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Abstract: Understanding to what extent the emergence of prosumers and prosumagers organized
in energy communities can impact the organization and operation of power grids has been one of
the major recent research avenues at the European level. In renewable-based communities aiming
to reach some level of energy self-sufficiency, a key issue to be addressed is assessing how the
presence of end-users playing different roles in the system (self-consuming, producing and trading,
performing demand management, etc.) can influence the overall system performance. In this setting,
this paper combines Distributed Artificial Intelligence and optimization approaches to assess how
prosumagers and consumers pursuing different goals can influence the energy self-sufficiency of a
local energy community. The residential demand is accurately modeled, and the agents’ preferences
are considered in the modeling to represent a smart community. The results show that although
energy community members may have conflicting individual goals, the overall system self-sufficiency
can be maximized with economic benefits for all stakeholders, thus illustrating the advantages of
energy communities.

Keywords: energy communities; prosumagers; consumers; self-sufficiency; multiagent systems;
genetic algorithms

1. Introduction
1.1. The Role of Energy Communities in the EU Agenda

The European Union (EU) is on a transition course towards a decentralized and fossil-
fuel free energy system where end-users are active players contributing to the management
of the power grid as asset holders, investment decision-makers and demand response (DR)
programs participants. This changing paradigm empowering end-users will allow new
business models and energy infrastructure ownership configurations to emerge [1,2]. In
this setting, local energy communities (LEC) in which end-users become prosumers and
prosumagers are gaining momentum, both in the literature [3,4] and in the EU’s regulatory
framework, being at the heart of the European energy policy for 2030 and 2050 [5].

Although LEC can encompass several components of the value chain (e.g., generation,
distribution, supply, aggregation), in their most elementary forms they are mainly involved
in local energy generation and consumption [6]. More recently, innovative business models
have started to emerge, providing more integrated solutions to LEC members, favoring
self-consumption and enabling the combined use of storage, local energy trading, and
exchanges with the grid [7]. Thus, the emergence of LEC creates the prospects for a social
change by shifting the role played by typical end-users, who have now the opportunity to
actively participate in local energy management and markets.

LEC have been a component of the EU’s energy landscape for a long time. North-
Western European countries have a long-lasting tradition of implementing renewable-based
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energy cooperatives to solve supply issues (electricity and heat) in rural and isolated ar-
eas [7,8]. Despite this practice, only recently these initiatives were brought to the EU
political agenda due to the pressure exerted by groups of active prosumers aiming to scale
up and participate in energy markets [9]. In order to make this possible, while leverag-
ing private investment to hasten the energy transition, the Clean energy for all Europeans
legislative package, proposed for the first time a formal definition for LEC through the
Renewable Energy Directive (RED-II) (Directive 2018/2001/EU) [10] and the directive on
the common rules for the internal electricity market (IEMD) (Directive 2019/944/EC) [11].
These Directives were updated to boost the EU’s climate and energy policy framework for
2030 providing the first definitions for ‘renewable energy communities’ (REC) and ‘citizen
energy communities’ (CEC) [12]. In both documents, energy communities are described as
legal and autonomous entities based on voluntary participation and being controlled by
shareholders and members, which can be residential consumers, small and medium sized
enterprises (SMEs) or local authorities [10,11]. The primary purpose of these arrangements
is to “provide environmental, economic or social benefits” for their members “rather than financial
profits” [10,11]. In turn, the Directives diverge in what concerns: (1) the energy type they
focus on, as REC includes both electrical and thermal energy, while CEC focuses on elec-
tricity only; (2) the activities carried out, since REC may generate, consume, store, sell and
exchange renewable energy within the community, being also able to access suitable energy
markets, while CEC may be also involved in “distribution, aggregation, energy efficiency
services or charging services for electric vehicles or provide other energy services to its members or
shareholders” [11]; and (3) the technologies allowed, as due to their characteristics, REC only
allow for renewable technologies while CEC are technology-neutral, which means that
fossil fuel-fired, renewable and hybrid technologies are permitted. Also, the REC definition
introduces a geographical boundary, requiring members to be nearby the renewable energy
project owned and developed by the LEC, while CEC are not geographically constrained.
The main differences and similarities between both definitions are summarized in Table 1.

Table 1. Comparison of CEC and REC.

Dimensions REC CEC

Activities

Energy generation:
•Renewable electricity. X X
•Non-renewable electricity. X X
•Renewable heat. X X

Energy sharing. X X
Distribution. X X
Supply. X X
Consumption. X X
Aggregation. X X
Energy storage. X X
Energy efficiency services. X X
Electric mobility services. X X

Ownership
and control

Citizens, local authorities and SMEs since their
primary economic activity is not energy related. X X

Purpose Creation of social and environmental benefits
rather than focus on financial profits. X X

Location Close to energy projects. X X

In addition to the environmental benefits and the reduction of energy costs for com-
munity members due to self-consumption and local energy trading, LEC are also expected
to reduce power system losses and to mitigate grid congestion issues. At the same time,
LEC have the capability to promote energy efficiency awareness and cooperation, as well
as to mitigate energy poverty by facilitating the access of vulnerable consumers to cheaper
energy [6,13]. Thus, the value proposition of LEC is diversified, including: local and
sustainable energy supply; high level of energy self-sufficiency; technology preference
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for distributed energy sources; increased independence from national energy policies and
power systems; active participation of citizens in the energy context; social cooperation;
assistance to vulnerable consumers and energy poverty mitigation [7].

Energy self-sufficiency, perceived as the ability of an energy system being able to run
autonomously from the power grid, brings benefits for both consumers and the power sys-
tem [1,6,14]. This is indeed one of the main motivations for end-users to be engaged in such
projects, alongside with the economic benefits [15]. Several terms are used in the literature
with a similar meaning of ‘energy self-sufficiency’ [16], as ‘energy autarky’ [17,18], ‘energy
autonomy’ [1,19] and ‘energy self-reliance’ [1]. The energy self-sufficiency of renewable-
based LEC can be achieved by managing local power generation, storage and demand,
taking advantage of the flexibility of power utilization profiles [1,20]. Currently, LEC are
mainly created by groups of grid-connected private households, located nearby, owning
small-scale photovoltaic (PV) systems [9]. Although the drop in prices of PV in recent
years has triggered the dissemination of these systems and the emergence of prosumers,
this technology is progressively being complemented with storage systems, both static
and mobile (as electric vehicle batteries), for maximizing residential self-consumption
due to the time lag between the periods of solar radiation availability and the residential
consumption patterns [21]. Demand-side management (DSM) programs can be exploited
to encourage end-users to modify their electricity utilization patterns, in combination with
energy storage [22]. In general, changes in consumption patterns are triggered by price
signals (tariff schemes are designed to penalize consumption in grid congestion periods
and less renewable energy availability), end-users’ behavioral changes or automated con-
trol over loads [23]. The benefits of DSM programs are two-fold: end-users may reduce
their energy bills by adjusting the timing and amount of electricity utilization, while the
energy system can benefit from the shifting of consumption from peak to non-peak hours,
reducing congestion. In this setting, building on the definition of ‘prosumer’ (energy
producers and consumers), the ‘prosumager’ concept has emerged, introducing also the
storage activity [24]. Prosumagers may make the most of storage devices to use their
self-produced energy in periods of no PV availability or peak grid prices, thus minimizing
costs. These systems can also be used to store energy purchased from retailers or other
prosumers during low pricing periods, to be self-consumed later, providing an extra source
of demand flexibility [25].

1.2. Distributed Artificial Intelligence in Energy Modeling

The growing penetration of renewables has created new challenges in the operation
and management of power systems, also considering the pervasiveness of information and
communication technologies (ICT), real-time monitoring and control devices, advanced
metering infrastructures, etc. This digitalization trend is expected to generate massive
amounts of data which require sophisticated data handling techniques [26]. Also, from a
modeling point of view, new challenges are created due to the increasing number of actors
and the dynamics of their interactions in decentralized energy systems, as LEC, marked by a
noticeable socio-technical dimension [27]. In this setting, Artificial Intelligence (AI) has been
identified as key to deal with modeling and decision support [26,28]. Distributed Artificial
Intelligence (DAI) is a subfield of AI which is based on the interactions of intelligent
agents capable of making decisions to achieve goals while co-habiting in an environment
populated by other agents [29]. Based on a new programming paradigm for software
engineering called Agent-Oriented Programming (AOP), multiagent systems (MAS) are a
relatively new field of DAI [30]. In MAS, autonomous agents are endowed with the ability
to adjust their behavior, communicate, negotiate, and collaborate, cooperate or compete to
achieve their goals [31,32]. Agents take sensory input from the surrounding environment
and from other agents while performing actions upon the environment (through actuators),
to reach their goals. Thus, they must be able to reason and decide how to act in specific
circumstances [33]. The rules driving their behavior are implemented in their architecture
and consist of a set of modules used to solve subproblems defining the actions agents
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must perform [34]. Different architectures must be created defining the complexity of
the action rules implemented. The most well-known agent architectures are described as
follows [34–36]:

• Purely reactive—agents decide uniquely based on the current situation, ignoring
everything they have learned in the past. If-then-else or condition-action rules are
usually adequate to define the actions performed by these agents.

• Model-based—agents can make decisions based on past inputs even if they cannot
observe part of the environment at a given instant. Inference mechanisms using
decision states and heuristics to construct decision trees are commonly used by these
agents to decide which actions they will take next.

• Goal-based—agents have an explicitly represented model of the environment and
deliberately choose to perform actions that they know to lead, with some probability,
to the accomplishment of their goals.

• Utility-based—agents may perform actions expected to maximize their utility (func-
tion defined to measure the performance of a given choice). Multicriteria decision-
making techniques can be exploited in this setting to allow agents to express prefer-
ences or define subjective probabilities, assigning coefficients of importance to the
multiple criteria, etc.

• Learning—agents can improve their performance by anchoring their decisions on the
knowledge gained through iterative attempts or previous experiments. Evolutionary
computing or neural networks can be used if an optimal solution in a complex or large
solution space is required or if an agent must decide based on patterns.

• Belief-desire-intention (BDI)—the agents’ reasoning is supported on concepts which
can be used to predict human behavior: they observe the world, get and update
information (beliefs), reason about their aims (desires), and, based on preferences,
decide how to act to reach the objectives they are committed to (intentions).

Several energy related issues have been exploited by using MAS, including residential
demand-side flexibility [37], electricity market transactions [38], virtual energy trading
between microgrids [39,40] and grid stability issues [41]. MAS has also been used to model
different strategies of automated energy demand management [37] and to represent energy
demand dynamics in residential and non-residential scenarios, as in [42–44]. More recently,
the MAS framework has been used to solve energy management problems, which are the
most relevant problems in LEC ambitioning to reach self-sufficiency. In [45], autonomous
agents with their own demand profiles and generation and storage systems must decide
how to use locally generated energy, when to charge/discharge batteries, how to manage
loads, and even when to trade electricity within the neighborhood to minimize electricity
costs. Optimization algorithms, both exact methods, as in [46], and nature-inspired meta-
heuristic approaches (as genetic algorithms (GA) [47] and evolutionary algorithms [48,49])
can be embedded in MAS to optimize energy resources management [50,51]. For instance,
reference [52] proposed a MAS to optimize the energy flows between a LEC of prosumers,
revealing a good performance in enhancing community self-consumption and reducing
members’ costs. Decision-making was based on the Alternative Direction Method of Multi-
pliers (ADMM) algorithm [52]. The work of [53] presented a MAS framework to coordinate
and control the generation and demand in a microgrid of diversified consumers. The
Tabu Search algorithm was used to minimize consumer agents’ electricity bills, the power
withdrawn from the grid and to maximize power quality.

Although approaches combining agent modeling and optimization techniques are
emerging in the literature, they still fall short of considering behavioral (agents’ preferences
and goals), social (relationships of cooperation, collaboration or competition between
agents), and organizational dynamics that may exist in community settings. Currently, MAS
frameworks in energy settings often reproduce poorly the diversity of agents. Approaches
focusing on consumers or prosumers are quite frequent, but diversified settings are scarce.
Thus, models in which agents play different roles and have distinct preferences and
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conflicting individual goals, while cohabiting in the same system, are still missing in
the literature.

1.3. Research Contribution and Organization

This work aims to develop a MAS approach to model a LEC in which agents rep-
resenting residential prosumagers and consumers are included. Residential agents are
coordinated by a central entity that is responsible for managing the community’s energy
resources and interfacing with an electricity retailer. The overall goal is to examine to what
extent the LEC energy demand can be satisfied by locally generated resources considering
different shares of prosumagers and consumers with distinct energy utilization profiles,
goals and preferences. Residential loads are accurately modeled through physically-based
models (PBM). Moreover, statistical data, data collected through energy audits and prefer-
ences derived from surveys are used to bring modeling closer to a real setting. Additionally,
the influence of external conditions (solar radiation and outdoor temperatures) is exam-
ined by running simulations under summer and winter generation scenarios. The main
contributions of this paper are summarized as follows:

• The modeling of a LEC exploiting how goal-based residential agents (prosumagers and
consumers) with different energy utilization profiles, goals and preferences influence
the overall LEC operation;

• The combination of MAS and optimization methods to model and optimize the
available local energy resources at the agent and the community levels;

• The evaluation of the community self-sufficiency depending on different shares of
prosumager agents and the economic benefits for the agents in each scenario.

The remainder of the paper is organized as follows: In Section 1, the concept and the
main dimensions associated with LEC are described, introducing the motivation of the
work. In this section, the modeling perspective is presented, and the research contributions
are highlighted. The methodology is thoroughly described in Section 2 and the main results
are presented and discussed in Section 3. The paper concludes by presenting the main
conclusions and proposing avenues for future research.

2. Methods
2.1. MAS Implementation

A general overview of the proposed MAS framework is displayed in Figure 1, in
which energy and information flows are highlighted. Residential agents (consumers and
prosumagers) are assumed to co-exist in the same collective environment. The main
difference between these agents is the existence of local generation, owned by prosumagers
unlike consumers. It is assumed that all agents own storage systems. A shared PV power
plant coupled to a static battery owned and managed by the LEC, provides extra energy
resources to community members. These resources are managed and distributed by a
coordinator agent, which is also responsible for interfacing with external energy retailers
to supply the remaining energy needed or to buy the surplus generation the LEC demand
cannot absorb. In this model, retailers are passive agents as they do not make any action
or decision. All the residential agents are expected to be physically linked to the same
low-voltage distribution network and virtually linked to the coordinator agent, with
whom only information is exchanged. Also, all the community members are assumed
as being willing to cooperate to reach a collective goal—the maximization of community
self-sufficiency—at the same time as they pursue their own individual goals according to
their preferences. Residential agents are considered as living in smart homes, in which
appliances are controlled by automated home energy management systems (AHEMS)
running the optimization processes. After sensing the environmental conditions and
receiving price signals from the retailer, each residential AHEMS must decide: (1) the
operation of shiftable loads according to users’ preferred time periods; (2) the temperature
settings of thermostatically controlled loads (TCL) within thermal comfort requirements;
and (3) when to store, sell or procure electricity and how to use the energy stored. The
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overall goal of these decisions is to minimize the agents’ energy costs accounting for the
possible discomfort these actions may create (e.g., for operating some loads outside the
most preferred time slots to make the most of cheaper prices). The outcomes of the agents’
optimization processes allow them to know how much of their demand can be supplied
by self-consumption, how much energy they still need to procure and how much surplus
generation they are expected to sell. The coordinator agent receives this information and
manages the collective energy resources to minimize the overall community costs.
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2.2. Residential Agents
2.2.1. Agents Creation and Smart Homes Modeling

To create a model close to a realistic setup, agents representing different household
sizes were included. According to the last Portuguese population statistics, 37.5% of
the total households have one or two persons; 41.1% are households composed by a
couple with one child and the remaining ones are couples with two or more children [54].
Thus, three residential agent types were created representing households having one to
two persons, three persons and four or more persons. To maintain modeling coherence,
different assumptions were considered regarding loads utilization as a function of the
household size. Further detail is presented in Section 2.4.

The agents’ energy demand include manageable loads (DSM actions may be imple-
mented by the AHEMS that has the ability to control the equipment) and non-manageable
baseloads, which include the appliances whose utilization is less flexible as is the case
of kitchen equipment, lighting and entertainment (including desktops, laptops, televi-
sion, etc.) [55]. In turn, within the range of manageable loads, the following appliances
are comprised:

• time shiftable loads, including laundry machines (LM), tumble dryers (TD) and
dishwashers (DW);

• TCL, as air conditioners (AC), electric water heaters (EWH) and fridges; and
• interruptible loads, as electric vehicles (EV) and static batteries.

To model shiftable loads, data collected through energy audits were used to reproduce
their power profiles. As these loads are characterized by continuous operation cycles, the
algorithmic approach must ensure that the LM, DW and TD can fully operate within the
planning period. The behavior of TCL is reproduced by PBM, which are used to compute
indoor temperatures and power profiles for each interval of the planning period. For the
AC, the PBM presented in [56] is used to compute, at each interval, the total heat loads in
the buildings, considering heat transfer through the walls and windows, the internal heat
gains and the heat losses due to indoor air renewal, according to the following expression:

Troom (t + ∆t) = Troom (t)− y(t)· PAC·COP− HT(t)
m·cp

· ∆t (1)

where Troom(t): indoor room temperature at time t [◦C]; Ht(t): total heat load at time t [W];
∆t: length of the time interval the planning period is discretized into [s]; PAC: power of
the AC [W]; COP: AC average coefficient of performance; m: air mass [kg]; cp: specific
heat of the air [J/kg·◦C] and y(t): binary variable representing whether TCL is operating at
time t. HT(t) is computed by adding the latent heat component HL(t) [W], including the
heat transfer through the envelope (He) and indoor air renewal (Hr), and the sensible heat
component HS(t) [W], representing the internal heat gains (Hi) and heat gains through walls
and windows (Hw). Typical building constructive solutions, dwelling sizes and occupation
profiles were considered in dynamic building simulations performed to compute heat
transfer (gains and losses) (more detail is presented in Section 2.4 and Appendix C). When
the AC is operating in the cooling mode, y(t) is calculated as:

y(t) =
{

1, i f (Troom(t) ≥ TL(t)
∧

Troom(t) < Troom(t− 1))
∨

Troom(t) ≥ TH(t)
0, otherwise

(2)

where TH(t): maximum reference temperature of the thermostat at time t [◦C] and TL(t);
minimum reference temperature of the thermostat at time t [◦C].

Similarly, the PBM presented in [57,58] is used to reproduce the EWH operation,
considering the heat losses in the water container and the energy available to heat the water
during a given time interval. The heat losses in the reservoir are computed as:

Plosses(t) = A·U·∆T′ (3)
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where Plosses (t): heat losses at time t [W]; A: enveloping area of the water reservoir [m2]; U:
heat transfer coefficient of the water reservoir [W/m2·◦C] and ∆T’: difference between the
water temperature inside the EWH and the outdoor temperature [◦C]. In turn, the thermal
energy transferred by the EWH to the water is given by:

Q(t) = (PR − Plosses(t))·∆t·3600 (4)

where Q(t): existing energy to heat the water at time t [Wh]; PR: power of the heating resis-
tance of the EWH [W], ∆t: elemental time interval [s] and 3600 is the required conversion
factor to maintain the units coherence (seconds to hour). The water temperature in the
reservoir is calculated as:

Twater(t + ∆t) = Twater(t) +
v(t)·PR − Plosses(t)

M·cp
(5)

Twater(t) =
M−mt

M
·Thot(t) +

mt

M
·Tnetwork(t) (6)

where v(t) is the binary variable representing whether the EWH is operating at time t,
being defined as:

v(t) =
{

1, i f Twater(t) ≤ TL(t)
∨
(Twater(t) ≤ TH(t)

∧
Twater(t) > Twater(t− 1))

0, otherwise
(7)

where Twater(t): temperature of the water in the EWH at time t [◦C]; Tnetwork(t): temperature
of the water in the supply network at time t [◦C]; TH(t): maximum reference temperature of
the hot water at time t [◦C]; TL(t): minimum reference temperature of the hot water at time
t [◦C]; Thot(t): desired temperature of the hot water at time t [◦C]; M: total mass of water
to be heated [kg]; cp: specific heat of the water [J/kg·◦C] and m(t): amount of hot water
consumed at time t [kg]. Hot water demand is directly interrelated with the household
size. Hence, hot water consumption profiles, reservoir capacities and EWH powers were
adjusted according to the household size.

The operation of cold appliances, as fridges, was modeled by a simplified PBM based
on the works of [59,60]. The temperature progress inside the fridge is computed as:

Tf ridge(t + ∆t) = Tf ridge(t) +
w(t)·Pf ridge·COP− A·U·

(
Troom(t)− Tf ridge(t)

)
M·cp

· ∆t (8)

where Tfridge (t): fridge inside temperature at time t [◦C]; Troom (t): room temperature at
time t [◦C]; A: fridge surrounding area [m2]; U: heat transfer coefficient [W/(m2·◦C)];
M: mass of air inside the fridge [kg]; cp: specific heat of the air [J/kg ◦C]; Pfridge: fridge
compressor power [W]; COP: average fridge coefficient of performance and w(t): binary
variable representing whether the fridge is operating at time t, being calculated as:

w(t) =
{

1, i f (Tf ridge(t) ≥ TL(t)
∧

Tf ridge(t) < Tf ridge(t− 1))
∨

Tf ridge(t) ≥ TH(t)
0, otherwise

(9)

where TL(t) and TH(t) are the minimum and maximum reference temperatures of the
fridge at time t [◦C].

Lastly, all the agents are assumed to own static batteries and EV. These systems are
used for different purposes depending on the agents: prosumagers use them to store self-
produced energy, whereas consumers store energy they buy from the grid when the price is
lower to operate loads or to sell and obtain benefits. At each interval of the planning period,
static and EV batteries are associated with a particular state-of-charge (SoC) and each user
define a minimum SoC value that cannot be disregarded. Initial SoC, charging power,
minimum final and ideal final SoC should be defined. Also, the EV is assumed to work
in grid-to-vehicle (G2V) mode, receiving electricity from the grid or the self-generation
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system and storing it, and in vehicle-to-grid (V2G) mode, providing the stored electricity
to be self-consumed or sold (to the grid) whenever it is advantageous for the agent.

2.2.2. Optimization Framework

As explained before, the core objective of residential agents is energy cost minimization
(objective 1), as this is one of the main incentives for end-users to be engaged in a collective
project, alongside with energy self-sufficiency, environmental benefits, etc. [15]. AHEMS
schedule DR actions to reduce demand during the periods of higher tariff prices. These
actions may disturb typical energy usage practices, which may be perceived by end-
users as discomfort. Therefore, discomfort minimization is also assumed as an objective
function for this problem (objective 2). The bi-objective optimization problem enables to
find compromise solutions as minimizing costs usually requires worsening the comfort
standards and maintaining energy comfort levels imply worst cost solutions. Energy end-
users display different sensitivity levels regarding price. End-users may be cost-driven,
if they aim to minimize energy costs even by sacrificing their comfort standards. For
these agents, better cost solutions are selected in the Pareto front at the expense of worst
dissatisfaction results. In turn, other end-users may privilege comfort standards even by
incurring in higher costs (comfort-driven). In this case, better dissatisfaction solutions
are chosen in the Pareto front. Others may not have clear preferences about what to
prioritize and seek more balanced solutions between cost and comfort. These three profiles
are assigned to residential agents in equal shares. Thus, each residential agent is treated
independently since each one has an individual consumption profile, preferences and goals
to achieve.

The formulation of the agents’ energy management problem is presented in Appendix A.
The parameters were obtained from several sources, including the PBM described in the previ-
ous section. The time slot and temperature variation penalties have been established according
to the previous experience of the authors in energy audits and energy efficiency studies.

The cost minimization objective function (Appendix A, Equation (A1)) has two com-
ponents: (1) the cost of the electricity required by the loads minus self-consumption, and
(2) the expected income from selling surplus generation. When they perform their op-
timization, residential agents do not know if they will use resources from the collective
system or not, so the optimization assumes they will procure and sell their energy to the
retailer. An eight-tiered time-of-use (ToU) tariff is announced by the retailer 24 h in advance
and is perceived by agents as the grid buying price (BPt). In turn, the surplus selling is
remunerated by a feed-in-tariff (FiT), whose price was set as 80% of the ToU tariff.

The dissatisfaction objective function (Appendix A, Equation (A2)) has three compo-
nents, whose contribution is normalized through different scaling factors. For shiftable
loads, users may define preferred time slots for their operation based on the convenience to
do related tasks (such as clothes hanging). The time shift between the most convenient time
slots defined by users and the periods determined by the AHEMS to operate such loads are
penalized according to the time slot penalties (TSPjt) displayed in Figure A1 in Appendix B.
Data collected through surveys and interviews was used to define users’ preferences [61].

For each TCL, temperature ranges are defined to express the users’ thermal comfort
levels. Variations between these bounds and the effective temperature computed by PBM
are also accounted as discomfort. For the AC and cold appliances, the temperature variation
penalty (TVPbt) is computed as:

TVPbt =


e

Tbt−HRTb
HRTb−LRTb

−1, i f Tbt> HRTb

e
LRTb−Tbt

HRTb−LRTb
−1, i f Tbt< LRTb

0, otherwise

(10)
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For the EWH, the TVPbt is computed as:

TVPbt =

{
e

LRTb−Tbt
HRTb−LRTb

−1, i f Tbt< LRTb

0, otherwise
(11)

where TVPbt: temperature variation penalty for TCL b at time interval t; Tbt: temperature
of TCL b at time interval t determined by the PBM (◦C); HRTb: maximum reference
temperature for TCL b (◦C) and LRTb: minimum reference temperature for TCL b (◦C).
For these loads, temperature deviations have different impacts on the users’ discomfort.
While in the case of the AC and the fridge, going beyond the reference bounds means
thermal discomfort and disturbance of the food refrigeration service, for the water heating,
the user comfort is only disturbed when the water temperature does not reach the lowest
temperature specified. Thus, no penalty is considered whenever the water is heated above
the minimum reference temperature.

Lastly, the differences between the SoC of EV and static batteries at the end of the
optimization and the ideal SoC defined by users are also considered in the dissatisfac-
tion measurement.

The problem is constrained by the physical characteristics of the loads, which also
influence the algorithm design. Shiftable loads are distinguished by continuous operation
cycles. Thus, the algorithmic implementation must ensure that the operation cycles can
be fully finalized within the planning period (Appendix A, Equations (A10)–(A12)). The
modeling of TCL considering the upper and lower temperature bounds, which define the
users’ admissible comfort temperature ranges, is exploited in Appendix A, Equation (A13).
Lastly, for the static and EV batteries, the AHEMS chooses a state, for each interval of
the planning period, among four possible ones: self-consumption and selling surplus;
selling electricity (generated locally or withdrawn from grid); idle; charging from the
grid. These states are influenced by the battery capacity, as well as by the minimum
SoC defined by users, according to Appendix A, Equations (A14)–(A17). The remaining
constraints model the utilization of local resources and self-consumption (Appendix A,
Equations (A3)–(A9)). In this model, self-consumption (Equation (A9)) may result directly
from the local generation system and the electricity stored in the EV and static batteries
which, in turn, may come from the local generation or the power grid.

2.2.3. Algorithmic Approach

The strong combinatorial nature of the mathematical models used to reproduce the
operation of some loads (especially the TCL) imposes a high computational burden for the
solvers; therefore, other approaches have been used to compute near-optimal solution in
an acceptable timeframe [62]. Customized metaheuristics, namely GA, in which solutions
converge towards a non-dominated (Pareto optimal) front where solutions of interest are
located have produced sound results [57]. GA are probabilistic search and optimization
methods based on the progress of a population of solutions through selection, crossover
and mutation operators, which gradually converge to regions of the search space where
high quality solutions for the problem are found [63]. To deal with the bi-objective prob-
lem, a Non-Dominated Sorting Genetic Algorithm (NSGA-II), based on [57,58,64], and
tailored to the physical features of the problem, has been proposed. The NSGA-II is an
elitist multi-objective optimization algorithm (MOOA) in which offspring populations
are generated using crossover and mutation operators, and the evolving generations are
selected according to non-dominated sorting and crowding distance [65].

The proposed NSGA-II flowchart is fully displayed in [66] and its operation is sum-
marized as follows. Data on energy retail prices, weather conditions, baseload demand,
preferences (favorite periods for the operation of shiftable loads, comfort temperatures for
TCL and the anticipated SoC for static and EV batteries) and the algorithm parameters (pop-
ulation size, number of generations and probabilities of crossover and mutation operators)
are used to define the agent’s load profile and initiate the optimization process. Firstly, an
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initial parent population is randomly created considering the load features. The selection
operator chooses the next generation parents through a binary tournament scheme. PBM
are used at this level to obtain the temperature and power profiles for TCL, the operation
of shiftable loads is reproduced by using power profiles collected from energy audits and
the power profile and the SoC of storage systems are calculated according to a generic
charging/discharging model displayed in [67]. Considering the optimization objectives,
the solution encoding must translate the dynamics of each load. Thus, for shiftable loads,
the initial operation instant within the planning period is what matters the most, while for
TCL the power required at each instant relies on the operative and the desired temperatures;
thus, these loads are denoted by the maximum allowable temperature in each interval. A
priority rule of the LM over the TD has been set, meaning that the LM is only initialized
when the TD completes its operation cycle within the remaining planning period. In each
interval, the four possible operation states of the storage systems (EV and static batteries)
are encoded. For these loads, the operators ensure that the minimum SoC defined by users
is not disregarded and EV are only charged within a predefined convenience time.

Then, for each solution, the fitness (the fitness of a solution translates how close the
given solution is to the optimum solution of the desired problem) in the initial population
is appraised concerning both objective functions and, based on the Pareto dominance,
a ranking is assigned. The selection operator chooses the parents based on a binary
tournament, and tailored crossover and mutation operators aimed at balancing search
intensification vs. diversification are used to generate the offspring population. The
mutation operators:

• swap the starting minute of the operation cycle of shiftable loads according to a given
deviation bound;

• change the maximum temperature of TCL within a specified deviation limit (the
minimum temperature is also influenced since the difference between maximum and
minimum temperatures is assumed to be constant);

• randomly select an operation state for static and EV batteries among the four possi-
ble ones.

In turn, the crossover operators:

• swap the shiftable loads starting minute between two solutions;
• change the maximum temperatures of TCL of both parent solutions;
• change the parent solutions operation states of static and EV batteries.

Then, parent and offspring populations are pooled, duplicating the size of the popu-
lation, and the fitness of the offspring solutions for both objective functions is evaluated.
A non-dominated sorting scheme is used to identify the non-dominated front while the
crowding operator sets a crowding distance to solutions in the same front, thus when
two solutions have the same rank in the non-dominated sorting, the one with the larger
crowding distance is selected to enhance the search capability through diversity) [65].
The process is repeated until the stopping condition (number of generations) is reached.
Lastly, the Pareto front is located, and the final solution is selected according to the agent’s
sensitivity to cost.

2.3. Coordinator Agent

As residential agents, the coordinator is a goal-based agent aiming to manage and
distribute the energy resources generated and stored in the collective energy assets (PV
power park and battery), while interfacing with the retailer agent to buy and sell the
remaining energy. These decisions are taken in an optimization environment aiming to
minimize the overall community costs, which implies to minimize the overall power
withdrawn from the grid (therefore, maximizing the community’s self-sufficiency) and to
maximize surplus selling. To reach this goal, the GA implemented in the coordinator agent
architecture solves a single-objective cost minimization problem, similar to the residential
agents’ one.
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As the remaining agents, the coordinator agent perceives the changes in the weather
conditions and prices and uses these data to make decisions. This agent also obtains the
power profiles resulting from residential agents optimization. These data are used by the
algorithm implemented in the agent architecture (Figure 2) which must decide when to
store, sell or buy electricity to the retailer, how to use the energy generated and stored by
the collective assets and what to do with the energy surplus from residential agents (sell to
the retailer vs. store it in the collective system) according to external energy price signals
received from the retailer agent. The algorithm considers the problem characteristics
and use customized GA operators to guarantee that the model restrictions regarding the
minimum SoC of the community battery are fulfilled during the planning period.
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The objective function of this problem was adjusted from Appendix A, Equation (A1)
and the problem constraints (Appendix A, Equations (3)–(11) and Equation (A17)) were also
adapted. In this case, the total power includes the amount of the power demanded by all
residential agents, the power self-consumed and the total power injected/sold (into the grid
or into the community) taking into consideration the collective PV generation and storage
resources plus the individual PV generation surplus and storage. Also, some assumptions
were made regarding prices. The energy distributed by the coordinator agent provided
by the collective assets is perceived by residential agents as self-consumption, since it is
assumed that these assets were financed by them. However, the use of the distribution



Energies 2021, 14, 989 13 of 30

network within the community (between the collective system and the members) has to
be paid, since LEC must be charged for the use of the public infrastructure they use [11].
Thus, for each energy transaction made in the community and as, according to the model
assumptions, only the low voltage distribution network is used, a Use-of-Low-Voltage-
Distribution-Network tariff is charged. This tariff represents 17% of the final tariff charged
to low-voltage end-users in Portugal in 2020 [68]. In the model, this means that when the
coordinator agent distributes energy from the collective system to an agent, it has to pay a
network use fee set as 17% of the ToU retail tariff.

If the available community resources are not sufficient to fulfill the required energy
demand or if energy surplus still exists, the coordinator agent addresses the (passive)
retailer agent to manage these transactions. All the technical requirements are assumed to
be guaranteed (voltage, frequency, harmonic distortions, etc.) and the contracts established
between the community and the retailer ensure that the latter is always available to supply
the energy deficit and the purchase of surpluses. Finally, the coordinator informs the agents
about how their final costs, considering the community resources they will receive, and the
energy withdrawn from grid.

2.4. Scenario Description and Case Study

All the scenarios considered include a total of 100 residential agents. However, to
assess how different shares of prosumagers influence the community self-sufficiency, five
scenarios were exploited:

(1) Scenario A: consumers only;
(2) Scenario B: 25% are prosumagers and the remaining ones are consumers;
(3) Scenario C: 50% are prosumagers and the remaining ones are consumers;
(4) Scenario D: 75% are prosumagers and the remaining ones are consumers;
(5) Scenario E: prosumagers only.

Optimizations are done for the day ahead with 1-min discretization; therefore, for
each planning period, T = 1440 intervals and ∆t is given by 1/60 h. Simulations are run for
seven days (one week) to better represent residential dynamics, covering weekdays (day 1
to 5) and weekends (last two simulation days) for summer (August) and winter (January)
seasons. From a modeling point of view, running the simulations for several days requires
initializing the optimization processes several times and, to keep modeling consistency,
information between simulation days must be adjusted, namely regarding: (1) the SoC of
batteries, since in the first simulation day, the initial SoC is an input but in the first interval
of the second simulation day, the SoC must be coherent with the value in the last interval
of the previous day and so on, and (2) the indoor temperatures of the AC and in the EWH
water reservoir must also be attuned following the same reasoning.

Temperature and solar radiation profiles for the location of Coimbra, in the central re-
gion of Portugal, were used and retrieved from the Photovoltaic Geographical Information
System (Figure 3). The collective PV power plant is assumed to have an installed capacity of
175 kWpeak and is coupled to a static storage system with a capacity of 210 kWh, imitating
a Tesla Powerpack system and modeled according to the manufacturer’s specifications.
In turn, all prosumagers were assumed to own a 10 kWpeak PV system, as according to a
definition of the International Energy Agency (IEA) this should be the maximum installed
capacity for residential prosumers [69]. Also, all the agents own static batteries with a
6.4 kWh capacity, e.g., a Tesla Powerwall.
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Figure 3. Screenshot of the PVGIS tool (available in: https://re.jrc.ec.europa.eu/pvg_tools/en/#PVP (accessed on 13
October 2020)).

To determine heating and cooling needs, the thermal performance of residential
dwellings with different sizes was simulated for both seasons. Three different dwelling
sizes were considered: the smallest (T1) represents an area of 119 m2; the medium one (T2)
occupies 147 m2, and the largest (T3) has 182 m2 (please see Figure A2 in Appendix C).
The assignment of the dwelling sizes to the agents representing the different household
sizes is displayed in Table 2. Two different constructive solutions were included in the
dynamic building simulations, representing the standard values enforced by the Portuguese
Regulation Law 40/90 (solution 1) [70] and 379-A/2013 (solution 2) [71]. These values
allowed to compute the heat losses and gains through the building envelope, the losses
from the air renewal due to indoor ventilation, and the internal and solar gains for the
different housing typologies to be included in the AC system modeling. Taking into
account the Portuguese buildings statistics [72], 15% of the dwellings in the community
were assigned the constructive solution 1 and 85% the constructive solution 2.

Table 2. Assignment of household sizes and dwellings.

Agents
Probability of Agents Living in Housing Typologies [%]

T1 T2 T3

1–2 persons 75 20 5
3 persons 5 75 20

4 or more persons 0 25 75

The same fixed speed compressor (nominal power of 800 W) non-inverter AC system
was considered for all the agents, as well as the same type of fridge (90 W). This type of
AC heats or cools the spaces to the target (comfort) temperature. The hot water consump-
tion was adjusted depending on the household dimension, and different water reservoir
capacities and EWH nominal powers were assumed. For the smaller (1–2 persons) and
medium (3 persons) household sizes, a water tank capacity of 100 liters and an EWH power
of 1500 W were considered, while for the larger (4 or more people) a 150-L water tank and
a 1550 W EWH were assumed. Also, Table 3 displays the users’ temperature conditions for
all the TCL.

https://re.jrc.ec.europa.eu/pvg_tools/en/#PVP
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Table 3. Temperature ranges defined by users.

TCL Upper Bound
[◦C]

Lower Bound
[◦C]

Maximum Ref.
[◦C]

Minimum Ref.
[◦C]

AC
Heating mode 24 20 22 21
Cooling mode 28 24 26 25

EWH 85 45 55 50
Fridge 9 5 8 6

Data retrieved from energy audits was used to reproduce the operation of shiftable
loads and the number of weekly operation cycles of each one of these loads was adjusted
according to the household size, based on [73,74] (Table 4). The baseload profiles were also
created based on data collected from energy audits. For static storage systems, batteries
with a capacity of 6.4 kWh and a charging capacity of 2 kW were used to comply with
the manufacturer’s specifications. For EV, one of the most common models in the market
was reproduced (40 kWh battery capacity and a charging power of 6.6 kW). For the static
battery, the minimum SoC was defined as 20% whereas for the EV this value was set at
26% (based on the results obtained in [75]). A minimum final (at the departure time) SoC
was set to 75%, while the ideal SoC at the end of the charging process was defined as
the full charge (100%), for EV and static batteries. Finally, EV charging operations were
restricted to an availability period, representing the time interval between arriving home
at the end of the day and leaving the next day. EV charging may start after 8 p.m. and be
completed before 9 a.m. The data required to fully replicate the model can be found in
the Appendices A–D and in the Supplementary Material. The parameters displayed in
Table 5 were considered for the algorithms implemented in both residential agents and
coordinator agent architectures.

Table 4. Weekly number of performed operation cycles.

Agents DW LM TD

1–2 persons 2 2 2
3 persons 3 3 3

4 or more persons 4 4 4

Table 5. Algorithm parameterization.

Population Size Number of Generations (G) Probabilities of Operators [%]

50 200

Loads Mutation Crossover
Shiftable loads 20 50

TCL 60 50
EV 20 30

Static battery 30 30

The model was implemented in the Eclipse Java Integrated Development Environment
and the object-oriented Anylogic modeling software was used to display dynamic results.

3. Results and Discussion
3.1. Residential agents Optimization Results

The aggregated power profiles of all residential agents, in each scenario and season,
are shown in Figure 4. These profiles are sent to the coordinator agent and highlight the
periods of demand and availability for sale. Similar patterns of demand are found across
scenarios. Demand peaks are concentrated in the lower ToU price periods, corresponding
to a night/dawn time, since the AHEMS, aiming to minimize costs, allocate the operation
of shiftable loads, the charging of EV batteries, and part of the EWH operation to these
periods. Energy can be bought in these periods for charging the static battery as well, since
it can be economically beneficial to buy energy to store at a low price and consume it later
to avoid high price periods. The greater or lesser presence of consumers vs. prosumagers
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does not change the demand patterns considerably. This occurs due to the nature of the
loads considered and particularly to the agents’ objective functions. Minimizing costs
may not necessarily mean to maximize self-consumption. It may be advantageous to sell
self-produced energy in periods of higher prices and to procure energy from the grid
during lower price periods, even at the expense of some discomfort. Indeed, the periods
of solar availability coincide with the higher tariff price periods. Thus, in these intervals,
AHEMS avoid buying energy from the retailer to satisfy the baseload and use the existing
local resources for self-consumption (local generation and storage). As these loads do not
demand much energy, the AHEMS makes a share of these resources available for sale to
increase the income of agents, which in turn affects their objective of minimizing costs.
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Between seasons, slight demand variations are seen between scenarios, with a small
demand reduction in the summer because of the increased availability of local resources
allowing to enhance self-consumption. Additionally, in summer, the variation in outdoor
temperatures leads to less energy being spent in space heating/cooling or water heating
processes, which also slightly reduces energy demand. This amount of surplus generation
in summer that is available for sale is higher than the corresponding one in winter. As
expected, as more prosumagers are added to the community, more energy is made available
for sale. In Scenario A, these resources include only the energy stored in consumers’
static batteries, procured during lower ToU price periods and offered for sale to maximize
benefits, while in the remaining scenarios the surplus from local generation is also included.

When the above results are broken down by agent, they unveil that the demand peaks,
which derive from the sum of the individual demand profiles, depend mainly on the
characteristics of the agents, the size of the household and their loads. The concentration
of EV charging, to which the non-manageable baseload is added, the shiftable loads and
the EWH operation results in individual peaks, which cause the considerable aggregated
demand peaks in Figure 4. Figure 5 displays the results for a balanced agent in the most
extreme scenarios (A and E) in the first simulation day of the winter season.
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The trends regarding self-consumption and power available to sell are clearly pre-
sented. As expected, in Scenario A only the stored energy is used for self-consumption
and sale, while in Scenario E more resources are available for those purposes. Therefore,
Scenario E is expected to be the one that brings the best economic results to commu-
nity members.

3.2. Community Operation

The overall community performance derives from the decisions made by the coordi-
nator agent optimization processes. The results of the different scenarios, for both seasons,
are displayed in Figure A3 in Appendix D where the aggregated power requested, power
to sell and self-consumption are shown. Results are very similar to those shown in Figure 4.
The community demand is concentrated in periods of the tariff lower price, to where the
individual optimization processes allocate most of the load operation. These demand
peaks correspond to periods with no renewable generation; thus, the coordinator agent
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allocates part of the energy stored in the collective storage system to smooth these peaks.
Although these reductions are graphically undetectable, the examination of the results
reveals that, in the summer, the distribution of community resources reduces the average
demand for residential agents by about 15.5%, while in the winter the reduction is around
12.2%. These results may seem little impressive since much of the community’s energy is
sold while it could be allocated to residential agents. However, considering the way the
cost minimization objective function is defined, it is more advantageous to let community
members to buy energy from the retailer during the low-price periods (night/dawn) and
distribute the collective energy resources during the higher price periods (during the day).
This resource allocation is reflected in the predominance of self-consumed power during
these high price periods. As the cost minimization objective function also covers sales, the
coordinator’s algorithm decides on the sale of energy (from collective assets and surplus
from residential agents) during periods of high prices (daytime).

3.3. Energy Self-Sufficiency across Scenarios

Since in this model, self-consumption also involves energy withdrawn from the grid to
be stored in EV and static batteries, the system energy self-sufficiency cannot be calculated
directly. Instead, a generation/demand ratio is used and understood as a proxy for self-
sufficiency, examining the relationship between local generation (including the power
sold to the grid and used for self-consumption) and demand (net power requested plus
self-consumption), as displayed in Equation (12):

Sel f − su f f iciency(%) =
Energy generated (kWh)
Energy consumed (kWh)

× 100 (12)

The average self-sufficiency for each simulation week in each scenario and season is
shown in Figure 6. As expected, the greater participation of prosumagers in the community
model is translated into more energy available for sale and self-consumption. Thus, there
is an improvement in self-sufficiency from scenarios with only consumers (Scenario A) to
scenarios with more prosumagers (Scenario E). At the same time, the energy consumed
is kept approximately constant, since the demand (translated by the power requested) of
consumers and prosumagers is similar. The only source of fluctuation in the generated
energy is due to self-consumption, which gradually increases with the incorporation of
prosumagers in the LEC.
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These results must be interpreted at the light of the definition of energy self-sufficiency
presented above and the relationship stated in Equation (12). Therefore, a self-sufficiency
above 100% does not necessarily mean that the LEC could be completely autonomous from
the power grid since only the total amounts of locally generated and consumed energy are
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evaluated and not how the energy is being effectively used (sold, exchanged, wasted, etc.).
An energy balance analysis that considers the relationship between the energy generated
and consumed over the simulation time, considering losses and inefficiencies, would be
essential to accurately determine the energy autonomy of this community.

As mentioned previously, the objective functions of both residential agents and the
coordinator were defined based on one of the main motivations pointed out in the lit-
erature for end-users to participate in LEC projects—minimizing the energy bill. Since
participants are supposed to finance generation and storage assets (individual and/or
collective), it seems reasonable that they want to be economically compensated for their
investment. As it can be seen from the results, these objectives are not directly aligned with
the maximization of community self-sufficiency. On the one hand, reducing costs requires
minimizing the power purchased from external entities, which actually happens, although
with little expression. On the other hand, by including the selling component in the cost
minimization objective function and with prices varying over time, the economic benefit
from selling easily exceeds the demand reduction component. Thus, future work may
favor the maximization of self-consumption at the level of the coordinator agent without
the sale of surpluses.

3.4. Economic Benefits

Depending on the agents’ sensitivity to cost, the individual optimization processes
compute diversified solutions in the non-dominated front, i.e., with lower cost, lower
dissatisfaction, or balanced solutions. The average costs obtained for each agent profile, in
each scenario and season, are presented in Table 6 and the dissatisfaction results are dis-
played in Table 7. Average weekly costs and standard deviations of cost and dissatisfaction
are also provided to facilitate the comparison of results. Results are displayed as heatmaps
to facilitate the understanding and focus on the most relevant trends.

Table 6. Individual average costs [EUR]. Green: best cost; yellow/orange: average cost; red: worst
cost; W: winter; S: summer.

Scenario A Scenario B Scenario C Scenario D Scenario E

Day W S W S W S W S W S

C
os

t-
dr

iv
en

1 −4.8 −4.8 −4.2 2.7 −4.1 5.1 −4.1 5.1 −4.1 5.1
2 −4.9 −4.8 −1.2 2.6 0.1 5.2 0.3 5.0 0.6 5.0
3 −4.8 −4.8 −4.4 2.7 −4.2 5.1 −4.2 5.1 −4.2 5.1
4 −4.7 −4.8 −4.6 −0.8 −4.6 0.4 −4.6 0.4 −4.6 0.4
5 −4.9 −4.9 −4.0 2.6 −3.7 5.1 −3.7 5.3 −3.7 5.0
6 −4.9 −4.8 −3.9 2.6 −3.6 5.3 −3.6 5.3 −3.6 5.0
7 −4.9 −4.4 −4.1 3.0 −3.6 5.4 −3.6 5.4 −3.6 5.4

Week average/
Std. dev.

−4.8
0.1

−4.6
0.2

−3.8
1.2

2.4
0.7

−3.4
1.6

4.5
1.8

−3.4
1.6

4.5
1.8

−3.3
1.8

4.4
1.8

B
al

an
ce

d

1 −5.6 −5.2 −5.5 −5.1 −5.2 −0.5 −4.7 4.3 −4.7 4.3
2 −5.6 −5.0 −5.5 −5.1 −3.1 −0.6 −0.7 4.2 −0.7 4.2
3 −5.5 −5.1 −5.5 −5.4 −5.2 −0.5 −4.9 4.3 −4.9 4.3
4 −5.6 −5.6 −5.6 −5.3 −5.5 −2.9 −5.3 −0.3 −5.3 −0.3
5 −5.7 −5.3 −5.6 −5.7 −5.2 −0.7 −4.3 4.2 −4.3 4.2
6 −5.6 −5.5 −5.6 −5.5 −4.9 −0.5 −4.2 4.1 −4.2 4.1
7 −5.6 −5.3 −5.6 −5.3 −5.1 −0.2 −4.4 4.6 −4.4 4.6

Week average/
Std. dev.

−5.6
0.1

−5.3
0.2

−5.6
0.1

−5.3
0.2

−4.9
0.8

−0.8
0.9

−4.7
1.5

3.6
1.7

−4.1
1.5

3.6
1.7

C
om

fo
rt

-d
ri

ve
n 1 −6.8 −6.8 −6.8 −6.5 −6.3 −6.2 −6.6 −4.1 −5.9 3.1

2 −6.6 −6.6 −6.6 −6.5 −6.6 −6.3 −5.3 −4.1 −1.7 3.0
3 −6.5 −6.6 −6.5 −6.6 −6.5 −6.6 −6.4 −4.0 −5.9 3.3
4 −6.8 −6.6 −6.7 −6.3 −6.8 −6.6 −6.7 −5.3 −6.6 −1.5
5 −6.7 −6.8 −6.7 −6.5 −6.7 −6.5 −6.4 −4.1 −5.4 3.2
6 −6.6 −6.6 −6.6 −6.6 −6.1 −6.6 −6.2 −4.0 −5.2 3.2
7 −6.6 −6.5 −6.6 −6.5 −6.4 −6.5 −6.3 −3.9 −5.3 −3.4

Week average/
Std. dev.

−6.7
0.1

−6.6
0.1

−6.6
0.1

−6.5
0.1

−6.5
0.2

−6.5
0.2

−6.3
0.5

−4.2
0.5

−5.1
1.6

1.6
2.8
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Table 7. Individual dissatisfaction results [-]. Green: best dissatisfaction; yellow/orange: average
dissatisfaction; red: worst dissatisfaction; W: winter; S: summer.

Scenario A Scenario B Scenario C Scenario D Scenario E

Day W S W S W S W S W S

C
os

t-
dr

iv
en

1 5.1 3.5 3.8 3.6 3.8 3.5 3.8 3.5 3.8 3.5
2 9.9 6.1 7.1 5.1 3.2 4.0 3.2 4.0 3.2 4.0
3 3.9 3.9 3.7 3.9 3.6 4.0 3.6 4.0 3.6 4.0
4 5.0 5.6 3.9 4.9 3.8 3.8 3.8 3.8 3.8 3.8
5 4.3 3.3 3.5 4.7 3.7 6.0 3.7 6.0 3.7 6.0
6 3.8 14.7 4.0 9.6 4.1 10.4 4.1 12.4 4.1 10.4
7 3.7 15.5 3.5 9.3 3.4 9.2 3.4 9.2 3.4 9.2

Week average/
Std. dev.

5.1
2.2

7.5
5.3

4.2
1.3

5.9
2.5

3.7
0.3

5.8
2.8

3.7
0.3

6.1
3.4

3.7
0.3

5.8
2.8

B
al

an
ce

d

1 1.4 1.4 1.4 1.4 1.4 1.5 1.5 1.5 1.5 1.5
2 1.4 1.5 1.4 1.5 1.4 1.5 1.4 1.5 1.4 1.5
3 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5
4 1.4 1.5 1.4 1.5 1.4 1.5 1.5 1.5 1.5 1.5
5 1.4 1.3 1.4 1.3 1.5 1.4 1.5 1.4 1.5 1.4
6 1.5 1.7 1.5 1.7 1.6 1.7 1.6 1.6 1.6 1.6
7 1.5 2.0 1.5 2.0 1.5 2.1 1.4 2.2 1.4 2.2

Week average/
Std. dev.

1.4
0.1

1.6
0.2

1.4
0.1

1.6
0.2

1.5
0.1

1.6
0.2

1.5
0.1

1.6
0.3

1.5
0.1

1.6
0.3

C
om

fo
rt

-d
ri

ve
n 1 0.2 0.7 0.0 0.6 0.3 1.1 0.3 0.8 0.0 0.8

2 0.1 0.7 0.2 0.6 0.3 1.0 0.3 0.8 0.1 0.8
3 0.3 0.8 0.2 0.9 0.1 1.5 0.6 0.9 0.1 0.8
4 0.3 0.7 0.1 0.8 0.7 0.7 0.6 0.9 0.1 0.7
5 0.2 0.7 0.1 1.2 0.4 0.7 0.6 0.9 0.3 0.7
6 0.1 0.9 0.4 1.0 0.4 0.1 0.4 0.1 0.3 1.1
7 0.5 0.9 0.4 0.6 0.6 0.6 0.4 0.6 0.0 0.6

Week average/
Std. dev.

0.2
0.1

0.7
0.1

0.7
0.2

0.8
0.2

0.4
0.2

0.8
0.4

0.5
0.1

0.7
0.3

0.1
0.1

0.8
0.2

As expected, lower cost solutions are assigned to cost-driven agents; lower dissatisfac-
tion solutions are associated with comfort-driven agents and intermediate solutions are
allocated to balanced agents. When residential agents perform their individual optimiza-
tions, they are not aware whether they will receive collective energy or not. Therefore, in
addition to their own energy resources, they can only use energy purchased from and sold
to the retailer. In scenario A, all solutions are translated into costs (shown with a negative
sign) since as all the agents are consumers, the whole power needed to supply loads is
procured from the grid, representing costs for the agents. For this reason, this is the scenario
where the worst cost solutions for the residential agents are verified. Due to the lower
availability of renewable generation in winter, also in scenarios B, C, D and E, solutions
lead to costs that agents must bear. In summer, the situation is different. In scenarios B and
C, cost-driven agents can reach benefits, whereas balanced and comfort-driven agents still
have high costs, because of their lower comfort flexibility. In these scenarios, the amount
of self-generated surplus made available for sale is still not enough for comfort-sensitive
agents to enjoy benefits. In Scenario D, all the agents can achieve benefits due to a greater
share of energy made available for sale. Though, scenario E is the one displaying best cost
results as most agents have benefits from the sale of self-generated energy.

Regarding the comfort assessment, a closer look reveals very high values of dissatisfac-
tion (quantified through a constructed indicator) in summer in the two last simulation days
for cost-driven agents in all scenarios. These values are originated from the higher outdoor
temperatures considered in the simulation of the AC operation (average temperatures of
26.4 ◦C, compared to a mean value of 21.5 ◦C in the remaining days). As the same AC
equipment was considered to cope with the temperature variation and different dwelling
areas were assumed, the system may not be able to keep the cooling needs within the
desired limits, which gives rise to high levels of discomfort.

After the coordinator agent optimization, the average economic benefits for residential
agents are revealed. The differences between the average costs calculated initially by the
agents and after the distribution of collective resources by the coordinator agent show that,
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in all scenarios and seasons, there are benefits in belonging to a community with these
characteristics. In addition to the demand reduction due to the distribution of collective
energy, residential agents also benefit from the distribution of the benefits obtained from
the sale of collective surpluses to the retailer. These benefits are equally shared among
the residential agents and are included in the final cost estimates, which allows to reduce
the agents’ average costs or increase their expected benefits as shown in Table 8. The
comfort-driven agents are the ones who benefit the most from being in the community,
as they are also the ones that consume more energy and are charged with higher costs to
maintain their comfort standards.

Table 8. Agents’ cost variation after coordinator optimization [%]. Blue: average costs reduction;
yellow: average benefits increase; W: winter; S: summer.

Cost-Driven Balanced Comfort-Driven

Scenario
Season

W S W S W S

A 16.7 22.9 28.6 33.9 40.3 43.9
B 2.6 6.3 33.9 45.0 44.8 58.8
C 2.9 8.1 31.3 50.2 50.7 63.5
D 11.7 11.8 26.8 16.6 52.4 47.8
E 23.5 15.9 36.6 41.6 49.0 47.0

4. Conclusions

In recent years, energy communities and collective self-consumption projects have
emerged and gained relevance both in the scientific literature and at the political level,
with a prominent place in the current regulatory landscape. In this setting, modeling
approaches that allow for the simulation of technical, organizational, behavioral and social
dynamics, underlying a optimizing rationality, are needed to assess the performance of
different community configurations before putting them into practice. This work presents
a MAS framework developed to reproduce the operation of a LEC formed by residential
agents (consumers and prosumagers) willing to engage into DR actions to minimize energy
costs while considering comfort requirements. By including optimization processes at two
levels (residential agents and coordinator), the results show the optimal management of
collective resources, according to the objectives defined for the LEC.

Each residential agent is analyzed individually as it represents an individual house-
hold with its own goals regarding cost and discomfort minimization and preferences
regarding energy utilization. Depending on agents’ goals, the benefits of belonging to the
community can vary considerably. Comfort-driven agents proved to be the most benefited
economically, especially in scenarios with the highest energy surplus available since the
sharing of collective resources allows them to maintain their comfort standards at a lower
cost. As this result emerged as relevant in the scope of this work, future approaches should
exploit different ways of sharing costs and revenues. This work considered that local
collective resources are managed by a centralized agent which distribute them between
agents, not considering their individual contribution in terms of demand and local injection.
To ensure greater equity in the allocation of collective resources, prioritization rules can be
further defined to penalize agents who consume more and provide fewer surplus resources.

Different settings were studied to assess to what extent agents playing the role of
consumers and prosumagers influence the overall system self-sufficiency. As expected,
the greater presence of prosumagers enhances the community self-sufficiency, as more
energy resources are available. However, a detailed analysis of the energy balance over
time is necessary to assess the real energy self-sufficiency of the community. In addition,
future research should further exploit how different goals can be encompassed in LEC,
since the participants’ individual goals may not be directly aligned with the general goal
of energy self-sufficiency. As demonstrated in this work, although cost minimization
goals are usually the most relevant for residential users, they may conflict with self-
sufficiency ambitions since, depending on the price schemes, selling self-generated energy
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may be economically more advantageous than self-consuming. Therefore, the regulatory
framework of LEC and the energy markets must be able to prevent situations that promote
injections into the grid for profit purposes at the expense of self-consumption, according
to the non-profit definitions of CEC and REC. In fact, this issue is quite relevant in the
current context, since the number of small on-site distributed energy generation initiatives
is increasing with possible negative consequences for power systems. Therefore, it is
important assessing how far apart the individual objectives of community members are
from the collective self-sufficiency goals, how LEC can be penalized for not managing
efficiently their energy resources and the extent to which these inefficiencies can disturb
the operation of power systems.

A limitation of this work is related to the validation of the results and conclusions
drawn. Despite the valuable insights this work unveils, it presents a conceptual LEC
model, supported by a set of assumptions informed by the existing literature on energy
communities and the authors experience on smart grids as well as behavioral and technical
demand response research and practice. As the LEC that this work aims to model has
not been materialized, there is no real basis for comparison that allows to discuss how
far the model’s outcomes are to represent the behavior of the target system (correctness)
or to what extent the conceptual framework of the model and the target system match
(consistency) [76]. Therefore, results must be understood as experimental and exploratory.

In future approaches, data from real LEC can be used to strengthen modeling. Also,
in addition to residential agents, LEC may also include non-residential agents (including
services, industry and cross-sectoral activities) and their flexibility profiles exploited. Addi-
tionally, a power cost component can be introduced in the modeling to exploit its effect on
the minimization of the power procured to the grid and load scheduling.
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Appendix A. Residential Agents Problem Formulation

Table A1. Parameters and decision-variables of the optimization problem.

Parameters Decision variables

T Number of time intervals the planning period is
discretized into (t = 1, . . . , T). Pjt Power demanded by shiftable load j at interval t [kW].

n Number of shiftable loads (j = 1, . . . , n). Pbt
Power demanded by TCL b at interval t [kW] (as defined
by PBM).m Number of TCL (b = 1, . . . , m).

k Number of static batteries (s = 1, . . . , k). Pst Power demanded by static battery s at interval t [kW].v Number of EV (e = 1, . . . , v).
∆t Length of the time interval [min]. Pet Power demanded by EV e at interval t [kW].IFCe Ideal final SoC for EV e [%].
BLt Power requested by the baseload at interval t [kW]. PLt

Power demanded by shiftable, TCL and non-manageable
baseloads at interval t [kW].BPt Buying price at interval t [EUR/kWh].

SPt Selling price at interval t [EUR/kWh]. PGrLt
Power from the grid used to supply the loads at interval t
[kW].

TSPjt
Time slot penalty for shiftable load j at interval t
(presented in Figure A1). PGrEet

Power from the grid used to supply the EV battery e at
interval t [kW].

TVPbt
Temperature variation penalty for TCL b at interval t
(as defined in Equations (10) and (11)). PGrSst

Power from the grid used to supply the static battery s at
interval t [kW].

Dj
Duration of the operation cycle of shiftable load j
[minutes]. PGeLt

Power from the local generation used to supply the loads
at interval t [kW].

θmin
bt Lower temperature bound of TCL b at interval t [◦C]. PGeGrt Local power generated injected at interval t [kW].

θmax
bt Upper temperature bound of TCL b at interval t [◦C]. PGeEet

Local power generated used to supply the EV battery e at
interval t [kW].

SOCmin
s Minimum SoC of static battery s [%]. PGeSst

Local power generated used to supply the static battery s at
interval t [kW].SOCmax

s Maximum SoC of static battery s [%].
SOCmin

e Minimum SoC of EV e [%]. PELet
Power from the EV battery e used to supply the loads at
interval t [kW].SOCmax

e Maximum SoC of EV e [%].

fj(r) Power requested by shiftable load j at stage r of its
working cycle (r = 1, . . . , Dj) [kW]. PEGret

Power injected (into the grid or the community) by the EV
battery e at interval t [kW].

PGt Expected local generation at interval t [kW]. PSLt
Power from the static battery s used to supply the loads at
interval t [kW].

θbt
Temperature of the space being heated/cooled by the
TCL b at interval t (as defined in Equation (1)) [◦C].

PSGrst
PSt

Power injected (into the grid or the community) by the
static battery s at interval t [kW].
Total power injected at interval t [kW].

ηech/ηedch
Charging/discharging efficiency of the battery of
EV e [-].

SCt
Yjt

Total power used for self-consumption at interval t [kW].
Binary variable representing whether shiftable load j is
operating at interval t.ηsch/ηsdch

Charging/discharging efficiency of the static
battery s [-].

Cape Capacity of the battery of EV e [kW]. Tstart
j Starting interval of the working cycle of shiftable load j.Caps Capacity of static battery s [kW].

SOCst SoC of static battery s at interval t [%].
SOCet SoC of EV e at interval t [%].

Model:

min ∑T
t=1

((
BPt ·∆t

(
∑n

j=1 Pjt + ∑m
b=1 Pbt + ∑k

s=1 Pst + ∑v
e=1 Pet + BLt

)
− BPt·SCt·∆t

)
− (PSt·SPt·∆t)

)
[EUR] (A1)

min
T

∑
t=1

(
∑n

j=1

TSPjt·Yjt

100
+ ∑m

b=1
TVPbt
1000

)
+ ∑v

e=1
max(0, IFCe − SOCet)

10
[−] (A2)

s.t.
PLt = ∑n

j=1 Pjt + ∑m
b=1 Pbt + BLt t = 1, . . . , T (A3)

PLt = PGrLt + PGeLt + PELt + PSLt t = 1, . . . , T (A4)

PGt = PGeGrt + PGeLt + PGeEt + PGeSt t = 1, . . . , T (A5)

PGeEet + PGrEet = PEGret + PELet + Pet t = 1, . . . , T; e = 1, . . . , v (A6)

PGeSst + PGrSst = PSGrst + PSLst t = 1, . . . , T; s = 1, . . . , k (A7)
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PSt = PGeGrt + ∑k
s=1 PSGrst + ∑v

e=1 PEGret t = 1, . . . , T (A8)

SCt = PGeLt + PELet + PSLt t = 1, . . . , T (A9)

yjt =

{
1, i f Tstart

j ≤ t ≤ Tstart
j + Dj j = 1, . . . , n

0, otherwise t = 1, . . . , T
(A10)

1 ≤ Tstart
j ≤ T − Dj + 1 j = 1, . . . , n (A11)

Pjt = f j

(
r− Tstart

j + 1
)
·yjt j = 1, . . . , n; t = 1, . . . , T (A12)

θmin
bt ≤ θbt ≤ θmax

bt t = 1, . . . , T; b = 1, . . . , m (A13)

SOCmin
s ≤ SOCst ≤ SOCmax

s t = 1, . . . , T; s = 1, . . . , k (A14)

SOCmin
e ≤ SOCet ≤ SOCmax

e t = 1, . . . , T; e = 1, . . . , v (A15)

SOCet = SOCe(t−1) +

(
ηech·Pet·∆t

Cape

)
−
(

ηedch·(PEGret + PELet)·∆t
Cape

)
t = 1, . . . , T ; e = 1, . . . , v (A16)

SOCst = SOCs(t−1) +

(
ηsch·Pst·∆t

Caps

)
−
(

ηsdch·(PSGrst + PSLst)·∆t
Caps

)
t = 1, . . . , T ; s = 1, . . . , k (A17)

Appendix B. Time Slot Penalties of Shiftable Loads

Energies 2021, 14, x FOR PEER REVIEW 27 of 32 
 

 

 

Appendix B. Time Slot Penalties of Shiftable Loads 

  
(a) Tumble dryer (b) Dishwasher 

 

(c) Laundry machine  

Figure B1. Time slot penalties of shiftable loads. 

Appendix C. Dwellings Characteristics 

 
Figure C1. Schematics of the considered dwellings. 

Figure A1. Time slot penalties of shiftable loads.

Appendix C. Dwellings Characteristics



Energies 2021, 14, 989 26 of 30

Energies 2021, 14, x FOR PEER REVIEW 27 of 32 
 

 

 

Appendix B. Time Slot Penalties of Shiftable Loads 

  
(a) Tumble dryer (b) Dishwasher 

 

(c) Laundry machine  

Figure B1. Time slot penalties of shiftable loads. 

Appendix C. Dwellings Characteristics 

 
Figure C1. Schematics of the considered dwellings. 

Figure A2. Schematics of the considered dwellings.

Appendix D. Overall Community Performance

Energies 2021, 14, x FOR PEER REVIEW 28 of 32 
 

 

Appendix D. Overall Community Performance 

 
(a) Scenario A 

 
(b) Scenario B 

Figure A3. Cont.



Energies 2021, 14, 989 27 of 30

Energies 2021, 14, x FOR PEER REVIEW 29 of 32 
 

 

 
(c) Scenario C 

 
(d) Scenario D 

 
(e) Scenario E 

Figure D1. Overall community power requested, self-consumption and power available to sell in summer (left) and 
winter (right) seasons. Figure A3. Overall community power requested, self-consumption and power available

to sell in summer (left) and winter (right) seasons.

References
1. Rae, C.; Bradley, F. Energy autonomy in sustainable communities—A review of key issues. Renew. Sustain. Energy Rev. 2012, 16,

6497–6506. [CrossRef]
2. Gui, E.M.; MacGill, I. Typology of future clean energy communities: An exploratory structure, opportunities, and challenges.

Energy Res. Soc. Sci. 2018, 35, 94–107. [CrossRef]
3. Koirala, B.P.; Araghi, Y.; Kroesen, M.; Ghorbani, A.; Hakvoort, R.A.; Herder, P.M. Trust, awareness, and independence: Insights

from a socio-psychological factor analysis of citizen knowledge and participation in community energy systems. Energy Res. Soc.
Sci. 2018, 38, 33–40.

http://doi.org/10.1016/j.rser.2012.08.002
http://doi.org/10.1016/j.erss.2017.10.019


Energies 2021, 14, 989 28 of 30

4. Klaimi, J.; Rahim-Amoud, R.; Merghem-Boulahia, L. Energy management in the smart grids via intelligent storage systems. In
Agent-Based Modeling of Sustainable Behaviors; Alonso-Betanzos, A., Sánchez-Maroño, N., Fontenla-Romero, O., Polhill, J.G., Craig,
T., Bajo, J., Corchado, J.M., Eds.; Springer International Publishing AG: Cham, Switzerland, 2017; pp. 227–250.

5. European Committee of the Regions. Models of Local Energy Ownership and the Role of Local Energy Communities in Energy
Transition in Europe. 2018. Available online: https://op.europa.eu/en/publication-detail/-/publication/667d5014-c2ce-11e8-9
424-01aa75ed71a1/language-en (accessed on 7 June 2020).

6. REScoop.EU. The New Energy Market Design: How the EU Can Support Energy Communities and Citizens to Participate in the
Energy Transition. 2018. Available online: https://energy-cities.eu/wp-content/uploads/2018/11/commuity_energy_coalition_
pp_trilogues_mdi_final.pdf (accessed on 7 June 2020).

7. Caramizaru, A.; Uihlein, A. Energy Communities: An Overview of Energy and Social Innovation. Belgium, 2020. Available
online: https://ec.europa.eu/jrc/en/publication/eur-scientific-and-technical-research-reports/energy-communities-overview-
energy-and-social-innovation (accessed on 2 November 2020).

8. Braunholtz-Speight, T.; Sharmina, M.; Manderson, E.; McLachlan, C.; Hannon, M.; Hardy, J.; Mander, S. Evolution of Community
Energy in the UK. 2018. Available online: https://d2e1qxpsswcpgz.cloudfront.net/uploads/2020/03/ukerc-wp_evolution-of-
community-energy-in-the-uk.pdf (accessed on 16 August 2020).

9. Hahnel, U.J.J.; Herberz, M.; Pena-Bello, A.; Parra, D.; Brosch, T. Becoming prosumer: Revealing trading preferences and
decision-making strategies in peer-to-peer energy communities. Energy Policy 2019, 137, 111098. [CrossRef]

10. European Commission. Directive on the Promotion of the Use of Energy from Renewable Sources (Recast); European Commission:
Brussels, Belgium, 2018; Available online: https://eur-lex.europa.eu/legal-content/en/TXT/?uri=CELEX%3A32018L2001
(accessed on 15 June 2020).

11. European Parliament and Council of the EU. Directive on Common Rules for the Internal Market for Electricity. 2019. Available
online: https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX%3A32019L0944 (accessed on 15 June 2020).

12. Lowitzsch, J.; Hoicka, C.E.; van Tulder, F.J. Renewable energy communities under the 2019 European Clean Energy Package—
Governance model for the energy clusters of the future? Renew. Sustain. Energy Rev. 2020, 122, 109489. [CrossRef]

13. Sloot, D.; Jans, L.; Steg, L. Is it for the money, the environment, or the community? Motives for being involved in community
energy initiatives. Glob. Environ. Chang. 2019, 57, 101936. [CrossRef]

14. Engelken, M.; Römer, B.; Drescher, M.; Welpe, I. Transforming the energy system: Why municipalities strive for energy self-
sufficiency. Energy Policy 2016, 98, 365–377.

15. Dóci, G.; Vasileiadou, E. “Let’s do it ourselves”—Individual motivations for investing in renewables at community level. Renew.
Sustain. Energy Rev. 2015, 49, 41–50.

16. Ruppert-Winkel, C.; Hauber, J. Changing the energy system towards renewable energy self-sufficiency—A multi-perspective and
interdisciplinary framework. Sustainability 2014, 6, 2822–2831.

17. Müller, M.O.; Stämpfli, A.; Dold, U.; Hammer, T. Energy autarky: A conceptual framework for sustainable regional development.
Energy Policy 2011, 39, 5800–5810.
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