestingly, 

increase TCA fluxes were associated with gluconeogenesis, which, according to the 

authors, could account for the increased energy demand observed in individuals with 

NAFLD. The results from this study also dismiss the notion that mitochondrial 

dysfunction is a primary event in the progression from steatosis to more severe forms. 

Still, mitochondrial substrate overload could contribute to ROS generation or possibly 

to a cellular metabolic unbalance, which can prime hepatocytes for a pro-inflammatory 

state. Interestingly, even with increased mitochondrial substrate oxidation via the TCA 

cycle, lipotoxicity and incomplete fat oxidation typical of NAFLD progression to 

NASH were not avoided 131, contributing to inflammation and fibrosis. Agreeing with a 

progressive failure to maintain an effective lipid oxidation profile with increase intra-

hepatic steatosis is the fact that mitochondrial biogenesis is inhibited and decreases with 

progression towards NASH. Interestingly, simultaneously with altered mitochondrial 

biogenesis, mitochondrial mass increases110, although such mitochondria were swollen 

and showed a loss of cristae structure and were characterized by 31-40% lower maximal 

respiration and mitochondrial uncoupling.130 This suggests that higher mitochondrial 

mass detected in NASH patients could result from defective removal of damaged 

mitochondria.130  

It has been demonstrated that incubation of HepG2 cells with saturated fatty 

acids (a model resembling NASH), causes mitochondrial abnormalities accompanied 

with inhibition of mtDNA gene expression and accelerated degradation of respiratory 



chain subunits.132 Sequential exposure of hepatocytes to high concentrations of fatty 

acids and TNF-α mimic in vitro the progression of NAFLD from simple steatosis to 

steatohepatitis. In such a condition, the damage could be observed not only at a 

mitochondrial level but also elsewhere in the hepatocyte. Among them are increased 

apoptosis, reduced hepatocyte viability, increased oxidative stress, reduction in lipid 

droplet size, and up-regulation of IkappaB kinase beta-interacting protein and adipose 

triglyceride lipase expressions.133 

More details about the interplay between mitochondrial dynamics and NAFLD 

can be found in a recent review by Longo et al.134 In more advanced disease stages, the 

presence of megamitochondria (giant mitochondria) was also described.135 Their 

presence has been also reported in other tissues with a high degree of metabolic 

activity.136 However, it is still unknown whether the presence of megamitochondria in 

the liver is an adaptation or a consequence of NAFLD development.135 Up to now, there 

is no clear explanation for the progressive decline of OXPHOS during NASH. Begriche 

et al, proposed possible mechanisms explaining OXPHOS dysfunction: lipotoxicity, 

oxidative stress and effect of interferons, adiponectin, and forkhead box protein O1 

(FoxO1). For a detailed description of relations between abovementioned factors and 

mitochondrial dysfunction, see their comprehensive review.137 A summary of the 

described alterations in the mitochondrial function has been presented in Figure 1. 

 

4. ROS and RNS culprits or bystanders of NAFLD progression 

Under physiological conditions, ROS are continuously produced in the liver due 

to intracellular metabolism, although kept under a certain threshold for redox signalling 

pathways, e.g., cell proliferation and differentiation.138 Moreover, ROS like H2O2 

regulates the expression of many genes, including AP-1, CREB, HSF1, NRF2, HIF-1, 

TP53, NF-κB, NOTCH, SP1 or SCREB-1.139, 140 Due to their chemical structure, ROS 

are divided into two main categories: free radicals (superoxide radical (O2•-), hydroxyl 

radical (HO•), nitric oxide (NO•, that we will describe in more detail below), nitrogen 

dioxide (NO2•), carbonate radical anion (CO3•-), and alkoxyl/alkyl peroxyl (RO•/ROO•)) 

and non-radicals (hydrogen peroxide (H2O2), hypochlorous acid (HOCl), and 

peroxynitrite (ONOO−)/peroxynitrous acid (ONOOH)). For a detailed description of 

chemical ROS features, we refer to a comprehensive review.141 Within the different 

species, O2•, NO•, and H2O2 are the primary molecules produced within the cell. These 

low reactivity molecules can readily generate other ROS species (HOCl, ONOO−, and 



ONOOH), which ultimately can form NO2•, CO3•-, and RO•/ROO•, known as powerful 

inducers of cellular oxidative damage.  

To overcome nitroso-oxidative stress, cells possess a vast panel of enzymatic 

and non-enzymatic antioxidant defense systems. Enzymatic mechanisms include 

superoxide dismutase (SOD1-3), which converts O2•- into H2O2, which can be further 

converted into H20 and O2 by catalase. Moreover, H2O2 is also converted into H20 by 

the action of glutathione peroxidase (GPX) or peroxiredoxin (PRDX), with oxidized 

glutathione (GSSG) converted back to its reduced form (GSH) by the action of 

glutathione reductase (GR). The cell's redox status regulation can be restrained due to 

GSH depletion and GSSG accumulation, as shown in NAFLD/NASH primary 

hepatocytes and NAFLD rodent models.127, 125 H2O2 can also be reduced by the action of 

PRDX, using reduced thioredoxin as the electron donor. Lastly, glutathione-S-

transferase can detoxify xenobiotic compounds through its conjugation with GSH. 

RNS/ROS can freely diffuse within various cell organelles, their signalling or damage 

effects within specific cell compartments constraints are limited to their half-life.142  

Taking into account several controversies, mitochondria are considered one of 

the important sources of ROS and these, when produced extensively during pathological 

conditions.143, 144 So far, several distinct sites of ROS production in mammalian 

mitochondria have been identified. NADH:ubiquinone oxidoreductase (complex I) is 

considered a major source of reactive oxygen species in mitochondria. Several sites of 

O2•- production in mitochondrial complex I have been proposed including: flavin145, 146, 

147, bound reduced nucleotide 148, FeS clusters N2149 and N1a150, and a semiquinone 

radical.151, 152 Complex II is another source of mitochondrial ROS, involving the release 

of electrons from the flavin site or in a RET mode from a reduced ubiquinone pool.153 

Interestingly, a mutation in complex II might also result in O2•-overproduction.154 At 

Complex III, O2•- can be generated from the ubisemiquinone site and released to the 

intermembrane space, which can permeate into the matrix in the form of H2O2.155 Other 

mitochondrial enzymes that have been associated with ROS production are glycerol 3-

phosphate dehydrogenase considered as donor of electrons to ETC; α-ketoglutarate 

dehydrogenase and pyruvate dehydrogenase involved in TCA cycle.156 In addition, the 

flavoprotein acyl-CoA dehydrogenase can produce ROS during oxidation of lipid-

derived substrates.157, 158. Other documented sources of ROS in mitochondria include 

two other enzymes: monoamine oxidase and dihydroorotate dehydrogenase.159, 160 It is 

important to underline that also microsomes (cytochrome P450, diamine oxidase), 



peroxisomes (enzymes involved in fatty acid oxidation) and enzymes in the plasma 

membrane (like e.g., NADPH oxidase and lipoxygenase) have been identified as ROS 

generators. 

Increased mitochondrial activity in the early phase of NAFL protects 

hepatocytes from lipotoxicity, while under excessive lipid influx increased activity can 

extensively generate ROS.137 Increased ROS generation is caused by the fact that 

continuous supply of reduced substrates to the electron transport chain (ETC) promotes 

the leak of electrons from reduced flavin mononucleotide (FMN) or by reverse electron 

transfer (RET) at Complex I, resulting in O2•- release into the mitochondrial matrix.161 

Several reports have highlighted that accelerated β-oxidation of short-, medium- and 

long-chain saturated FAs with augmented CPT-1α gene expression, causes excessive 

mitochondrial electron flux, resulting in increased mitochondrial O2•- production in in 

vitro and in vivo models of steatosis.162, 112 Moreover, UCP-2 up-regulation can protect 

hepatocytes from deleterious ROS-effects.163 Additionally, the nuclear factor erythroid-

derived 2 like 2 (NRF2) in response to the elevated level of O2•-, activates expression of 

a compensatory antioxidant defence response.164 A mitochondrial pro-oxidant state can 

overwhelm the mitochondrial antioxidant system (decreased SOD, GPX1 activity, and 

GSH/GSSG ratio levels) and result in oxidative injury in different mitochondrial 

structures containing proteins and lipids165, depletion of mtDNA copy number and 

higher mtDNA damage during the progression of NAFLD towards NASH and 

beyond.166, 167 Damaged mitochondria with loss of FAO and respiratory complexes 

activities were described in later stages of the disease.163 At high concentration, some 

ROS, such as the hydroxyl radical, a highly-reactive molecule, can cause oxidative 

modification of lipids (lipid peroxidation - malondialdehyde (MDA) and 4-hydroxy-2-

nonenal (HNE))168, proteins (carbonylation and nitration)169, and nucleic acids (mtDNA 

depletion and DNA damage – 8-hydroxy-2’-deoxyguanosine (8-OHdG)).130 The notion 

of nitroso-oxidative stress involves different markers ranging from alterations in 

ROS/RNS production to oxidative damage and altered antioxidant enzymes' activity. 

Several pieces of evidence suggest that the accumulation of hepatocyte damage is in the 

origin of the maladaptive response of hepatocytes to fat accumulation, thereby leading 

to hepatic metabolic impairment and NASH.34, 170 

In the context of hepatic steatosis, there is a pro-oxidant state with activation of 

ROS-generating mechanisms while the levels/ activities of antioxidants are impaired, as 

identified in NAFLD animal models and NAFLD/ NASH clinical cohorts.171, 172, 125 



Some data suggest that, NAD+ dependent deacetylase, sirtuin 3 (SIRT3) is implicated in 

the modulation of mitochondrial ROS response and in the modulation of hepatocyte 

susceptibility to cell death/ autophagy in the presence of a high-fat (HF) diet.173, 174 One 

pathway by which oxidative stress might cause the disruption of the mitochondrial 

network and function is through cardiolipin (CL) oxidation.114 CL, an exclusive 

mitochondrial phospholipid, is highly sensitive to unsaturated bond-ROS attack, and its 

oxidation may lead to cytochrome c release from mitochondria, thereby triggering 

apoptotic cell death.166  

It has been proposed that the accumulation of ROS-related damages is in the 

origin of the maladaptive response of hepatocytes to fat accumulation, thereby leading 

to hepatic metabolic impairment and NASH.34, 170 Nitric oxide (NO•) is a RNS/ROS 

whose contribution for NAFLD progression is still obscure, ranging from the possible 

culprit, or at least contributor, to liver/vascular protectant in NAFLD. The role of (NO•) 

in NAFLD-related inflammation has been previously described.175 Moreover, an 

increase in NO• production in NASH patients compared to more benign NAFLD 

phenotypes was observed suggesting that it can be considered as an inflammation 

marker in patients progressing from liver steatosis to steatohepatitis.175 In contrast, Gu 

et al. described NO• as a protective agent for NAFLD progression towards more severe 

disease forms.176 However, this observation is quite controversial because an increase, 

rather than a decrease of NO• production was shown to accompany NAFLD 

progression.177 Indeed, NO•-mediated nitration of hepatocellular proteins, visualized by 

3-nitrotyrosine level is markedly induced in the inflamed liver tissue from patients with 

chronic liver disease.178 Interestingly, NAFLD has been linked with altered blood 

pressure, suggesting endothelial NO• synthase (eNOS) dysfunction in the disease's 

pathogenesis. Chronic inhibition of eNOS via N(ω)-nitro-L-arginine methyl ester (L-

NAME) increased liver injury in a rat model of obesity, insulin resistance, and 

NAFLD.179 Indeed, NAFLD patients show a marked eNOS dysfunction in platelets and 

liver tissue180, associated with S1177 phosphorylation.181 

 Although excessive cellular ROS and /-or oxidative damage levels in NAFLD 

are associated with a compromised mitochondrial structure and function, most NAFLD 

studies lack experimental evidence to support the primary role of mitochondria as an 

essential source of ROS.125, 166, 182 In fact, a comparative study investigating the 

contribution of different cellular organelles to ROS production demonstrated that 

endoplasmic reticulum (ER) and peroxisomes produce more H2O2 than mitochondria in 



rodents liver.183 Furthermore, recent studies by Einer et al. described a mitochondrial 

adaptation linked to fat accumulation without evidence of mitochondrial oxidative stress 

markers during steatosis.55 This work was supported by another study in which it was 

shown that oxidative stress in steatotic mice was caused by peroxisomes and not by 

mitochondria, in which no or very reduced ROS production and oxidative damage were 

observed.184 These observations are consistent with the up-regulation of peroxisome 

proliferator-activated receptor alpha (PPAR-α) and ACOX genes, as well as with higher 

levels of peroxisomal-related proteins in livers of HF fed-mice185, 184 and in NAFLD 

patients.186, 187. Furthermore, a higher peroxisomal β-oxidation rate is responsible for 

A/J mice resistance to diet-induced steatosis and obesity.188 This included the 

upregulation of genes involved in peroxisomal structure (Pex11a), VLCFAs uptake 

(Abcd3), FAO (Slc27a2, Acsl4, Ehhadh, Ech1, Crat), and detoxification (Cat, Alas1). 

Accordingly, an increased peroxisomal oxidative activity seems to represent an 

alternative pathway to support mitochondrial function, especially when its oxidative 

capacity is overloaded, as described in high-fat diet-induced steatosis.189 This role might 

explain the proximity between peroxisomes and lipid droplets in the cytosol.190 

However, peroxisomal FAO is associated with an exacerbation of oxidative stress in 

microvesicular steatosis.191 Other organelles that can counteract lipid accumulation, 

such as peroxisomes and microsomes or even cytosolic ROS-generating enzymes as 

NADPH oxidase (NOX) xanthine oxidase have emerged as central ROS producers 

during the onset of NAFLD. 

Another example can be the 66kDa isoform of Shc (p66shc), an adaptor and 

redox protein that has been already linked to the lipid metabolism regulation by 

numerous reports.192 It has been demonstrated that p66Shc participates in various 

mechanisms of liver injury.193, 194 In livers of NAFLD patients, expression levels of 

apopotosis regulating proteins p53, p21, and p66Shc were significantly increased.195 

p53/p66Shc associated pathway was shown to play a significant regulatory role in 

NASH progression.195 Similar observation comes from rodent NAFLD model. 196 

Zhang et al. described a correlation between increased hepatic p66shc expression and 

upregulated expression of senescence markers: heterochromatin protein-1-beta (HP1b), 

p16, p21, and p53.196 Slowed down steatosis development has been observed for 

p66Shc knockdown condition and on the other hand, overexpression of p66Shc 

promoted senescence and steatosis in L02 cells.196 Moreover, targeting the p66Shc - 

cytochrome c cascade by catalpol can prevent the development of NAFLD 



complications, which could be mediated by a specific microRNA, miR-96-5p effect.197 

Interestingly, it has been also demonstrated that the sirtuin 1 (SIRT1) / p66Shc anti-

apoptosis pathway is a good target to prevent NAFLD-related injury.198 A negative 

effect of p66Shc activation on liver mitochondria function can be additionaly prevented 

by exercise which , promotes liver mitochondria adaptive remodeling and hepatocyte 

renewal.199 Recently, it was also shown that the p66Shc oxidative and ER stress 

pathway can be a potential therapeutic target in NAFLD as Isosteviol (ISV) prevents 

FFA-/HFD-induced hepatic injury. In rat model, ISV specifically inhibits expression, 

activation and translocation of p66Shc to mitochondria protecting against FFA-/HFD-

induced hepatic injury.198 

Peroxisomes are responsible for α-oxidation of branched-chain FAs and β-

oxidation of very-long chain FAs (VLCFA), and other processes as amino acid 

metabolism and biosynthesis of glycerophospholipids and bile acids. These organelles 

act as a chain shortening system, producing the short and medium FAs further diverted 

to mitochondria to complete their oxidation. Acyl-CoA oxidases (ACOX), D-amino 

acid oxidase, D-aspartate oxidase, L-α-hydroxyacid oxidase, polyamine oxidase, and 

xanthine oxidase can generate ROS in peroxisomes.200 Peroxisomes can further detoxify 

ROS by the most pre-eminent enzyme – catalase or by other peroxisomal resident 

antioxidant enzymes. Importantly, catalase silencing caused significantly more lipid 

accumulation, oxidative stress, and inflammation in high-fat fed mice when compared 

to matched controls.201 Furthermore, a higher peroxisomal β-oxidation rate is 

responsible for A/J mice resistance to diet-induced steatosis and obesity.188  

A defective peroxisomal β-oxidation and a sustained peroxisome proliferator-

activated receptor alpha (PPAR-α) activation seem to contribute to cytochrome P450 

(CYP4A) induction and hepatic oxidative injury.202 These observations provide 

evidence that if a VLCFAs oxidative pathway as peroxisomal FAO is defective or 

insufficient, the microsomal pathway may act as another alternative oxidative pathway. 

In ω-oxidation of VLCFA in microsomes, the first step of the reaction is catalysed by 

oxido-reductase CYP2E1/CYP4A enzymes in the presence of NADPH and O2 with the 

generation of O2•- and H2O2 as byproducts.203 Even though ω-oxidation is considered a 

minor FAO pathway under basal conditions204, up-regulation of this pathway may occur 

in the context of hepatic fat accumulation in rodents and humans.205, 206 Moreover, 

CYP2E1-mediated oxidative stress could induce insulin resistance development and 

inflammation, thereby aggravating NAFLD severity.207 Although there are some 



discrepancies regarding the participation of CYP2E1 and NOX in cellular ROS 

production208, 209, a few other studies have also confirmed the role of NOX in oxidative 

stress of fatty liver rats and NASH patients.208, 210 It was shown that hepatocyte-NOX4 

deletion reduced oxidative stress, improved insulin sensitivity and decreased liver 

inflammation and fibrosis in a NASH-induced mouse model.210 

Mitochondria, peroxisomes, microsomes, and RNS/ROS-generating enzymes 

such as NOX seem to play a role in ROS production during an early stage of NAFLD. 

Control of RNS/ROS for improving NAFLD/NASH phenotype may require a multi-

organelle targeting approach. A potential clue for the role of ROS in NAFLD 

progression arises from the therapeutic use of antioxidants. Antioxidants such as sterol 

ester of alpha-linolenic acid211, physalin B212, N-acetyl cysteine213, or vitamin E and 

vitamin C214  showed beneficial effects against liver injury, including fibrosis, in the 

context of NAFLD. Still, a meta-analysis of randomized trials for treating NAFLD 

found that those including antioxidants gave mixed results.215 Interestingly, not only 

coenzyme Q10, a component of the mitochondrial respiratory chain, prevented some of 

the hallmarks of the NAFLD phenotype216, but its mitochondrial-targeted form, MitoQ 

(or mitoquinone), also showed some benefits in multiple models of fatty liver.217, 218 

This demonstrates that ROS (and probably RNS) do have an essential role in NAFLD 

progression, and that mitochondrial-derived ROS can play, at least in part, a role in key 

time-points of the disease progression. A schematic representation of hepatocyte 

cellular pathways involved in ROS generation in a NAFLD context is presented in 

Figure 2. 

For example, vitamin E – a fat-soluble antioxidant was analyzed in the PIVENS 

trial published in 2010. Histological assessment of patients taking part in PIVENS study 

showed that vitamin E at the dose of 800 IU/day led to reduced hepatocyte ballooning 

(p = 0.005) and lobular inflammation (P = 0.02) but had no significant effects on liver 

fibrosis.219 The subsequent TONIC trial involving 173 children and adolescents in 

NAFLD disappointingly showed that vitamin E (400 IU/twice daily for 96 weeks) did 

not reduce liver steatosis, fibrosis or lobular inflammation.220 According to current 

recommendations, vitamin E can be considered as a short-term therapy in patients with 

biopsy-proven NASH. However, safety concerns (e.g., increased all-cause mortality221 

as well as enhances risk for prostate cancer222) need to be discussed with the patient 

before starting the therapy. The trials investigating resveratrol – a polyphenol with 

antioxidant properties found in fruits and vegetables did not show major effects on fatty 



liver.223 To date, obeticholic acid (OCA) is one of the few drugs that showed beneficial 

effects on NASH. Interim analysis of a phase 3 trial demonstrated that OCA at the dose 

of 25 mg can significantly improve fibrosis and components of NASH224. However, 

these results have not led to the approval of OCA as therapy for patients with fatty liver. 

Given the paucity of medications (acting as antioxidants), which are tackling NASH, 

current recommendations for patients with hepatic steatosis include lifestyle changes, 

weight loss, and correction of risk factors for progressive NAFLD. 

 

5. Conclusion 

Several contradictory observations describing mitochondrial response at 

different NAFLD stages reported in the literature makes it very difficult to define with 

certainty the time course of changes in mitochondrial parameters during NAFLD 

progression. Fromenty's group in their elegant review proposed several factors that 

could be responsible for the observed discrepancies between the studies investigating 

mitochondrial function along with the NAFLD progression.137 Among them are 

imperfect histological classification, nutritional and genetic factors and methodology 

used.137 Moreover, ambiguous results from antioxidant administration may result from 

different treatment protocols, the specific disease stages at which the treatment is 

initiated, and the antioxidant molecule's potential to have a multi-targeting activity, for 

example by reducing inflammation in the liver.  

Hence, based on our recent knowledge, it is difficult to answer whether 

mitochondrial abnormalities and or mitochondrial/peroxisomal related oxidative stress 

are culprits or bystanders of NAFLD development and progression. Further carefully 

designed mitochondrial studies involving patients at different NAFLD stages and 

animal models of NAFLD are necessary to demonstrate the relationship between 

mitochondrial bioenergetics, oxidative metabolism, metabolic syndrome, oxidative 

stress and progression of NAFL to more severe NAFLD stages. 
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Figure 1. Outcomes regarding mitochondrial parameters and related metabolic processes in 

NAFLD. The figure was prepared initially based on Begriche et al.58 and Simoes et al.66 and 

updated accounting for subsequent studies. Disease stage is according to Begriche et al.58 and 

Koliaki et al.54. ACC, acetyl-CoA carboxylase; FAO, fatty acid oxidation; FAS, fatty acid 

synthase; OXPHOS, oxidative phosphorylation; PPARγ, peroxisome proliferator-activated 

receptor γ; SCD-1, stearoyl-CoA desaturase-1; SREBP-1c, sterol regulatory element-binding 

protein-1c; TCA, tricarboxylic acid cycle; UCP2, mitochondrial uncoupling protein 2; β-HAD, 

β-hydroxyacyl-CoA dehydrogenase; Due to the limit of references number published reports 

cited in the Figure in [  ] are available and listed in Supplementary Material. 

 

 

Figure 2. Schematic representation of hepatocyte-related organelles involved in ROS 

generation in a NAFLD context. Circulating levels of glucose and FFAs are taken by 

hepatocytes. In an early NAFLD stage, hepatic adaptation includes a series of molecular 

pathways in order to cope with the excess of available nutrients. One main pathway involved is 

the activation of FAO in mitochondria but also in peroxisomes, microsomes and NADPH 

oxidase. Despite the protective role of FAO by decreasing fat accumulation, the upregulation 

of this pathway induce the production of ROS. When present in excess, ROS play a role as 

culprits in the induction of hepatic oxidative damage of molecules and organelles, thereby 

contributing to organelles malfunction (e.g. mitochondrial dysfunction) and further disease 

progression. ATP, adenosine triphosphate; CD36, cluster of differentiation; CPT, carnitine 

palmitoyltransferase; DNL, de novo lipogenesis; ER, endoplasmic reticulum; FAO, faty aci 

oxidation; FAs, fatty acids; FATP, fatty acid transporter protein; FFAs, free fatty acids; 

GLUT2, glucose transporter 2; NADH, nicotinamide adenine dinucleotide; NADPH, 

nicotinamide adenine dinucleotide phosphate; OXPHOS, oxidative phosphorylation; PM, 

plasma membrane; ROS, reactive oxygen species; TCA, tricarboxylic acid cycle; TGs, 

triglycerides. 
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