
cancers

Review

Cancer Nanopharmaceuticals: Physicochemical
Characterization and In Vitro/In Vivo Applications

Aleksandra Zielińska 1,2,* , Marlena Szalata 1,3 , Adam Gorczyński 4 , Jacek Karczewski 5,6 , Piotr Eder 6 ,
Patrícia Severino 7,8,9 , José M. Cabeda 10,11 , Eliana B. Souto 2,12,* and Ryszard Słomski 1

����������
�������
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Simple Summary: The use of nanopharmaceuticals in chemotherapeutic regimens has become a
promising approach for the treatment of most of the demanding types of cancers. Their in-depth
physicochemical characterization plays an instrumental role in the quality control of a promising
new medicine. The combined function of diagnosis and therapy in the same nanopharmaceuticals
created the so-called nanotheragnostics, which have found a broad range of applications in this field.
This review addresses the state of the art on the use of nanopharmaceuticals in cancer therapy and
the latest challenges encountered in regulating these new medicines.

Abstract: Physicochemical, pharmacokinetic, and biopharmaceutical characterization tools play a
key role in the assessment of nanopharmaceuticals’ potential imaging analysis and for site-specific
delivery of anti-cancers to neoplastic cells/tissues. If diagnostic tools and therapeutic approaches are
combined in one single nanoparticle, a new platform called nanotheragnostics is generated. Several
analytical technologies allow us to characterize nanopharmaceuticals and nanoparticles and their
properties so that they can be properly used in cancer therapy. This paper describes the role of multi-
functional nanoparticles in cancer diagnosis and treatment, describing how nanotheragnostics can be
useful in modern chemotherapy, and finally, the challenges associated with the commercialization of
nanoparticles for cancer therapy.

Keywords: nanoparticles; cancer diagnosis; treatment of cancer; nanotherapeutics; therapeu-
tic nanoparticles
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1. Introduction

The continuous breakthrough we are witnessing in the field of nanomedicine con-
firms the wide use of nanoparticles for a range of advanced therapies (e.g., radiation,
cell therapy). A nanoparticle can be defined as any material that is used in the formu-
lation of a drug resulting in a final product smaller than 1 micron in size. The use of
nanoparticles for imaging analysis is especially promising in cancer diagnosis because they
allow rapid recognition of tumor-related molecules [1,2]. Nanotheragnostics have already
shown breakthroughs in the detection, diagnosis, and treatment of cancer. Together with
thermal therapy, nanotheragnostics are one of the most significant approaches for cancer
diagnosis, as they combine in the same device the capacity to diagnose and to deliver
the chemotherapeutic drug at the site of action [3]. For this purpose, different types of
nanoparticles can be used to simultaneously carry a drug and an imaging counterpart.
Highly effective therapeutic agents can detect molecular changes at the early stage of tumor
cells. Thanks to cancer nanotheragnostics that can be applied for simultaneous delivery
of a few therapeutic molecules, it is possible not only to change the pharmacokinetics of
drugs but also to enhance the therapeutic markers and reduce systemic toxicity thereby [4].

A nanopharmaceutical refers to a pharmaceutical agent formulated at the nanoscale
(either within a nanoparticle or in form of drug nanocrystal), which can be further pre-
sented to the patient as tablets, capsules, ointments or creams, liquid suspensions, or
even as aerosols. Nanoparticles are smart transport systems that can carry tumor-targeted
drugs, which are either encapsulated inside a core or fixed onto the surface of the par-
ticles [5,6]. Commonly used nanoparticles, known as efficient carriers of cancer drugs
may include: solid lipid nanoparticles and nanostructured lipid carriers [7], nanoemul-
sions [8], self-assembled nanostructures [9,10], polymeric nanoparticles [11–13], hybrid
protein-inorganic nanoparticles [14], mesoporous silica nanoparticles [15], carbon nan-
otubes [16], and metal-derived nanoparticles [5,17]. Nanocrystals are described as solid
crystallized drugs stabilized in an aqueous dispersion using a suitable surfactant [18,19].

Nanoparticles are used in cancer therapy because they contribute to widening the
therapeutic window of the anticancer drug by increasing its bioavailability and reducing
the risk of systemic toxicological effects attributed to site-specific targeting. In the biomedi-
cal scope, iron oxide nanoparticles are especially promising for targeting strategies [20,21].
Metallic and semiconductor nanoparticles have a major impact on cancer diagnosis and
therapy and inhibit tumor growth. Scientific evidence exists on the great impact of mag-
netic iron oxide nanoparticles in preclinical and clinical research [22], in particular, given
their biodegradable character associated with their potential use in disease imaging and
tracing [21].

2. Physicochemical Characterization

Nanopharmaceuticals require an extensive physicochemical characterization for a
range of properties, to be used in preclinical and clinical studies [23]. The same property
should be evaluated by different techniques as the strengths and limitations of each tech-
nique compromise the choice of the most suitable method, while often a combinatorial
characterization approach is needed [24]. Besides, their characterization needs to be repro-
ducible so that the biomedical uses of nanotherapeutics can be reliable [25]. A selection of
physicochemical methods commonly utilized for the characterization of nanopharmaceuti-
cals is shown in Figure 1.

2.1. X-ray Scattering

XRD diffraction is used to analyze crystalline or polycrystalline materials and can
be considered a primary tool for resolving tertiary structures of crystalline materials on
an atomic scale [26]. In this technique, the sample is exposed to a collimated X-ray beam,
with scattering intensity across parallel atomic planes stacked from the sample at specific
angles. X-ray diffraction can also simply be described as the reflection of a collimated beam
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of X-rays incident on the crystalline planes of a sample examined according to Bragg’s
law [27].
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This technique is the main one used to assess the crystallinity of drugs, carriers,
and excipients. It is also able to identify the crystalline phases of contaminants in drug
synthesis processes. In contrast to XRD, whose applications are limited to crystalline
materials, Small-Angle X-ray Scattering (SAXS) provides information of various charac-
teristics (e.g., particles’ size, shape, surface-to-volume ratio, distribution) by examining
crystalline or amorphous polymer materials, proteins to nanomaterials [28]. SAXS has been
widely explored as a powerful technique for investigating material structures in length
scales ranging from 1 to 100 nm [29]. In this method, a portion of an incident X-ray beam,
elastically dispersed from the sample forms a scattering pattern on an X-ray detector in
the two-dimensional plane, perpendicular to the direction of the incident X-ray beam. By
analyzing the intensity of the scattered X-ray collected within the scattering angle, SAXS
can assess the distribution, size, shape, orientation, and structure of a variety of polymers
and systems of bio-conjugated nanomaterials in solution [30]. It can also be separated
into two techniques, depending on the nature of the radiation employed: small-angle
neutron scattering and small-angle light scattering [31]. The features of angle dispersion
in SAXS lead to the ability to study structures that are not repeated. Thus, perfect crystal-
lized structures are not necessary, which simplifies sample preparation and makes SAXS a
non-destructive method.

2.2. Dynamic Light Scattering (DLS)

This technique is based on two factors: Brownian motion and light scattering [32].
Brownian motion is defined as the random movement of solid particles in a fluid, liquid or
gas, as a result of interactions between all atoms present in the same fluid. It has a direct
proportionality relationship with temperature and an inverse proportionality relationship
with the particle diameter and viscosity [33]. In the DLS technique, the particles are
illuminated by a laser causing the light to be scattered. Then, fluctuations in scattered light
intensity are measured at various angles, which are much faster when the particles are
small in size. The correlation function indicates how long a particle has been in the same
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position [34]. This also depends on the size of the particles, the smaller, the greater the
speed of movement and, therefore, a faster decay of function [29]. Through the Stokes-
Einstein equation it is possible to calculate the effective/hydrodynamic diameter of the
particles in thermal equilibrium with the solvent (Equation (1)):

d(H) = kT/3ΠηD, (1)

where d means hydrodynamic diameter, D is the translational diffusion coefficient (ob-
tained through the correlation function), K is Boltzmann’s constant, T means a temperature,
and η describes viscosity.

2.3. Static Light Scattering (SLS)

In static light scattering (SLS), the intensity of detected light is averaged over time,
which provides information on the particles’ molecular weight as well as their gyration
radius (Rg) [35]. The technique can be further developed through a simultaneous collection
of data from multiple angles and allows insight into the scattering as a function of time
and is termed multi-angle light scattering (MALS) [36,37]. This rendered it useful in
combination with gel permeation chromatography (GPC) allowing characterization of
macromolecular materials after their elution from the size exclusion columns [38].

2.4. Zeta Potential (ZP) and Electrophoresis Light Scattering (ELS)

The surface electrical charge on the shear surface is called the Zeta Potential (ZP),
which is usually determined by measuring the velocity of the charged species towards
the electrode in the presence of an external electric field in the sample solution, being
a fundamental characteristic of the particle that can be quickly measured using light
scattering techniques [29]. In an ionic solution, the surface of a charged particle is firmly
attached to charged ions oppositely, forming a thin liquid layer called the ‘Stern layer’. This
layer is surrounded by another one, this time diffuse and more external, which is made up
of weakly associated ions [39]. The combination of these two layers results in the so-called
double electrical layer. The double electric layer contains mobile ions and counter ions and
this is associated with the sliding plane i.e., the imaginary plane that separates immobile
ions on the surface from mobile ions. In most cases, the Stern layer and the sliding plane
are close to each other [40].

Ψδ can be approximated with the ZP [41]. Thus, the zeta potential is the difference
between the electrical potential on the shear surface of the particle and the electrical
potential of the solution, which can be determined by assessing the velocity of charged
species moving towards the electrode, in the presence of an external electric field through
the sample solution. According to the three-layer model, the variation of the potential as
a function of the distance shows first a linear decrease through the stern layer and then
a second linear decrease until the sliding plane. Finally, it shows an exponential decay
related to the ZP [41].

The zeta potential measurements provide an accurate analysis of the electronic state of
the surface of the nanoparticles, and the data obtained can be used to predict their stability.
The instability can result from the interaction between nanoparticles with either excess or
insufficient load, leading to the formation of aggregates. The ZP with a value of ±30 mV
and is generally chosen to infer the stability of the particles, whereby an absolute value
higher than ±30 mV indicates a stable condition, while a low ZP value less than ±30 mV
indicates a condition instability (favoring aggregation, coagulation, and flocculation) [23].
Notably, a cost-effective polymeric device has been fabricated recently, that allows size and
surface charge characterization of different nanoparticles in salt gradient [42].

Light scattering techniques, such as Electrophoresis Light Scattering (ELS), are cur-
rently used to determine the zeta potential. It can simultaneously measure the velocities
of many charged particles loaded in liquid. Despite being widely used, there is the possi-
bility of decreasing precision and reproducibility of the technique due to electro-osmotic
effects [43,44]. Although measuring the ZP of particles in suspension after dilution reduces
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the difficulty of penetrating light into the sample solution, it is important to note that the
zeta potential is a property sensitive to environmental changes, including pH and ionic
strength [45].

2.5. Scanning Electron Microscopy (SEM)

The scanning electron microscope generates images through the interaction of an
electron beam with the sample surface, which is then reflected, using the vacuum as
a propagation medium [41]. A three-dimensional image is generated. There are two
important phenomena during the emission of electrons: the process of elastic spreading
and the process of non-elastic spreading, in which the difference is the conservation of
energy by the electrons [25]. This entire procedure can be applied to nanomaterials and
sample preparation is a simple procedure.

2.6. Transmission Electron Microscopy (TEM)

A transmission electron microscope is widely used for the characterization of nanoma-
terials and the image is formed due to the passage of electrons through the sample, allowing
us to observe the internal structure [41]. Unlike SEM, sample preparation is complex and
time-consuming, which is a disadvantage. One can, however, gain detailed information
that is unavailable or limited with the SEM technique, such as complex morphologies or
size distribution of the nanoparticle system. The propagation medium is the vacuum and
the image appears in a light or dark field [46].

TEM has a spatial resolution power superior to SEM due to the use of electron beams
with high voltage, which may destroy the sample [25]. Another disadvantage of this
method is the necessary use of a fine sample so that the electrons can pass through it,
usually with a thickness less than 50 nm. This method is widely used for the analysis and
study of drug-loaded nanoparticles since it allows the detection of the structure of the
nanoparticles after the integration of an active ingredient [46].

2.7. Scanning Probe Microscopies (SPM)
2.7.1. Atomic Force Microscopy (AFM)

Atomic force microscopy (AFM) is a technique that allows obtaining real images, in
three dimensions, of the topography of surfaces, with a spatial resolution that approximates
atomic dimensions [47]. It does not require measurement of electrically conductive surfaces
and is a Scanning Probe Microscopy (SPM) imaging tool consisting of a micro-machined
cantilever (usually made of silicon or silicon nitride) with a sharp tip at one end to detect
the reflection of the cantilever [48].

In AFM, the sample surface is scanned using a force-sensitive probe, which consists of
a tip with atomic dimensions integrated into a moving arm [49]. As the tip approaches the
surface, the atoms at the tip interact with the atoms and molecules on the material’s surface,
causing the arm to deflect. This deflection of the AFM arm is measured by changing the
direction of a laser beam, the reflected laser beam being captured by a slit photodetector.
The AFM probe follows the contours of the surface. During the tip’s displacement across
the surface, the computer analyzes, at each position on the surface, the interaction force
between the AFM tip and the sample and draws a diagram of the heights, building the
topography of the molecule [50]. During the sweeping of the sample, the AFM arm
maintains the oscillatory movement, touching the sample only once in each oscillation
cycle, decreasing the interaction with the surface and minimizing the damage caused to
biological samples. The biological molecules must be immobilized on the surface of a
very flat solid substrate, with atomic resolution, for example, the highly oriented pyrolytic
graphite (HOPG) substrate. However, the DNA molecules interact weakly with the surface
of the HOPG substrate and the AFM tip tends to clean the surface, sweeping the adsorbed
molecules to the edges of the graphite substrate steps [51].
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2.7.2. Scanning Tunneling Microscopy (STM) and Scanning Tunneling Spectroscopy (STS)

Scanning Tunneling Microscopy (STM) represents a technique that allows one to
reach an atomic resolution (room temperature: ca. 1 A and ca. 0.01–0.03 A of lateral and
vertical resolution, respectively) at flat, conducting surfaces [52,53]. It operates based on
the quantum tunneling phenomenon and due to that the local density of electronic states
(LDOS) and electronic properties of the nanoparticle system can be established through
Scanning Tunneling Spectroscopy (STS) [54]. Changes in the tunneling current that is
generated between the STM tip and the surface of the material allow for the investigation
of the latter’s morphology, all controlled by the piezoelectric scanner with the angstrom-
resolution [55]. These render those techniques to be of choice for studying the applicative
potential of various conducting NPs in nanodevices and electronic applications. The latter
has been reviewed by Majima and co-workers (2015) [56], highlighting novel functions
related to the nature of conductive NPs. Both STM and STS techniques used for the
characterization of NPs are shown in Figure 2.
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Applications of biological materials are somewhat limited by the poor electron con-
ductivity of most biological samples [57], nonetheless, recent advances allowed e.g., the
determination of the spatial structure of polysaccharides using STM technique [58].

2.8. Porosimetry

Porosimetry is a method used for the characterization of porous materials and allows
the determination of the surface area, volume and pore size of a given sample. The pores
are categorized into groups according to their dimensions, namely, macropores (if larger
than 50 nm), mesopores (if between 5 nm and 50 nm), and micropores (if smaller than
2 nm) [59].

Porosimetry is widely used in the pharmaceutical area, for example, to determine the
life span usefulness of a drug, its bioavailability as well as its rate of dissolution. Recently,
it has been of particular importance within the field of various 3D porous materials, such
as Metal-Organic-Frameworks (MOFs) and Covalent Organic Frameworks (COFs) [60].
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2.9. Differential Scanning Calorimetry (DSC) and Thermogravimetric Analysis (TGA)

Thermal analyses such as Differential Scanning Calorimetry (DSC) and Thermogravi-
metric Analysis (TGA) are very often successfully employed for the characterization of
nanomaterials of different compositions [61–63]. Calorimetry assesses a sample through
changes in enthalpy, that is, through temperature. Temperature changes involve energy
release or absorption that give rise to endothermic and exothermic signals. An example is
a transition from the crystalline phase to the amorphous phase, which requires high energy
absorption. However, processes that involve small energy differences, so it is necessary to
ensure that the device has a high sensitivity [29]. In the pharmaceutical area, it is widely
used to determine the degree of purity, the change of form of the compounds with the
change in temperature, the stability of the sample as well as its melting point [64]. In
TGA, the material is heated at a specific temperature, followed by monitoring of the mass
changes. Consequently, the mass of the studied sample will increase or decrease, providing
information on the physicochemical changes in the structure and/or composition of the
compound under study. Most often, one would observe desorption or vaporization of
small molecules (water, solvent, etc.) or oxidation/decomposition, depending on the
inherent properties of the compound and the combusting atmosphere (oxygen, inert gas,
etc.) [65]. In combination with DSC or other techniques such as infrared spectroscopy, mass
spectrometry, or gas chromatography-mass spectrometry a comprehensive evaluation of
the thermal characteristic of nanomaterials is possible [66].

2.10. Fluorescence Spectroscopy

Fluorescence correlation spectroscopy provides images based on the fluorescent light
emitted by a fluorophore. It encompasses changes in fluorescence intensity that occur over
time. This method uses nanomolar sample concentrations or lower, so it is a very sensitive
technique and through this, we can obtain information on diffusion coefficient, hydro-
dynamic radius, concentration, dynamics of singlet-triplet states, and kinetic chemical
reaction rate [67].

It is being widely applied in the area of bioassays and biophysics, particularly in vivo
applications, due to its limited invasiveness. To overcome limitations of the technique such
as high signal-to-noise ratios and longtime traces, an alternative framework that shortens
the latter one has been designed recently [68].

2.11. Raman and Infrared Spectroscopy

Raman and infrared spectroscopies are widely used methods for the structural charac-
terization of nanoparticles and use the interaction of light with matter to determine the
composition of a material [69]. The information provided by Raman spectroscopy is the
result of a light diffusion process, while infra-red (IR) spectroscopy is done by absorbing
light. The obtained spectra, which are typical of a given substance, are important for its
identification of a substance [70]. The principle of Raman’s spectroscopy is to measure
the inelastic dispersion of photons that have different frequencies than incident light after
interacting with the molecule’s electrical dipoles [71]. This process then results from fre-
quency differences between incident photons and scattered photons inelastically associated
with the characteristics of molecular vibrational states. It will thus investigate changes
in the polarizability of molecular bonds. Inelastically dispersed photons emit lower fre-
quencies than incident photons. Thus, there are Stokes lines and anti-Stokes lines [72].
Molecular bonds have specific energy transitions in which a change in polarizability occurs,
giving rise to the active modes in Raman. Raman spectroscopy is generally considered
complementary to infrared spectroscopy, that is, the vibrational modes active by Raman
must be inactive by infrared and vice versa, for small symmetrical molecules, because
Raman’s transitions result from the nuclear movement that modulates the polarization of
the molecules, rather than the net change in the dipole moment of the molecules [72]. One
of the main advantages is being suitable for the study of biological samples in aqueous
solution because the water molecules tend to be weak Raman dispersers, in addition, the
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detailed molecular information offered by this type of spectroscopy can be used to investi-
gate conformations and concentrations of tissue constituents. While it has the advantages
of providing an indirect characterization of nanomaterials, such as average size and size
distribution through the analysis of the widening and displacement of the spectral line,
it “fails” with regard to the spatial resolution necessary to outline different domains for
application in nanotechnology. Other disadvantages are fluorescence interference and
extremely small crossings, requiring intense laser excitation and a large number of samples
to provide sufficient signals [73].

Electromagnetic radiation in the infrared (IR) frequency range is absorbed by molecules,
and this promotes vibrational transitions, associated with stretching and twisting connec-
tions [73]. Stretch or axial deformations occur when the deformation occurs in the direction
of the molecule’s axis causing the interatomic distance to alternately increase and decrease.
As for torsional or angular deformations, a group of atoms moves in relation to the rest of
the molecule, without changing the positions of the atoms in the group. The IR spectrum
thus allows us to study the structure of several molecules. Fourier Transform Infrared
(FTIR) and Attenuated Total Reflection Fourier Transform Infrared (ATR-FTIR) spectro-
scopies are widely used today and one of their great advantages is that they can be applied
to nanoparticles. The second method allows the study of the sample’s surface composition,
as well as all changes that occur in it [74].

2.12. Circular Dichroism (CD)

Circular dichroism is a spectrophotometric method applied for optically active sys-
tems, based on differentiated absorption of clockwise and counterclockwise polarized
light. The light absorbed in each of the directions is different, and this technique mea-
sures, precisely, that difference in absorption between the circularly polarized light on
the right (RCP) and the left (LCP) through chromophores in optically active chiral sub-
stances [75]. In linearly polarized light, the electromagnetic wave oscillates in only one
plane, whereas in circularly polarized light it occurs in two planes [76]. When overlapping,
RCP and LCP, originate a linearly polarized wave. An overview of the technique within
the pharmaceutical applications of NPs has been given recently [77].

Spaeth et al. (2019) [78] have recently introduced the concept of photothermal circular
dichroism, allowing one to achieve a superior signal-to-noise ratio for the detection of
chiral nano-object. The chiral response of single plasmonic nanostructures with CD in the
visible range was demonstrated for the first time, extending CD studies to individual NPs
and significantly improving the conventional CD spectroscopy.

2.13. Nuclear Magnetic Resonance (NMR)

Nuclear magnetic resonance is used to identify the connectivity of atoms in a
molecule [65]. The sample is placed in a constant magnetic field, is irradiated with a
short radiofrequency pulse that excites all nuclei in different environments, at once. The
proton nuclei (1H), carbon-13 (13C), and some other elements and isotopes behave like
small magnets, which when placed in an external magnetic field and irradiated with energy
in the radio frequency range, absorb energy at frequencies modulated by its chemical envi-
ronment [79]. The proton spin represents the possible orientations that charged particles
and some nuclei can present when subjected to a magnetic field and acts as a magnetic
bar. The common hydrogen nucleus is like an electron, its spin is 1

2 and can assume two
states: + 1

2 and - 1
2 , which means that the hydrogen nucleus has two magnetic moments [80].

Nuclei that do not have a spin, such as 12C, do not respond to an external magnetic field. It
can be used as a nanoparticle characterization technique since it allows determining the
structure, size, purity, functionality, and conformational changes resulting from the interac-
tions that occur between them. NMR is a non-invasive technique with reduced sensitivity,
which implies the use of a large amount of sample [81]. Over time, the “high-resolution
magic angle spinning (HR-MAS) NMR” method has been adopted, a technique with great
potential for the characterization of living tissue samples. One of the advantages of this
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method over conventional NMR is that after obtaining the spectrum, the tissue sample
remains intact [80].

2.14. Mass Spectrometry (MS)

Mass spectrometry involves the production and detection of entities of different mass
to charge ratios, resulting in an ionic mass-ionic abundance spectrum. It is a method used
to identify and quantify compounds in a complex organic mixture, identify structures
of biomolecules, determine how drugs are used by the body, among others [82]. It has
a high specificity as it can measure molecular masses accurately and provide structural
information from ion fragments. It can be applied to all types of samples regardless of the
state, polarity, or volatility. It has also high sensitivity. This method is characterized by two
steps [83]:

(a) Ionization—the molecule is bombarded by a high-energy electron beam,
(b) Fragmentation—occurs when excess vibrational energy is transferred to the molecular

ion, with a process of scission of the bonds that hold the molecule together causing
fragmentation. This technique can be used to determine the molecular weight, the
atomic composition and the structural blocks observed through fragmentation [83].

2.15. Rheology

Rheology, derived from the Greek word “Rheo” means flow, is the science that studies
deformation and the movement of matter and is directly related to viscosity. All fluids have
some viscosity, that is, they offer resistance to movement, applying tangential forces to
surfaces in contact with it, thus counteracting movement. Viscosity is directly proportional
to the size and polarity of the molecules. Another important factor for the study of
viscosity is the temperature that is directly proportional to the viscosity in liquids and
inversely proportional in gaseous fluids. Fluids can also be divided into two major groups:
Newtonian and non-Newtonian fluids. The difference lies in the fact that the former has a
linear relationship between the shear stress and the strain rate, and the latter a non-linear
relationship [84].

3. Effect of Physicochemical Properties on Nanopharmaceuticals Performance
3.1. Size

The most effective nanopharmaceuticals should have a size between 1–100 nm [85],
although nanoparticles’ size may generally range from 1 to 1000 nm, as shown in Figure 3.
This physical property interferes with the delivery of the active ingredient and its bioavail-
ability, at various levels. This type of structure has numerous advantages, such as protection
against its degradation in a physiological environment, controlled release of the active
principle via targeted manner, in addition to allowing the administration of hydrophobic
drugs in aqueous media [86]. It can reduce possible side effects, they also influence the
absorption, distribution, metabolism, and elimination of the drug. However, we must
take into account the risk of nanotoxicity, commonly associated not only with the type of
nanoparticle but also with their size and size distribution [87].

3.2. Surface Properties

Neutral or negatively charged, and hydrophilic particles tend to promote permeability
and retention. They are usually coated with a “stealthing agent”, such as polyethylene
glycol (PEG) [88,89]. PEG has adequate resistance to adsorption by proteins and subse-
quent phagocytic activity. The density of PEG needed to promote resistance to proteins
and blood circulation varies greatly with the type of nanodrug. Normally, immuno-
logical or metallic particles require a larger PEG surface compared to other more inert
particles. To deliver the drug well-targeted, the nanoparticles can be coated with spe-
cific ligands for certain receptors on the affected cells [89]. One has to bear in mind that
although PEGs are FDA approved, prolonged contact through consumption or drug ad-
ministration can lead to the formation of the anti-PEG antibodies, resulting in sometimes
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severe, allergy-based immune system responses [90]. A series of alternative, PEG-related
compounds was recently reviewed [90,91] e.g., poly-(acrylamides)/(carbonates)/(amino
acids)/(glycerols)/(N-vinylpyrrolidone) or zwitterionic polymers, nonetheless, the PEG-
immunization problem should be considered serious [92].
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3.3. Passive versus Active Targeting

The ability of nanoparticles to focus on the action site is achieved by balancing passive
versus active targeting [93,94]. In passive targeting, the successful delivery of the drug is
directly related to the circulation time of the particles [95]. This is achieved by wrapping
the nanoparticles with a type of coating. As mentioned above, many are coated with PEG.
By adding PEG to the surface of the nanoparticle, they become hydrophilic [96]. This
process makes the substance antiphagocytic, due to natural hydrophobic interactions of the
endoplasmic reticulum. The active targeting is based on improving the effects of passive
targeting, making the nanodrug specific to a site of action [97]. This active targeting can be
achieved by knowing the nature of the target cell’s receptors, and then the specific ligands
that allow the connection to its complementary receptor can be used [98]. After ligation,
mediated endocytosis may occur. Most of the body has a consistent pH, but there are areas
more acidic than others, and we can take advantage of this parameter; another feature
is the redox potential. If we combine passive and active targeting, the nanodrug has a
great advantage over conventional drugs [95]. Although there are so many advantages,
such as the reduction of side effects, the area of nanotoxicology is a growing field of study
that is concerned with harmful effects on health and the environment [99]. The most
important features of nanoparticles towards their successful implementation for healthcare
applications are shown in Figure 4.
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the implementation process for nanoparticles: 1—controlled drug release; 2—microscope analysis
(SEM, TEM, SPM); 3—particle size analysis (DLS, SLS, ZP); 4—assessment of the surface properties;
5—evaluation of passive/active drug targeting.

4. Cancer Nanopharmaceuticals

The concept of cancer immunotherapy is based on the use of the host immune system
to control the growth of tumors. It has great potential to treat and prevent the recurrence of
cancer [100]. Demonstrated successes in clinical trials are not only a motivation for further
studies but also a bridge towards the real-life application of these methods for health
care [101]. Despite that, however, most challenges that remain to be solved revolve around
the suitable delivery methods, combined with conventional treatment as well as prediction
and online evaluation of the triggered immune responses [102]. To overcome those, one
needs to understand the cancer immunity cycle, so that the death-induced release of the
cancer cell antigens does not harm the normal cells.

The overall process starts with the release of the cancer cell neoantigens and is finished
upon the death of the cancerous cell, which is summarized above (Figure 5) and is divided
into 7 stages as detailed by Chen and Mellman [103]. At the start, either neoantigens may be
presented to the immune system by the cancer cell themselves via Major Histocompatibility
Complex class I (MHC-I), or release of the neoantigens may occur via Immune system
independent tumor cell death or even in the absence of tumor cell death (1). Released
neoantigen is captured by the tissue antigen-presenting dendritic cells (APCs). These cells
then become activated, and while processing the antigen, migrate via lymphatic circulation
to regional lymph nodes where they presented the processed antigen to T-cells via MHC-II
(2) leading to neoantigen-specific T cell activation (3). Activated T-cells migrate from
lymph nodes via the blood circulation (4) and recognize inflammatory response modified
endothelial cells in the tumor tissue (5) adhere and permeate it. Specific MHC bound tumor
neoantigen peptides are then recognized by the unique T-cell-Receptor (TCR) [104] of these
anti-tumor cells (6) allowing for tumor cell-specific killing (6) which propagates the cycle
as phagocytic dendritic cells and/or macrophages take up the released cancer cell antigens
in the process of clearing apoptotic cell debris. The response is thus amplified at each
cycle [105].
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For effective cancer therapy, it is necessary to improve and develop new strategies for
the effective delivery of chemotherapy to cancer cells [106]. Conventional chemotherapeutic
agents accumulate in both normal and tumor cells, due to non-specificity. The ultimate
goal of cancer therapy is to reduce systemic toxicity and improve quality of life [107]. As
such, we now describe four methods of altering different steps of the cancer-cell immunity
cycle, with the improved resulting nanotherapeutic outcomes.

4.1. Ligand/Receptor Targeting

Ligand/receptor targeting has proven to be an effective method for drug
delivery [108,109]. To improve effectiveness, chemotherapeutic agents need to be ad-
ministered into the cytoplasm of cellular tumor cells, or into subcellular organelles such as
the nucleus and mitochondria [110]. If a linker is involved, a stable covalent bond forma-
tion is essential between the linker/receptor and the drug. However, the mechanism of
drug release at the tumor site is crucial [111]. The premature release can result in systemic
toxicity. The tumor’s target ligands are being explored to target metastatic cells and block
their migration and invasion [112].

Drug delivery can be classified as active and passive [93]: passive aiming explores the
systemic and lymphatic systems in tumor architecture, which is known as the enhanced
permeability and retention (EPR) effect [113]. The effect of nanoparticle size, charge, and
PEGylation on the EPR has been already reviewed [114]. The active target includes ligand-
mediated drug delivery. These ligands can be conjugated covalently with an active agent or
on the surface of a carrier system, such as nanoparticles, liposomes, or nanomicelles [115].
These ligand groups can recognize certain surface molecules that are overexpressed by
cancer cells, contrary to the normal cells, where they are absent [116]. There are several
targeting strategies for administering anticancer drugs [117], (some of) the most promis-
ing/widely studied approaches are described below.

4.1.1. Small Molecule Receptors for Lectin and Foliates

Carbohydrates were recognized to be effective agents to interact with lectin mem-
brane proteins, thus triggering lectin-mediated endocytosis. Expression of Galectin-3, a
galactose-binding lectin, correlates with the proliferation of colon cancer cells, and there-
fore utilization of therapeutics with appended-sugar moieties can be envisaged [118,119].
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Indeed, Rubinstein and co-workers demonstrated that from the studied copolymer conju-
gates of N-(2-hydroxypropyl)methacrylamide with appended lactose and galactosamine
sugars, the latter one exhibited significant binding towards the colon adenocarcinoma [120].
Recently, a series of bottlebrush glycopolymers were synthesized via the Cu-mediated atom
transfer radical polymerization (ATRP) process, with mannose-moiety appended through
the grafting-from methodology, which could find applications as drug-encapsulation and
delivery systems with strong lectin-binding features [121].

Another important receptor associated with the cancerous activity is the targeting of
the folic acid receptor, which is overexpressed in some cancer cells [122–125]. The folate
receptor has been considered of particular importance for ovarian and lung cancer and
utilization of NPs within this domain was reviewed some time ago [126]. Tatsuya et al.
(2017) described the preclinical models of porphysomes (porphyrin-lipid nanoparticles)
targeted to folate receptor 1 (FOLR1) for enhancement of the efficiency and specificity of
photodynamic therapy (PDT) [127]. The intracellular uptake of NPs was observed in vitro
and corresponded with the expression of folate receptors in lung cancer cell lines.

4.1.2. Drug Antibody Conjugates

These systems are highly specific and are used as decorative moieties onto various
NP systems for targeting transmembrane glycoproteins named epidermal growth fac-
tor receptors (EGFR) [128]. Some antibody conjugates have been marketed for cancer
nanotherapeutics, such as brentuximab vedotin (Adcetris®) and emtansine trastuzumab
(Kadcyla®). The latter one as well as cetuximab can target cancer cells with EGFR and
tyrosine kinase receptor (HER-2), which are overexpressed in cancer cells, particularly in
breast tumors [7,129]. Currently, most antibody conjugates are in different stages of clinical
trials but some are still in the early stages of development [130].

4.1.3. Aptamers

These macromolecules are isolated from DNA or RNA that bind to proteins and pep-
tides with high specificity and affinity [131]. Aptamers recognize several targets ranging
from small molecules to macromolecules, so they are used in therapeutic and diagnostic ap-
plications [132,133]. They are highly resilient towards tissue and blood nucleases and can be
readily functionalized at the carbohydrate backbone or free 3′amino-groups to enhance their
efficacy or influence other biological characteristics [134]. Aptamer-based supramolecular
nanotheragnostics have been reviewer recently, with effective aptamer–receptor binding
attributed to a combination of non-covalent, supramolecular interactions (e.g., H-bonding,
π–π interactions, and van der Waals forces) [135]. Several studies have shown that they
minimize systemic toxicity and increase drug release at the tumor site [136]. As for 2016,
there were three aptamers used in ophthalmology, including one FDA-approved (US Food
and Drug Administration) drug pegaptanib (Macugen), and two in late-stage development
(ACR-1905 and E-10030) [137,138].

4.1.4. siRNA

The surface of calcium carbonate nanoparticles coated with siRNA was shown effec-
tive in the suppression of vascular endothelial growth factor C (VEGF-C) in gastric tu-
mors [139,140]. Likewise, the surface-modified nanoparticles generated greater transfection
efficiency in the human gastric cell line (SGC-7901) compared to the blank non-conjugated
nanoparticles [141].

In vivo studies suggest that calcium carbonate nanoparticles combined with siRNA
may inhibit the growth of cancer cells [139]. On the other hand, targeted administration
of anti CD47 siRNA conjugated to liposomal protamine hyaluronic nanoparticles (LPH-
NPs) to lung cancer cells significantly inhibited cancer metastasis (~27%), suggesting that
administration of active siRNA is highly effective [142].



Cancers 2021, 13, 1896 14 of 38

4.1.5. Peptides

Peptides enhance the anti-angiogenic effect and can be targeted as anti-angiogenic
agents for tumors [143]. A phage display peptide library series has been screened in
general to identify peptides with a high affinity for cancer cells [144]. The improvement of
the EPR effect due to hypervascularity, poorly differentiated vasculature, and ineffective
lymphatic drainage is the main responsible for the development of weak, fragile, and
leaking vasculature [145]. Such a passive target explores the systemic and lymphatic
systems in the tumor architecture. Certain aggressive tumors can develop a pore from
100 to 800 nm due to neovascularization [146]. Nanometer-sized drug carriers can take
advantage of these pores and accumulate at the tumor site due to the EPR effect. There
are reports that small particles (20 nm–100 nm) with superficial pegylation can prolong
circulation. Such carrier properties can assist in a greater accumulation of particles at the
tumor site and increase diffusion within the target tissues [89,96,147].

4.1.6. Cell-Penetrating Peptide (CPP) and Transferrin (Tf)

CPP can serve as an effective ligand for cancer therapy. CPPs are generally com-
posed of 5 to 30 amino acids, basic or amphiphilic, and efficiently translocate the plasma
membrane, and can assist in the translocation of drugs across the cell membrane [148].

Transferrin (Tf), a protein that regulates the iron uptake, can also be a targeting
molecule for therapeutic genes and/or drugs related to the treatment and diagnosis of
cancer [13,149,150]. The binding of Tf with nanoparticles resulted in systems that target
transferrin receptors in cancerous cells and enable nanotherapeutics with enhanced selec-
tivity and safety. Clark and Davis [151] have shown how Tf-appended NPs can effectively
cross the blood-brain barrier and release the therapeutic nanoparticles in the brain, hitherto
restricted by the endothelium. Tf coupled with copper nanoclusters and doxorubicin (DOX)
was exploited for bioimaging and target drug delivery [152]. Such formed nanoparticles
were evaluated in vivo and confirmed pronounced inhibition of tumor growth in mice
using the Dalton Lymphoma ascites (DLA) model. Soe et al. (2019) demonstrated on
the other hand how one can improve the DOX delivery via utilization of the polymeric
nanoparticles for the Doxorubicin-Resistant breast cancer cells [153].

4.2. Intracellular Targeting

The most effective technique for targeting tumor cells is to target DNA-inhibiting drug
molecules to cancer cell nuclei [146]. The nuclear target not only mainly causes tumor cell
death, but also minimizes damage to surrounding normal cells [154]. The main problem
with such targeting is to avoid translocation of active agents into endosomal or lysosomal
vesicles [155,156]. The drug delivery mechanism requires active molecules to escape subcel-
lular cytoplasmic vesicles and translocate them to nuclei. Cancer cells develop mechanisms
of intracellular resistance, such as overexpression of drug efflux pumps, metabolism, and
sequestration in acidic compartments, and deactivation [157]. There are two strategies for
drug transport: direct nuclear targeting (drug molecules are transported to the cytosol in large
quantities, subsequently allowing the capture of nuclear DNA) and indirect nuclear targeting
(nanotransporters transport molecules to cancer cells through the cell membrane to the cytosol
and finally are located in the nuclei where the active molecules can be released) [158].

The main barrier to the supply of nuclear drugs to mammalian cells is the plasma
membrane that restricts the passage of large and charged hydrophilic molecules, causing
the large nanotransporters to be carried by different endocytotic mechanisms into the
cell [159]. Nuclear membrane and nuclear transport are other selective barriers in eukary-
otes. The nuclear envelope involves the nucleus and separates the nucleoplasm and the
genetic material from the cytoplasm. It includes nuclear pore complexes (NPC) through
which the exchange of molecules occurs [160,161]. Each individual NPC translates approxi-
mately 1000 proteins per second in a bidirectional manner. Large molecules are transported
via target signals to enter or leave the nucleus, on the other hand, small molecules pass
through the NPC by passive diffusion [144,160].
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Four major targeted nuclear delivery systems have been studied extensively: (i) NLS-
mediated delivery system; (ii) TAT, a combined nuclear delivery system; (iii) Delivery
system based on cationic polymers; (iv) Load inversion approach with triggered pH. In
comparison with conventional chemotherapy that can cause high toxicity due to lack of
specificity, gene therapy offers a unique and powerful approach to fight cancer [162]. It
works at a molecular level, in which genetic materials or functional genes are inserted into
patients’ cells to repair or replace defective genes [163].

Gene delivery methods were developed for gene therapy, which can generally be
divided into two categories, viral and non-viral delivery systems [162,164].

Viral vector: Viruses are microscopic infectious agents that can replicate in living cells.
Researchers have used viruses to deliver therapeutic genes to cell nuclei due to their high
transfection efficiency, ability to penetrate, express, and replicate in host cells. To use the
virus as a vector, it is necessary to remove the pathogenic part of the viral genes and replace
them with therapeutic genes. The remaining non-pathogenic segments of the virus carry
the therapeutic gene that constitutes the viral vector [165].

Non-viral: Many non-viral systems have been investigated for gene delivery, includ-
ing DNA injection or physical methods, such as electroporation [164].

4.3. Immunotherapy

Immunotherapy is a type of biological therapy, which it involves increasing the
effectiveness of the human immune system to prevent the proliferation of tumor cells
or their elimination [166]. There are 3 main types of immunotherapy for the treatment
of cancer, i.e., non-specific immune stimulation, T-cell transfer therapy, and checkpoint
inhibitory therapy [167]. Non-specific immune stimulation occurs by stimulating non-
specific immune mechanisms of action. These mechanisms are physical barriers (e.g., skin),
chemical barriers (e.g., stomach acidic pH), complement system (biochemical cascade that
attacks the surface of invading cells), cellular barriers (e.g., macrophages), and increased
production of interleukins or interferons [168]. T-lymphocyte transfer therapy is based
on obtaining T lymphocytes from the patient, which are cloned in vitro, and transferred
back to the patient [169]. In the T lymphocyte, a gene is inserted that encodes a receptor,
which recognizes a specific antigen of the tumor cells. These T lymphocytes bind to tumor
cells and destroyed them [170]. Checkpoint inhibitor therapy, which is a fundamental
regulator of the immune system, can be used to sustain an immune response. Some types
of tumors can protect themselves from the host’s immune system by stimulating these
checkpoints [171]. In this therapy, the inhibitors of these checkpoints act, restoring the
immune system to function properly. Examples of inhibitors: CTLA-4; PD-1 and PD-L1.
PD-L1 is the ligand for the programmed death transmembrane protein PD-1. When PD-L1
(in the tumor cell) binds to PD-1 (in the T lymphocyte), there is inhibition of immunological
activity [172]. If antibodies bind, either PD-1 or PD-L1, they block the interaction [173].
Thus, the T lymphocyte is not inhibited and can attack the tumor cell.

4.4. Controlled-Release Strategies

The administration of nanotherapeutics is convenient in that it fights breaks in conven-
tional administration. Delivery takes place in specific parts of the body, without affecting
healthy tissues mainly by the type of nanomaterial [86]. These nanomaterials are cus-
tomized in such a way to increase their selectivity and accumulation in tumors by the EPR
effect [113,174]. There are two distinct groups of nanomaterials, inorganic and organic.

4.4.1. Inorganic Nanomaterials

Quantum Dots (QDs) work as probes that allow obtaining complex and long-term
images, and diagnostics [175]. They are fluorescent 0-D (Zero Dimension) nanoparticles
used in drug delivery and allow in vivo monitoring. It has disadvantages such as the fact
that they are hydrophobic and tend to aggregate, so it has to be coated with a layer of
ligands so that they become soluble [176].
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Carbon Nanotubes (CNTs) are 1-D (One Dimension) nanomaterials that increase
the temperature of the tumor making it noticeable by methods of Infrared radiation and
thermal photography [177]. Biological membranes pass easily and transport molecules to
the cytoplasm without toxic effects [178].

Layered Double Hydroxides (LDHs) can exchange anions, it is low cost and easy to
prepare, easily penetrates cell membranes, and is easily expelled by endosomes. They consist of
layers of divalent metal ions with a substituted trivalent metal to provide positive charges [179].

Mesoporous silica nanoparticles (MSNs) have recognized excellent structural prop-
erties, among which high surface area, large pore volume, narrow pore size distribution,
or tunable pore diameter can be highlighted. Based on the silica and surfactant content,
several forms of MSNs can be produced, including the most common types, such as Mobil
Composition of Matter No. 41 (MCM-41) and Santa Barbara Amorphous-15 (SBA-15) [180].

4.4.2. Organic Nanomaterials

Polymeric nanoparticles (colloidal and biodegradable solids) are easy to produce and
modify structurally, such as changing surface properties. The drug can be encapsulated by
dispersion in the polymeric matrix [12,181].

Liposomes are small and spherical structures with at least one lipid barrier with an
aqueous phase inside. They are biodegradable, can encapsulate hydrophilic substances
(example: hydrophilic drugs; DNA; RNA), and act passively or actively. The main associated
problem is its short duration in the bloodstream [182]. One however has to note that recently
devised and globally administered BioNTech/Pfizer’s and Moderna’s mRNA COVID-19
vaccines utilize lipid nanoparticles as mRNA carriers, demonstrating their utility [183].

Protein nanocarriers (e.g., albumin) can be obtained from several sources. It is not
immunogenic, has a high capacity to bind to various drugs (due to the amine and carboxylic
group on its surface), and has a long life in the circulating plasma [184].

Micelles are spherical or globular colloidal complexes. They are hydrophobic, with a
hydrophilic outer layer. They can be formed spontaneously under certain conditions of
concentration and temperature [185].

All of the described methods towards development of the efficient and safe cancer
nanotherapeutics are schematically shown in Figure 6.
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5. Nanopharmaceuticals-Based Cancer Treatments

The therapy of malignancies is a dynamically developing area of pharmacology.
On the one hand, the novel therapeutic molecules or pharmaceutical formulations are
designed to be the most specific and precisely directed against neoplastic cells [186]. On
the other hand, these modern anti-cancer drugs should not interfere with healthy tissues to
significantly decrease the risk of adverse events. These are the main rules of personalized
medicine in oncology [187].

Nanopharmaceuticals of already known or new therapeutic molecules used for onco-
logical patients’ therapy represent one of the newest solutions fulfilling the criteria of per-
sonalized medicine. These formulations include for example liposomes, dendrimers, poly-
meric micelles, gold nanoparticles, iron oxide nanoparticles, artificial exosomes, nanobub-
bles, silica-based systems, and lipid nanoparticles [188,189].

One of the best examples of how nanoformulations of anti-cancer drugs can improve
therapeutic outcomes in hepatocellular carcinoma (HCC). Unfortunately, a significant
proportion of patients with HCC is diagnosed in an advanced stage of the disease [190].
One of the most frequently recommended therapeutic options in these cases is transcatheter
arterial chemoembolization (TACE) [190]. Different anti-cancer drugs are being used in
TACE chemotherapy. Doxorubicin has been shown to be the most effective molecule in
HCC by inhibiting DNA replication of malignant cells [191]. The main limitations of
doxorubicin use are its toxicity and interactions with the mononuclear macrophage system,
which recognizes the drug and interferes with its pharmacokinetics [191]. To overcome
these obstacles, various forms of PEGylated liposomal doxorubicin have been developed.
In a recent paper by Liao et al. (2020), it has been shown that TACE with raltitrexed
plus liposomal doxorubicin reduced the incidence of adverse events and significantly
improves the overall survival among patients with unresectable HCC [191]. To improve
the specific binding of the drug to hepatocellular neoplastic cells, various approaches have
been proposed, but their use was mainly assessed in vitro studies and animal models.
Lactoferrin binds specifically to asialoglycoprotein receptors on HCC cells [192]. Wei et al.
(2015) showed that doxorubicin-loaded and lactoferrin-modified PEGylated liposomes
loaded with doxorubicin had significantly stronger anti-neoplastic properties. This was
hypothetically due to enhanced cellular uptake of new drug formula when compared
with PEGylated liposomes. Li et al. (2020) presented in their study that dual-ligand-
modified liposomes can improve the delivery of doxorubicin to liver cancer cells [193].
In another study, performed by Wang and colleagues, the authors constructed a novel
form of doxorubicin-loaded immunoliposomes [194]. The rationale for that is a high
expression of HAb18G/CD147 on the surface of HCC cells, which is believed to be a
molecular marker of disease progression. Thus, F(ab’)2 of a CD147 was conjugated to
PEGylated liposomal doxorubicin. The authors were able to demonstrate that this novel
nanoformulation of doxorubicin is highly effective in influencing malignant cells. What
is more, it significantly decreased the number of CD133-positive HCC cells, which are
believed to play a role in HCC stem cells. The superiority of anti-CD147-conjugated
PEGylated liposomal doxorubicin was confirmed both in HCC cells and patient-derived
HCC xenograft models [194].

These and other modifications of liposomal doxorubicin nanoformulations are still
under investigation and hopefully will increase the efficacy and safety of chemotherapy in
patients with advanced HCC.

Available completed or ongoing clinical trials including usage of gene therapy in
cancers were shown in Table 1.
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Table 1. Available clinical trials including usage of gene therapy in cancers as of date 3 April 2021 [ClinicalTrials.gov].

NCT Number Title Status Interventions Phases

NCT00009841
Gene Therapy in Treating

Patients With Advanced Head
and Neck Cancer

Completed

Biological: EGFR antisense DNA
Biological: growth factor

antagonist therapy
Drug: DC-cholesterol liposome

Phase 1

NCT00006033

Interleukin-2 Gene or
Methotrexate in Treating

Patients With Recurrent or
Refractory Stage III or Stage IV

Head and Neck Cancer

Completed
Biological: gene therapy

Biological: interleukin-2 gene
Drug: methotrexate

Phase 2

NCT00059605
Phase I Study of IV DOTAP:

Cholesterol-Fus1 in
Non-Small-Cell Lung Cancer

Completed Genetic: DOTAP:Chol-fus1 Phase 1

NCT00044993

Chemotherapy Combined With
Gene Therapy in Treating

Patients Who Have Stage III or
Stage IV Breast Cancer

Completed

Biological: Ad5CMV-p53 gene
Drug: docetaxel

Drug: doxorubicin
hydrochloride

Procedure: conventional surgery
Procedure: neoadjuvant therapy

Phase 2

NCT04486833

TUSC2-nanoparticles (GPX-001)
and Osimertinib in Patients With

Stage IV Lung Cancer Who
Progressed on

Osimertinib Alone

Not yet recruiting

Biological: Quaratusugene
ozeplasmid—intravenous

infusion
Drug: Osimertinib Oral Tablet

Phase 1|Phase 2

NCT02337985

Gene Therapy and Combination
Chemotherapy in Treating

Patients With AIDS-Related
Non-Hodgkin Lymphoma

Active, not recruiting

Drug: Prednisone
Biological: Rituximab

Drug: Etoposide
Drug: Doxorubicin

Hydrochloride
Drug: Vincristine Sulfate

Drug: Cyclophosphamide
Biological: Filgrastim

Biological: Lentivirus Vector
rHIV7-shI-TAR-CCR5RZ-

transduced Hematopoietic
Stem/Progenitor Cells

Phase 1

NCT01591356
EphA2 siRNA in Treating

Patients With Advanced or
Recurrent Solid Tumors

Recruiting

Drug: EphA2-targeting
DOPC-encapsulated siRNA

Other: Laboratory Biomarker
Analysis

Other: Pharmacological Study

Phase 1

NCT02528682
MiHA-loaded PD-L-silenced DC

Vaccination After
Allogeneic SCT

Completed Biological: MiHA-loaded
PD-L-silenced DC Vaccination Phase 1|Phase 2

NCT03087591

APN401 in Treating Patients
With Recurrent or Metastatic
Pancreatic Cancer, Colorectal

Cancer, or Other Solid Tumors
That Cannot Be Removed

by Surgery

Active, not recruiting

Other: Laboratory Biomarker
Analysis

Biological: siRNA-transfected
Peripheral Blood Mononuclear

Cells APN401

Phase 1

NCT03608631

iExosomes in Treating
Participants With Metastatic

Pancreas Cancer With
KrasG12D Mutation

Recruiting
Drug: Mesenchymal Stromal
Cells-derived Exosomes with

KRAS G12D siRNA
Phase 1

NCT04278326

Primary Organoid Models and
Combined Nucleic Acids

Therapeutics for
Anti-HPV Treatments

Recruiting Procedure: Vaginal Biopsy Not Applicable



Cancers 2021, 13, 1896 19 of 38

6. Cancer Nanopharmaceuticals-Based Gene Delivery

Delivering complex molecules to a specific site of action for gene therapy has led
to the development of nanoparticle drug delivery systems. Nowadays there is a huge
interest in the development of new therapeutics against cancer using different types of
nanoparticles including naked nucleic acid-based therapy, targeting micro RNAs, oncolytic
virotherapy, suicide gene-based therapy, targeting telomerase, cell-mediated gene therapy,
and clustered regularly interspaced short palindromic repeat (CRISPR/Cas9) based therapy
approach [195,196]. Although naked DNA plasmid raises measurable levels of antigen-
specific immunity and is effective in some preclinical studies; their efficacy in clinical
trials was unsatisfactory in creating effective immunity. As a new treatment modality,
gene therapy uses nucleic acids such as small interfering RNA (siRNAs), DNA, and
oligonucleotides to silence cancer-causing genes, repair mutant genes, or increase the
expression of beneficial proteins that can prevent cancer development. the beneficial
effects of concurrent chemotherapy and gene therapy have been observed, especially in
overcoming multidrug resistance (MDR). The problematic poor stability, lack of tumor
selectivity, and rapid clearance from the body may be limited by the use of nanoparticles
as carriers for anti-cancer agents due to their controlled drug release and tumor-selective
properties [197]. Various strategies of nanoparticles and bioreductive prodrugs are used to
overcome the development of resistance to chemotherapeutic agents, followed by invasion
and metastasis from environmental hypoxia, which disrupts DNA repair mechanisms and
causes genome instability due to increased production of reactive oxygen species [198].
Liposomes, albumin nanoparticles, and polymeric micelles are already used in cancer
treatment, while chemotherapy, hyperthermia, radiotherapy, gene or RNA interference
(RNAi) therapy, and immunotherapy are under development [199].

Gene-related nanoparticles should be stable and protect nucleic acids during trans-
port through the circulation and reach the target tissue. The next step is the effective
absorption of the molecule into the cell through endocytosis, followed by an escape from
the endosome and transfer to the nucleus. Then, the transcriptional activity of the intro-
duced genetic material is expected [200]. Genetic and chemical engineering have made it
possible to use adenovirus-associated virus or lentivirus in cell-based gene therapy and
cancer immunotherapy as well as modified plant viruses in cancer treatment. Exosomes to
transfer anti-cancer loads to target tumors, nanodiamonds and graphene are also being
studied [199].

Nanoparticles in the form of vesicular cationic lipid-assisted nanoparticles are capable
of modifying the acidic environment instead of using it for targeted purposes. In vivo
tests in breast cancer models revealed a therapeutic reversal of tumor acidity mediated
by RNAi nanoparticles to restore the anti-tumor function of T cells. Multifunctional
targeted nanoparticles like gold nanoparticles are prime candidates for thermo-diagnostic
applications are among the frequently reported theragnostic nanoparticles used in cancer
treatment [198]. By physically entrapping or chemically coupling various therapeutic or
imaging agents to nanocarriers, nanotherapeutic agents have enabled increased solubility,
targeted delivery, reduced systemic toxicity, and increased therapeutic efficacy in the
treatment of cancer. The effectiveness of nanoparticles is related to the regulation of the
carrier size, morphology, as well as surface properties, including charge and targeting
molecules. Due to the increased permeability and retention (EPR) effect, nanoparticles
preferentially accumulate in tumors due to their leaky vascular system and poor lymphatic
drainage. Nanocarriers can also be designed as intelligent formulations for the controlled
release of the drug in response to various stimuli in the tumor microenvironment, which is
to further improve the therapeutic efficacy of nanoforms [201].

Nanoparticles enable the delivery of drugs used in chemotherapy, photodynamic
therapy PDT agents, small molecule inhibitors, and therapeutic genes, allow the release of
stimulus-responsive drugs [197]. The use of DNA vaccines in cancer therapy and somatic
gene therapy is limited by the degradation of the DNA via nucleases, poor delivery to
antigen-presenting cells (APCs), and insufficient uptake of DNA plasmids by cells upon
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injection decreasing immunogenicity. Accordingly, both viral and non-viral vectors have
been used to develop delivery systems that provide protection for pDNA to improve the
effectiveness of DNA vaccination strategies [195]. Viral gene therapy may be associated
with an acute immune response, immunogenicity, and oncogenesis upon the integration of
viral components into chromosomal DNA. Cytokine release syndrome may occur and may
progress to macrophage activation syndrome [200].

Non-viral vectors have the advantages of low immunogenicity, high delivery capacity,
and easy preparation However, effective non-viral delivery systems remain a major concern
in clinical gene therapy because the production of intracellular antigens using foreign DNA
more closely mimics live infections, and may trigger cell-mediated and antibody-mediated
immune responses [202]. Non-viral gene delivery systems may be divided into three
main groups, namely, physically mediated methods (microinjection, ultrasound-mediated
microbubble, microparticle bombardment, and electroporation), chemical vectors (cationic
polymers and cationic liposomes, shell nanoparticles, and polymeric nanoparticles), and
biological methods (bacteria and specific mammalian cells). All types of non-viral delivery
have limitations including their significant low transfection efficiency and poor transgene
expression [195].

Targeted delivery of NPs can increase tumor accumulation and retention, and cellular
uptake of siRNA. The effectiveness of the release of siRNA from endosomes via lipids is not
high, it is assumed that approx. 70% of internalized siRNA may undergo Niemann–Pick
type C1-mediated exocytosis. Delivery to intracellular organelles such as the nucleus,
mitochondria, endoplasmic reticulum, and Golgi apparatus is also planned [199].

Systemically injected nanoparticles accumulate in the liver and spleen as a result of
clearance through the reticuloendothelial system (RES), which can lead to nonspecific
stimulation of immune cells, cytokine storm, and side effects. Administration of lipid
nanoparticles (LNPs) loaded with mRNAs encoding cytokines including interleukin (IL)
-23, IL-36γ, and OX40L induces potent anti-tumor responses in a wide range of tumors.
Specificity can also be achieved through the action of other factors specific to the tumor
microenvironment, including low pH, hypoxia, and highly reactive oxygen species [201].

Naked nucleic acid, especially in the form of small interfering RNA (siRNA) has been
used in cancer treatment many times showing inhibition of lung cancer growth in mice,
without any significant toxicity. Small interfering RNA can be designed to inhibit the
expression of any gene but the siRNA therapies have some limitations including poor trans-
port across biological barriers, limited cellular uptake, degradation, and rapid clearance.
Nanotechnology helped to overcome many problems, commercialization, and implemen-
tation into the clinic [203]. In the case of siRNA delivery to the cytosol, NP endosomal
escape is essential. NPs based on cationic lipids, lipid-like materials, and polymers showed
promise for siRNA delivery. Most RNAi nanotherapeutic agents in cancer treatment clin-
ical trials consist of liposomes or lipid NPs [199]. The ability of siRNA to silence genes
could lead to increased use as a new anti-cancer drug. Binding to biocompatible cationic
polymers allows the delivery of siRNA together with chemotherapeutic agents, of a syner-
gistic nature. Binding to ligands makes it possible to target specific cells. Nanoparticles
reduce systemic toxicity and improve efficacy. electrostatic interactions with siRNA cationic
components ensure high siRNA protection, loading efficiency, and siRNA release into the
cytoplasm of target cells. The use of nano-vaccines appears to be a promising strategy [204].
The use of combination therapy based on nanotherapeutics; stimulus-responsive nanother-
apeutics targeting acidic pH, hypoxic environment, or nanoparticle-induced hyperthermia
are just some of the approaches that are intensively researched in cancer treatment [198].
To limit cytotoxicity to normal cells, nanoparticles containing chemotherapeutic agents
are increasingly being used [205–207]. Nanoparticles must overcome obstacles, including
biological barriers and the tumor microenvironment (TM), before reaching target cells to
demonstrate a therapeutic effect. Nanoparticles carrying siRNA interact with the cell mem-
brane of cancer cells and the mechanism of endocytosis is influenced by the size, shape,
charge, and surface chemistry of a nanoparticle. Not all nanoparticles may induce efficient
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escape of siRNA from endosomes and the ability may depend on different factors, even
pH. Different nanoparticles are under study including lipid-based nanoparticles (LNPs),
polymeric nanoparticles, carbon nanotubes, gold nanoparticles, hybrid nanoparticles com-
prised of two cationic polymers as well as cholesterol to self-assemble siRNA into a cationic
nanocomplex [144]. The clinical application of RNAi therapy remains limited as siRNA
therapeutics must overcome physiological and cellular barriers, hindering siRNA access
to the cytoplasm of target cells. Nanoparticles can serve as carriers of siRNA, miRNA, or
shRNA through covalent bonds with NP components or through electrostatic interactions
with the NP surface, due to their strong negative charge [204].

Metal-based nanoparticles like gold, silver, or iron oxide and carbon materials may
be used to deliver siRNA. Hybrid nanoparticles improve the gene delivery efficiency by
overcoming the limitations associated with individual methods including transfection
efficiency and bioavailability. Iron oxide nanoparticles can be used for the delivery of
therapeutic siRNA for noninvasive cancer imaging and treatment. Using exosomes may
increase the efficiency of siRNA delivery [197]. Short hairpin RNA (shRNA) may be
delivered using for example folate-targeted nanoparticle enhancing radiosensitivity or
transferrin-conjugated polyethylene glycol [197].

T cell chimeric antigen receptor (CART) immunotherapy uses polymer nanoparticles
to transport DNA—leukemia-targeting CAR genes into the nucleus of the T-cells, thereby
providing lasting disease treatment. Besides, nanoparticles prevent the suppression of
tumor-infiltrating lymphocytes through the production of adenosine [198].

Naked DNA can be used for the treatment of skin tumors using high-pressure gene
guns or through inhalation for lung cancers [195,208]. Another strategy at the nanoscale
for cancer treatment may be the use of microRNAs (miRNAs) representing a class of small
non-coding and functional RNAs (18–22 nucleotides long) involved in the regulation of
many cancer-related genes. These genes have been reported to affect several cell-signaling
pathways, which is essential to tumor growth, development, and progression [195,209]. De-
livery of miRNAs and anti-miRNAs (anti-miRs) for therapeutic purposes may be connected
with conjugation of an RNA nanoparticle with epidermal growth factor receptor (EGFR)
aptamer or using ultrasound-induced microbubble cavitation or using exosomes [197].
Another emerging therapy is the use of messenger RNA (mRNA) for transient protein ex-
pression and regulation of gene expiration by alternative splicing, through the introduction
of a premature stop codon leading to degradation [195].

An interesting strategy for cancer treatment may be inhibition of telomerase activity
using different chemical compounds including mechanisms of Pterostilbene-induced senes-
cence through the inhibition of telomerase in lung cancer cells and the perylene diimide
derivatives degradation [210,211]. Nucleic acid-based therapy is considered a valuable
strategy for the treatment of diseases [208]. Suicide gene therapy is using the delivery of
transduced messenger RNA of suicide gene by retrovirus infection released exosomes to
deliver the suicide gene to targeted cancer cells and selectively induce apoptosis in tumor
cells. Other studies showed that using combined antitumor affecting different genes of
cancer cells significantly improve the therapeutic effect than using single-suicide gene
therapy [212,213]. Double-suicide gene therapy may induce post-apoptotic necrotic cell
death [214].

Exosomes are nanosized lipid bilayer vesicles (30–100 nm) whose small size, cellular
origin, flexibility to incorporate macromolecules such as DNA, RNA, and micro-RNA
(miRNA) into their lumen, and the ability to cross severe barriers such as the blood-brain
barrier enables efficient gene delivery [197].

Nanocarriers may be used as technological innovation for tumor targeting of gene
therapeutics [215,216]. Among the most commonly used nanoparticles as carriers should be
mentioned: inorganic nanoparticles like gold nanoparticles or mesoporous silica nanoparti-
cles, polymeric nanoparticles including nanocapsules, nanospheres, micelles, nanogels, or
dendrimers, and lipid-based nanoparticles with liposomes, solid lipid nanoparticles, and
phospholipid micelles [215].
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Gold nanoparticles can easily enter cells and have the ability to deliver drugs, genes,
and imaging agents with low solubility and poor pharmacokinetics. They come in a variety
of shapes and structures such as spheres, rods, stars, and clusters, and are functionalized at
the surface with ligands to achieve increased selectivity in tumors and specifically deliver
their charge. modification with polymers or linkers containing PEG allows conjugation of
complex formation with a drug or siRNA/DNA. They are characterized by high capacity,
low toxicity, and efficiency of cell absorption, rapid escape from endosomes, and are stable
in the bloodstream [197].

Liposome-based nanoparticle systems have been widely used for drug and gene
delivery, beginning with the approval in 1995 of the US Food and Drug Administra-
tion (FDA) of a liposomal formulation for the chemotherapeutic anticancer doxorubicin,
Doxorubicinil® [197]. Due to its lipophilic properties and easy intercalation, Doxoru-
bicin can be internalized by cells by passive diffusion and accumulates intracellularly
in high concentrations. Poly(D,L-lactic-co-glycolic) acid (PLGA) and poly(lactic acid)
(PLA) may be mentioned among FDA-approved nanopolymers for delivery therapeutic
biomolecules [215].

Nanoparticles and nanoplexes used for site-specific delivery of genetic material usu-
ally are based on natural, semisynthetic, or synthetic polymers with biocompatible and
biodegradable properties. Nanostructured lipid carriers (NLC) enabling the delivery of
therapeutics are based on solid and liquid lipids as the core matrix. Provides increased
solubility and storage stability, improved permeability and physiological bioavailability,
reduced side effects, extended shelf life, and tissue targeted delivery [217,218]. Moreover,
the nanoparticle can induce apoptosis in vitro and in vivo and can reduce cardiotoxicity
and toxicity to blood cells [218]. Widely used phosphatidylcholine liposomes are non-toxic
but are quickly removed by the reticular endothelial system [202,215], they can enhance
the immune response to DNA vaccines by increasing their uptake by antigen-presenting
cells APCs in lymphoid tissues.

Nanoparticles require critical control of the formulation and process parameters for
obtaining desired particle size, zeta potential, entrapment efficiency, and drug release
characteristics. An important feature is lack of toxicity and immunogenicity and on the
other hand transfection efficiency for internalization into the cells.

Due to their biocompatibility, high moisture content, and desirable mechanical prop-
erties, nanogels have unique applications in polymeric carrier systems for bioactive com-
pounds such as DNA, proteins, carbohydrates, and drugs in a polymer lattice, along with
their in vitro release pattern.

Using tumor necrosis factor-related apoptosis-inducing ligand (TRAIL or APO2L)
in form of TRAIL gene therapy enables specific delivery. Also, combination with other
anticancer agents using co-delivery may solve the problem of TRAIL resistance. Liposome-
bound TRAIL induces more efficient apoptosis than the soluble form [208].

DNA nanococoons are prepared from self-assembling single-stranded DNA building
capsules surrounding doxorubicin and deoxyribonuclease (DNase) and are functionalized
by folic acid and hyaluronic ligands. DNA nanococoons use a DNA molecular marker for
a small delivery system that uses fewer drugs and therefore reduces the side effect [219].
Commercially available bioactive nanocapsules have a high loading capacity, longer dose
retention depending on the site, efficient absorption of active substances, increased bioavail-
ability, greater safety and efficacy, and an extended half-life [218].

Carbon nanomaterials (CNMs), including graphene, fullerenes, carbon nanotubes,
and carbon quantum dots, load the drug of interest through hydrophobic interactions
or π–π stacking to be used as an effective drug genes or proteins delivery platform in
cancer therapy [218]. Functionalized carbon nanotubes are widely used as drug carriers
for the delivery of small interfering (siRNA), paclitaxel, doxorubicin, flavonoids, among
others [16,106,220].

Dendrimers are highly branched and have easily modifiable surfaces, they may be
conjugated with drugs and nucleic acids (DNA or RNA). Dendrimers with the ability to
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increase the bioavailability of hydrophobic drugs have added the benefit of trapping drugs
with various functional groups. Dendrimers can be used as drug and gene carriers in
functional improvisation for drug delivery and anti-cancer therapy, among them polyami-
doamine dendrimers (PAMAMs) are the most studied drug delivery [218]. Drugs can be
incorporated into cavities or attached to the periphery by chemical means, which enables
controlled and defined drug delivery. PAMAM dendrimers can also transfer nucleic acids,
aided by the formation of complexes based on electrostatic interactions [197].

For vaccines delivery, nanoemulsions are also used as an example of colloidal dis-
persions (size 20–200 nm) and the addition of CpG improves the efficiency of vaccines in
tumors. Magnetic nanoparticles additionally influence tumor cells by their ability for induc-
tion of hyperthermia [221]. Iron oxide nanoparticles, also known as magnetic nanoparticles,
enable the attachment or entrapment of a drug or DNA charge in the nanoparticle. Under
the influence of an external magnetic field, magnetic nanoparticles are attracted to the
tumor and deliver drugs, which can prevent drug build-up in healthy tissue. Superparam-
agnetic nanoparticles only behave like magnets when this external magnetic field is applied
and do not cause toxicity themselves [197]. EDV™ minicells of bacterial origin are used as
a nanoplatform for drug/gene encapsulation with specific targeting capability. Bacterial
minicells can be used as vectors for chemotherapeutic agents of various charges, structures,
solubility, and hydrophobicity.

Encapsulation is by unilateral concentration-dependent diffusion and incubation time
with the drug, and specificity is achieved by bispecific antibodies. Minicells are internalized
and degraded by endosomes/lysosomes and release the cargo into the cytosol [217].

Other types of carriers are bilayer vesicles called niosomes, containing nonionic
surfactants. Niosomes show greater stability, solubility, and bioavailability of bioactive
compounds than liposomes and may offer an excellent, inexpensive alternative for drug
delivery or gene transfer purposes [222]. Alternative vesicles are bilosomes, nano-vesicular
bilamellar carriers composed of bile salt, and nonionic surfactant vesicles for biomedical
and pharmaceutical applications [223,224].

Improved immunological properties show archeosomes as liposomes composed of
polar phospholipids extracted from archaea, such as methanogens, halophiles, and ther-
moacidophils. Archeosomes have better stability, are more resistant to chemical hydrolysis,
oxidation, bile salts, acidic or basic pH, and high temperatures in a variety of vaccine and
drug applications [202]. Archaeosomes are effective for the delivery of antigens through
the oral route of delivery to elicit their systemic immune response [215]. The human papil-
lomavirus type 16 genes, containing truncated L1, E6, and E7, were simultaneously used in
combination therapy with archaeosome [202]. Archaeosomes promoted immune responses
to DNA vaccines and a long-term CTL response was generated with a low antigen dose
and induced prophylactic and therapeutic effect against the development of tumor in the
animal model [202]. Aptamers as single-stranded RNA or DNA oligonucleotides that selec-
tively bind to cells, tissues, nucleic acids, proteins as well as small molecules have increased
target specificity, systemic stability, binding capacity, and low toxicity. Aptamers can bind
to one chemical or multiple therapeutic agents, including chemotherapeutic agents and
gene silencing agents [225].

Other types of nanocarriers used for gene delivery and cancer vaccines are micro-
spheres as spherical particles with a size of less than 125 nm in diameter [215]. Microspheres
are built from polymers derived from the natural, semi-synthetic and synthetic polymers
and show great versatility, ranging from small to large, from solid to hollow porous.
Microspheres prepared from natural polymers like chitosan, alginate, dextran, among
others, primarily exhibit swelling and surface erosion phenomena, while synthetic poly-
mers like PLA and PLGA exhibit bulk corrosion as the principal mechanism for releasing
antigen [215]. Microsphere carriers can facilitate the transport of molecules to target cells
or tissues, and then release them in a controlled manner [216].

Viral nanovectors usually use nanoparticles from the envelope of viruses due to prop-
erties of viruses for internalization in cells, high specificity, overcoming of the biological
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barriers, longer survival in vivo, and elucidation of the immune systems more efficiently
than conventional nanoparticles. Typical viral vectors used in gene delivery include adeno-
associated virus, lentivirus, adenovirus, retrovirus, or herpes simplex virus [195]. Viruses
are artificially modified to become oncolytic viruses as an effective and potent therapeutic
agent for cancer [195,226,227]. Viruses are already used for the treatment of different
infections, cancers, and other diseases in the forms of bacteriophages, oncolytic viruses,
vector-based viral delivery, virus-like particles, and virosomes. Oncolytic viruses (OV)
are used as gene delivery vehicles, enable high transfection efficiency, while nanoparticles
provide low immunogenicity and have limited safety concerns. Delivery medium is a
critical component of gene therapy [201]. The efficacy of viral therapies has been repeatedly
emphasized in clinical trials in virotherapy, gene delivery, and virus-like particles (VLP),
with many drugs being approved and marketed [227]. Using viral vectors for nanodelivery
has limitations including immunogenicity, toxicity, mutagenicity, and high cost, and limited
size of the carrying capacity of some types of viruses [195].

A schematic representation of delivery vectors for intracellular delivery of nucleic
acids, as well as properties of an engineered synthetic vector for gene therapy, were shown
in Figure 7.
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can be used to deliver genes into cells; (b) Properties of an engineered synthetic vector for gene therapy in the future. In
addition to exhibiting good biocompatibility, loading capacity, and transfection efficiency, a future synthetic vector may also
be designed to have a desired intrinsic biological activity that would enhance the effects of gene therapy [own drawing].

For the delivery of cancer vaccines, the most frequently used are lipid-based nanocar-
riers, triglyceride emulsions, solid lipid nanoparticles, and self-emulsifying drug-delivery
systems [215]. The antigens or nucleic acids encapsulated within the lipid matrix can easily
enter into the lymphatic system via intestinal lymphoid tissues to trigger the immune
response through the oral route. Research indicates that lipid nanoemulsions can serve
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as efficient and impregnated delivery tools with high bioavailability. Nanoemulsions
representing a new and promising class of nanocarriers for cancer treatment are equipped
with a hydrophobic core that allows encapsulation of lipophilic compounds and efficient
uptake by cells of hydrophobic therapeutic agents [218].

Genetic vaccines for cancer treatment are delivered using nanocarriers, which enable
high stability, long-lasting, biodegradability, high safety, and strong biocompatibility. The
commercial production of cancer vaccines requires optimization of the product and process
parameters including antigen loading efficiency, particle size, zeta potential, and controlled
release delivery profile of the nanocarriers [215].

The FDA approved a number of nanomedicines-based cancer vaccines based on
liposomes, transferases, and microspheres technology, while many others are under the
clinical evaluation and translation stage [215]. The therapeutic paradigm of cancer therapy
is currently changing from drug delivery to gene delivery.

The detection and isolation of circulating tumor cells (CTCs) in blood or lymph is a non-
invasive diagnostic approach to tumor metastasis assessment. Based on nanotechnology,
nanocarrier-mediated microfluidic systems, optical aptamer nanoprobes, and NanoFlares
have been developed mainly based on overexpression of an exogenous epithelial cell
adhesion molecule (EpCAM) or mucin1 to CTC1. Gold nanoparticles may be used [228].

In reducing tumor metastasis, four strategies can be used to prevent tumor metastasis
by remodeling the tumor microenvironment; tracking free circulating CTC cancer cells
with specific drug delivery strategies; keeping CTCs away from preferred colonization
organs, and diagnosis and treatment of metastases. It will be necessary to determine the
time required to detect CTCs or remodeling the microenvironment of primary tumors
and/or potential metastatic organs. The problem is the heterogeneity of tumors in different
patients or the same patient with different disease stages, as well as early diagnosis of
metastatic lesions [228].

The use of nanocarriers for the delivery of drugs or genes allows you to avoid problems
with solubility and stability of transported charges, prevents degradation, increases the
half-life in the systemic circulation, improves the distribution and targeting of action. It
enables the long-term release of drugs in the target site, and thanks to the transport of
many drugs, it reduces the occurrence of drug resistance [106,220].

Different types of nanoparticles investigated for drug/gene delivery were summarized
in Table 2.

Table 2. Different types of nanoparticles investigated for drug/gene delivery.

Particle Class Materials Application

Natural materials or
derivatives

Liposomes
Chitosan
Gelatine
Dextrane

Starch
Alginates

Metal-based nanoparticles

Drug/gene delivery

Dendrimers Branched polymers Drug delivery/gene delivery

Polymer carriers

Block copolymers
Polylactic acid

Polycaprolactone
Polyethyleneimine

Poly(cyano)acrylates

Drug/gene delivery

Nucleic acids

Micro RNA (miRNA)
Small interfering RNA

(siRNA)
Oligonucleotides

CRISPR/Cas9
Short hairpin RNA (shRNA)

Gene therapy
RNA interference therapy
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Table 2. Cont.

Particle Class Materials Application

Non-viral vectors

Physically mediated methods
(microinjection,

ultrasound-mediated
microbubble, microparticle

bombardment, and
electroporation)

Chemical vectors (cationic
polymers and cationic

liposomes, shell nanoparticles,
and polymeric nanoparticles),
Biological methods (bacteria

and specific mammalian cells).

Gene delivery

Viral vectors Adenovirus-associated virus
Lentivirus cell-based gene therapy

Vesicles

Exosomes
Bilosomes
Niosomes

Archeosomes
minicells

Drug/gene delivery

Various Silica-nanoparticles
Mixtures of above

Gene delivery
Reversal of tumor acidity

7. The Impact of Cancer Nanopharmaceuticals on DNA Toxicity

The development of multifunctional nanopharmaceuticals has a huge impact on the
use in cancer treatment because they more effectively deliver the drug to specific tissues
while reducing the drug’s toxicity. Accordingly, polymeric asparaginase conjugates and
polymeric paclitaxel micelles are preferred for the treatment of various types of cancer.
Nanotechnology-based therapeutics and diagnostics, including diagnostic imaging, pro-
vide greater efficacy with a significant reduction in toxicity. Future solutions will concern
the application of nanorobotics in healthcare [218]. Natural polymer nanoparticles are
composed of polymers such as alginate, chitosan, albumin, and gelatin. Coating of poly-
mers with polysorbates increases the bioavailability of drugs to the brain by solubilization
and fluidization of endothelial cell membranes due to the surfactant effect of polysorbates.
Polysorbate nanoparticles increase the bioavailability of drugs into the brain through the
blood-brain barrier. Another advantage is increased stability of volatile pharmaceutical
agents, improved administration through oral and intravenous methods, and delivery
of a higher load of pharmaceutical agents to the desired location. Disadvantages of the
polymeric nanoparticles include toxic degradation, toxic monomers aggregation, residual
material associated with these nanoparticles, and toxic degradation processes involved in
such systems.

The nanocarriers-based strategy has incorporated siRNA molecules with nanoparticu-
late encapsulation for direct delivery into cells. siRNAs are involved in the regulation of
gene expression, thus significantly influencing tumor cells [229].

RNAi is still characterized by short-term bioavailability due to systemic degradation
and low tissue permeability. Gene silencing agents can be delivered to target cells using
nanocarriers to avoid degradation by serum nucleases, repulsion by cells, problems with
low permeability, instability, and low efficiency [225].

Nanoparticles enable the transport of small-molecule compounds, additionally, there
is the possibility of functionalization with ligands, including small molecules, DNA or RNA
strands, peptides, aptamers, or antibodies. This enables drug delivery, multi-modal therapy,
and a combined therapeutic and diagnostic effect termed “theragnostics”. The ability of
nanoparticles to absorb energy and re-radiation enables the destruction of diseased tissue
through laser ablation and hyperthermia (National Cancer Institute).
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Polyethyleneimine (PEI), is commonly used for the delivery of siRNA or DNA for gene
therapy as a cationic linear or branched polymer PEI has numerous free cationic groups
that can electrostatically interact with nucleic acids and thereby condense them to form
nanosized particles. Modification with polyethylene glycol (PEG) reduces the toxicity of
PEI to cells and enhances its in vivo stability [197]. Other biocompatible and biodegradable
polymers commonly used for gene delivery are cationic polysaccharides chitosan and
gelatin. The cationic nature of chitosan facilitates gene delivery since negatively charged
nucleic acids easily complex with chitosan to form nanoparticles. Cross-linked gelatin
forms stable nanoparticles and increases the delivery efficiency of a variety of drugs,
including chemotherapeutic agents, proteins and peptides, and siRNAs [197].

Monoclonal antibodies, fragments thereof, ribonucleic acid/deoxyribonucleic acid
aptamers (RNA/DNA aptamers), and peptides are increasingly used. They are believed to
increase the sensitivity of therapeutic agents and focus on nanoformulation-based specific
delivery [225]. Promoter-bound ribonucleic acids (pRNAs) can be used as anti-cancer
therapy. Promoter-bound RNAs (pRNAs) can bind to each other to form a nanocage or ring
structure that can be used as a vehicle for the delivery of therapeutics to cancer cells. pRNAs
can modulate epigenetic changes in cells that result in the silencing of transcription genes.

Another type of therapy that relies on external electromagnetic irradiation is photody-
namic therapy (PDT), which involves locating a photosensitizer tumor and then activating
it with light to produce cytotoxic reactive oxygen species (ROS) [230]. Most commonly used
are nanomaterials with a high Z-core doped with lanthanide or hafnium, after external
exposure to X-rays, the nanoparticle core emits photons of visible light locally at the tumor
site. The emission of photons from the particles then activates the nanoparticle-bound or
local photosensitizer to generate singlet oxygen (1O2) ROS for tumor destruction. Nanopar-
ticles can be used for PDT photodynamic therapy, which generates ROS, and for enhanced
radiation therapy through a high Z core. A form of Cherenkov radiation can also be used
at a similar end of local photon emission to use as a trigger for local PDT. Nanomaterials
enhance the stability of DNA and RNA therapeutics such as small interfering RNA (siRNA)
and microRNA (miRNA) delivered as capsules or coupled to the surface of nanoparticles
in the systemic circulation (National Cancer Institute). An effective RNAi-mediated gene
silencing requires overcoming many physiological barriers based on nanoparticles and
lipids [204].

The cytotoxic effect of doxorubicin involves the insertion of the flat portion of doxoru-
bicin adriamycinone between adjacent DNA base pairs, which interferes with the enzyme
topoisomerase II (TOP2) and stops DNA replication and RNA transcription. Also, it is
assumed to produce carbon-concentrated radicals and reactive oxygen species (ROS) that
destroy the cell membrane, proteins, and DNA [217].

One popular target of RNA interference is the HER2 gene associated with breast,
stomach, ovarian, and colon cancer. RNA interference reduces the expression of the HER2
protein on the cell surface. Switching off the HER2 gene causes the accumulation of cells
in the late G1/S phase, leading to growth inhibition and apoptosis. RNA interference is
limited in vivo by degradation by ribonuclease [225].

It is assumed that sunscreen preparations based on zinc oxide and titanium dioxide
nanoparticles destroy DNA. Intensive work is underway to understand the absorption,
distribution, metabolism, and excretion of nanomaterials [218].

shRNA molecules can facilitate long-term silencing of target gene expression by RNAi
by providing an intracellular plasmid containing specific shRNA sequences capable of
targeting mRNA strands after processing by Dicer. ShRNA plasmids are DNA-based and
are more resistant to degradation than dsRNA, however, like miRNAs, they require an
expression vector [204,225].

Cationic liposomes are made using positively charged lipids and can interact with
negatively charged DNA. They can be used to deliver cancer vaccines by loading syn-
thetically long peptides into liposomes to be delivered to dendritic cells, thus enhancing
the immune response [231]. In turn, dendrimers, due to their branched structure, enable
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specific delivery of drugs and genes at the DNA or RNA level and also ensure specificity
of the size and mass of the molecule. Dendrimers can also facilitate the penetration of
hydrophilic nucleic acids through the cell membrane [188,189].

The size and shape of gold (Au) nanoparticles are believed to influence the transfection
efficiency and intracellular distribution of siRNA. The cellular uptake of larger particles
with a diameter of 50 nm beads and 40 nm stars was higher compared to the 13 nm
beads [106,220].

8. Regulatory Aspects

There is much debate about the over-generalization of guidelines and recommenda-
tions for the safe handling of nanoscale objects since there are not two nanomaterials with
identical properties. Several government agencies and non-governmental organizations
have devoted efforts to establish guidelines for innovative testing, characterization, control,
and risk assessment of nanomaterials, some of which apply to nanodrugs, nanoadditives,
and nanocarriers. The pharmaceutical preparation of a nanodrug has several driving
factors; for compounds whose solubility in water or dissolution rate limits their oral
bioavailability, reducing the size to the nanoscale can increase the dissolution rate in vivo
and the fraction absorbed. Poorly soluble drugs can be ground to a specific size, resulting
not only in useful bioavailability but also in the sustained release.

There are two general nanofabrication methods through which the construction of
nanomaterials can be envisaged to produce clinically compliant products: the “top-down”
and the “bottom-up” approaches [232,233]. The first approach is based on various methods
that etch the bulk material (usually via lithography), resulting in materials of smaller size,
being highly tunable and uniform. Unfortunately, the smaller nanosystems are anticipated,
the bigger associated challenges occur related to the quantum effects. This renders the
top-down strategies not as easily controllable as the bottom-up processes, which focus on
single atoms or molecules and can be further arranged into sophisticated architectures
of the desired size upon harnessing a multitude of covalent and/or supramolecular non-
covalent interactions. Through self-assembly and self-organization phenomena, a variety
of 2D and 3D functional nanomaterials has been constructed and utilized in domains such
as nanoelectronics, sensing, and bioassays [194,234,235].

Another of the current problems in controlling the quality of nanodrugs is the complex-
ity of the characterization of nanoparticles, for example, the particle size can be reported
either by the diameter of the aggregate compound or by the size of the primary particle.
Thus, databases began to be set/built [236–238]. The Nanomaterial Registry (NR) presents
a range of properties that define the key characteristics of nanoparticles, which involve not
only properties but also measurement techniques and parameters. It is evident that nanopar-
ticles exist in large populations and are found in a variety of environments or conditions, as
a result, how data is collected and expressed depends on the following considerations:

How the physical-chemical property is measured;
The way the property is reported;
The measurement technique and the instrument used;
The record in which the sample is collected and prepared for the examination.

Thus, databases can assign confidence measures to data to assist those who use
them. This approach is the first step to ensure that there are quality and reliability in the
measurement and the data generated. For example, the simple indication of size, without
regard to the method, instrument, and procedures used would make it difficult or almost
impossible to repeat or compare studies, but to experiment with a known protocol (such
as those promulgated by ASTM International or the Nanotechnology Characterization
Laboratory within the National Cancer Institute) in which the specifications are provided
would be the most reliable and, therefore, would bring a greater degree of confidence to
the acquired data. In summary, records can be used to explore public data available to
support decision-making for the application of the researcher’s interest. Thus, unnecessary
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repetition of efforts is minimized in areas where data are numerous and the value of new
experimental data obtained is maximized.

A flowchart of a drug development process was added to show the process a drug
needs to undergo to be approved by the FDA (Figure 8).
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Although most of the currently synthesized pharmaceuticals are new systems, it is
important to note that the drug discovery process (1) can also benefit from repurposing
of well-known drugs or isolation of active substances from Nature. The compound of
interest is then subjected to the preclinical research trials (2), which provide detailed
information on the needed dosage and related toxicity levels in in vitro and in vivo studies.
Successful candidates are subjected to three-phase clinical research trials, which last up
to four years, where safety, efficacy, side effects, and adverse events associated with the
drug are evaluated. Once the drug is safe and effective, it can undergo the FDA review and
eventual approval (4), which commences the Post-Market Safety Monitoring (phase IV).

Also, comprehensive databases allow gaps to be identified and guide the exploration of
compositions, properties, and results of less studied nanomaterials to serve the application
of interest, for example, effectiveness, safety, environmental disposition, or risk assessment,
expanding thus the general knowledge of nanomaterials for the benefit of the scientific
community and society.

9. Conclusions

Analytical considerations of nanopharmaceuticals for cancer therapy play an instru-
mental role in the quality control of a formulation, as therapeutic agents are complex in
terms of components, function, and action. The six components that dictate the function and
action of nanodrugs are the presence and concentration of the active principle, the surface
properties, chemical composition of the drug, physical formulation (solid or liquid), and
form of administration. Therefore, all of these parameters are targets for fine-tuning, which
ideally should lead to non-toxic, selective, and efficient nanopharmaceuticals. The stabi-
lization of nanopharmaceuticals is another crucial issue, which influences their therapeutic
effectiveness. Nanopharmaceuticals have found a range of applications in cancer therapy,
including in immunotherapy and gene therapy, for site-specific targeting to reduce systemic
toxicity, for controlled release strategies, and even for theragnostic. The potential use of
one single device for diagnosis and therapy opens perspectives to overcome multi-drug
resistance, shorten the chemotherapeutic regimens, and ultimately improve the quality of
patients and caretakers. To achieve this objective, appropriate analytical tools covering the
sensitive physicochemical parameters of nanopharmaceuticals need to be critically selected
to provide synergistic information for their full in vitro/in vivo characterization.
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