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Depressive conditions precipitated by repeated stress are a major socio-economical
burden in Western countries. Previous studies showed that ATP-P2X7 receptors (P2X7R)
and adenosine A2A receptors (A2AR) antagonists attenuate behavioral modifications upon
exposure to repeated stress. Since it is unknown if these two purinergic modulation
systems work independently, we now investigated a putative interplay between P2X7R
and A2AR. Adult rats exposed to restraint stress for 14 days displayed an anxious
(thigmotaxis, elevated plus maze), depressive (anhedonia, increased immobility), and
amnesic (modified Y maze, object displacement) profile, together with increased
expression of Iba-1 (a marker of microglia “activation”) and interleukin-1β (IL1β) and
tumor necrosis factor α (TNFα; proinflammatory cytokines) and an up-regulation of
P2X7R (mRNA) and A2AR (receptor binding) in the hippocampus and prefrontal cortex. All
these features were attenuated by the P2X7R-preferring antagonist brilliant blue G (BBG,
45 mg/kg, i.p.) or by caffeine (0.3 g/L, p.o.), which affords neuroprotection through A2AR
blockade. Notably, BBG attenuated A2AR upregulation and caffeine attenuated P2X7R
upregulation. In microglial N9 cells, the P2X7R agonist BzATP (100 µM) or the A2AR
agonist CGS26180 (100 nM) increased calcium levels, which was abrogated by the
P2X7R antagonist JNJ47965567 (1 µM) and by the A2AR antagonist SCH58261 (50 nM),
respectively; notably JNJ47965567 prevented the effect of CGS21680 and the effect
of BzATP was attenuated by SCH58261 and increased by CGS21680. These results
provide the first demonstration of a functional interaction between P2X7R and A2AR
controlling microglia reactivity likely involved in behavioral adaptive responses to stress
and are illustrative of a cooperation between the two arms of the purinergic system in
the control of brain function.
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INTRODUCTION

Depression represents the major burden of disease in Europe
(Andlin-Sobocki et al., 2005) and the constellation of mood
alterations associated with depression can be recapitulated in
animal models repeatedly exposed to different stressors (de Kloet
et al., 2005; Berton et al., 2012). The use of animal models
converges with imaging studies to identify modifications of
different brain regions, such as the hippocampus, prefrontal,
and limbic cortices, that are associated with mood dysfunction
(de Kloet et al., 2005) and provide compelling evidence for
the involvement of neuroinflammation (Rial et al., 2016; Deng
et al., 2020; Troubat et al., 2021) and of synaptic dysfunction
(Duman and Aghajanian, 2012; Vose and Stanton, 2017) as
key processes in the etiology of major depression. However,
the identification of molecular systems that may be targeted to
correct depressive symptoms has still failed to yield novel and
effective anti-depressants (Ménard et al., 2016).

One candidate system is operated by purines, which
fulfill numerous roles controlling neuronal communication,
neuron-glia communication, and neuroinflammation
(Agostinho et al., 2020). ATP is a danger signal in the brain
(Rodrigues et al., 2015) and one of its receptors, P2X7 receptors
(P2X7R), has been associated with mood dysfunction (reviewed
in Ribeiro et al., 2019; Illes et al., 2020), based on the association
of particular P2X7R haplotypes with depression (Czamara et al.,
2018) and with the ability of genetic deletion or pharmacological
antagonism of P2X7R to control mood dysfunction in different
animal models of repeated stress (Iwata et al., 2016; Yue et al.,
2017; Farooq et al., 2018; Aricioglu et al., 2019). The mechanism
underlying the impact of P2X7R on mood is still undefined, but
the control of glia, mainly microglia, which contributes to the
build-up of neuroinflammation, stems as a promising candidate
mechanism (Yue et al., 2017; Bhattacharya and Jones, 2018).
Together with possible neuronal effects of P2X7R, the control of
neuroinflammation can account for the general neuroprotective
properties of P2X7R antagonists, such as the blood-brain barrier-
permeant drug, brilliant blue G (BBG; Díaz-Hernández et al.,
2009, 2012; Arbeloa et al., 2012; Carmo et al., 2014; Wang et al.,
2015; Yue et al., 2017; Farooq et al., 2018; Aricioglu et al., 2019).

The purinergic system is particularly enticing since it
encompasses two parallel signaling systems: one involving
ATP and P2R and the other involving the dephosphorylation
product of ATP, adenosine, which acts on P1 or adenosine
receptors, mainly inhibitory A1 receptors and facilitatory A2A
receptors (A2AR) in the brain (Fredholm et al., 2005). The
extracellular conversion of ATP into adenosine is mediated by
ectonucleotidases (Cunha, 2001; Zimmermann et al., 2012) and
we have shown that the extracellular formation of ATP-derived
adenosine is selectively associated with the activation of neuronal
A2AR (Rebola et al., 2008; Augusto et al., 2013; Carmo et al.,
2019; Gonçalves et al., 2019), as well as with A2AR located in
other cell types (e.g., Deaglio et al., 2007; Flögel et al., 2012;
Flores-Santibáñez et al., 2015; Mahmut et al., 2015; Meng et al.,
2019). A2AR are mainly located in synapses (Rebola et al., 2005),
but also control microglia and neuroinflammation (Orr et al.,
2009; Rebola et al., 2011; Madeira et al., 2016; Duarte et al.,

2019) to robustly impact neurodegeneration (reviewed in Cunha,
2016). Both selective A2AR antagonists and the non-selective
adenosine receptor antagonist caffeine (Fredholm et al., 1999),
can control mood and memory alterations in rodents exposed to
repeated stress (Yamada et al., 2013; Kaster et al., 2015), as per the
mood normalizing properties afforded by the intake of caffeine
in humans (reviewed in Grosso et al., 2016) and the association
of A2AR polymorphisms with anxiety and depression (Hamilton
et al., 2004; Hohoff et al., 2010; Oliveira et al., 2019).

Thus, the available evidence indicates P2X7R as well as A2AR
as major players in the control of mood dysfunction, with
both receptors systems undergoing an up-regulation in animal
models exposed to repeated stress (Cunha et al., 2006; Kongsui
et al., 2014; Kaster et al., 2015; Aricioglu et al., 2019). However,
it has never been explored if there is any interplay between
both receptors systems in the control of mood dysfunction.
As a first step to test the existence of such an interplay, we
now exploited a rat model of repeated restraint stress to test
if P2X7R blockade with BBG would impact A2AR up-regulation
and, conversely, if caffeine blockade of A2AR could interfere with
P2X7R up-regulation.

MATERIALS AND METHODS

Animals
Male Wistar rats (adults, 220–250 g, n = 78: 18 controls treated
with vehicle, nine controls treated with BBG, nine controls
treated with caffeine; 18 stressed treated with vehicle,
nine stressed treated with BBG, nine stressed treated with
caffeine, six for electrophysiology) were obtained from Charles
River (Barcelona, Spain) and were maintained at 23–25◦C,
with 12 h light / 12 h dark cycle and standard chow and tap
water ad libitum. All procedures in this study were conducted
following the principles and procedures outlined as ‘‘3Rs’’ in
the guidelines of the European Union (2010/63/EU), FELASA,
and ARRIVE, and were approved by the Portuguese Ethical
Committee (DGAV) and by the Institution’s Ethics’ Committee
(ORBEA 238-2019/14102019). Since the behavioral alterations
caused by this protocol of restraint stress were so far only
validated in male rats, the ‘‘3Rs’’ guidelines imposed the use of
only male rats to obtain the first proof-of-concept supporting
the existence of any interaction between P2X7R and A2AR.

In vivo Drug Treatments
As done previously (Carmo et al., 2014), the blood-brain barrier-
permeant and efficacious P2X7R antagonist brilliant blue G (BBG,
45 mg/kg dissolved in saline; from Sigma–Aldrich, Portugal)
or saline were administered intraperitoneally every 48 h at
7 PM, starting 3 days before the protocol of restraint stress,
until the sacrifice of the animals. The tested dose of BBG
has previously been shown to yield a brain concentration of
200–220 nM (Díaz-Hernández et al., 2012), which is within
the effective and selective range of BBG towards central
P2X7R and is without evident side-effects in control rodents
(Donnelly-Roberts and Jarvis, 2007).

Caffeine (Sigma, Portugal) was administered through the
drinking water as previously reported (Duarte et al., 2009;
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Cognato et al., 2010) at a dose (0.3 g/L) estimated to correspond
to a daily intake of 3–4 cups of coffee by humans (Fredholm
et al., 1999), which rodents consume without modification
of their water intake (Duarte et al., 2009, 2012; Silva et al.,
2013). This yields a concentration of circa 30 µM in the brain
parenchyma (Costenla et al., 2010; Silva et al., 2013), which
selectively targets adenosine receptors (Lopes et al., 2019) and
mimics the neuroprotective impact of A2AR antagonists, rather
than of A1R (Cunha et al., 2006; Dall’Igna et al., 2007), namely
in animal models of stress and depression (Kaster et al., 2015;
Machado et al., 2017). Caffeine intake was allowed only overnight
(7 PM-7 AM), starting 3 days before the protocol of restraint
stress, until the sacrifice of the animals and this repeated exposure
to caffeine is expected to afford neuroprotection without
major modification of behavioral or physiological parameters
in control rodents (Duarte et al., 2009; Yang et al., 2009;
Cognato et al., 2010).

Restraint Stress
The stress model used consisted of a repeated physical restraint
of rats, as done previously (Cunha et al., 2006). The rats
were individually placed in a room adjacent to their colony
in an independent plastic compartment and immobilized in a
25 × 7 cm plastic bottle, with a plastic taper on the outside
and a 1 cm hole at one end for breathing. After the termination
of each daily restraint stress session, the rats were returned to
their home cages. The schedule of sub-chronic restraint stress
consisted of a daily 4 h immobilization period (between 10 AM
and 4 PM) during 14 consecutive days, the time previously
defined to be required to cause stable behavioral modifications
for at least 1 week in adult male rats (Cunha et al., 2006). Control
age-matched rats were handled as their tested littermates except
that they were not isolated or immobilized.

Behavioral Evaluation
Behavioral tests were carried out from 9 AM until 4 PM on the
15th until the 18th day after beginning the restraint stress protocol
(Figure 1). As shown in Figure 1, the animals were subject to
a tight schedule of behavioral characterization, with a minimal
time interval between each test, which could lead to cross-
testing interferences. However, the analysis of the performance
of control animals in the successive tests did not show evident
differences from historic controls where rats of the same age and
strain were tested in each different test with wider time gaps
between the different tests (Cunha et al., 2006; Cognato et al.,
2010; Carmo et al., 2014; Coelho et al., 2014; Matheus et al., 2016).
All behavior tests were carried out by two experimenters who
were unaware of the phenotypes or drug treatments, in a sound-
attenuated room with an eight lux illumination and visual cues
on the walls, to which the animals were previously habituated.
The apparatuses were cleaned with 20% ethyl alcohol to remove
any odors after testing each animal.

Locomotion and exploratory behavior were monitored using
an open-field arena made of dark gray PVC measuring
100 × 100 cm2 (divided by white lines into 25 squares of
20 × 20 cm2) and was surrounded by 40-cm high walls. Each
rat was placed in the center of the open field and the following

variables were recorded for 10 min: number of peripheral
squares (adjacent to the walls) crossed (peripheral locomotion),
number of central squares (away from the walls) crossed (central
locomotion) and total locomotion (peripheral locomotion plus
central locomotion).

Anxiety was further assessed using the elevated plus-maze,
which consisted of four arms of the same size (40 cm × 5 cm)
arranged in the form of a cross and raised 50 cm above the floor.
Two opposed arms were surrounded by 30 cm high opaque black
Plexiglas walls, except for the entrance (closed arms) while the
other two had no walls (open arms). Each animal was placed on
the central square of the maze facing an enclosed arm and was
allowed to explore the maze for 5 min. The number of entries
and the time spent in both open and closed arms were recorded,
considering an entry only when the whole body and four paws
were inside an arm.

The depressive-like behavior was evaluated in the forced
swimming test, where rats were placed in individual glass
cylinders (40 cm in height and 17 cm in diameter) containing
water (water depth was 30 cm, kept at 25 ± 1◦C) to measure the
total duration of immobility, climbing, and swimming during a
10-min session. A rat was regarded as immobile when floating
motionless or making only those movements necessary to keep
its head above the water. The climbing behavior was defined
as upward-directed movements of the forepaws usually along
the side of the swimming chamber and the swimming behavior
is defined as movement (usually horizontal) throughout the
swimming chamber; diving and face shaking behaviors were
not considered.

Anhedonic-like behavior was evaluated with the sucrose
preference test, where rats were first single-housed in a cage with
two bottles and free access to food. After 4 h of habituation, one
bottle was randomly switched to contain 1.2% sucrose solution
and the total consumption of water and sucrose solution was
measured at the end of a 16 h test period (12 h dark phase plus
4 h light phase). Sucrose preference was calculated as the ratio of
sucrose vs. total intake.

Spatial memory was evaluated using a 2-trials Y-maze
paradigm (Dellu et al., 1997). The test was carried out in a
Plexiglas apparatus with equal three arms (10 cm wide, 35 cm
long, and walls of 25 cm height) in a Y-shape, separated by
equal angles. The test consists of two sessions of 5 min duration
separated by a 2-h inter-trial interval. During the first session,
the rat was placed at the end of one arm and allowed to
explore the two available arms since the third arm (the novel
arm) was blocked by a guillotine door. During the second
session, the ‘‘‘novel’’’ arm was opened and the rat was again
placed in the start arm and allowed to explore the three arms.
Memory performance was evaluated by measuring the time
spent exploring the ‘‘novel’’ arm compared to the exploration
of the other two arms. An entry into an arm was defined as the
placement of all four paws into the arm.

Hippocampal-dependent memory was also evaluated using
the object displacement test, where rats were exposed to two
identical objects in the same open field apparatus in which they
were habituated and were allowed to explore for 5 min the objects
fixed in opposite corners 10 cm away from walls and 70 cm
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FIGURE 1 | Timeline of the experiments.

apart from each other. In the test trial, carried out 2-h after,
rats were again placed for 5 min in the open field arena, except
that one of the objects was moved to a novel position. Memory
performance was quantified with an object displacement index
defined as the ratio between the time exploring the object in
the novel location over the total time exploring both objects.
Exploration of an object is defined as directing the nose to the
object at a distance equal to or less than 2 cm from the object
and/or touching it with the nose; rearing on to the object was not
considered exploratory behavior.

The sequence of the tests is indicated in Figure 1.

mRNA Expression
After completion of the battery of behavior analysis, rats were
sacrificed by decapitation under deep anesthesia upon exposure
to a halothane-saturated atmosphere. One hippocampus or part
of the prefrontal cortex of each rat was used to extract total
RNA with a MagNA Lyser Instrument and a MagNA Pure
Compact RNA Isolation kit (Roche, Portugal), according to
the manufacturer’s instructions. The integrity, quantity, and
purity of the RNA yields were checked by electrophoresis
and spectrophotometry. Reverse transcription for first-strand
cDNA synthesis from each sample was performed using a
random hexamer primer with the Transcriptor First Strand
cDNA Synthesis kit (Roche), according to the manufacturer’s
instructions. The resulting cDNAs were used as templates
for real-time PCR, which was carried out on the LightCycler
instrument (Roche) using the FastStart DNA Master SYBR
Green I kit (Roche). The mRNA expression of the marker of
microglia ‘‘activation’’ Iba1 (ionized calcium-binding adaptor
molecule 1), of the pro-inflammatory cytokines interleukin-
1β (IL1β) and tumor necrosis factor α (TNFα) and of P2X7R,
was calculated relative to GADPH (glyceraldehyde 3-phosphate
dehydrogenase) mRNA expression, using the following primers

(from Tib MolBiol, Germany): Iba1 (forward: 5′-TGC GCA AGA
GAT CTG CCA TC-3′; reverse: 5′-ACC AGT TGG CTT CTG
GTG TT-3′); IL1β (forward: 5′-ATG AGA GCA TCC AGC
TTC AAA TC-3′; reverse: 5′-CAC ACT AGC AGG TCG TCA
TCA TC-3′); TNFα (forward: 5′-CGA GAT GTG GAA CTG
GCA GA-3′; reverse: 5′-CTA CGG GCT TGT CAC TCG A-
3′); P2rx7 (forward: 5′-CTG CCT CCC GTC TCA ACT AC-3′;
reverse: 5′-GCC TCT CTG GAT AGC ACG AT-3′); GAPDH
(forward: 5′-CCC TTC ATT GAC CTC AAC TAC-3′; reverse:
5′-CTT CTC CAT GGT GGT GAA GAC-3′). Quantification was
carried out based on standard curves run simultaneously with
the test samples generated by conventional PCR amplification,
as previously described (Costenla et al., 2011; Rebola et al.,
2011). The purity and specificity of the resulting PCR products
were assessed by melting curve analysis and electrophoresis.
Control reactions were performed to verify that no amplification
occurred without cDNA.

Receptor Binding Assay
The binding assays were performed as previously described
(Cunha et al., 2006), using the second hippocampus and the
rest of the prefrontal cortex from each rat. After purifying
whole membranes by centrifugation-based fractionation (Rebola
et al., 2005), the membranes were resuspended in Tris-Mg
solution (containing 50 mM Tris and 10 mM MgCl2, pH 7.4)
with 4 U/ml of adenosine deaminase (to remove endogenous
adenosine). Binding with 2 nM of 3H-SCH58261 (specific activity
of 77 Ci/mmol; prepared by GE Healthcare and offered by
E.Ongini, Schering-Plough, Italy), a supramaximal concentration
of this selective A2AR ligand (Lopes et al., 2004), was performed
for 1 h at room temperature with 286–343 (hippocampus)
or 54–71 µg of protein (prefrontal cortex), with constant
swirling. The binding reactions were stopped by the addition
of 4 ml of ice-cold Tris-Mg solution and filtration through
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Whatman GF/C filters (GE Healthcare). The radioactivity was
measured with 2 ml of scintillation liquid (AquaSafe 500 Plus,
Zinsser Analytic). The specific binding was expressed as fmol/mg
protein and was estimated by subtraction of the non-specific
binding, which was measured in the presence of 12 µM
of xanthine amine congener (XAC; Sigma), an antagonist
of adenosine receptors. All binding assays were performed
in duplicate.

Calcium Transients in N9 Microglial Cells
A murine microglial cell line, N9 (a kind gift from Professor
Claudia Verderio, CNR Institute of Neuroscience, Milan, Italy),
was grown as previously described (Gomes et al., 2013) in an
RPMI medium supplemented with 30 mM glucose (Sigma),
100 U/ml penicillin and 100 µg/ml streptomycin (GIBCO,
Invitrogen, Portugal) and maintained at 37◦C in an incubator
with a humidified atmosphere with 5% CO2, until reaching
confluence. N9 cells were then detached using 0.05% trypsin
(T3924, Sigma) for 5 min, resuspended in RPMI after washing
and centrifugation, and counted using a hemocytometer with
trypan blue. N9 cells were then seeded in a 48-multiwell at a
density of 0.02 × 106 cells and remained in culture for 48 h.
Then, cells were incubated for 45 min with Fluo-4-AM (4 µM;
Life Technologies) dissolved in recording buffer (132 mM
NaCl, 4 mM KCl, 1.4 mM MgCl2, 6 mM glucose, 10 mM
HEPES, 1.8 mM CaCl2; pH 7.4) with 0.05% bovine serum
albumin to facilitate probe entry into the cells, as previously
described (Simões et al., 2012). The cells were then washed and
left in a recording buffer for 15 min to allow complete Fluo-4
AM de-esterification. In some experimental conditions, the
following modifiers of the evoked signals were added to the
recording buffer during the de-esterification and kept until the
end of the experiment: 1 µM JNJ47965567 (2-(phenylthio)-N-
[[tetrahydro-4-(4-phenyl-1-piperazinyl)-2H-pyran-4-yl]methyl-
3-pyridinecarboxamide, a selective P2X7R antagonist from
Tocris), 50 nM SCH58261 (2-(2-furanyl)-7-(2-phenylethyl)-
7H-pyrazolo[4,3-e][1,2,4]triazolo[1,5-c]pyrimidin-5-amine, a
selective A2AR antagonist from Tocris) or 100 nM CGS21680
(4-[2-[[6-amino-9-(N-ethyl-β-D-ribofuranuronamidosyl)-9H-
purin-2-yl]amino]ethyl]benzenepropanoic acid, a selective A2AR
agonist from Tocris).

After de-esterification, cytosolic Ca2+-dependent fluorescence
was recorded using a VICTOR3 Multiplate reader (Perkin Elmer)
with Wallac 1420 software, using an exciting wavelength of
485 nm and recording the emission wavelength at 530 nm,
close to the ideal wavelength to monitor Fluo-4 fluorescence
(494/506 nm). The baseline fluorescence was recorded at
0.2 Hz. [Ca2+]i transients were triggered by the application
of different stimuli, either 100 µM BzATP [2′(3′)-O-(4-
benzoylbenzoyl)adenosine 5′-triphosphate, a selective P2X7R
agonist from Sigma], 100 nM CGS21680 or 100 µM glutamate (to
mimic excitotoxic conditions, from Sigma) and fluorescence was
recorded for 5 min at 0.6 Hz (Janks et al., 2018). When glutamate
was used as a trigger of Ca2+ transients, experiments were
performed with the recording buffer without MgCl2 and with
133.4 mM NaCl. After recording the stimulus-induced [Ca2+]i
transient response, cells were exposed to ionomycin (10 µM,

Tocris) to induce a steep increase of extracellular Ca2+ influx and
consequently a maximum fluorescence response.

The fluorescence data were background-corrected by
subtracting the mean fluorescence value of N9 cells that were not
incubated with Fluo-4-AM. Intracellular calcium concentration
was estimated for each time point using the formula: [Ca2+] =
Kd × (F − Fmin)/(Fmax − F), in which Kd is the dissociation
constant of Fluo-4 (345 nM), F is the fluorescence recorded at
each time point, Fmax is the maximal fluorescence, obtained upon
ionomycin application, and Fmin is the minimal fluorescence.
The magnitude of [Ca2+]i transients evoked by each stimulus
(∆[Ca2+]i) was obtained subtracting the mean of basal levels
from the maximum value after stimulus application.

Electrophysiological Recordings
Rats were decapitated after anesthesia and the brain was quickly
removed and placed in ice-cold, oxygenated (95% O2, 5%
CO2) artificial cerebrospinal fluid (ACSF; in mM: 124.0 NaCl,
4.4 KCl, 1.0 Na2HPO4, 25.0 NaHCO3, 2.0 CaCl2, 1.2 MgCl2,
10.0 glucose). Using a McIlwain tissue chopper (Brinkmann
Instruments, NY, USA), slices (400 µm-thick) from the dorsal
hippocampus were cut transverse to its long axis and placed in a
holding chamber with oxygenated ACSF. Slices were allowed to
recover for at least 1 h before being transferred to a submerged
recording chamber and superfused at 3 mL/min with oxygenated
ACSF kept at 30.5◦C.

Extracellular field excitatory post-synaptic potential (fEPSP)
were recorded as previously described (Costenla et al., 2011)
with the stimulating bipolar concentric electrode placed in the
proximal CA1 stratum radiatum for stimulation of the Schaffer
collaterals and the recording electrode, filled with 4 M NaCl
(2–5 M� resistance), placed in the CA1 stratum radiatum
targeting the distal dendrites of pyramidal neurons. Stimulation
was delivered every 20 s with rectangular pulses of 0.1 ms
duration using either a Grass S44 or a Grass S48 square pulse
stimulator (Grass Technologies, RI, USA). After amplification
(ISO-80, World Precision Instruments, Hertfordshire, UK), the
recordings were digitized (BNC-2110, National Instruments,
Newbury, UK), averaged in groups of three, and analyzed
using the WinLTP version 2.10 software (WinLTP Limited,
Bristol, UK; Anderson and Collingridge, 2007). The intensity
of stimulation was chosen between 30–50% of maximal fEPSP
response, determined based on input/output curves in which
the fEPSP slope was plotted vs. stimulus intensity. Alterations
of basal synaptic transmission were quantified as the percentage
change of the average value of the fEPSP slope taken from
15–20 min after beginning exposure to the tested drug applied
through the superfusion medium, relative to the average value
of the fEPSP slope during the 5 min that preceded the
application of each modifying drug. Long-term potentiation
(LTP) was induced by a high-frequency stimulation (HFS)
train (100 Hz for 1 s). LTP was quantified as the percentage
change of the average fEPSP slope taken between 55 and
60 min after LTP induction relative to the average slope
of the fEPSP measured during the 10 min that preceded
LTP induction. The effect of drugs on LTP was assessed by
comparing LTP magnitude in the absence and presence of the
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drug in experiments carried out in different slices from the
same animal.

Statistics
Data are presented as the mean ± SEM of n experiments (i.e., n
independent rats or cell cultures). The comparison of control
and stressed rats and the effect of drugs was analyzed using a
two-tailed unpaired Student’s t-test. When testing the impact
of a drug on the effects of stress, the data were first analyzed
with a two-way ANOVA followed by a Newman–Keuls post hoc
test. The comparison between the effect of multiple drugs was
carried out using a Dunnett’s test. All tests were performed using
Prism 6.0 software (GraphPad, San Diego, CA, USA) considering
significance at a 95% confidence interval.

RESULTS

The model of repeated restraint stress triggers robust and
reproducible behavioral alterations of mood and memory in
adult rats (see Figure 2). Thus, whereas there was no significant
change of spontaneous locomotion (n = 18; t = 0.991, p = 0.328,
unpaired Student’s t-test; Figure 2A), stressed rats displayed
a thigmotaxic behavior indicative of an increased anxiety-like
profile, as indicated by the decreased number of crossings in
the center of the open field (n = 18; t = 7.229, p < 0.001,
unpaired Student’s t-test; Figure 2B). This was confirmed in
the elevated plus-maze where stressed rats displayed a decreased
number of entries in the open arms (n = 18; t = 9.002, p < 0.001,
unpaired Student’s t-test; Figure 2C) and decreased time in the
open arms (n = 18; t = 8.628, p < 0.001, unpaired Student’s
t-test). Stressed rats also displayed anhedonic behavior in a
sucrose preference test (n = 18; t = 5.673, p < 0.001, unpaired
Student’s t-test; Figure 2D) and an increased immobility time
in the forced swimming test (n = 18; t = 9.959, p < 0.001,
unpaired Student’s t-test; Figure 2E), as well as a decreased time
spent climbing the walls of the swimming container (n = 18;
t = 7.069, p < 0.001, unpaired Student’s t-test; Figure 2F),
indicative of depressive-like behavior. Short-term memory was
also deteriorated in stressed compared to control rats, as
observed by a decreased time searching the novel (previously
hidden) arm of a Y-maze (n = 18; t = 6.033, p < 0.001,
unpaired Student’s t-test; Figure 2G) and a decreased preference
to explore the displaced object (t = 8.009, p < 0.001 between
displaced and non-displaced object in control rats and t = 1.885,
p = 0.069 between displaced and non-displaced object in stressed
rats, unpaired Student’s t-test; Figure 2H).

In line with the involvement of the hippocampus and
prefrontal cortex in processing mood and memory-related
information (de Kloet et al., 2005) and the association of a
heightened inflammatory status in these brain regions in mood
impaired animals (Troubat et al., 2021), repeated restraint
stress increased the expression of inflammatory markers in
the hippocampus and prefrontal cortex (Figures 3A–C). Thus,
the hippocampus of stressed rats displayed increased mRNA
levels of the marker of microglia ‘‘activation’’ Iba1 (n = 12;
t = 9.095, p < 0.001, unpaired Student’s t-test; Figure 3A) and
of the pro-inflammatory cytokines interleukin-1β (IL1β; n = 12;

t = 7.194, p < 0.001, unpaired Student’s t-test; Figure 3B) and
tumor necrosis factor α (TNFα; n = 12; t = 11.46, p < 0.001,
unpaired Student’s t-test; Figure 3C). Likewise, the prefrontal
cortex of stressed rats also displayed increased mRNA levels of
Iba1 (n = 12; t = 4.928, p < 0.001, unpaired Student’s t-test;
Figure 3A), IL1β (n = 12; t = 6.028, p< 0.001, unpaired Student’s
t-test; Figure 3B) and TNFα (n = 12; t = 20.01, p < 0.001,
unpaired Student’s t-test; Figure 3C).

Finally, the protocol of restraint stress triggered an
up-regulation of P2X7R and of A2AR (Figures 3D,E), two
purinergic receptor systems that have been implicated in mood
alterations caused by stressful conditions (e.g., Kaster et al., 2015;
Iwata et al., 2016). Thus, stressed rats displayed an increased
expression of P2X7R mRNA in the hippocampus (n = 12; t = 6.82,
p < 0.001, unpaired Student’s t-test; Figure 3D) and prefrontal
cortex (n = 12; t = 6.967, p < 0.001, unpaired Student’s t-test;
Figure 3D), as well as an increased binding density of the
selective A2AR antagonist 3H-SCH58261 in the hippocampus
(n = 12; t = 4.212, p< 0.001, unpaired Student’s t-test; Figure 3E)
and prefrontal cortex (n = 12; t = 6.181, p < 0.001, unpaired
Student’s t-test; Figure 3E).

Impact of the P2X7R Antagonist BBG
The P2X7R-prefering antagonist Brillant Blue G (BBG, 45 mg/kg)
was devoid of effects in control rats but attenuated or prevented
the behavioral and neurochemical alterations caused by repeated
stress (Figures 4, 5). Thus, BBG prevented the stress-induced
decrease of the number of crossings in the central area of the
open field (effect of stress F(1,32) = 22.13, p < 0.001; effect
of BBG F(1,32) = 20.41, p < 0.001; interaction F(1,32) = 17.66,
p < 0.001; two-way ANOVA; Figure 4B), the stress-induced
decrease of the number of entries in the open arms of the elevated
plus maze (effect of stress F(1,32) = 17.96, p < 0.001; effect
of BBG F(1,32) = 6.248, p = 0.018; interaction F(1,32) = 23.89,
p < 0.001; two-way ANOVA; Figure 4C), the stress-induced
decrease of the time spent in the open arms of the elevated
plus maze (effect of stress F(1,32) = 23.28, p < 0.001; effect
of BBG F(1,32) = 4.187, p = 0.044; interaction F(1,32) = 25.61,
p < 0.001; two-way ANOVA), the stress-induced decrease of
sucrose preference (effect of stress F(1,32) = 8.737, p = 0.006; effect
of BBG F(1,32) = 4.753, p = 0.037; interaction F(1,32) = 6.044,
p = 0.019; two-way ANOVA; Figure 4D), the stress-induced
increase of immobility in the forced swimming test (effect of
stress F(1,32) = 39.91, p < 0.001; effect of BBG F(1,32) = 181.4,
p < 0.001; interaction F(1,32) = 13.02, p = 0.001; two-way
ANOVA; Figure 4E), the stress-induced decrease of the time
climbing the wall in the forced swimming test (effect of stress
F(1,32) = 16.35, p < 0.001; effect of BBG F(1,32) = 36.11, p < 0.001;
interaction F(1,32) = 12.87, p = 0.001; two-way ANOVA;
Figure 4F), the stress-induced decrease of the time spent in
the novel arm of the Y-maze (effect of stress F(1,32) = 9.243,
p = 0.005; effect of BBG F(1,32) = 6.434, p = 0.016; interaction
F(1,32) = 3.596, p = 0.067; two-way ANOVA; Figure 4G), and
the stress-induced decrease of the relative time exploring the
displaced object (t = 1.928, p = 0.072 between displaced and
non-displaced object in stressed rats treated with vehicle and
t = 6.246, p < 0.001 between displaced and non-displaced object
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FIGURE 2 | Male adult Wistar rats (8–10 weeks old) subject to a protocol of restraint stress (4 h/day) during 14 days display the expected features of depressed
rats. Compared with non-stressed control rats (open bars), stressed rats (red checkered bars) displayed a preserved locomotor activity as evaluated in the open field
(A), anxiety-like behavior as evaluated in the open field (B), and in the elevated plus-maze (C) tests, anhedonia as evaluated in the sucrose preference test (D),
helpless-like behavior as evaluated by the forced-swimming test (E,F) and impaired memory performance as evaluated by a modified Y maze test (G) and an
object-displacement test (H). Data are shown as mean ± SEM; n = 16–18 rats per group. *P < 0.001 using a Student’s t-test.

FIGURE 3 | Male adult Wistar rats (8–10 weeks old) subject to a protocol of restraint stress (4 h/day) during 14 days display an increased expression of
inflammatory markers and an up-regulation of P2X7 and A2A receptors in the hippocampus (black) and prefrontal cortex (gray). Compared with non-stressed control
rats (open bars), stressed rats (red checkered bars) displayed an increased expression of the microglia marker Iba1 (A), of interleukin 1β (IL1β; B), of tumor necrosis
factor α (TNFα; C), and P2X7 receptors (P2X7R; D) as well as an increased density of A2A receptors (A2AR; E) as assessed by the binding density of a supramaximal
concentration of the selective A2AR antagonist 3H-SCH58261 (2 nM). Data are shown as mean ± SEM; n = 11–12 rats per group. *P < 0.001 vs. control using a
Student’s t-test.

in stressed rats treated with BBG, unpaired Student’s t-test;
Figure 4H).

BBG also attenuated the stress-induced increase in the
expression of the marker of ‘‘activated’’ microglia Iba1 in the
hippocampus (effect of stress F(1,20) = 30.51, p < 0.001; effect

of BBG F(1,20) = 5.295, p = 0.032; interaction F(1,20) = 16.96,
p = 0.001; two-way ANOVA; Figure 5A) and prefrontal cortex
(effect of stress F(1,20) = 30.52, p < 0.001; effect of BBG
F(1,20) = 9.150, p = 0.007; interaction F(1,20) = 7.524, p = 0.012;
two-way ANOVA; Figure 5A), as well as in the levels of mRNA
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FIGURE 4 | Male adult Wistar rats (8–10 weeks old) subject to a protocol of restraint stress (4 h/day) during 14 days display the expected features of depressed
rats, which were prevented by the P2X7 receptor antagonist Brillant Blue G (BBG). Whereas BBG treatment (45 mg/kg, ip, daily, beginning 3 days before the stress
protocol and until the sacrifice of the animals; green) was devoid of effects in non-stressed control rats (open bars), BBG prevented all behavioral modifications of
stressed rats (red checkered bars): without modification of locomotor activity as evaluated in the open field (A), BBG prevented anxiety-like behavior as evaluated in
the open field (B) and in the elevated plus-maze (C) tests, anhedonia as evaluated in the sucrose preference test (D), helpless-like behavior as evaluated by the
forced-swimming test (E,F) and impaired memory performance as evaluated by a modified Y maze test (G) and an object-displacement test (H). Data are shown as
mean ± SEM; n = 8–9 rats per group. *P < 0.05 vs. control-water, **P < 0.05 vs. stress-water using a Tukey’s multiple comparisons post hoc test after a two-way
ANOVA.

FIGURE 5 | Male adult Wistar rats (8–10 weeks old) subject to a protocol of restraint stress (4 h/day) during 14 days display an increased expression of
inflammatory markers and an up-regulation of P2X7 and A2A receptors in the hippocampus (black, dark green) and prefrontal cortex (gray, light green) which were
prevented by the P2X7 receptor antagonist Brillant Blue G (BBG). Whereas BBG treatment (45 mg/kg, ip, daily, beginning 3 days before the stress protocol and until
the sacrifice of the animals; green) was devoid of effects in non-stressed control rats (open bars), BBG prevented all alterations of stressed rats (red checkered bars),
namely the increased expression of the microglia marker Iba1 (A), of interleukin 1β (IL1β; B), of tumor necrosis factor α (TNFα; C), and P2X7 receptors (P2X7R; D) as
well as an increased density of A2A receptors (A2AR; E) as assessed by the binding density of a supramaximal concentration of the selective A2AR antagonist
3H-SCH58261 (2 nM). Data are shown as mean ± SEM; n = 5–7 rats per group. *P < 0.05 vs. control-water, **P < 0.05 vs. stress-water using a Tukey’s multiple
comparisons post hoc test after a two-way ANOVA.

Frontiers in Cellular Neuroscience | www.frontiersin.org 8 March 2021 | Volume 15 | Article 639322

https://www.frontiersin.org/journals/cellular-neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/cellular-neuroscience#articles


Dias et al. P2X7-A2A Receptors Crosstalk on Stress

of both IL1β in the hippocampus (effect of stress F(1,20) = 38.13,
p < 0.001; effect of BBG F(1,20) = 23.05, p < 0.001; interaction
F(1,20) = 23.15, p < 0.001; two-way ANOVA; Figure 5B) and
prefrontal cortex (effect of stress F(1,20) = 24.39, p < 0.001; effect
of BBG F(1,20) = 6.641, p = 0.018; interaction F(1,20) = 7.505,
p = 0.013; two-way ANOVA; Figure 5B) and of TNFα in the
hippocampus (effect of stress F(1,20) = 59.05, p < 0.001; effect
of BBG F(1,20) = 19.99, p < 0.001; interaction F(1,20) = 24.96,
p < 0.001; two-way ANOVA; Figure 5C) and prefrontal cortex
(effect of stress F(1,20) = 152.8, p < 0.001; effect of BBG
F(1,20) = 108.7, p < 0.001; interaction F(1,20) = 85.38, p < 0.001;
two-way ANOVA; Figure 5C).

The treatment with BBG also attenuated the stress-induced
up-regulation of P2X7R in the hippocampus (effect of stress
F(1,20) = 21.31, p < 0.001; effect of BBG F(1,20) = 8.316,
p = 0.009; interaction F(1,20) = 8.222, p = 0.009; two-way
ANOVA; Figure 5D) and prefrontal cortex (effect of stress
F(1,20) = 18.12, p < 0.001; effect of BBG F(1,20) = 5.305,
p = 0.032; interaction F(1,20) = 10.52, p < 0.001; two-way
ANOVA; Figure 5D). Remarkably, BBG also attenuated the
stress-induced up-regulation of A2AR in the hippocampus (effect
of stress F(1,20) = 10.85, p = 0.004; effect of BBG F(1,20) = 13.01,
p = 0.002; interaction F(1,20) = 3.766, p = 0.067; two-way ANOVA;
Figure 5E) and prefrontal cortex (effect of stress F(1,20) = 12.21,
p = 0.002; effect of BBG F(1,20) = 11.84, p = 0.003; interaction
F(1,20) = 16.96, p = 0.001; two-way ANOVA; Figure 5E).

Impact of the Adenosine Receptor
Antagonist Caffeine
The non-selective adenosine receptor antagonist, caffeine
(0.3 g/L, p.o.), which affords neuroprotection through the
antagonism of A2AR (e.g., Dall’Igna et al., 2007; Cognato et al.,
2010; Kaster et al., 2015), was devoid of effects in control rats
but attenuated or prevented the behavioral and neurochemical
alterations caused by repeated stress (Figures 6, 7). Thus,
caffeine prevented the stress-induced decrease of the number
of crossing in the central area of the open field (effect of stress
F(1,32) = 8.160, p = 0.007; effect of caffeine F(1,32) = 8.459,
p = 0.007; interaction F(1,32) = 8.160, p = 0.007; two-way ANOVA;
Figure 6B), the stress-induced decrease of the number of entries
in the open arms of the elevated plus maze (effect of stress
F(1,32) = 23.91, p < 0.001; effect of caffeine F(1,32) = 1.463,
p = 0.235; interaction F(1,32) = 16.27, p < 0.001; two-way
ANOVA; Figure 6C), the stress-induced decrease of sucrose
preference (effect of stress F1,64 = 15.96, p < 0.001; effect of
caffeine F3, 64 = 6.544, p = 0.001; interaction F3, 64 = 3.828,
p = 0.014; two-way ANOVA; Figure 6D), the stress-induced
increase of immobility in the forced swimming test (effect of
stress F(1,32) = 29.31, p < 0.001; effect of caffeine F(1,32) = 10.13,
p = 0.003; interaction F(1,32) = 13.58, p = 0.001; two-way ANOVA;
Figure 6E), the stress-induced decrease of the time climbing the
wall in the forced swimming test (effect of stress F(1,32) = 16.45,
p < 0.001; effect of caffeine F(1,32) = 8.564, p = 0.006; interaction
F(1,32) = 7.247, p = 0.001; two-way ANOVA; Figure 6F), the
stress-induced decrease of the time spent in the novel arm of the
Y-maze (effect of stress F(1,32) = 5.879, p = 0.021; effect of caffeine
F(1,32) = 9.671, p = 0.004; interaction F(1,32) = 6.851, p = 0.013;

two-way ANOVA; Figure 6G), and the stress-induced decrease
of the relative time exploring the displaced object (t = 1.492,
p = 0.161 between displaced and non-displaced object in stress
rats treated with vehicle and t = 8.637, p < 0.001 between
displaced and non-displaced object in stress rats treated with
caffeine, unpaired Student’s t-test; Figure 6H).

Caffeine also attenuated the stress-induced increase in the
expression of the marker of ‘‘activated’’ microglia Iba1 in the
hippocampus (effect of stress F(1,20) = 63.06, p < 0.001; effect
of caffeine F(1,20) = 19.07, p < 0.001; interaction F(1,20) = 18.35,
p < 0.001; two-way ANOVA; Figure 7A) and prefrontal cortex
(effect of stress F(1,20) = 57.53, p < 0.001; effect of caffeine
F(1,20) = 10.02, p = 0.005; interaction F(1,20) = 12.92, p = 0.002;
two-way ANOVA; Figure 7A), as well as in the levels of mRNA
of both IL1β in the hippocampus (effect of stress F(1,20) = 19.2,
p < 0.001; effect of caffeine F(1,20) = 13.58, p = 0.001; interaction
F(1,20) = 12.34, p = 0.002; two-way ANOVA; Figure 7B) and
prefrontal cortex (effect of stress F(1,20) = 22.15, p < 0.001; effect
of caffeine F(1,20) = 9.351, p = 0.006; interaction F(1,20) = 30.24,
p < 0.001; two-way ANOVA; Figure 7B) and of TNFα in the
hippocampus (effect of stress F(1,20) = 82.54, p < 0.001; effect
of caffeine F(1,20) = 57.24, p < 0.001; interaction F(1,20) = 31.66,
p < 0.001; two-way ANOVA; Figure 7C) and prefrontal cortex
(effect of stress F(1,20) = 106.0, p < 0.001; effect of caffeine
F(1,20) = 85.53, p < 0.001; interaction F(1,20) = 92.56, p < 0.001;
two-way ANOVA; Figure 7C).

The treatment with caffeine also attenuated the stress-induced
up-regulation of P2X7R in the hippocampus (effect of stress
F(1,20) = 35.32, p < 0.001; effect of caffeine F(1,20) = 15.30,
p = 0.001; interaction F(1,20) = 8.046, p = 0.010; two-way ANOVA;
Figure 7D) and prefrontal cortex (effect of stress F(1,20) = 5.011,
p = 0.048; effect of caffeine F(1,20) = 0.569, p = 0.094; interaction
F(1,20) = 51.4, p < 0.001; two-way ANOVA; Figure 7D), as well
as the stress-induced up-regulation of A2AR in the hippocampus
(effect of stress F(1,20) = 4.282, p = 0.045; effect of caffeine
F(1,20) = 5.256, p = 0.033; interaction F(1,20) = 4.369, p = 0.050;
two-way ANOVA; Figure 7E) and prefrontal cortex (effect of
stress F(1,20) = 10.98, p = 0.004; effect of caffeine F(1,20) = 9.302,
p = 0.006; interaction F(1,20) = 8.317, p = 0.009; two-way ANOVA;
Figure 7E).

P2X7R –A2AR Interaction in Microglial
N9 Cells
Since we observed crosstalk between BBG and caffeine upon
restraint stress, whereby BBG controlled the up-regulation
of A2AR and caffeine controlled the upregulation of P2X7R
expression, and the stress-induced behavioral modifications were
accompanied by a parallel control of markers of microglia
‘‘activation’’ and neuroinflammation, we next used a microglial
N9 cell line to directly investigate a putative crosstalk between
P2X7R and A2AR, since both receptors are present and
functional in this microglia cell model (e.g., Ferrari et al., 1996;
Gomes et al., 2013).

The P2X7R-preferring agonist BzATP (100 µM) evoked
an elevation of intracellular free Ca2+ levels (∆[Ca2+]i) of
94.8± 14.5 nM (n = 16), which was inhibited (−76.51± 20.02%,
n = 10–16, F(3, 44) = 13.21, p = 0.029) in the presence of the
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FIGURE 6 | Male adult Wistar rats (8–10 weeks old) subject to a protocol of restraint stress (4 h/day) during 14 days display the expected features of depressed
rats, which were prevented by the adenosine receptor antagonist caffeine (caff). Whereas caffeine consumption (0.3 g/L, po, beginning 3 days before the stress
protocol and until the sacrifice of the animals; blue) was devoid of effects in non-stressed control rats (open bars), caffeine prevented all behavioral modifications of
stressed rats (red checkered bars): without modification of locomotor activity as evaluated in the open field (A), caffeine prevented anxiety-like behavior as evaluated
in the open field (B) and in the elevated plus-maze (C) tests, anhedonia as evaluated in the sucrose preference test (D), helpless-like behavior as evaluated by the
forced-swimming test (E,F) and impaired memory performance as evaluated by a modified Y maze test (G) and an object-displacement test (H). Data are shown as
mean ± SEM; n = 8–9 rats per group. *P < 0.05 vs. control-water, **P < 0.05 vs. stress-water using a Tukey’s multiple comparisons post hoc test after a two-way
ANOVA.

FIGURE 7 | Male adult Wistar rats (8–10 weeks old) subject to a protocol of restraint stress (4 h/day) during 14 days display an increased expression of
inflammatory markers and an up-regulation of P2X7 and of A2A receptors in the hippocampus (black, dark blue) and prefrontal cortex (gray, light blue) which were
prevented by the adenosine antagonist caffeine (caff). Whereas caffeine consumption (0.3 g/L, po, beginning 3 days before the stress protocol and until the sacrifice
of the animals; blue) was devoid of effects in non-stressed control rats (open bars), caffeine prevented all alterations of stressed rats (red checkered bars), namely the
increased expression of the microglia marker Iba1 (A), of interleukin 1β (IL1β; B), of tumor necrosis factor α (TNFα; C) and P2X7 receptors (P2X7R; D) as well as an
increased density of A2A receptors (A2AR; E) as assessed by the binding density of a supramaximal concentration of the selective A2AR antagonist 3H-SCH58261
(2 nM). Data are shown as mean ± SEM; n = 5–7 rats per group. *P < 0.05 vs. control-water, **P < 0.05 vs. stress-water using a Tukey’s multiple comparisons
post hoc test after a two-way ANOVA.
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selective P2X7R antagonist, JNJ4796556 (1 µM), added 15 min
before BzATP (Figures 8A,B). The selective A2AR agonist
CGS21680 (100 nM) also evoked a ∆[Ca2+]i of 79.3 ± 11.9 nM
(n = 7), which was inhibited (−63.0 ± 14.0%, n = 6,
F(2, 18) = 8.67, p = 0.003) in the presence of the selective
A2AR antagonist, SCH58261 (50 nM), added 15 min before
CGS21680 (Figures 8C,D). Notably, the ∆[Ca2+]i evoked by
BzATP (100 µM) was inhibited (−69.5 ± 15.7%, n = 10–16,
F(3, 44) = 12.13, p = 0.048) by SCH58261 (50 nM) and potentiated
(+80.3 ± 19.5%, n = 12–16, F(3, 44) = 12.13, p = 0.012) by
CGS21680 (100 nM; Figure 8B), whereas the ∆[Ca2+]i triggered
by CGS21680 (100 nM) was inhibited (−54.3 ± 14.7%, n = 8,
F(2, 18) = 8.67, p = 0.005) by JNJ47965567 (1 µM; Figure 8D),
indicating a crosstalk between P2X7R and A2AR in the control
of ∆[Ca2+]i responses in microglial N9 cells. This P2X7R-A2AR
crosstalk is further reinforced by the observation that neither
JNJ47965567 (1 µM) nor SCH58216 (50 nM) affected basal
[Ca2+]i levels (control, no drugs: 284.2 ± 30.2 nM, n = 10;
1 µM JNJ47965567: 224.2 ± 32.0 nM, n = 9; F3, 34 = 1.92,
p = 0.488 vs. control; 50 nM SCH58261: 219.1 ± 17.6 nM,
n = 8, F3, 34 = 1.92, p = 0.449 vs. control), indicating a lack of
tonic P2X7R- or A2AR-mediated control of ∆[Ca2+]i that could
hinder the interpretation of the cross-inhibition between both
purinergic receptor systems.

We next explored if there was a control by P2X7R and by
A2AR and a crosstalk between both receptors in the control
of ∆[Ca2+]i evoked by glutamate to mimic a condition of
excitotoxicity-induced ‘‘activation’’ of microglia (reviewed in
Zhang et al., 2020), irrespective of the receptors involved.
Glutamate (100 mM) triggered a ∆[Ca2+]i of 93.3 ± 13.4 nM
(n = 18), which was inhibited either by 1 µM JNJ47965567
(−66.4± 13.3%, n = 10–18, F4,53 = 13.56, p = 0.002) or by 50 nM
SCH58261 (−42.67± 8.41%, n = 13–18, F4,53 = 13.56, p = 0.050),
each added 15 min before BzATP (Figure 8E). Notably,
glutamate-induced ∆[Ca2+]i was 25.1 ± 4.1 nM (n = 7) in the
simultaneous presence of JNJ47965567 (1 µM) and SCH58261
(50 nM) indicating an inhibition of −73.1 ± 15.8% (Figure 8E),
which was similar to that caused by JNJ47965567 alone (t = 0.997,
p = 0.334).

P2X7R –A2AR Interaction in the Control of
Hippocampal Synaptic Plasticity
Since we and others have collected evidence for a role of
synaptic dysfunction underlying stress-associated behavioral
alterations (Duman and Aghajanian, 2012; Kaster et al., 2015)
and suggestions of P2X7R-mediated synaptic dysfunction add-up
to the well-established ability of A2AR to control synaptic
function (reviewed in Cunha, 2016), we next investigated if P2X7R
and A2AR might interact in the control of synaptic plasticity in
excitatory synapses of the dorsal hippocampus.

We first tested the effect of P2X7R agonist BzATP on basal
synaptic transmission. BzATP (30 µM) decreased hippocampal
synaptic transmission by 54.75 ± 3.96% (n = 4); this
effect recovered fully upon washout of BzATP and repeated
administrations of 30 µM BzATP caused a similar depression
of synaptic transmission (p > 0.05). This allowed exploring
the pharmacology of BzATP (30 µM)-induced decreased

FIGURE 8 | Functional interaction between P2X7 and A2A receptors in the
control of calcium responses in N9 microglial cell lines. (A) The Fluo-4
fluorescence signal reporting alteration of intracellular free calcium levels
([Ca2+]i) was increased by the P2X7 receptor agonist BzATP (100 µM), an
effect abolished by the selective P2X7 receptor antagonist JNJ47965567
(1 µM), added 15 min before BzATP. (B) Furthermore, the addition 15 min
before BZATP of the A2A receptor antagonist SCH58261 (50 nM) decreased
and the A2A receptor agonist CGS21680 (100 nM) increased BzATP-induced
increase of [Ca2+]i (∆[Ca2+]i). (C) CGS21680 also increased [Ca2+]i in a
manner attenuated by SCH58261, as well as by JNJ47965567 (D), each
added 15 min before CGS21680. (E) Glutamate (100 µM) also increased
[Ca2+]i, an effect attenuated by both JNJ47965567 and by SCH58261, and
their simultaneous presence caused an inhibition similar to each antagonist
alone (antagonists being added 15 min before glutamate). The time course
recordings are from representative experiments, whereas the bar graphs
correspond to n = 6–18 independent cultures of N9 microglial cells. *p < 0.05
one-way ANOVA followed by a Dunnett’s post hoc test compared to the first
bar from the left (stimulus only, without modifiers, which were added 5 min
before the stimulus).

hippocampal synaptic transmission: this effect was unaffected
in the presence of 1 µM BBG (−48.98 ± 4.96%, n = 4,
t = 1.245, p = 0.260 vs. the effect of BzATP alone) and was
fully prevented in the presence of the adenosine A1 receptor
antagonist, DPCPX (50 nM; 2.97 ± 17.91% alteration of fEPSP
slope, n = 4; t = 3.319, p = 0.016 vs. the effect of BzATP
alone; Figure 9A). This shows the inexistence of a P2X7R-
mediated effect (lack of effect of BBG) and indicates that
BzATP is rapidly converted by ectonucleotidases (Cunha et al.,
1998) into an adenosine analog to indirectly alter hippocampal
synaptic transmission through inhibitory A1 adenosine receptors
(prevention by DPCPX), as previously proposed (Kukley et al.,
2004). This precludes the use of BzATP to search for P2X7R-
mediated effects in hippocampal slices. Instead, we tested the
impact of P2X7R antagonists on high-frequency induced LTP in
Schaffer collaterals-CA1 pyramidal cell synapses. LTP magnitude
was not significantly altered by either 1 µM BBG (n = 8, t = 0.493,
p = 0.630 vs. LTP magnitude in control conditions, i.e., in the
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FIGURE 9 | Lack of direct effects of P2X7 receptors on hippocampal
synaptic plasticity or its modulation by A2A receptors. (A) The P2X7R agonist
BzATP (30 µM) decreased synaptic transmission in Schaffer collaterals-CA1
pyramid synapses of hippocampal slices from adult rats (10–12 weeks old),
but this effect was likely mediated through A1R since it was prevented by the
A1R antagonist DPCPX (50 nM) but not by the P2X7R antagonist BBG (1 µM).
Data are shown as mean ± SEM of n = 4; *p < 0.05 vs. control (100%,
dashed line). (B–D) The P2X7R antagonists BBG (1 µM) or JNJ47965567
(JNJ, 1 µM) did not significantly modify the magnitude of Long-term
potentiation (LTP; change in field excitatory post-synaptic potential (fEPSP)
slope at 50–60 min) induced by a high-frequency stimulation (HFS) train
concerning pre-HFS values (B,C) and also failed to alter the inhibition of LTP
magnitude caused by the A2AR antagonist SCH58261 (SCH, 50 nM; D). The
inserts show recordings obtained in representative experiments of fEPSP
responses obtained before (filled line) and 50–60 min after (dotted line) LTP
induction in the presence or in the absence (control) of BBG; each trace
comprises the stimulus artifact, followed by the presynaptic volley and the
fEPSP. All values are shown as mean ± SEM of 5–8 experiments; *p < 0.05
vs. LTP magnitude in the absence of drugs (control). ns: non-significant.

absence of tested drugs) or 1 µM JNJ47965567 (n = 6; t = 0.754,
p = 0.468 vs. control LTP magnitude; Figures 9B,C). This does
not support a role of P2X7R in the control of synaptic plasticity.

We next investigated if P2X7R might instead control the
known ability of A2AR to control hippocampal synaptic plasticity
(e.g., Costenla et al., 2011; Lopes et al., 2019). SCH58261

(50 nM) decreased LTP magnitude by −48.10 ± 10.77% (n = 5;
t = 2.440, p = 0.029 vs. control LTP magnitude; Figure 9D) and a
non-significantly different inhibition of −49.11 ± 7.21% (n = 5;
t = 0.049, p = 0.962 vs. LTP magnitude in the SCH58261 alone)
was observed in the simultaneous presence of BBG (1 µM) and
SCH58261 (50 nM; Figure 9D).

DISCUSSION

The present study provides compelling novel evidence for a
hitherto unrecognized interaction between P2X7R and A2AR in
the control of brain dysfunction. This conclusion is based on
the parallel effects of BBG, a P2X7R preferring antagonist, and of
caffeine, which antagonizes A2AR, to prevent neuroinflammation
and behavioral alterations upon repeated restraint stress and
on the ability of caffeine to prevent P2X7R upregulation and
of BBG to prevent A2AR up-regulation; although these in vivo
evidence are only suggestive of a P2X7R-A2AR interaction, this
contention is further supported by the independent in vitro
experiments showing that P2X7R and A2AR closely interact in
the control of calcium responses in N9 microglial cells. This
indicates that these two, so far considered independent, arms
of the purinergic system (Agostinho et al., 2020), operated
by ATP-P2R and by adenosine-P1R might actually cooperate
to control adaptative brain function. Importantly, this proof-
of-concept, so far only confirmed to occur in male rats
(selected to cope with the ‘‘3R’’ guidelines), still needs to be
extended to female rats, an issue of particular importance
since there are gender differences in the A2AR modulation
of microglia and neuroinflammatory-like responses in rodents
(Caetano et al., 2017; Simões-Henriques et al., 2020).

The present study extends to a model of repeated restraint
stress the ability of P2X7R blockade to attenuate behavioral
modifications upon chronic stress (Iwata et al., 2016; Yue et al.,
2017; Farooq et al., 2018; Aricioglu et al., 2019; reviewed in Illes
et al., 2020). This is in agreement with the association of P2X7R
polymorphisms with depressive symptoms (see meta-analysis in
Czamara et al., 2018) and reinforces the concept of ATP as
a danger signal in brain dysfunction (reviewed in Rodrigues
et al., 2015). As observed by others in different animal models
of brain dysfunction (Jimenez-Pacheco et al., 2013; Wang et al.,
2017; Martínez-Frailes et al., 2019; Song et al., 2019), namely
upon chronic stress (Yue et al., 2017; Dang et al., 2018; but
see Kongsui et al., 2014), we identified an up-regulation of
P2X7R and an ability of P2X7R to control different markers of
neuroinflammation, as also reported in other animal models
of depression (Yue et al., 2017; Bhattacharya and Jones, 2018),
to mediate stress-induced behavioral modifications (Rial et al.,
2016; Deng et al., 2020; Troubat et al., 2021).

The present study also provides the first demonstration
that a prolonged (days) intake of caffeine prevents behavioral
modifications caused by repeated restraint stress, as has been
observed in other animal models of stress (Pechlivanova et al.,
2012; Kaster et al., 2015; Yin et al., 2015; Kasimay Cakir
et al., 2017) and in individuals with mood dysfunction, namely
depression (reviewed in Grosso et al., 2016; Wang et al., 2016)
and suicide ideation (e.g., Lucas et al., 2014; Park et al., 2019).
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The protective effects of caffeine in animal stress models are
mimicked by selective A2AR blockade (Kaster et al., 2015)
and A2AR polymorphisms are associated with the incidence of
major depression (Oliveira et al., 2019). We also observed an
up-regulation of A2AR, as occurs in different conditions of brain
dysfunction (reviewed in Cunha, 2016), namely upon repeated
stress (Cunha et al., 2006; Kaster et al., 2015). A2AR, as well as
caffeine, can control abnormal synaptic plasticity and synaptic
dysfunction (e.g., Kaster et al., 2015; Temido-Ferreira et al., 2020)
and also control microglia reactivity and neuro-inflammation
(e.g., Brothers et al., 2010; Rebola et al., 2011; Mao et al.,
2020), but the exact mechanism underlying the ability of A2AR
to control mood dysfunction upon chronic stress remains to
be defined.

Apart from establishing the ability of BBG and caffeine
to attenuate behavioral alterations in this particular model of
repeated restraint stress, the major finding of the present study
is the existence of putative crosstalk between the two purinergic
signaling systems operated by each of these antagonists. The
inhibition of the stress-induced up-regulation of A2AR by
BBG and, conversely, the inhibition of the stress-induced
up-regulation of P2X7R by caffeine is suggestive of crosstalk
between the two types of purinergic receptors in vivo. This was
reinforced by parallel experiments studying calcium transients
in microglial N9 cells. In fact, in microglial N9 cells, A2AR
activation increased and A2AR blockade decreased BzATP-
induced calcium transients, which was mediated by P2X7R, and
conversely, a selective P2X7R antagonist attenuated CGS26180-
induced calcium transients, which was largely mediated by
A2AR. Since synaptic alterations have also been proposed to
underlie stress-induced alterations of brain function (Duman
and Aghajanian, 2012; Vose and Stanton, 2017), we also
investigated if there was crosstalk between P2X7R and A2AR
in synaptic alterations, namely in the process of LTP in the
hippocampus. While we have previously established a selective
role of A2AR controlling synaptic plasticity without an effect
on basal synaptic transmission (Costenla et al., 2011; Gonçalves
et al., 2019; Temido-Ferreira et al., 2020), a putative role of
P2X7R on the control of hippocampal synaptic transmission
has been controversial (Armstrong et al., 2002; Kukley et al.,
2004; Klaft et al., 2012; Khan et al., 2019) and an eventual
role of P2X7R on the control of synaptic plasticity had not
yet been tested. We now show that BzATP decreases synaptic
transmission, but this effect is blocked by the selective A1R
antagonist DPCPX (see Kukley et al., 2004), following the
remarkable efficiency of ectonucleotidases to metabolize ATP
derivates into their adenosine derivative counterparts (Cunha
et al., 1998) to activate the abundant and efficient presynaptic
A1R that decrease excitatory transmission in the hippocampus
(reviewed in Dunwiddie and Masino, 2001). Thus, we resorted to
testing the impact of P2X7R antagonists (BBG and JNJ47965567)
on hippocampal LTP and concluded that P2X7R does not seem
to control hippocampal LTP under physiological conditions.
Furthermore, we did not observe the ability of P2X7R antagonists
to modify the decrease of LTP caused by the blockade of A2AR.

In contrast to the inconclusive effects on a putative P2X7R-
A2AR interaction in the control of synaptic plasticity, the

crosstalk between P2X7R and A2AR in the control of microglial
responses suggests that the interplay between P2X7R and A2AR to
control brain maladaptive function upon repeated stress might
mostly be due to crosstalk in the control of neuroinflammation
rather than of synaptic plasticity. Interestingly, crosstalk between
P2 and P1 receptors in the control of microglia was first
documented by Kettenmann’s group (Färber et al., 2008) and
further developed by Koizumi’s group (reviewed in Koizumi
et al., 2013); however, these P2R-P1R interactions in microglia
were not characterized to involve P2X7R and A2AR, although
parallel effects of P2X7R and A2AR have previously been described
to control inflammatory processes (Savio et al., 2017) and brain
injury (Ye et al., 2018). We now demonstrate direct crosstalk
between both receptors in the control of microglial N9 cell
responses, which is paralleled by the ability of antagonists
of each receptor to control the other’s up-regulation upon
repeated stress. This is highly suggestive of direct cooperation
between the two arms of the purinergic modulation system to
control neuro-inflammation and the adaptive central responses
to repeated stress. However, future studies still need to detail
if the P2X7R-A2AR interaction only occurs in microglia or
might also take place in astrocytes. In fact, P2X7R (reviewed
in Franke et al., 2012) and A2AR (reviewed in Cunha, 2016)
also have profound effects on the pathophysiological roles of
astrocytes and the involvement of astrocytes in the control
neuroinflammation and neuronal function as well as adaptation
to repeated stress (reviewed in Rial et al., 2016) cannot exclude
them as a possible major locus of P2X7R-A2AR interactions to
control the observed behavioral modifications upon repeated
restraint stress.

The detailed mechanisms of this P2X7R-A2AR interactions
also remain to be unraveled and they can involve different
possibilities: one possibility is the formation of heteromers,
which has been documented for P2X7R (Antonio et al., 2011)
and for A2AR (reviewed in Ferré and Ciruela, 2019) and between
different P2R and P1R (Namba et al., 2010); another possibility
is the use of transducing systems of each receptor to control the
other receptor function, as has been shown for P2X7R controlling
metabotropic receptors (reviewed in Miras-Portugal et al., 2019),
A2AR controlling ionotropic receptors (e.g., Garção et al., 2013;
Temido-Ferreira et al., 2020) and between different P2R and
P1R (George et al., 2016); a third possibility is a key role of
ecto-nucleotidases metabolizing ATP into adenosine in a rapid
(Dunwiddie et al., 1997; Cunha et al., 1998) and highly controlled
manner (James and Richardson, 1993; Cunha, 2001) to format
the balanced activation of both receptors (Kukley et al., 2004;
Liston et al., 2020). After this first step establishing an interaction
between A2AR and P2X7R, future work will be required to detail
the mechanistic basis of this A2AR-P2X7R interaction.

In conclusion, the present study provides evidence
for crosstalk between P2X7R and A2AR in the control of
neuroinflammation and adaptive responses to restraint stress.
The importance of these findings is best heralded by the new
prospects to simultaneously target P2X7R and A2AR to maximize
the neuroprotective potential of the purinergic system. The
present findings place at the center-stage the need to study
the purinergic system as a whole and understand the relative
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contribution of its different constituents to provide the required
integrative views (see Agostinho et al., 2020) to justify robust
protective strategies to control maladaptation of brain function
characteristic of neuropsychiatric disorders.
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