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Abstract: An Analytical Quality by Design (AQbD) approach is presented, aiming at the development
and validation of an HPLC method for the quantification of disulfiram and copper diethyldithio-
carbamate in lipid nanoparticles. Following the definition of the analytical target profile (ATP),
encompassing the critical analytical attributes (CAA), a two-level risk assessment strategy (Ishikawa
diagram—failure mode and effect analysis (FMEA)) was employed to identify the critical method
parameters (CMPs) with an extensive impact on method performance. The behavior of the CMPs
(flow rate and mobile phase composition) was further characterized by experimental design, resorting
to a face-centered central composite design (FcCCD). Statistical modeling, response surface analysis,
and Monte Carlo simulations led to the definition of the Method Operable Design Region (MODR),
associated with a negligible risk of failing the predefined CAA specifications. The optimal method
was validated according to international regulatory recommendations. Apart from guaranteeing
linearity, accuracy, precision, specificity, robustness, and stability, these conditions were found to be
suitable for analysis using a different HPLC column and equipment. In a nutshell, the development
and optimization strategies, under the comprehensive framework of AQbD, provided an effective,
simple, rapid, reliable, and flexible method for routine analysis of the compounds in research or
industrial environments.

Keywords: AQbD; cancer; central composite design; copper diethyldithiocarbamate; disulfiram;
lipid nanoparticles; liquid chromatography; method optimization; method robustness; MODR

1. Introduction

Disulfiram (DSF) is a dithiocarbamate derivative with clinical application to treat
alcohol addiction. It blocks ethanol metabolism by inhibiting hepatic aldehyde dehydroge-
nases 1 and 2, thus increasing acetaldehyde blood levels. Consequently, alcohol consumers
experience nausea, sweating, hypotension, respiratory difficulties, and other alcoholic
intoxication symptoms, thereby rejecting additional beverages [1]. In parallel, DSF shows
promising in vitro/in vivo results against several types of neoplastic diseases, as it may act
over 19 different targets/pathways to reduce cancer cell viability [2]. DSF is also a chelating
compound, producing copper (II) diethyldithiocarbamate (Cu(DDC)2) in the presence of
endogenous or exogenous copper (II) ions. Alternatively, Cu(DDC)2 can be synthesized by
chelating copper with sodium diethyldithiocarbamate (Figure 1) [3,4]. Interestingly, this
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complex has shown a more pronounced activity over several types of malignant tumors,
prompting the repositioning of DSF to clinical cancer treatment [2].
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However, there is a lack of clinical evidence that supports the efficacy of DSF as an anti-
cancer drug due to the extensive degradation and/or metabolism (reduced half-time) of the
drug. The reduced aqueous solubility of DSF (0.2 g/L) also impairs its intravenous admin-
istration. As for Cu(DDC)2, its intrinsic solubility is even lower, estimated as 0.700 µg/L [5].
Their inclusion in nanosystems for cancer drug delivery is thus highly anticipated.

The increasing interest in these compounds prompts the need for developing ap-
propriate analytical methods, with chromatography remaining the standard approach
for quantification in the pharmaceutical industry. Curiously, neither DSF nor Cu(DDC)2
possess ionizable groups that can modify their partition between the stationary and the
mobile phases during chromatography. There are also no reports in the literature for
their simultaneous quantification by reversed-phase high-performance liquid chromatog-
raphy (RP-HPLC). An exception is presented by Irth et al. [6], dated from 1988, who used
post-column derivatization for spectrophotometric analysis. Furthermore, reported chro-
matographic methods for DSF or Cu(DDC)2 focus on the quantification of the compounds
in nanotechnological platforms, without indication of Analytical Quality by Design (AQbD)
development or formal validation.

Similarly to Quality by Design (QbD), one can say that AQbD major goal is an in-depth
understanding of the method. Additionally, the method is well understood when all sources
of critical variability are identified and characterized, with the method operable design
region (MODR) accurately and successfully predicting the critical analytical attributes
(CAAs) [7]. This translation to analytical procedures gained increasing attention over the
last decade. Contrary to QbD, it is still scarcely evidenced in the literature, with only
86 references in the period of 2010 to 2018 [8].

AQbD includes the identification of the Analytical Target Profile (ATP) and CAAs,
as well as the critical method parameters (CMPs) that significantly affect method per-
formance [9]. The identification of these parameters is often conducted through risk
assessment, either using Ishikawa diagrams, risk matrices, failure mode and effect analysis
(FMEA), or failure mode, effects, and criticality analysis (FMECA), although other tools
can be used [10]. In every case, there is a strong contribution from previous knowledge
and experience. CMPs are then systematically explored by Design of Experiments (DoE),
an AQbD statistical tool for mathematical modeling that characterizes the factor-response
(CMPs-CAAs) relationships through simultaneous variations of the CMP conditions. When
several CMPs are identified, one should consider two-level designs, such as 2k full factorial
designs (FFD), fractional factorial designs (FrFD), and Placket-Burman designs (PBD).
Moreover, also known as screening designs, these have proved their usefulness in con-
firming the criticality of the CMPs, often leading to their disregard for further studies.
The three-level designs (response surface methodology), including 3k FFDs, Box-Behnken
designs (BBD), and central composite designs (CCD), are used for method optimization.
Other two- and three-level designs can be used under the AQbD umbrella for method
development and optimization, including Taguchi, I-optimal, D-optimal, and Doehlert
designs [11].
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Ultimately, AQbD defines a multidimensional region of robustness within the knowl-
edge space, the MODR, in which the chromatographic conditions (in terms of CMPs) satisfy
the criteria defined in the ATP [12,13]. This region can be constructed by overlaying the
independent 2D contour plots that model CAA parameters in function of the variation
of the CMPs. Nonetheless, Bayesian and stochastic approaches, supported by the deter-
mination of the risk of failing the specifications, have demonstrated superiority [8]. The
MODR is also subject to validation, often by Monte Carlo simulations and/or experimental
validation, in order to guarantee its authenticity and robustness. The definition of the
MODR encompasses various advantages. Apart from increasing method knowledge, it
indicates a range of values in which the method provides quality results, thus being suitable
for analysis. In fact, the method parameters can be varied anywhere within the MODR, in
opposition to a fixed condition, without the need for revalidation, but only for an adjust-
ment [8,14]. Note that an appropriate control strategy must be implemented to control all
sources of variability that might occur, always aiming at the continual improvement of the
method [14]. An overview of the AQbD workflow is presented in Figure 2.
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Here, an AQbD strategy is set for the quantification of DSF and its anticancer metabo-
lite, Cu(DDC)2, in nanostructured lipid carriers (NLCs), the second generation of solid
lipid nanoparticles.

2. Materials and Methods
2.1. Materials

Disulfiram (DSF, tetraethylthiuram disulfide, 97%) and sodium diethyldithiocarba-
mate trihydrate (DDC, cupral, 99%) were purchased from Sigma-Aldrich. Copper (II)
sulfate pentahydrate, gradient grade acetonitrile (ACN), and ethanol were obtained from
Panreac, Honeywell, and Labchem, respectively. Water (Ω = 18.2 MΩ.cm, TOC < 1.5 µg/L)
was ultrapurified (Sartorius®) and filtered through a 0.22 µm nylon filter prior to use.

2.2. Copper (II) Diethyldithiocarbamate Synthesis

The synthesis of Cu(DDC)2 was achieved through the chelation of copper ions by
sodium diethyldithiocarbamate in an aqueous environment, as described by Liu et al.,
with modifications [15]. Briefly, copper (II) sulfate (1 mmol, 0.253 g) and sodium di-
ethyldithiocarbamate (2 mmol, 0.456 g) were mixed in a 1:2 molar ratio, under stirring, at
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room temperature, for 1 h. Following the spontaneous reaction, the solid brown precipi-
tate was filtered under reduced pressure, washed with ultrapurified water, recrystallized
with ethanol to eliminate salts and unreacted products, and dried under vacuum (91%
yield). Structural analysis was confirmed by 1H and 13C NMR (Supplementary Material,
Figures S1 and S2).

2.3. Chromatographic Instrument and Conditions

The chromatographic analysis was carried out in a Shimadzu LC-2010HT system,
equipped with a quaternary pump (LC-20AD), an autosampler (SIL-20AHT), an oven
(CTO-10AS), and a photodiode array detector (SPD-M2OA). The separation was achieved
utilizing a reversed-phase ACE® 5 C18 column, with 5 µm of particle size, 4.6 mm of
internal diameter, and 150 mm of length (Advanced Chromatography Technologies Ltd.,
UK), supported by a SecurityGuard cartridge under the following conditions: isocratic
mode, at 40 ◦C, with a mobile phase composed of ACN:H2O in various ratios and different
flow rates. Using an injection volume of 10 µL, DSF and Cu(DDC)2 were determined at
their maximum absorption wavelength, 217 nm and 270 nm, respectively.

2.4. Calibration Standards and Quality Control Solutions

DSF (5 mg in 5 mL) and Cu(DDC)2 (2.5 mg in 5 mL) stock solutions were prepared
independently in ACN and sonicated to guarantee a complete dissolution. Note that
methanol, tetrahydrofuran, dimethyl sulfoxide, and dichloromethane led to an accelerated
degradation of the compounds or showed insufficient solvent abilities. Two working
standards containing both compounds at 100 and 10 µg/mL were prepared by dilution of
the stock solutions. Calibration standards (0.1, 0.25, 0.5, 1, 5, 10, 25, 50, 75, and 100 µg/mL)
were prepared by sequential dilutions of the working solutions with mobile phase and
filtered through 0.2 µm PTFE filters prior to the injection. Calibration curves were con-
structed by linear regression of the peak area against the nominal concentration after
weighting correction. Quality controls were prepared similarly to calibration standards, at
intermediate concentrations (0.2, 20, and 90 µg/mL).

2.5. AQbD HPLC Method Development
2.5.1. Analytical Target Profile Definition

The establishment of an analytical QbD approach assumes the establishment of an
analytical target profile (ATP), a prospective summary of the quality characteristics of
the method, similarly to the quality target product profile (QTPP) in pharmaceutical
development. Table 1 indicates various ATP elements taken into consideration for the
development and optimization of the chromatographic method for the quantification
of DSF and its anticancer metabolite, Cu(DDC)2. Considering their relevance in liquid
chromatography, the number of theoretical plates (N), retention time (Rt), tailing factor
(Tf), critical peak resolution (Res), and capacity factor (k’) of the analytes were selected as
critical analytical attributes (CAAs), and should be consistent with formal or commonly
acceptable validation criteria.

2.5.2. Risk Assessment

Risk assessment approaches are useful to identify potential analytical parameters,
such as method parameters, equipment, and measurements that may have an impact on
method development and performance. The simplest approach is the conceptualization
of Ishikawa (also known as fishbone and cause-and-effect) diagrams that outline the rela-
tionship between possible critical method parameters and the critical analytical attributes
established in the ATP. Based on the analytical parameters identified in the Ishikawa dia-
gram, a failure mode and effect analysis (FMEA) was used to evaluate and select the critical
ones to be further studied. Risk priority number (RPN) was determined based on,

RPN = Severity (S) × Occurrence (O) × Detectability (D) (1)
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where an RPN above 100 was considered of high risk and failure mode and therefore
submitted to a systematic evaluation using a response surface method optimization [16].
The criteria considered for the determination of the RPN are displayed in Table 2.

Table 1. Analytical Target Profile (ATP) postulated for the chromatographic analysis of DSF and Cu(DDC)2.

ATP Element Target Justification

Analyte DSF, Cu(DDC)2

Development of an analytical method for the estimation of
the analytes in solution or co-encapsulated in nanosystems

for routine and stability analysis.

Sample Liquid Analytes must be suitably dissolved, with complete
solvent miscibility.

Analyticaltechnique RP-HPLC

Highly lipophilic analytes are better separated and eluted in
RP-HPLC methods due to the increased retention with the
non-polar C18 stationary phase. Apart from the increased
resolution, RP-HPLC provides a fast analysis with small

sample volume and organic solvent consumption.

Instrument HPLC with a quaternary pump,
autosampler, and PDA detector

A quaternary pump allows an improved mixing of the
mobile phase solvents and higher resolution, whereas the

PDA detector allows the detection of several compounds at
their λmax, thus maximizing sensitivity (DSF, λmax = 217 nm,

Cu(DDC)2, λmax = 270 nm).

Method
Specific, accurate, precise, linear,

reproducible, robust, cost-effective,
and simple

The method should comply with formal validation criteria,
presenting a short run time and reduced use of

organic solvents.

Application Assay
Method should be able to determine DSF and Cu(DDC)2 in
solution or co-encapsulated in nanosystems for routine and

stability analysis.

CAAs
Number of theoretical plates,

retention time, tailing factor, critical
peak resolution, capacity factor

Chromatographic parameters that allow a robust and
reliable determination of the analytes. Should meet their

formal and commonly accepted quality criteria.

CAA: Critical Analytical Attribute; PDA: Photodiode Array.

Table 2. Failure mode and effect analysis (FMEA) score criteria for establishing critical method parameters.

S and O Score Criteria

1 Negligible risk that does not require attention
2–3 Minor effect that can be easily corrected inline
4–5 Moderately severe effect that requires attention
6–7 Highly severe effect that requires particular attention

D Score Criteria

1 Easily detectable, negligible risk that does not require attention
2–3 Detectable, with a minor effect that can be easily corrected inline
4–5 Not easily detectable, presents a moderate risk that requires immediate attention
6–7 Difficult to detect, presents a severe effect that requires the utmost attention

S: Severity; O: Occurrence; D: Detectability.

2.5.3. Method Development and Optimization

The chromatographic method was developed and optimized using a face-centered
central composite design (FcCCD), an effective second-order model that combines a two-
level factorial design (2n) or fractional factorial design (2n−k), one central point and 2n
outer points, denoted as axial or star points (along with the coordinate axes, at ± α). In
the case of an FcCCD, with two factors, both factorial and star points present the same
negative and positive distance from the central point, i.e., the star points are at the center
of each face of the experimental domain (α = 1), at (±α, 0) and (0, ±α), thus being identical
to a 32 FD with a rectangular experimental domain (Figure 3) [17].
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axial points.

The proposed models for each CAA are explained by the quadratic polynomial function:

Y = β0 + β1 X1 + β2 X2 + β12 X1 X2 + β11 X11
2 + β22 X22

2 (2)

where Y is the evaluated response associated with each factor level combination, β0 is the
response in the absence of effects, β1 and β2 are the linear coefficients of the factors X1 and
X2, respectively, β12 is the interaction coefficient between X1 and X2, and β11 and β22 are
the quadratic terms that allow the prediction of the curvature of the model. The statistical
significance of the parameters in the regression model was evaluated using Student’s t-test
(95% confidence level, α = 0.05) and ANOVA (p-value < 0.05). Non-significant terms were
removed by backward selection, in which higher p-value terms are sequentially removed
(p-value > 0.05 threshold). FcCCD models were built and analyzed in JMP® Pro 15.0.0.

2.5.4. MODR Design and Validation

The MODR was designed using Monte Carlo simulations, considering the specifi-
cations of each CAA. This operable region provides several conditions that fulfill the
chromatographic requirements set in the ATP, expressed as the probability of failure (%),
assuming a normal distribution of the method parameters associated with a certain random
standard deviation [18]. Random variation for each CAA was also considered in a total
of 10,000 experimental runs across the range of parameters. In addition, experimental
validation, using 4 additional chromatographic conditions was also performed.

2.6. Method Validation

The validation of the optimized chromatographic method was performed according
to ICH and FDA regulations, taking into account the system suitability, limits of detection
and quantification, linearity, accuracy, precision, robustness, ruggedness, specificity, and
stability [19–22].

2.6.1. System Suitability

System suitability parameters of the method were determined by injecting six times the
same quality control solutions and compared to the specifications and recommendations
of the FDA [21]. Accordingly, theoretical plate number (N) > 2000, tailing factor (Tf) < 2.0,
critical peak resolution (Res) > 2.0, relative standard deviation (RSD) of peak area and of
retention time (Rt) < 2.0% and capacity factor (k’) > 2.0.
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2.6.2. Detection and Quantification Limits

The limits of detection (LOD) and quantification (LOQ) were determined with a cali-
bration curve obtained from specific calibration standards (0.1, 0.25, 0.5, 1, and 5 µg/mL).
Subsequently, LOD and LOQ were calculated according to LOD = 3.3 σ/S and LOQ = 10 σ/S,
where σ is the standard deviation of the response and S the calibration curve slope [19].

2.6.3. Linearity

The linearity of the method was evaluated using six calibration curves containing DSF
and Cu(DDC)2, simultaneously ranging from 0.1 to 100 µg/mL. Linearity was determined
through the plotting of peak area as a function of the nominal concentration of the standards,
using a least squares regression method. Since homoscedasticity (condition of equal
variance throughout the points) is not frequently observed, in particular, using wide x-
value ranges, a 1/x2 weighting factor was employed (bias < 15%) [23]. According to
regulatory guidelines, a determination coefficient, R2 > 0.999 was considered [21].

2.6.4. Accuracy and Precision

Accuracy and precision were evaluated intra and interdaily for three consecutive days.
Six independent samples of each quality control solution were prepared and analyzed. To
demonstrate accuracy, i.e., the agreement between the nominal concentration (true) and the
measured value, a limit of bias < 15% was established. As for intraday (repeatability) and
interday (intermediate) precision, i.e., the degree of scatter among several determinations
of the same homogeneous sample, a limit of RSD < 15% was imposed [22].

2.6.5. Robustness and Ruggedness

Robustness, as per the ICH definition, is a “measure of (the analytical procedure)
capacity to remain unaffected by small, but deliberate variations in method parameters and
provides an indication of its reliability during normal usage” [19]. As per that definition and
validation of the MODR, the compliance to this parameter is empirically met. According
to the USP, ruggedness is seen as a measure of the reproducibility of the results under
various conditions met when changing the laboratory and the analyst [24]. Therefore, six
quality control solutions were analyzed, for accuracy and precision, in a different HPLC
column (Kinetex® EVO C18 column, with 5 µm of particle size, 4.6 mm of internal diameter
and 150 mm of length) and HPLC instrument (Shimadzu LC-10AD, quaternary pump
LC10-AD, autosampler unit Sil-10ADVP, CTO-10AVP oven and a CBM-20A UV detector).
System suitability, according to Section 2.6.1 was also evaluated.

2.6.6. Specificity

Specificity, termed as the ability to accurately measure the analytes in the presence
of potential interferents, was visually analyzed in terms of peak Rt [19]. A representative
chromatogram of a quality standard solution and of the supernatant of lipid nanoparticles
was compared to the supernatant obtained from a blank formulation [25]. The main goal
of specificity is to ensure that the integrity of each analyte is not compromised by any
formulation excipient (including the combination of lipids and surfactants).

2.6.7. Stability

In order to evaluate stability, quality control samples were analyzed for short-term
stability, following 24 h at room temperature (approx. 25 ◦C, in the autosampler) and
72 h at 4 ◦C. Furthermore, stock solutions were also evaluated for three freeze-thaw cycles
and intermediate-term stability, at −20 ◦C, for 7 days, by preparing and evaluating the
respective quality control solutions [21,22].
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2.7. Method Applicability: Nanostructured Lipid Carriers
2.7.1. NLC Production

NLCs were prepared by high shear homogenization followed by high-pressure homog-
enization, as described elsewhere [26]. Briefly, 2% (w/w) DSF was dissolved in the molten
lipid phase, containing the solid and the liquid lipids (mono-, di- and triglyceride esters of
fatty acids (C10 to C18), oleic acid and propylene glycol mono- and diesters of caprylic acid)
as well as the dissolved salt of copper. Note that Cu(DDC)2 was formed in situ, during the
production method, through the reaction of DSF and copper ions. Subsequently, the mix-
ture was added to 30 mL of a hot aqueous surfactant solution and emulsified for 5 min at
19,000 rpm (Ultra-Turrax X 10/25, Ystral GmbH, Dottingen, Germany). The pre-emulsion
was further processed in a high-pressure homogenizer for 10 min at 1500 bar (150 MPa)
(EmulsiFlex-C3; Avestin, Inc., Ottawa, Canada). The resulting dispersion was then stored
at 4 ◦C to form the NLCs. Colloidal properties, in particular, particle size and distribution,
and zeta potential, were determined following a 100-fold dilution in ultrapurified water
by dynamic and electrophoretic light scattering (Zetasizer Nano ZS, Malvern Instruments,
Malvern, UK).

2.7.2. Entrapment Efficiency and Drug Loading Determination

The entrapment efficiency (EE) and drug loading (DL) of DSF and CU(DDC)2 in the
NLCs were calculated according to

%EE = (Wtotal drug − Wfree drug)/Wtotal drug × 100 (3)

%DL = (Wtotal drug − Wfree drug)/Wlipid × 100 (4)

where Wtotal drug is the amount of drugs encapsulated in the NLCs, Wfree drug is the
amount of free drugs determined in the aqueous phase after ultrafiltration-centrifugation
(Sartorius® Vivaspin 500 filter unit, 100 kDa molecular weight cut-off), and Wlipid is the
weight of the lipid phase of the nanosystems [25]. For the total drug quantification, a
specific volume of NLCs was suitably diluted in the mobile phase and heated at 60 ◦C,
under sonication, for 15 min. The solution was further centrifuged for 5 min at 11,740× g,
at 4 ◦C, and the supernatant was filtered and analyzed by HPLC. For the determination
of free drugs, NLCs were diluted with cold ACN in order to dissolve potential drug crys-
tals, submitted to ultrafiltration-centrifugation, and the collected aqueous phase analyzed
by HPLC.

3. Results and Discussion
3.1. Risk Assessment

Narrowing down to a few most critical method parameters for experimental evalu-
ation can be challenging, considering the multitude of factors that potentially affect the
development of a chromatographic method. A systematic risk assessment analysis not only
identifies CMPs but also prioritizes them according to their severity. Here, a two-stage
study was conducted, contemplating an Ishikawa diagram followed by a failure mode ef-
fect analysis (FMEA). The Ishikawa diagram was designed based on prior knowledge, both
experimental and theoretical. This diagram outlines several factors that may contribute
to method performance, in particular, considering the analyst, environment, equipment,
method and measurement, and data (Figure 4). Nonetheless, it does not consider their risk
or criticality.
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In order to efficiently categorize and identify the critical method parameters to be
systematically studied, an FMEA approach was conducted. FMEA focuses on minimizing
potential failures prior to their occurrence and aids in developing a strategy to reduce
the risk of a future failure by changing the process appropriately [27]. Several factors
identified in the Ishikawa diagram were evaluated for their severity, occurrence, and de-
tectability (Table 3). Accordingly, flow rate and mobile phase composition were the method
parameters with the highest RPN score, determined using Equation (1). The remaining
failure modes, with ranging severity, occurrence, and detectability, were considered to be
non-critical and can be easily resolved by the corresponding strategy. For example, line
purging-related risks can be tackled by guaranteeing purge prior to the analysis, whereas
UV detection (with respect to λmax, signal/noise ratio, and sensitivity) can be defined a
priori, in the ATP.

Table 3. Failure mode and effect analysis (FMEA) for establishing critical method parameters (CMPs).

Failure Mode Effect S O D RPN Strategy

Mobile Phase Composition Multiple 7 5 7 245 Evaluate through RSM

Column age Non-selectivity 6 3 3 54 Monitor column use

Column equilibration Extraneous peaks 3 3 3 27 Guarantee equilibration prior to
analysis

Column type Retention variation 5 5 2 50 Guarantee ATP compliance

Flow Rate Multiple effects 6 5 6 180 Evaluate through RSM

Injection Volume Sensitivity 4 2 3 24 Guarantee method compliance

Matrix effect Extraneous peaks 3 3 2 18 Guarantee ATP compliance

Mobile Phase pH Retention variation 2 1 6 12 Low risk, no actions taken

Oven Temperature Column pressure 3 2 2 12 Low risk, no actions taken

Purge Multiple 3 2 4 24 Guarantee purge prior to analysis

Solvent Grade Extraneous peaks 3 3 2 18 Guarantee ATP compliance

UV Detection Sensitivity 4 2 1 8 Guarantee ATP compliance

S: Severity; O: Occurrence; D: Detectability; RPN: Risk Priority Number; RSM: Response Surface Methodology; ATP: Analytical
Target Profile.



Chemosensors 2021, 9, 172 10 of 20

3.2. Method Development and Optimization: Critical Analytical Attributes

Taking into consideration the RPN > 100 threshold, flow rate (X1) and mobile phase
ratio (in % of ACN) (X2) were defined as the CMPs and, consequently, systematically
evaluated following the design matrix of Table 4. Their impact on CAAs (N, Tf, Res, Rt,
and k’) was characterized. The chromatographic conditions were set after preliminary
studies, where other mobile phase compositions (in particular, with methanol and various
pH values) were evaluated at different flow rates.

Table 4. Face-centered central composite design (FcCCD) matrix for the evaluation of flow rate (X1)
and mobile phase composition (X2). For each condition, two calibration standard solutions were
considered (1 and 100 µg/mL) in order to inspect the impact of impurities on the critical analytical
attributes (CAAs).

Run Code X1
(Flow Rate, mL/min)

X2
(Mobile Phase, % ACN)

1
Factorial Design

Points

− − 0.8 55
2 − + 0.8 85
3 + − 1.2 55
4 + + 1.2 85

5 Central Point 0 0 1.0 70

6

Axial Points

−α 0 0.8 70
7 0 −α 1.0 55
8 +α 0 1.2 70
9 0 +α 1.0 85

According to the FcCCD, a total of 18 experimental runs were performed (nine chro-
matographic conditions, with two calibration standards, 1 and 100 µg/mL), at three levels:
for X1, 0.8, 1.0 and 1.2 mL/min; for X2, 55, 70 and 85% of ACN. The influence of each factor
and their combination in the CAAs was determined using the polynomial coefficients of
Equation (2). Higher coefficient magnitudes indicate stronger main effects on the corre-
sponding CAA. Additionally, the signal of the coefficient also has an important significance.
When the coefficient sign is negative, an increase in the factor decreases the response. On
the contrary, if the sign is positive, an increase in the factor increases the response. The
interaction coefficient indicates how the variation of one factor modulates the effect of the
other factor. Note that the main effect may be impacted by the interaction terms. Lastly, the
quadratic terms, whenever statistically significant, provide curvature to the models [25].
Note that non-significant coefficients were removed by backward selection, as mentioned
in Section 2.5.3. Therefore, only statistically significant terms (p-value < 0.05) are presented
in the subsequent sections. The ANOVA parameters for the characterization of the model
fitting per CAA are presented in Supplementary Material, Table S1.

3.2.1. Theoretical Plates

Theoretical plates are a measure of column efficiency, indicating the number of peaks
located per run-time unit on a chromatogram [28]. Regardless of the conditions evaluated
under the experimental design, N was always above the minimum required by regulatory
guidelines (N > 2000) and can be estimated using:

NDSF = 7390 − 939 X1 − 2637 X2 + 951 X22
2, R2 = 0.946, R2

adj = 0.935 (5)

NCu(DDC)2 = 10,768 − 985 X1 − 3484 X2, R2 = 0.903, R2
adj = 0.890 (6)

Considering the coefficients of Equations (5) and (6), both factors present a negative
impact on this response, although with a higher extent for the % ACN (X2). In addition,
the β22 coefficient provides curvature to the DSF model. In fact, as graphically evidenced
by Figure 5, an increase in flow rate (X1) and/or the percentage of the organic phase (X2)
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reduces the number of theoretical plates for both analytes. This trend is also verified for
other compounds under different chromatographic conditions [25].
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3.2.2. Tailing Factor

Chromatographic peaks are ideally represented by Gaussian curves. However, in
practice, they are usually asymmetrical due to the interaction of the analytes and the
stationary phase. Thus, Tf is a measure of peak symmetry [28]. According to official
guidelines, and to reduce peak integration variability, Tf < 2.0. For each analyte, Tf can be
determined by

Tf DSF = 1.225 + 0.027 X1 + 0.108 X2 + 0.014 X1X2, R2 = 0.996, R2
adj = 0.995 (7)

Tf Cu(DDC)2 = 1.188 − 0.127 X2, R2 = 0.793, R2
adj = 0.780 (8)

The low magnitude of the coefficients (β1, β2, and β12) of Equations (7) and (8)
suggests a minor impact of flow rate (X1) and mobile phase composition (X2) on this
response. In fact, for Cu(DDC)2, the flow rate (X1) did not have a statistically significant
impact. Subsequently, this response is shaped by a linear function and not characterized by
a surface response model. As for DSF, the model (Figure 6) shows a linear behavior. Overall,
taking into consideration the β0 coefficient magnitude for both analytes, the criteria of
this ATP specification are always met, regardless of the experimental conditions. This
behavior is also reported for other compounds evaluated under different chromatographic
methods [25].

3.2.3. Critical Peak Resolution

Peak resolution assesses the degree of separation between two adjacent peaks. A
resolution value of zero pinpoints a complete peak co-elution, whereas a resolution value
of 1.5 is the minimum for baseline separation [28]. As per FDA recommendations, Res > 2.0.
The selection of this variable arises from the visual inspection of chromatograms at 217 nm
which indicates critical peak proximity between DSF and its impurities, that can be deter-
mined using:

Res DSF = 3.367 − 0.15 X1 − 4.033 X2 + 0.15 X1X2 + 0.667 X22
2, R2 = 0.999, R2

adj = 0.999 (9)
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According to the coefficients of Equation (9), this CAA is mainly governed by the
mobile phase composition (X2). As expected, an increase in the % of ACN strongly reduces
peak Res due to the lower interaction between the analytes and the stationary phase,
promoted by the stronger nonpolar conditions of the mobile phase. The remaining terms
are not relevant due to their reduced magnitude. Nonetheless, the model shows some
degree of curvature (Figure 7). This trend is also observed for other compounds evaluated
under different chromatographic conditions [25].
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3.2.4. Retention Time

Retention time is a measure of the time each analyte spends in the stationary and in
the mobile phase [28]. Generally, it should be as low as possible in order to reduce the
analysis time and costs of organic solvents. For each analyte, Rt can be determined by

Rt DSF = 4.028 − 1.036 X1 − 2.92 X2 + 0.61 X1X2 + 1.585 X22
2, R2 = 0.996, R2

adj = 0.995
(10)

Rt Cu(DDC)2 = 6.95 − 2.127 X1 − 8.557 X2 + 1.763 X1X2 + 5.115 X22
2, R2 = 0.996, R2

adj = 0.995
(11)
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According to Equations (10) and (11), both critical method parameters have a negative
impact on this parameter, as indicated by the negative β1 and β2 coefficients. Although
flow rate (X1) has a strong influence in reducing drug Rt, an increase in the organic phase
(X2) is the main factor that reduces the interaction of the analytes with the stationary phase,
as indicated by the highest magnitude of β2 coefficients. In addition, according to the β22
coefficient, the surface response models display curvature (Figure 8). This behavior is also
seen for other compounds and chromatographic methods [25].
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3.2.5. Capacity Factor

Although similar to the drug Rt, the capacity factor, or retention factor, represents the
degree of retention of the analyte in the column and takes into consideration the void time
(i.e., the retention of an unretained analyte) [28]. Usually, when using isocratic conditions,
1 < k’ < 20, as higher k’ values lead to extensive peak broadening. This parameter becomes
particularly relevant when using increased proportions of organic solvents, as they reduce
the retention of the analytes. As per FDA, k’ > 2, and can be determined using:

k’DSF = 2.817 − 2.762 X2 + 1.416 X22
2, R2 = 0.996, R2

adj = 0.996 (12)

k’Cu(DDC)2 = 5.463 − 8.067 X2 + 4.655 X22
2, R2 = 0.997, R2

adj = 0.996 (13)

According to Equations (12) and (13), flow rate (X1) does not have an impact on the
capacity factor. In fact, k’ is independent of flow rate and column length [28]. Therefore,
this parameter is explained by a simpler polynomial function and not characterized by a
surface response model. The negative sign of the β2 coefficient indicates that an increase
in the organic phase (X2) strongly reduces the capacity factor, thus eluting the analytes in
less time.

3.3. Method Development and Optimization: MODR

Aiming at obtaining a validated method, as per ICH and FDA guidelines, i.e., a
chromatographic method that complies with the established requirement for the CAAs, it
is necessary to determine the method operable design region (MODR). Every condition
is associated with a certain level of failure risk, expressed as the probability of failure
(%), calculated using Monte Carlo simulations. This risk arises not only from the method
parameters and their variation but also from unexpected and random sources. As such, a
random standard deviation of 0.05 and 0.5 for X1 and X2, respectively, was assumed. The
identification of this region is depicted in white, in Figure 9, based on the criteria defined in
Table 5. Each point of the white region of the MODR represents a possible chromatographic
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method (in terms of flow rate (X1) and mobile phase composition (X2)), compliant with the
ATP (Table 1), and with a risk of failure below 5%.
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Table 5. MODR definition criteria and experimental validation.

CAA N DSF N Cu(DDC)2 Tf DSF Tf Cu(DDC)2 Res Rt DSF Rt Cu(DDC)2 k’ DSF k’ Cu(DDC)2

Specification
Conditions >2000 >2000 <2.0 <2.0 >2.0 <6.0 <10.0 >2.0 >2.0

Predicted

1 7916 11,173 1.21 1.21 2.83 4.52 7.50 2.40 4.25

2 7860 11,260 1.21 1.19 3.44 4.55 8.01 2.82 5.46

3 6507 9694 1.26 1.21 2.65 3.12 4.75 2.40 4.25

4 7436 10,943 1.21 1.15 4.59 3.94 7.66 3.89 8.67

Confidence
Interval

(CI, 95%)

1 [7251, 8580] [10,323, 12,023] [1.21, 1.22] [1.18, 1.24] [2.80, 2.89] [4.32, 4.72] [6.92, 8.08] [2.26, 2.53] [3.89, 4.60]

2 [7276, 8443] [10,635, 11,886] [1.21, 1.22] [1.16, 1.22] [3.41, 3.48] [4.37, 4.72] [7.51, 8.52] [2.68, 2.95] [5.10, 5.83]

3 [5935, 7080] [9060, 10,329] [1.25, 1.26] [1.18, 1.24] [2.62, 2.68] [2.94, 3.29] [4.25, 5.24] [2.26, 2.53] [3.89, 4.60]

4 [6797, 8075] [10,073, 11,814] [1.21, 1.22] [1.12, 1.18] [4.55, 4.62] [3.74, 4.14] [7.09, 8.22] [3.77, 4.02] [8.33, 9.00]

Experimental

1 8051 10,440 1.22 1.22 2.86 4.45 7.32 2.35 4.17

2 7356 11,721 1.22 1.20 3.49 4.42 7.46 2.77 5.47

3 6837 8996 1.26 1.19 2.62 3.24 5.03 2.36 4.14

4 7205 11,545 1.22 1.15 4.56 3.99 7.63 3.79 8.42

Conditions (X1, X2): 1—(0.8, 72.5); 2—(0.9, 70); 3—(1.1, 72.5); 4—(1.2, 65).

In order to validate the predictability of the operable region, four random conditions
(Figure 9, green dots) were experimentally evaluated and compared to the predicted CAA
responses by the models (Table 5). For these levels, the MODR also complies with the
ATP (Table 1), supporting the good predictability of the models. For convenience, the
chosen method parameters to proceed for formal validation were set as being 70:30 (v/v)
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ACN:H2O, at a flow rate of 1.0 mL/min (Figure 9, blue dot). These conditions guarantee
the suitability of the chromatographic method and are potentially associated with a better
ruggedness, i.e., present a lower probability of failure when used at another laboratory.
Moreover, regions close to the limits of X1 or X2 should be avoided, as they are on the edge
of the knowledge space.

3.4. Method Validation
3.4.1. System Suitability

System suitability testing aims at assessing if the chromatogram and the HPLC equip-
ment are able to produce accurate and precise results [21]. For that, several parameters,
including the previously identified CAAs, are evaluated. The precision of the retention
times and peak areas were compliant for both analytes, according to the RSD ≤ 2.0% for the
three quality control standards, thus supporting the system’s ability for their detection and
quantification (Table 6). Furthermore, the efficiency of the column is also evidenced for all
parameters. According to the ATP of the established AQbD strategy (Table 1), compliance
with these CAAs was a pre-validation requisite.

Table 6. System suitability testing, considering the reinjection of quality control samples (n = 6).

Analyte Conc. (µg/mL)
Rt (min) Peak Area

N Res Tf k’
Mean RSD (%) Mean RSD (%)

DSF
0.2 3.89 0.08 8334 1 6336 5.99 1.23 2.80
20 3.9 0.1 716,585 0.07 6319 3.35 1.24 2.66
90 3.89 0.08 3,673,964 0.02 6273 3.29 1.24 2.72

Cu(DDC)2

0.2 6.75 0.07 8497 0.8 10,838 12.5 1.17 5.46
20 6.71 0.08 1,086,184 0.03 10,151 8.28 1.15 5.19
90 6.71 0.09 4,359,938 0.7 9957 8.35 1.13 5.37

Acceptance Criteria - ≤2.0% - ≤2.0% >2000 >2.0 ≤2.0 >2.0

3.4.2. Detection and Quantification Limits

The lowest concentration at which each analyte can be detected or identified with
good accuracy and precision was determined according to the standard deviation of the
response and slope of the linear regression of the calibration curve. The estimated LOD for
DSF and Cu(DDC)2 were 0.034 and 0.028 µg/mL, respectively. Additionally, the LOQ for
DSF and Cu(DDC)2 were 0.10 and 0.09 µg/mL, respectively.

3.4.3. Linearity

Linearity of the calibration standards was observed over the range of 0.1 to 100 µg/mL,
according to the regression equations and correlation coefficients obtained through the least
squares method. The mean equations for both analytes are presented below
(Equations (14) and (15), n = 6). A 1/x2 weighting factor was employed due to the het-
eroscedasticity of the samples.

[DSF] = 41,488 + 124 X, R2 = 0.9999 (14)

[Cu(DDC)2] = 50,047 − 1480 X, R2 = 0.9997 (15)

According to the R2 values over 0.999, compliant with FDA recommendations and the
good precision amongst the curve slopes and intercepts (RSD ≤ 2.0%), the chromatographic
method is considered to be linear over the studied range.

3.4.4. Accuracy and Precision

The evaluation of the accuracy and precision of the method is a further guarantee
of the quality of the calibration curves and should be observed at intra- and interday
levels. According to Table 7, both parameters are verified since the deviations to nominal
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concentration and among independent samples did not exceed 15. As such, these results
corroborate the accuracy, reliability, and reproducibility of the method.

Table 7. Intraday and interday accuracy and precision. Results are expressed as mean ± SD.

Analyte Conc.
(µg/mL)

Intraday (n = 6) Interday (n = 18)

Measured Conc.
(µg/mL)

Accuracy
(%)

Precision
(%)

Measured Conc.
(µg/mL)

Accuracy
(%)

Precision
(%)

DSF
0.2 0.201 ± 0.001 −0.3 0.7 0.196 ± 0.004 1.9 2.0
20 20 ± 1 0.9 5.5 21 ± 2 −7.0 7.3
90 90.8 ± 0.5 −0.9 0.6 90 ± 1 −0.2 1.1

Cu(DDC)2

0.2 0.21 ± 0.01 −2.8 5.3 0.22 ± 0.02 −8.0 11.4
20 21 ± 1 −3.1 2.9 19 ± 1 0.9 5.7
90 91 ± 2 −1.1 2. 87 ± 2 3.8 2.8

3.4.5. Robustness and Ruggedness

The assessment of the robustness and ruggedness of chromatographic methods aims at
ensuring the reliability of the results. To study the method’s robustness, the ICH suggests
the evaluation of small method variations, such as modifications to the mobile phase
composition, pH, different columns, oven temperature, and flow rate [19,29]. According
to the risk assessment (Figure 4 and Table 3), mobile phase composition and flow rate
were identified as critical process parameters due to their potential high criticality. The
systematic study, using Design of Experiments (Section 2.5.3) and the wide MODR region,
support the robustness of the method. In order to study the method’s ruggedness, the FDA
takes into consideration the expected variations occurring between different laboratories.
Consequently, the optimized method was evaluated in a different apparatus and column.
Despite the expected minor variations, the different conditions met the CAA criteria for
system suitability, including a good critical peak resolution, capacity factor, theoretical
plate number, and tailing factor (Table 8). Additionally, the method complies with the
requirements for repeatability (intraday precision) and accuracy (Table 9).

Table 8. System suitability testing for ruggedness evaluation, considering the reinjection of quality control samples (n = 6).

Analyte Conc. (µg/mL)
Rt (min) Peak Area

N Res Tf k’
Mean RSD (%) Mean RSD (%)

DSF
0.2 3.48 0.06 8631 0.9 8041 4.45 1.18 2.24
20 3.46 0.06 791 979 0.04 8083 4.40 1.15 2.23
90 3.46 0.04 3,808,929 0.04 7850 4.36 1.15 2.21

Cu(DDC)2

0.2 6.300 0.004 7038 1 12,755 14.87 1.24 4.84
20 6.224 0.002 948,910 0.2 11,711 10.28 1.03 4.17
90 6.25 0.01 3,977,465 0.4 11,388 10.18 1.02 4.75

Acceptance Criteria - ≤2.0% - ≤2.0% >2000 >2.0 ≤2.0 >2.0
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Table 9. Intraday accuracy and precision for ruggedness evaluation. Results are expressed as
mean ± SD.

Analyte Conc.
(µg/mL)

Intraday (n = 6)

Measured Conc.
(µg/mL)

Accuracy
(%)

Precision
(%)

DSF
0.2 0.21 ± 0.01 −7.5 5.3
20 20 ± 2 −1.6 7.9
90 92.0 ± 0.3 −2.2 0.3

Cu(DDC)2

0.2 0.176 ± 0.002 12.2 1.4
20 20.6 ± 0.7 −3.1 3.5
90 88 ± 3 2.4 2.9

3.4.6. Specificity

The specificity of the method is a parameter that ensures the correct determination
of the analytes in the presence of possible interferents. For that, the supernatant of blank
nanoparticles was analyzed using the optimized chromatographic method conditions
and compared to a representative chromatogram of a 0.2 µg/mL quality control solution
(Figure 10a). No peaks were observed at the retention times of the analytes, indicating the
method can be regarded as specific.
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NLCs supernatant (dashed line).

3.4.7. Stability

Stability testing, as part of the chromatographic method validation, aims at ensur-
ing there is no degradation or adhesion to glassware during sampling procedures and
laboratory analysis. As such, stability studies were performed at two levels: stock solu-
tion (freeze-thaw and intermediate-term stability) and quality control solutions testing
(autosampler and 72 h stability, at 4 ◦C). According to the results (Table 10), both analytes
met the established accuracy and precision criteria in these conditions. Consequently, the
quality of the data is guaranteed.
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Table 10. Stability studies of quality control solutions (n = 6) in different conditions (stock: freeze-thaw and 7 days at −20 ◦C; quality
controls: autosampler, 24 h and 72 h at 4 ◦C).

Analyte Conc.
(µg/mL)

Freeze-Thaw 7 Days, −20 ◦C

Measured Conc.
(µg/mL)

Accuracy
(%)

Precision
(%)

Measured Conc.
(µg/mL)

Accuracy
(%)

Precision
(%)

DSF
0.2 0.196 ± 0.007 2.0 3.7 0.198 ± 0.008 0.9 3.9
20 19.9 ± 0.2 0.2 0.9 20.0 ± 0.4 0.2 1.8
90 88.3 ± 0.8 1.9 0.8 ±2 0.5 2.4

Cu(DDC)2

0.2 0.22 ± 0.01 −7.6 4.6 0.212 ± 0.003 −6.2 1.6
20 18.5 ± 0.3 7.4 1.7 19.6 ± 0.5 2.2 2.7
90 93 ± 2 −3.7 2.3 95. ± 2 −6.0 2.1

Analyte Conc.
(µg/mL)

Autosampler (24 h) Short term (72 h, 4 ◦C)

Measured Conc.
(µg/mL)

Accuracy
(%)

Precision
(%)

Measured Conc.
(µg/mL)

Accuracy
(%)

Precision
(%)

DSF
0.2 0.197 ± 0.006 1.3 2.8 0.197 ± 0.008 1.4 4.1
20 20.9 ± 0.9 −4.5 4.2 23 ± 2 −16.5 7.3
90 93 ± 3 −3.2 3.1 91 ± 2 −1.5 1.7

Cu(DDC)2

0.2 0.197 ± 0.005 1.6 2.7 0.19 ± 0.01 4.9 6.7
20 19.0 ± 0.5 4.8 2.7 18.4 ± 0.7 7.9 4.0
90 91 ± 2 −1.6 2.2 92 ± 4 −2.4 4.6

3.5. Method Applicability: Nanostructured Lipid Carriers

The optimized method was applied to determine the content of DSF and Cu(DDC)2 in
lipid nanoparticles, with a mean particle size of 140 ± 4 nm, a polydispersity index of 0.131,
and a zeta potential of −40 mV ± 2 mV. Overall, the entrapment efficiency values of DSF
and Cu(DDC)2 were found to be 99.7 ± 0.2% and ca. 100%, as no peak was identified in
the aqueous phase of the NLCs corresponding to Cu(DDC)2 (Figure 10b). The determined
loadings of DSF and Cu(DDC)2 were 2.10 ± 0.04% and 6.6 ± 0.2 ‰. Despite the reduced
DL of Cu(DDC)2, this compound has been described as highly potent at decreasing cancer
cell viability, displaying activity in nanomolar concentrations against glioblastoma, breast
and lung cancer [4]. This method may also be used for other routine tests that include the
use of these analytes.

4. Conclusions

An AQbD strategy was implemented for the simultaneous quantification of disulfiram
and its anticancer compound, copper (II) diethyldithiocarbamate, by liquid chromatogra-
phy. According to risk assessment, the method parameters with a high impact on method
performance (by means of the theoretical plate number, critical resolution, retention time,
tailing factor, and capacity factor) were evaluated. Under the umbrella of AQbD, the appli-
cation of a face-centered central composite design allowed the characterization of these
parameters. As such, the multidimensional region that includes the method parameters
that best describe the suitability of the chromatographic method (with a negligible risk of
failure) was defined using Monte Carlo simulations and experimentally validated. The
ideal conditions (a mobile phase containing acetonitrile:water (70:30, v/v) at 1 mL/min)
were validated according to regulatory guidelines in terms of linearity, accuracy, precision,
specificity, robustness, and stability. In addition, the method was evaluated for ruggedness,
using different HPLC equipment and column, meeting the criteria for system suitability,
intraday accuracy, and precision (repeatability). Overall, the validation of the method
supports the implementation of AQbD in defining chromatographic conditions for re-
search or industrial applications, exemplified here with the quantification of the analytes
in nanostructured lipid carriers.
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