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Simple Summary: The root knot nematode Meloidogyne luci has been identified in various countries
around the world parasitizing economically important crops. Due to its potential to cause serious
damage to agriculture, the need for an accurate diagnosis at the species level has become mandatory.
In the present study, a specific amplification product on M. luci was obtained from a random amplified
polymorphic DNA (RAPD) analysis. The DNA was sequenced and converted into a sequence
characterized amplified region (SCAR) marker used for the species-specific molecular detection of
this root knot nematode. The developed methodology is essential to monitoring the distribution and
spread of M. luci in order to implement future effective and integrated pest management programs.

Abstract: Meloidogyne luci has been identified in various countries around the world parasitizing
economically important crops and, due to its potential to cause serious damage to agriculture, was
included in the European and Mediterranean Plant Protection Organization Alert List in 2017. This
species shares morphological and molecular similarities with M. ethiopica and M. inornata, and a
M. ethiopica group was therefore established. Although specific primers for the DNA amplification
of species belonging to the M. ethiopica group have been developed previously, the primers were
not species-specific, so molecular markers for the specific detection of M. luci are still needed.
The objective of this study was to develop a SCAR marker for the detection of M. luci and the
discrimination from other Meloidogyne spp. based on the intraspecific variability found in RAPD
markers. RAPD screening of M. luci and M. ethiopica genome was used for the identification of a
specific amplification product on M. luci, which was cloned, sequenced and converted into a SCAR
marker. The specificity of the designed primers (Mlf/r) was tested and produced a fragment (771 bp)
for all nine M. luci isolates with no amplification for the other nine Meloidogyne spp., including
M. ethiopica and M. inornata. Additionally, the proper amplification of the M. luci SCAR-marker was
also successful with DNA from galls of M. luci infected tomato roots. The results obtained in this
study reveal that the specific molecular detection of M. luci was achieved and that the developed
methodology can be used for routine diagnosis purposes, which are essential to monitoring the
distribution and spread of M. luci in order to implement future effective and integrated nematode
pest management programs.

Keywords: diagnosis; RAPD; species-specific primer; sequence characterized amplified region

1. Introduction

Root knot nematodes (RKN), Meloidogyne spp., comprise one of the most successful
groups of plant parasites, responsible for worldwide crop losses of billion dollars annu-
ally [1]. The impact of RKN in agricultural areas strengthens the need for an accurate
diagnosis at the species level. At the moment, the genus Meloidogyne includes 105 described
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species of which four are considered the most common (M. arenaria, M. hapla, M. incognita
and M. javanica) due to their wide distribution and host range, but many others have been
recognized as emerging species [1–3]. For instance, M. chitwoodi, M. enterolobii, M. fallax and
M. mali are included in the European and Mediterranean Plant Protection Organization
(EPPO) A2 List of pests recommended for regulation as quarantine organisms, whereas
M. ethiopica, M. graminicola and M. luci, based on their potential to cause serious damage to
agriculture, were added to the EPPO Alert List [4].

In the past, RKN identification was frequently centered on microscopic examination
and female perineal pattern analyses, but these methods are often unreliable and require
specialized skills due to the inter- and intraspecific RKN variability and to the frequent
occurrence of more than one species in the same sample [5,6]. Currently, the biochemical
electrophoretic analysis of non-specific esterases is a widely used method used to differenti-
ate Meloidogyne species, with many species-specific isozyme patterns already published [6].
However, the need for fully developed female nematodes in good condition, the obser-
vation of intraspecific isozyme phenotypic variability, the resemblance between species
based on gel comparative analysis of esterase patterns, the discovery of new patterns, time-
consuming methodology and the difficulty of processing a large number of samples are all
constraints that complicate RKN biochemical identification. Thus, additional information
provided by DNA-based methodologies are crucial in RKN diagnostics. Random amplified
polymorphic DNA (RAPD), restriction fragment length polymorphism variation (RFLP)
and sequence characterized amplified regions (SCAR) markers have been developed, and
different DNA regions have been used for the identification and phylogenetic analysis of
RKN [7–16].

The emerging RKN M. luci, obtained from lavender roots (Lavandula spica L.) in Brazil,
was described in 2014 [17]. This species shares some morphological and biochemical
similarities with M. ethiopica and M. inornata, which led to the initial misidentification of
several M. luci isolates in Europe as M. ethiopica [15,16]. Meloidogyne luci has been identified
in various countries around the world, namely Argentina, Brazil, Bolivia, Chile, Ecuador,
Greece, Guatemala, Iran, Italy, Portugal, Slovenia and Turkey, and is associated with more
than 40 economically important crops, ornamentals, herbs and weeds [15,17–34].

Important crop losses have been referred on tomato, with reports of more than 80%
crop decline caused by M. luci in a greenhouse in Slovenia [26]. On potato, the pathogenicity
of M. luci was studied in 16 commercial cultivars, and all the cultivars were susceptible to
this nematode, possessing relatively high pest reproduction factors [27]. Recently, it was
shown that M. luci can cause latent infestation without visible infestation symptoms on the
surface of potato tubers or severe tuber infestation with visible infestation symptoms [34].

In the present study, a suitable and accurate molecular method for the detection
of M. luci is presented, discriminating this species from the closely related M. ethiopica
and M. inornata. The efficient and fast identification of M. luci is essential to monitoring
its distribution and spread and to implementing future effective and integrated pest
management programs.

2. Materials and Methods
2.1. Nematode Isolates

Nine M. luci isolates from different origins and hosts were used in this study. Nine
isolates from other RKN species were also included for the comparison and validation of
the species-specific detection (Table 1).

All of the isolates were selected from the collection of the NEMATO-lab (CFE-UC)
and maintained on tomato (Solanum lycopersicum L., cv. Coração-de-Boi) by periodic sub-
culturing in a growth chamber (~25 ◦C; 12 h photoperiod) by transferring the culture, every
2 months, to new tomato seedlings.
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Table 1. Meloidogyne isolates: hosts and geographic origin.

Species (Isolate Code) a Host Plant Geographic Origin Reference

M. luci(PtL1) Solanum tuberosum L. Coimbra [27]
(PtL2) Oxalis corniculata L. Montemor-o-Velho [30]
(PtL3) Cordyline australis (Forst f.) Hook. F Figueira da Foz [30]
(BrL) Phaseolus vulgaris L. Paraná State [25]
(GrL1) Zea mays L. Kavalla [15,21]
(GrL2) Actinidia sp. Kavalla [15,21]
(ItL) S. lycopersicum L. Pontecagnano [15,22]
(SvL) S. lycopersicum L. Dornberk [15,18]
(TrL) Cucumis sativus L. Çarsamba [15,23]

M. arenaria (PtA) Crassula multicava Lem. Coimbra —
M. chitwoodi (PtCh) S. tuberosum L. Porto [35]
M. enterolobii (PtEn) Cereus hildmannianus K. Schum. Montemor-o-Velho [36]
M. ethiopica (BrEt) Actinidia deliciosa (Chevalier) Liang & Ferguson Rio Grande do Sul State [37]
M. hapla (PtHa) S. lycopersicum L. Montemor-o-Velho —
M. hispanica (PtHi) Ficus carica L. Setúbal [38]
M. incognita (PtI) Cucumis melo L. Azores [22]
M. inornata (ChIn) b S. lycopersicum L. Chile —
M. javanica (PtJ) S. tuberosum L. Guarda [22]

a Br—Brazil; Ch—Chile; Gr—Greece; It—Italy; Pt—Portugal; Sv—Slovenia; Tr—Turkey. b Original population number—NPPO-NL F2642.

2.2. Nematode Species Identification

Before DNA extraction, the identification of all RKN isolates was confirmed by the
biochemical electrophoretic analysis of the non-specific esterase phenotype of females,
as previously described [27]. Five egg-laying females of each RKN isolate were hand-
picked from infected tomato roots and transferred to micro-hematocrit tubes with 5 µL
of 20% sucrose and 1% Triton X-100. The females were macerated, frozen and stored at
−20 ◦C. The electrophoresis was carried out using the Mini-Protean Tetra Cell System
(Bio-Rad Laboratories). The polyacrylamide gels were stained for esterase activity with
α-naphthyl acetate. Protein extracts from five females of M. javanica were included in each
gel for reference.

2.3. DNA Extraction

Egg masses were handpicked from tomato cv. Coração-de-Boi infected roots, placed
in a hatching chamber and kept in the dark (25 ◦C). Hatched second-stage juveniles (J2)
were collected and stored at −20 ◦C. Total genomic DNA was extracted from J2 of each
Meloidogyne isolate using the DNeasy Blood & Tissue Kit (QIAGEN). Genomic DNA was
also extracted from galls of M. luci (isolate PtL1) and M. ethiopica (isolate BrEt) infected
tomato roots. Single galls with single third-stage juvenile to young females without egg
mass were handpicked, crushed with a piston, on ice, and then DNA was extracted using
the DNeasy Plant Mini Kit (QIAGEN), according to the manufacturer’s instructions.

2.4. Random Amplified Polymorphic DNA (RAPD) Analysis

Twenty-one random 10-mer oligo-nucleotide primers (Table 2) were used for RAPD
M. luci (isolate PtL1) and M. ethiopica (isolate BrEt) genome screening to find DNA markers
specific to M. luci.

PCR reactions were performed in 13 µL volume containing 10 ng of M. luci or
M. ethiopica DNA, 1× buffer, 1.8 mM MgCl2, 0.2 mM dNTPs, 0.3 µM of primer and
2 U BioTaq DNA polymerase (Bioline). The amplifications were carried out in a thermal
cycler (Bio-Rad) using the following conditions: an initial denaturation at 94 ◦C for 5 min,
followed by 40 cycles of denaturation at 94 ◦C for 30 s, annealing at 39 ◦C for 45 s and ex-
tension at 72 ◦C for 2 min, and a final extension for 10 min at 72 ◦C. The PCR products were
analyzed on 1.5 % agarose gel electrophoresis in 1× TBE buffer stained with GreenSafe
(Nzytech). The experiment was repeated twice to confirm the reproducibility of the results.
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Table 2. Random amplified polymorphic DNA primers used in this study.

Primer Name Primer Sequence (5′→3′)

OPA-06 GGTCCCTGAC
OPA-08 GTGACGTAGG
OPA-09 GGGTAACGCC
OPA-17 GACCGCTTGT

OPAB-05 CCCGAAGCGA
OPAS-09 TGGAGTCCCC
OPB-01 GTTTCGCTCC
OPB-14 TCCGCTCTGG
OPC-06 GAACGGACTC
OPC-08 TGGACCGGTG
OPD-01 ACCGCGAAGG
OPE-06 AAGACCCCTC
OPE-07 AGATGCAGCC
OPF-07 CCGATATCCC
OPG-04 AGCGTGTCTG
OPK-02 GTCTCCGCAA
OPM-01 GTTGGTGGCT
OPN-11 CTCACGTTGG
OPO-06 CCACGGGAAG
OPR-09 TGAGCACGAG
OPY-11 AGACGATGGG

2.5. Cloning and Sequencing RAPD Fragment

A RAPD amplification product present on M. luci and absent on M. ethiopica was
purified from the agarose gel using the NucleoSpin® Gel and PCR Clean-up kit (Macherey
Nagel), ligated into a pGEM®-T Easy Vector (Promega) and transformed in Escherichia
coli JM109 High Efficiency Competent Cells (Promega), following the manufacturer’s
instructions. Plasmid DNA was extracted from E. coli cells using a NZYMini Prep kit
(Nzytech), and two positive clones were selected and were fully sequenced in both strands
in an Automatic Sequencer 3730xl under BigDyeTM terminator cycling conditions at the
Macrogen Company (Spain).

2.6. Primer Design and PCR for Sequence Characterized Amplified Region (SCAR)

Based on the obtained sequence, a pair of species-specific primers in the two extremes
of the SCAR and spanning the OPY-11 RAPD primer sequence were designed using a
Primer-BLAST tool [39]. These primers were then used in PCR. Amplifications were
carried out using 50 ng of extracted DNA and 2 U of BioTaq DNA polymerase (Bioline)
in 1× reaction buffer, 0.2 mM each dNTPs, 1.8 mM MgCl2 and 0.2 µM of each primer (Mlf 5′-
ACTCCTGCGACCTCATGGCATTTA-3′ and Mlr 5′-ACTCCTGCGAACACAACATTTACT-
3′). Reactions were carried out in a thermal cycler (Bio-Rad) with an initial denaturation
step of 94 ◦C for 4 min followed by 35 reaction cycles of 94 ◦C for 30 s, then annealed for
45 s at 70 ◦C, with an extension at 72 ◦C for 45 s and a final extension at 72 ◦C for 10 min.
The specificity of the designed primers was tested using DNA from nine M. luci isolates
and one isolate of M. arenaria, M. chitwoodi, M. enterolobii, M. ethiopica, M. hapla, M. hispanica,
M. incognita, M. inornata and M. javanica (Table 1).

Additionally, DNA from the galls of tomato roots infected with M. luci (isolate PtL1) or
M. ethiopica (isolate BrEt) were amplified using the same amplification conditions of SCAR-
PCR. A positive control was included (DNA from J2 of PtL1). To increase the sensitivity
of the test, a second PCR was performed using the same PCR conditions as described
above, with 1 µL of the first PCR reaction (or 1 µL of 1:10 dilution for positive control) used
as template.

The amplification of the COI of the mtDNA region was also performed in order to
confirm the success of nematode DNA extraction from the J2/galls of non-target samples
using primers and PCR conditions described in [27] (data not shown).
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All the PCR products were analyzed on 1% agarose gel electrophoresis in 1× TBE
buffer stained with GreenSafe. The experiments were repeated with at least two biological
replicates, with DNA extracted from two different samples for each isolate.

3. Results
3.1. Esterase Phenotypes

The identification of all Meloidogyne isolates was confirmed by the esterase phenotypes
(Figure 1). The three esterase bands (J3) observed in the M. javanica isolate were used as a
reference phenotype, which allowed for the determination of the relative position of the
bands perceived in the Meloidogyne isolates.
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Figure 1. Esterase phenotypes of protein homogenates from five egg-laying females of Meloidogyne
species isolates. From left to right: (A) L3—M. luci (isolates PtL1, PtL2, PtL3, BrL and GrL1), J3—
M. javanica (reference isolate); L3—M. luci (isolates GrL2, ItL, SvL and TrL); (B) A2—M. arenaria;
Ch1—M. chitwoodi; En4—M. enterolobii; J3—M. javanica (reference isolate); H1—M. hapla; Hi3—
M. hispanica; I2—M. incognita; E3—M. ethiopica; L3—M. luci (PtL1); J3—M. javanica (reference isolate);
and In3—M. inornata. (C) Relative mobility of J3, L3, E3 and In3. For isolate codes see Table 1.

In the M. luci isolates, three bands of esterase activity were detected, corresponding to
the phenotype L3, attributed to M. luci from Brazil (Figure 1A). The other nine Meloidogyne
spp. isolates exhibited 22 bands of esterase activity, comprising nine phenotypes based on
single bands or combinations. All the species displayed distinct and typical species-specific
phenotypes, as previously described: M. arenaria (A2), M. chitwoodi (Ch1), M. enterolobii
(En4), M. ethiopica (E3), M. javanica (J3), M. hapla (H1), M. hispanica (Hi3), M. incognita (I2)
and M. inornata (In3) (Figure 1). The esterase phenotype of M. luci was distinct from those
of M. ethiopica and M. inornata and from the other Meloidogyne spp. (Figure 1B).

3.2. Selection of Meloidogyne luci Specific RAPD Fragment

A total of 21 random 10-mer oligo-nucleotide primers were used to find a species-
specific marker for M. luci (Table 2). Most primers were unable to differentiate M. luci
from M. ethiopica or the results were not reproducible and intraspecific variability among
M. luci isolates was also found (data not shown), except for primer OPY-11. The primer
OPY-11 resulted in different band patterns for M. luci (isolate PtL1) and M. ethiopica (isolate
BrEt) isolates (Figure 2). A consistent species-specific band of ~770-bp was present in the
M. luci isolate and absent in the M. ethiopica isolate. This DNA fragment was cloned and
the sequence was determined to be used as a M. luci SCAR marker.
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Figure 2. RAPD patterns for Meloidogyne luci (isolate PtL1) and M. ethiopica (isolate BrEt) obtained
with primer OPY-11. The M. luci specific ~770 bp fragment is shown with an arrowhead. For isolate
codes, see Table 1. C—Negative control; M—DNA marker (HyperLadder II, Bioline).

3.3. Meloidogyne luci SCAR Marker and Species-Specific Detection Assay

Two sequences of 771 bp were obtained by sequencing two clones of the selected
RAPD fragment and submitted to GenBank under the accession numbers MW922841 and
MW922842. Based on these sequences, the primers Mlf (5′-ACTCCTGCGACCTCATGGCA
TTTA-3′) and Mlr (5′-ACTCCTGCGAACACAACATTTACT-3′) were designed and used
for the PCR amplification of the M. luci SCAR marker (771 bp). This was successfully
amplified for all M. luci isolates with no amplification registered for the other Meloidogyne
spp., namely, M. arenaria, M. chitwoodi, M. enterolobii, M. ethiopica, M. hapla, M. hispanica,
M. incognita, M. inornata and M. javanica (Figures 3 and 4). Additionally, the proper
amplification of the M. luci SCAR-marker was also successfully achieved using DNA from
the galls of M. luci infected tomato roots. On the other hand, no amplification was obtained
with the DNA from the galls of the M. ethiopica infected tomato roots (Figure 5).
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Figure 5. PCR product for Meloidogyne luci (isolate PtL1) infected tomato root (individual gall)
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was included for comparison. For isolate codes see Table 1. * Re-amplification; M—DNA marker
(HyperLadder II, Bioline); C—Negative control.

4. Discussion

Meloidogyne luci is a polyphagous species with a wide host range including plants
from several botanical families. It affects important crops such as potato, tomato, maize,
bean and kiwifruit, among others [24,27–30,40]. As M. luci has been included in the EPPO
Alert List of harmful organisms since 2017, due to its increasing importance and potential
to cause serious damage to agriculture [41], it is crucial to have rapid and discriminative
methods for detecting the presence of this emerging RKN.

Meloidogyne luci and M. ethiopica are morphologically very similar, and their molecular
relationship has been the subject of several studies ever since the M. luci description,
with different DNA regions being characterized, namely: internal transcribed spacer
1 (ITS1) rRNA and D2-D3 fragment of 28S rRNA regions [17,25]; mitochondrial DNA
(mtDNA) cytochrome oxidase subunit II (COII) [15,27]; and ITS1-5.8S-ITS2 rRNA region
and cytochrome oxidase subunit I (COI) mtDNA region [27]. However, the ITS and D2-
D3 fragments of the 28S rRNA region were considered inappropriate for studying the
relationships among these closely related RKN species [15,27]. Gerič Stare et al. [15] selected
the mtDNA COII region as the most useful for the identification and differentiation of
M. luci from closely related species, whereas Maleita et al. [27] designated the mtDNA
COI region as the most effective. Due to a lack of consensus about the true significance of
the close relationship between M. luci, M. ethiopica and M. inornata, Gerič Stare et al. [16]
proposed the integration of these three species in a separate group, forming the M. ethiopica
group, based on a unique structure of map-1 genes when compared to the other tropical
RKN species. Furthermore, Gerič Stare et al. [16] developed a pair of primers, designed on
COII mtDNA region, for the molecular detection of M. ethiopica group by PCR. The use of
these primers was further validated for the detection of nematodes of the M. ethiopica group
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by real-time PCR, but they do not allow the discrimination of species within the group [34].
In order to obtain insight on the phylogeny of the RKN, Álvarez-Ortega et al. [42] used a
multigene dataset (18S rRNA, ITS1 rRNA, D2-D3 expansion segments of 28S rRNA, COI
gene and COII-16S rRNA) and incorporated the representatives of the M. ethiopica group in
the same clade with other 17 RKN species distributed in warmer climates.

In the present study, a M. luci specific SCAR marker (771 bp) was obtained with
the OPY-11 RAPD primer and somewhat similar sequences of this SCAR product were
found in the recently published M. luci draft genome [43]. Based on this SCAR product,
species-specific primers for M. luci were designed, providing the first diagnostic molecular
method for the specific detection of M. luci and allowing for the discrimination of this
species from the closely related M. ethiopica and M. inornata [16]. Although a SCAR
marker has been previously developed for the specific detection of M. ethiopica [13], the
discrimination/identification of the three species within the M. ethiopica group, until
now, was only possible by the isoenzyme analysis. Nevertheless, the esterase phenotype
assessment has limitations, as it requires young females and a gel comparative analysis
of the obtained patterns for the different species. The first band of the esterase phenotype
of M. luci is located at the same level of the first band of M. javanica (reference isolate),
whereas the first bands of M. ethiopica and M. inornata are located above, making it almost
impossible to distinguish them when they are not in the same gel [14,15,17,27,30,44,45].

5. Conclusions

The M. luci species-specific PCR based assay, described in this study, is accurate and
highly sensitive since it requires minimal DNA templates from nematode eggs, juveniles,
females or infected plant material for the amplification and detection of target sequences.
The specificity of the developed primer pair Mlf/r was also validated by including M. luci
isolates from different origins and hosts and other seven isolates from RKN species than
M. ethiopica and M. inornata.

The application of a species-specific PCR-SCAR for the M. luci detection on the galls of
infected tomato roots was also investigated, and our findings revealed that the molecular
differentiation of M. luci in galls is reachable and that the methodology can be adopted
in routine inspections or for monitoring distribution and spread of this emerging plant
pathogen.
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