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Abstract: Environmental monitoring, particularly of water, is crucial to screen and preselect po-
tential hazardous substances for policy guidance and risk minimisation strategies. In Portugal,
extensive data are missing. This work aimed to perform a qualitative survey of antibiotics in
surface- groundwater, reflecting demographic, spatial, consumption and drug profiles during an
observational period of three years. A passive sampling technique (POCIS) and high-resolution
chromatographic system were used to monitor and analyse the antibiotics. The most frequently
detected antibiotics were enrofloxacin/ciprofloxacin and tetracycline in surface-groundwater, while
clarithromycin/erythromycin and sulfamethoxazole were identified only in surface water. The detec-
tion of enzyme inhibitors (e.g., tazobactam/cilastatin) used exclusively in hospitals and abacavir, a
specific human medicine was also noteworthy. North (Guimarães, Santo Tirso and Porto) and South
(Faro, Olhão and Portimão) Portugal were the regions with the most significant frequency of sub-
stances in surface water. The relatively higher detection downstream of the effluent discharge points
compared with a low detection upstream could be attributed to a low efficiency in urban wastewater
treatment plants and an increased agricultural pressure. This screening approach is essential to
identify substances in order to perform future quantitative risk assessment and establishing water
quality standards. The greatest challenge of this survey data is to promote an ecopharmacovigilance
framework, implement measures to avoid misuse/overuse of antibiotics and slow down emission
and antibiotic resistance.
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1. Introduction

Antibiotics are a critical component of human and veterinary modern medicine, de-
veloped to produce desirable or beneficial effects on infections induced by pathogens. Like
most pharmaceuticals, antibiotics tend to be small organic polar compounds, generally
ionisable, ordinarily subject to a metabolism or biotransformation process by the organism
to be eliminated more efficiently [1,2]. The excretion of these compounds and their metabo-
lites occurs mainly through urine, faeces, or a combination of both. The primary sources
for antibiotics contamination are domestic, urban, hospital, industrial wastewater, aquacul-
ture, and intensive livestock farming [3]. As the existing sewage treatment plants cannot
efficiently remove them, they may enter the natural surface-ground water in detectable
amounts. Antibiotics, apart from other contaminants, can disturb the micro-ecosystem
by expansion of resistance to them [4]. The study of environmental antibiotic resistance
dissemination is currently relevant to the scientific community [5,6]. The assessment of
antibiotics in water has been possible due to the increasing sensitivity/resolution of analyt-
ical methods, such as ultra-performance liquid chromatography/quadrupole time-of-flight
mass spectrometry (UHPLC-QqTOF-MS) and the long adsorption time of substances in
passive samplers [7]. Since 2006, marketing authorisation procedures for both human and
veterinary medicines must include an environmental risk assessment that comprises a
prospective exposure assessment, underestimating the possible impact and the occurrence
of antibiotics after years of consumption. Ultimately, the potential risk may not be correctly
anticipated. It becomes urgent to generate new data, mainly to refine exposure assessments.
As much as the specificities of each member state should be considered this issue has
become one of the European community’s main concerns [8].

The strategies against water pollution are provided in the Water Framework Direc-
tive [9] and the Directive on Environmental Quality Standards that set environmental
quality standards (EQS) for the substances in surface waters and confirm their designation
as priority or priority hazardous substances [10]. Evidence of potential impacts and per-
sistence of pharmaceuticals on aquatic organisms have been documented, enforcing the
inclusion of antibiotics as a candidate in the EU List of Priority Substances [11].

To identify and monitor sources of emerging pharmaceuticals in surface water, the
guidance document “On Surface-water Chemical Monitoring” encourages the use of passive
sampling methodology as a risk-based screening tool to evaluate the presence of contami-
nants [12]. Passive sampling is a monitoring technique that can provide a representative
picture of levels of pharmaceuticals and their metabolites [13]. Polar organic chemical
integrative sampler (POCIS) is a methodology based on the passive diffusion of pharma-
ceuticals and their metabolites from the aquatic environment. In contrast, this integrative
passive sampler enables the estimation of pharmaceuticals/metabolites contaminant con-
centrations over extended sampling periods to grab or composite sampling strategies.
Thus, the preconcentration of contaminants leads to an increase in the ability to detect trace
concentrations [7].

The detection of antibiotics and their metabolites in water is crucial to screen and
preselect potential hazardous compounds for policy guidance and the implementation of
risk minimisation strategies. In Portugal, data are missing, and the comparison between
detection and consumption remains unexplored. This work aims to perform a qualitative
survey of antibiotics and their metabolites in surface- groundwater. It seeks to reflect the
current demographic, spatial, drug consumption, and drug profile on an observational
period of 3 years in Portugal. The greatest challenge of this survey data will be to promote
the ecopharmacovigilance framework development shortly to implement measures for
avoiding misuse/overuse of antibiotics and slow down emission and antibiotic resistance.
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2. Results
2.1. Frequency of Detections: Antibiotics/Enzyme-Inhibitors and Abacavir in
Surface-Groundwater

During the screening framework beyond the antibiotics/enzyme-inhibitors, the an-
tiviral abacavir was detected. Therefore, given the relevance of this compound, it was
included in the present study. Although enzyme inhibitors belong to the antibiotic group,
their specific pharmacological properties and detection were sorted apart. In the present
study, antibiotic metabolites were not detected in the water bodies.

2.1.1. Antibiotics/Enzyme-Inhibitors and Abacavir in Surface-Water

Fifty detections were found in all catchment areas in surface water, which corresponds
to 15 different active substances: 12 antibiotics, two enzyme inhibitors, and one antiviral.
The number of detections per sampling station ranged from 0 to 7 different active sub-
stances. The Ave river—Prazins (Santo Tirso) and Serzedelo I and II (Guimarães) as well as
Ria Formosa—coastal water (Faro and Olhão), each one with two sampling sites, showed
the most detected compounds in terms of contamination. However, spatial differences in
the number of substances between the two water bodies were not evident, categorised by
significant urban pressure and animal production, for instance, in the Ria Formosa aquacul-
ture. The samples collected in the Tinto river, near Porto, the second biggest city in Portugal,
showed a high frequency of detections of the aforementioned pharmaceuticals. Supple-
mental Tables S1 and S3 contain a detailed description of the characterisation of sampling
stations and the list of all pharmaceuticals detected in surface water. The most frequently
detected pharmaceutical in decreasing order were the following: abacavir 69% (9/13),
ciprofloxacin, clarithromycin 46% (6/13), erythromycin 38% (5/13)) enrofloxacin, tetracy-
cline 31% (4/13), sulfamethoxazole 23% (3/13) and amoxicillin, lincomycin, trimethoprim
15% (2/13). On the other hand, antibiotics such as azithromycin, norfloxacin, and sulfamet-
hazine were the lowest in detection frequency 8% (1/13). Sulfamethazine was the only
detected substance in the reservoir water body, which was located in rural surroundings.

The enzyme-inhibitors demonstrated a low-frequency detection 15% (2/13). In Ave
river and Ria Formosa, tazobactam has been found in a catchment area downstream of
urban waste treatment plants (hospital/domestic) with equivalent numbers of inhabitants
of 396,822 and 113,200, respectively.

North (Guimarães, Santo Tirso and Porto) and Algarve (Faro, Olhão and Portimão)
were the regions with the most significant number of substances observed in surface water.
In the North, 19 pharmaceuticals were detected (38%) against 16 in the South (32%). No
pharmaceutical was detected in the two sampling stations located in the Tejo river, one
near the border (Portugal/Spain) and the other in a reservoir, covering both rural areas.
All surface water samples were contaminated by at least one antibiotic, while in 62% of the
samples, a mixture of more than four active substances co-occurred. Figure 1 shows the
frequency (%) of detected substances in surface water.

2.1.2. Antibiotics/Enzyme-Inhibitors and Abacavir in Groundwater

Fifteen active substances were detected in groundwater bodies. The number of de-
tections per sampling station ranged from one to five compounds. The most frequently
identified pharmaceuticals, in decreasing order, were ciprofloxacin 43% (3/7), enrofloxacin,
norfloxacin, trimethoprim, lincomycin (29% (2/7), abacavir and tetracycline 14% (1/7). The
enzyme inhibitors, namely clavulanic acid and cilastatin, were detected once in an urban
region located well. This catchment point showed the most significant number of pharma-
ceuticals. West/Tejo and Centre were the regions with the most considerable number of
substances in groundwater, accounting for 43%. All groundwater samples were contam-
inated by at least one antibiotic. The wells contamination profile is included in Figure 2.
Supplemental Tables S2 and S4 contain a detailed description of the characterisation of
sampling stations and the list of all pharmaceuticals detected in groundwater.
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2.2. Consumption of Antibiotics/Enzyme-Inhibitors and Abacavir

The annual used amount of the different therapeutic groups was markedly more
significant for penicillins and tetracyclines, which alone accounted for more than 38% of
each one, followed by sulfonamides (7.0%), quinolones (7.0%), macrolides and lincosamides
(3.0%) as well as trimethoprim with 0.5%.

The most representative active substances, each with more than one tonne of consump-
tion were: tetracycline, amoxicillin, clavulanic acid, enrofloxacin, ciprofloxacin, lincomycin,
sulfamethoxazole, azithromycin, and clarithromycin.

In addition to clavulanic acid (associated with amoxicillin), other detected enzyme-
inhibitors, tazobactam and cilastatin, both of exclusive hospital use, showed 717 and 76 kg,
respectively. They are applied in combination with piperacillin and imipenem, respectively.
Regarding the different regions, it has been concluded that North and West/Tejo were
the regions with the higher consuming values. Both regions presented a significant value
(33%) for the abacavir. For the detected antiviral abacavir, an amount of 1458 kg has
been observed.
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Regarding antibiotics used in veterinary medicine, the regional amount was not avail-
able. Likewise, due to the reported missing quantity for sulfamethazine, the sulfonamides
group has been matched.

The estimated amounts of the consumed medicines in 2017, regarding the detected
molecules used in the human primary health care sector/hospital and veterinary medicine,
are displayed in Table 1. Figure 3 presents the distribution by those Portuguese regions
that match the river basin districts.

Table 1. Consumption (Kg) of the detected pharmaceuticals in Portugal (2017).

Pharmaceuticals
Regional Amount (Kg)

Σ
North Centre West/Tejo Alentejo Algarve

Antibiotics
Amoxicillin 15,494 9664 15,669 1715 1866 44,408
Enrofloxacin NA NA NA NA NA 3600 1

Ciprofloxacin 1075 744 1370 140 154 3483
Norfloxacin 77 69 155 22 17 340

Sulfamethoxazole 796 589 1002 95 47 2529
Sulfamethazine NA NA NA NA NA 5800 1,2

Erythromycin 32 27 59 5 7 130
Azithromycin 536 393 659 64 77 1729

Clarithromycin 630 620 800 140 40 2230
Trimethoprim 159 118 200 19 41 537
Tetracycline NA NA NA NA NA 45,000 1

Lincomycin NA NA NA NA NA 3000 1

Inhibitors
Clavulanic acid 1535 989 1587 175 188 4474

Tazobactam 228 159 279 29 22 717
Cilastatin 57 13 5 0.6 0.3 76

Antiviral
Abacavir 430 116 848 17 47 1458

1 Amount from ESVAC Report-2017; 2 Match the sulfonamides amount; NA—not available.
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2.3. Physicochemical Properties and Key Pharmacokinetic Features of Detected Pharmaceuticals

The detected pharmaceuticals showed high to moderate water solubility and are small
ionisable molecules (MW ≤ 900 g/mol). Regarding the octanol/water partitioning coeffi-
cient (log Kow) data, macrolide antibiotics (azithromycin and clarithromycin) were the only
ones that demonstrated the potential to concentrate in living organisms (log Kow ≥ 3) [14].
All the remaining antibiotics showed a relatively low log Kow and were expected to be
present mainly in surface water. However, the soil mobility/adsorption detected substances
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exhibited different organic carbon adsorption coefficient (log Koc) values. Hence consider-
ing the soil mobility potential (0–1.7 very high; 1.7–2.2 high; 2.2–2.7 medium; 2.7–3.3 low;
3.3–3.7 slight; ≥3.7 immobile) according to McCall and adapted from Chen et al. [15], an-
tibiotics were categorised as follows: (1) Very high mobility: tazobactam; (2) Moderate
mobility: sulfamethoxazole, sulfamethazine, erythromycin, clarithromycin, trimethoprim;
(3) Low mobility: amoxicillin, abacavir; (4) Slight mobility: azithromycin; (5) Immobile:
enrofloxacin, ciprofloxacin, norfloxacin, tetracycline. Data for the adsorption coefficients
were not available for lincomycin, clavulanic acid and cilastatin. The properties of detected
antibiotics and abacavir are included in Table 2.

Table 2. Physicochemical properties of detected pharmaceuticals.

Active
Substances CAS-N◦ 1 MW 1 g/mol

Water
Solubility 1

pKa Acid and
Basic 1 log Kow 1 log Koc L/kg

Amoxicillin 26787-78-0 365.4 high 7.4 0.87 3.3 2

Enrofloxacin 93106-60-6 359.4 high 6.7 0.58 4.22–5.89 3

Ciprofloxacin 85721-33-1 331.3 high 6.1 0.28 4.78 3

Norfloxacin 70458-96-7 319.3 high 5.8 −1.03 4.4 (Kd) 4
8.7

Sulfamethoxazole 723-46-6 253.3 high 6.2
0.89 2.3 5

2
Sulfamethazine 57-68-1 278.3 high 7.6 0.89 1.78–2.32 3

Erythromycin 114-07-8 733.9 low 8.9 2.6 2.3 6

Azithromycin 83905-01-5 749 high 8.5 3 3.5 7

Clarithromycin 81103-11-9 748 high 9 3.2 2.2 8

Trimethoprim 738-70-5 290.3 moderate 7.1 0.91 2.5 5

Tetracycline 60-54-8 444.4 low 3.3 −1.3 4.9 9

Lincomycin 859-18-7 406.5 high 7.6 0.56 NA
Tazobactam 89786-04-9 300.3 high 2.1 −1.8 0.87 10

Clavulanic acid 58001-44-8 199.2 high 2.7 −2.3 NA

Cilastatin 82009-34-5 358.5 moderate
9.5

0.29 NA2.5

Abacavir 136470-78-5 286.3 high 15.4
1.2 3.0 6

5.8
1 Data retrieved from [16]; 2 Data retrieved from [17]; 3 Data retrieved from [18]; 4 Data retrieved from [19]; 5 Data retrieved from [20];
6 Data retrieved from [21]; 7 Data retrieved from [22]; 8 Data retrieved from [23]; 9 Data retrieved from [24]; 10 Data retrieved from [25];
NA—not available.

Pharmacokinetic features were considered to characterise further detected molecules
in the analysed water compartment—the percentage of unaltered form excreted by renal
and metabolites after biotransformation are depicted in Table 3.

The most significant number of detected substances showed a percentage of un-
changed excretion higher than 40%. Renal excretion is relatively frequent; however, faecal
excretion is incontestable for lincomycin (79 to 86%).

Regarding bioavailability, antibiotics show high variability among species. For in-
stance, amoxicillin is well absorbed in humans (70%) but may exhibit low bioavailability
in pigs (23%). Similarly, the tetracycline group presents a low absorption fraction in pigs.
Macrolides also reveal low bioavailability in humans (25–55%).
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Table 3. Main pharmacokinetic properties of detected pharmaceuticals.

Active
Substance

Therapeutical Use
Dosage Forms 1,2—Target Species Bioavailability 1,2

Excretion
References

Unchanged Form Metabolites (%)

Amoxicillin

Human use
Capsule; tablets;

Powder for oral suspension;
Powder for solution for injection or infusion.

Veterinary use
Premix for medicated feed—pigs;

Powder in drinking water—poultry, pigs;
Injectable suspension—cattle, sheep, pigs;

Palatable tablets—dogs and cats.

70%; 23% 3 Renal: 80–90%
Faecal: 5–10%

Amoxicilloic acid;
Piperazine-2,5-dione
(diketopiperazine).

(Both 10–20%)

[26–29]

Enrofloxacin

Veterinary use
Oral solution—cats, pigs, broilers, rabbits

Solution for drinking water—chickens, turkeys, rabbits;
Solution for injection—dogs, cats, cattle, pigs;

Tablets—dogs and cats.

73–101% 3 Renal: 21% 3

Faecal: 19% 3

Ciprofloxacin (20–50%);
Active dealkylated and

hydroxylated enrofloxacin (<10%).
[30,31]

Ciprofloxacin Human use
Tablets. 64–85% Renal: 30–50%

Faecal: 15–62%

Oxociprofloxacin;
Desethylene ciprofloxacin;

Formylciprofloxacin.
[32,33]

Norfloxacin
Human use

Tablets;
Eye drops solution.

30–50% Renal: 30–70%
Faecal: 30%

3-oxo-1-piperazinyl metabolite
(<20%). [34]

Sulfamethoxazole

Human use 5

Tablets; Syrup;
Solution for injection.

Veterinary use 4

Solution for drinking water—pigs.

NA Renal: 10–40%
N4-acetyl- sulfamethoxazole

(30–70%);
Sulfamethoxazole glucuronide.

[35]

Sulfamethazine
(sulfadimidine) NA NA Renal: <12%

N4-acetyl-sulfamethazine
(61–81%);

Conjugated hydroxylated
Metabolites (10–20%).

[36]
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Table 3. Cont.

Active
Substance

Therapeutical Use
Dosage Forms 1,2—Target Species Bioavailability 1,2

Excretion
References

Unchanged Form Metabolites (%)

Erythromycin 5

Human use
Tablets;

Granules for oral suspension;
Powder for solution for injection;

Topical skin solutions.
Veterinary use

Injectable solution—cattle, pigs and sheep.

25% Renal: 2–5% N-desmethyl-erythromycin;
Anhydroerythromycin. [37,38]

Azithromycin

Human use
Powder for oral suspension;

Powder for solution for infusion;
Tablets;

Eye drops solution.

37% Renal: 20% N-desmethyl derivatives. [37,38]

Clarithromycin

Human use
Tablets;

Granules for oral suspension;
Powder for solution for injection.

55% Renal: 30–40%
14-(R)-hydroxy-clarithromycin

(active metabolite);
N-demethyl-clarithromycin.

[37–39]

Trimethoprim

Human use 6

Tablets; Syrup;
Solution for injection;

Veterinary use 6

Premix for medicated feed—pigs and sheep;
Solution for drinking water (pigs, broilers, calves,

lambs, rabbits);
Solution for injection—cattle, horses, sheep;

Oral paste and oral powder—horses.

90% 3 Renal: ±80%
3-Desmethyl-trimethoprim (65%);
4-Desmethyl-trimethoprim (25%);

N-oxides (≤5%).
[40,41]

Tetracycline

Human use
Capsule;

Ophthalmic ointment;
Veterinary use

Premix for medicated feed—fish farm; pigs.
Powder for oral solution—calves, lambs, pigs, rabbits

and poultry;
Solution for injection—cattle, pigs, horses, sheep, dogs

and cats.

5% 3 Renal: 30%
Faecal: 20–60% D-epitetracycline (5%). [42,43]
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Table 3. Cont.

Active
Substance

Therapeutical Use
Dosage Forms 1,2—Target Species Bioavailability 1,2

Excretion
References

Unchanged Form Metabolites (%)

Lincomycin

Veterinary use
Premix for medicated feed—pigs;

Powder for drinking water—pigs, chickens;
Injectable solution—cattle, sheep, goats, swine,

chickens, turkeys, cats;
Intramammary solution for lactating cows.

20–50% 3 Renal: 14–21% 3

Faecal: 79–86% 3 Lincomycin sulphoxide. [44,45]

Tazobactam Human use 7

Powder for solution for injection or infusion.
NA Renal: 60–80% M1-hydrolyzed metabolite

(20–26%). [46–48]

Clavulanic Acid 4

Human use 8

Tablets;
Powder for oral suspension;

Powder for solution for injection or infusion.
Veterinary use

Powder for drinking water—pigs;
Powder for oral suspension—dogs and cats;

Injectable—Cattle, Canines, Felines, Pigs;
Palatable tablets—dogs and cats;

Intramammary suspension for lactating cattle.

45% 3 Renal: 40–73%

2,5-dihydro-4-(2- hydroxyethyl)-5-
oxo-1H-pyrrole-3-carboxylic acid

(15.6%).
1-amino-4-hydroxy-butan-2-one

(<10%).

[26,49–52]

Cilastatin Human use 9

Powder for solution for infusion.
NA Renal: 78% N-acetyl metabolite (10%). [53,54]

Abacavir 5 Human use
Film-coated tablet 10; oral solution. 83% Renal: 1%

Feacal: 16%

5′-carboxylic-acid metabolite (30%);
5′-glucuronide metabolite (36%);

Minor metabolites (15%).
-

1 Data retrieved from Infomed—National database for human use [55]; 2 Data retrieved from MedVet—Nacional database for veterinary use [56]; 3 Depicted data is from pigs; 4 Associated to trimethoprim;
5 Some data retrieved from Drugbank database [16]; 6 Associated to sulfamethoxazole and other sulonamides; 7 Associated to piperacillin/ceftolozane; 8 Associated to amoxicillin; 9 Associated to imipenem;
10 Associated to lamivudine; NA = Not available.
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The metabolites are predominantly excreted as desmethyl-, acetyl-, carboxyl-, sulfox-
ide, and glucuronide conjugates. It should be highlighted that enrofloxacin is metabolised
(20–50%) in the form of ciprofloxacin. Noteworthy to remark is the active metabolite
14-(R)-hydroxy-clarithromycin formed during clarithromycin biotransformation (Table 3).

3. Discussion

For the first time, a preliminary qualitative screening was performed in the Portuguese
mainland to identify antibiotics in surface-ground water. The Polar Organic Chemical
Integrative Sampler (POCIS) passive sampler and Ultra-performance Liquid Chromatog-
raphy/Quadrupolo: Time-of-Flight Mass Spectrometry (UHPLC-QqTOF-MS) were used
to monitor and analyse, respectively. This methodology is crucial for a preliminary se-
lection of polar organic chemicals of concern which undergoes a diffuse emission into
surface water due to continuous release into the environment [57–59]. As highlighted by
Křesinová et al. [60], the main feature of this monitoring tool is the capacity to follow trace
levels of organic contaminants in water bodies, demonstrating adequacy for assessing and
managing the groundwater pollution. Several variables need to be considered in passive
sampling: biofouling of surface, deployment strategy, and analyte(s) physicochemical
properties. In our study, to obtain a view of environmental pressures, the sampling stations
were in regions with urban/agricultural/rural impact for 30 days. This deployment time is
considered ideal for the adsorption of the highest number of analytes [61].

This survey showed the occurrence of antibiotics in surface- groundwater samples
in the Portuguese basin sampling sites, confirming the emission of these pharmaceuticals
in the environment. Furthermore, antiviral drugs and enzyme inhibitors (beta-lactamase
inhibitors and cilastatin) were also exhibited.

The relatively higher frequency detection of antibiotics downstream of the effluent
discharge compared with detection in upstream samples obtained in rural locations was
demonstrated and could be attributed to a low efficiency in the urban wastewater treatment
plants or due to agricultural pressure.

The higher frequency of detection for most substances was observed in the Ave river
and Ria Formosa, confirming that several effluents impact these water bodies from urban
wastewater treatment plants and livestock production.

Pharmacokinetic characteristics may represent key features in understanding antibi-
otics occurrence [62]. Most antibiotics are not completely metabolised in humans and ani-
mals; thus, a high percentage of the active substance (40–90%) is excreted in urine/faeces in
the unchanged form. These molecules are discharged into water and soil through wastewa-
ter, animal manure, and sewage sludge, frequently used as fertilisers to agricultural lands.
Also, it is expected that the hospital effluent will contribute partly to the pharmaceutical
load in the wastewater treatment plant influence [63]. Afterwards, they may be transferred
to groundwater by leaching [64].

Globally in the analysed samples, the most frequently detected antibiotics were fluo-
roquinolones (ciprofloxacin/enrofloxacin) and macrolides (clarithromycin/erythromycin)
as tetracycline and sulfamethoxazole.

In the present study, antibiotic metabolites were not detected in the water bodies. It
may be related to their predominant excretion in conjugated form, rivalling or exceed-
ing the parent compounds. These conjugates are presumed to be relatively hydrophilic,
well excreted, and discharged into wastewater. Active and inactive metabolites within
the wastewater treatment process may drawback [65] via deconjugation into the active
substance by microbial enzymes (e.g., glucuronidases, sulfatases).

Enrofloxacin was explicitly developed as veterinary medicine and introduced at the
beginning of the 1980s. Thus, its detection suggests pollution sources from livestock
farming, which explains why it was found in regions where animal production has pre-
vailed. Ciprofloxacin is the primary degradation product of enrofloxacin. About 13–60%
of enrofloxacin is metabolised into ciprofloxacin. Since ciprofloxacin is used in human
medicine, its detection in the surface water is also due to wastewater discharge pollution.
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The fate of these fluoroquinolones in aquatic water bodies is dominated by adsorption
(log Koc ≥ 4.2—strong sorption) and photodegradation reactions; they rapidly move from
water to soil/sediments and onto organic particles solution, hence the occurrence in surface
water. It has been reported that adsorption is more critical than photodegradation, which
may be prominent when organic particles levels are low [31,66,67].

Nonetheless, besides the sorption capacity, these antibiotics have high solubility
in water. Crucial routes for these substances into the environment are manure from
animal production and sewage sludge from wastewater treatment plant (WWTP) used as
fertilisers. Therefore, these substances have been evidenced in topsoil samples [68]. These
quinolones and other antibiotics, for instance, norfloxacin and tetracycline, have been
identified in groundwater samples despite being influenced by sorption processes. They
were not readily degraded; instead, the input into groundwater could be due to livestock
farming pressure, namely by spreading manure in the soil or the possible sewage sludge
application in the area. High clay and low sand content in soils can decrease the mobility
of pharmaceuticals, which is attributed to clay intense exchange capacity. Thus, soil
properties (e.g. particle composition) are a significant, influential factor, especially relevant
to groundwater, namely the input of pollutants [69]. Contrariwise, in our study, the wells
were in podzolic soils/alluvial plain characterised by a sandy silt loam soil, favouring the
antibiotics leaching to groundwater. In Portugal, in 2017, consumption of tetracyclines was
six times higher than enrofloxacin plus ciprofloxacin. However, its frequency of detection
in the surface water was similar, indicating differences in physicochemical behaviour,
mainly the mobility feature in the environment (log Koc 4.9); studies demonstrated its
high sorption capacity to clay materials, soil, and sediments [70]. As discussed above,
for the fluoroquinolones (surface-groundwater), in a general sense, tetracycline seems to
undertake a similar fate in the environment.

Nevertheless, due to stronger adsorption, with higher emergence in sediment, its
occurrence in the surface water is lower [71]. The use of tetracyclines, mainly as medicated
premix and oral solution for food-producing animals [72], and the very low bioavail-
ability (e.g. in pig feed) [43] contribute to increasing its release into the environment.
Regarding macrolides, erythromycin and clarithromycin exhibit a remarkable frequency
of detection in surface water samples. The most frequently detected substance was clar-
ithromycin (46%). Despite our small sampling number, the results follow the trend (58.8%)
reported by Loos et al. [11]. In this EU report, azithromycin occurred at a frequency of
17.1% and erythromycin at 8.4%. In our study, the lowest detection frequency was found
for azithromycin (8%), but erythromycin indicated higher values (38%). Although clar-
ithromycin and azithromycin are exclusively used in human medicine, erythromycin is
parenterally administered in farm animals. Considering the low human consumption, it is
thus reasonable to assume that a considerable proportion of erythromycin in surface water
may result from veterinary use. This substance has been detected in the Caia region, an
area with significant agricultural pressure.

The macrolide antibiotics (azithromycin and clarithromycin) demonstrated a potential
tendency to bioaccumulate (log Kow values ≥ 3.0). Research on the determination of
macrolide antibiotics in wastewater effluents concluded that they are not eliminated in
WWTPs reaching the residual amounts of the surface water [73]. Thus, the removal of
macrolides may result from a sorption process on activated sludge flocs and not directly
from their biodegradation. However, due to their continuous consumption, it is frequently
detected in surface water. Occurrence studies demonstrated that clarithromycin is one of
the most frequently pharmaceutical in representative rivers [74,75]. The three macrolides
identified in our detection survey are included since 2018 in the first “watch list” [76].

Another group of antimicrobial drugs identified in our survey were sulfamethoxa-
zole/trimethoprim and sulfamethazine. Sulfamethoxazole/trimethoprim are often used
combined since the effectiveness of sulfonamides is enhanced. In the present study, the
detection of both substances was comparable; however, trimethoprim was detected in
groundwater. They are moderately mobile and hydrophilic enough to be transferred into
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the aquatic environment (log Kow values ≤ 0.91). Different dissipation patterns in water
and water:sediment systems were observed. Abiotic degradation and biotransformation
were the main elimination pathway for sulfamethoxazole, being the degradation slightly
increased in the presence of light, oxygen, and microbes.

Additionally, excreted sulphamethoxazole may contain approximately 30% to 70%
acetylated conjugates [77]. The presence of acetylated metabolites such as N4-acetylsulfame-
thoxazole or N4-acetylsulfamethazine has been identified in WWTP effluents. Some
of these metabolites can be converted back to the parent form [78,79]. In contrast to
sulfamethoxazole, trimethoprim is not susceptible to photodegradation. The degradation
rate was relatively slow, with half-lives around 30 days, explaining its occurrence in
groundwater [20,80]. The possible pollution sources are from human and veterinary use.
However, the environmental impact may be more critical due to active substances in
drinking water or premix medicated feeds in veterinary medicine.

Sulfamethazine and lincomycin used only as veterinary medicines (cattle and swine
production) were detected in a limited number of samples. Sulfamethazine was found
once in a reservoir body, which presumably receives drain water from animal production.
The relatively low sorption coefficients indicate that it is likely to be mobile in the aqueous
runoff component following soil application [81]. Lincomycin in surface water was detected
only in Algarve downstream from WWTP and was present in two wells. Due to moderate
mobility [81], it could be mobilised from animal manure or animal production [82]. Lin-
comycin was found to leach to groundwater under environmental conditions encountered
on the Canadian prairies, indicating that livestock manure management practices may
result in antimicrobial surface and groundwater contamination [83].

Three factors may increase its occurrence in the environment: drinking water and
premix for medicated feed and the poor oral absorption, and high excretion (79–86%) of
the whole molecule through the faeces. Although the original goal was to detect antibiotics,
it was observed that abacavir was the most frequently identified substance in our survey;
for that reason and the recent academic interest in antiviral drugs, it was included in
our study. Abacavir is used exclusively in human medicine in human immunodeficiency
virus (HIV) infection treatment. Abacavir was detected in 11 of 13 surface sampling sta-
tions and one groundwater sampling station. Some studies demonstrated that abacavir is
practically (>80%) removed from wastewater [84]. It undergoes phototransformation and
biotransformation through oxidation of the terminal hydroxyl group to carboxy transfor-
mation products. Thus, abacavir was detected in influents while its carboxy-transformation
products were the major components in effluents after transformation [84–87]. Studies
concerning antiviral substances in the water bodies did not report the presence of aba-
cavir in surface water and groundwater [88,89]. In our study, the detection of abacavir in
surface-groundwater could be related to the weak efficiency of urban wastewater treatment
plants. For the first time, as far as we know, clavulanic acid, cilastatin and tazobactam
were detected in water bodies. Cilastatin inhibits dehydropeptidase, an enzyme found
in the kidneys responsible for degrading antibiotics. Clavulanic acid and tazobactam are
β-lactamase inhibitors both used in combination with antibiotics. Clavulanic acid is used
in combination with amoxicillin, tazobactam with piperacillin/ceftolozane and cilastatin
with the antibiotic imipenem. Piperacillin, ceftolozane and imipenem are antibiotics of
exclusive hospital use [90]. Little is known about the behaviour of clavulanic acid and
cilastatin in the environment. Tazobactam is a very high mobile hydrophilic substance;
therefore, it could move quickly towards surface water. The most likely pollution source of
these enzyme inhibitors is hospital wastewater. Cilastatin was recovered in groundwater
from a well where most of the antibiotics were also found. This well was in a river basin in
which a sandy silt loam soil predominates.

All β-lactam antibiotics are rapidly degraded by biotic and abiotic processes [90].
However, in the present study, amoxicillin was detected in a sampling station, probably
due to its high consumption (44 tonnes in human medicines). Besides its use in human
medicine, amoxicillin is also widely used for treating and preventing animal diseases in
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many domestic and livestock animals. Several formulations of powder for administration
in drinking water and medicated premix are available for poultry and pigs. The excretion
of amoxicillin is predominantly renal; more than 80% of the parent drug is recovered
unchanged in the urine. While bioavailability of 75 to 80% is reported in humans, a low
value (~30%) was observed in pigs, calves, foals, and pigeons [26,52]. Maybe this last group
of animals contribute more sharply to the release of this substance into the environment.
In water, amoxicillin has a hydrolysis half-life of approximately 20 days (pH 7) [11,91].
Intermediate products generated from amoxicillin degradation are suspected to be more
resistant to degradation and potentially more toxic than the parent compound [90,91]. The
main problem related to the presence of this antimicrobial substance is the risk of inducing
antimicrobial resistance genes [11,90]. Amoxicillin-S-oxide metabolite was reported as an
oxidised degradation product derived by the indirect photolysis process. This β-lactam
ring compound in aquatic environments may be of concern because it is still active [92].
Recently amoxicillin was included in the ’watch list’ in the Commission Implementing
Decision (EU) 2018/840 [93].

A linkage between the detection frequency of antibiotics and their consumption
was not established. However, the consumption amount is an essential complement for
predicting a possible occurrence in the environment. It is reasonable to assume, from the
obtained results, that various factors such as sorption and wastewater treatment influence
the ratio occurrence/consumption [94]. Detailed information is missing on consumption
data for veterinary medicinal products. However, considering the spot treatment approach,
a trend between detection/consumption could be accepted locally.

As a concluding remark, we should emphasize that these substances have played
a significant role in increasing life expectancy and the development of medical sciences.
However, their prolonged use in agriculture and livestock industries, as a growth promoter,
for treating animal infections, prophylaxis, and meta-prophylaxis has led to relevant
antibiotic consumption worldwide. The use and misuse of antibiotics has stimulated
the faster emergence of antibiotic-resistant bacteria and resistance genes, reducing their
therapeutic potential against human and animal pathogens [94]. It is now clear that
the environment is a vast reservoir of resistant organisms and their associated genes;
thus, it is essential to understand environmental resistome and how its mobilisation into
pathogenic bacteria may occur [94]. Several questions remain, but there is no doubt that
exposure to antibiotics via agricultural practice and wastewater treatments are relevant
contributing factors. In addition, microorganisms exposed to antibiotics at low, sub-lethal
or sub-inhibitory exposure concentrations can develop, or acquire, antimicrobial resistance,
which is now recognised as a significant threat to public health [95–100]. Contamination of
surface water and groundwater by veterinary antimicrobials due to manure application
is a cause of concern [101] regarding the emergence of antimicrobial-resistant bacteria in
the water [83]. Additionally, the impacts of antibiotics on microbial communities and the
abundance of resistance genes have also been described [102].

The Need for the Ecopharmacovigilance

Research remains to be completed, focusing on either fate and ecotoxicological effects
of these substances and the eco-resistance issue. In this regard, the occurrence of antibi-
otics/antivirals in water bodies raises concerns regarding the potential risk for all three
components of the one health triad. As discussed before, the detected substances in water
bodies may be related to their continuous release into the environment. These molecules
belong to authorised medicinal products that have been consumed for several years. Their
environmental risk assessment data is rudimentary or even missing.

The obtained results in this monitoring survey highlighted the imperative need to
implement an ecopharmacovigilance framework. Holm et al. [103] reviewed, and simi-
lar to the pharmacovigilance system already implemented, eco-pharmacovigilance most
significant challenge is the signal detection in the environment and the identification of
cause-effect. Contrasting other pharmacotherapeutic groups, despite the complexity of



Antibiotics 2021, 10, 888 14 of 22

detecting the cause-effect, the signal of bacterial resistance could be used to help manage
this problem.

In short, the understanding of resistance should be incorporated in a comprehensive
Environmental Risk Assessment (ERA) and risk characterisation based not only on ecotoxi-
cological endpoints but also on minimum selective concentrations (MSCs) endpoints.

The current survey study is a powerful tool in the ecopharmacovigilance context.
The results should be communicated, for instance, to healthcare professionals reinforcing
the prudent use of these molecules. Moreover, considering the national specificity of
such outcomes, recommendations should be included in antibiotic medicines regulation
technical documents such as Summary Product Characteristics.

4. Materials and Methods
4.1. Study Area/Sampling Stations and Characterisation

The study area (Portuguese mainland) comprised all river basin districts. Sampling
campaigns were performed during 2017, 2018 and 2019 in four periods of 30 days each:
March–April, April–May, May–June and Set-Out.

Eighteen sampling stations were in the main river basins and their tributaries, reser-
voirs, transitional waters, and coastal waters for surface-water monitoring. In each of
them, a passive sampling system was placed 50 cm deep into the water column during the
periods of reduced river flow rate and hold in place for approximately 30 days. However,
it was only possible to collect samples from 13 stations due to the damage of the passive
sampler in the remaining ones. Groundwater samples were collected in wells from seven
sampling stations. The placement of passive samplers in groundwater considered the well
technical features; the depth and groundwater level were previously determined since they
should be detected at the superficial levels. The passive sampler was placed using a water
level meter, 2 m below the groundwater level. The sampler always remained immersed
in water, avoiding extractions and the regional lowering of the water table [104]. For the
sampling stations, sites of different environmental pressures were considered, specifically
urban, agricultural area/animal production, and aquaculture. The information regarding
the potential risks of each source was obtained on the River Basin Management Plans and
the CORINE Land Cover 2018 [105]. The sampling sites are shown in Figure 4a,b.
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4.2. Materials and Chemicals
4.2.1. Passive Sampler Field Deployment

The passive sampler Polar Organic Chemical Integrative Sampler (POCIS) used in this
study is a hydrophilic-lipophilic balance (HLB) polymer of divinylbenzene vinylpyrroli-
done enclosed between two polyether sulphone (PES) membranes. This PES has the
advantage of little biofouling, allows the qualitative detection of many organic compounds
in the dissolved phase, including antibiotics. The field deployment uses, for surface waters,
a canister, and inside two individual POCIS units were performed to protect each POCIS.
In rivers, the column of water deployment was done with medium or low flows; otherwise,
POCIS might be damage. In ground-waters was used one POCIS unit/well. Due to the
high sorption capacity, POCIS was deployed approximately for 30 days, allowing the polar
organic compounds adsorbed to be in the equilibrium stage with the active substances in
an aqueous medium. In the laboratory, POCIS disks were frozen until extraction.

4.2.2. Qualitative Analysis Method Used for the Characterisation of Antibiotics in
Surface-Groundwater

This methodology involved two steps corresponding to the extraction of the adsorbent
of POCIS extraction disks and subsequent qualitative determination by Ultra Performance
Liquid Chromatography-High Resolution Mass Spectrometry (UHPLC-QqTOF-MS).

Sample Extraction

After drying the POCIS disks, the membrane on one side of the support was cut.
The adsorbent was transferred to an empty cartridge, extracted five times with 2 mL of
methanol, making a total volume of 10 mL collected in a glass vial. This extract was
concentrated under nitrogen current to a final volume of about 1 ml. To the extract was
added the 13C3 internal caffeine standard. The extract in methanol is taken to dryness
in rotavapor under vacuum at 35 ◦C and reconstituted in a mixture of water/methanol
(v:v 4:1) for subsequent injection into the UHPLC-QqTOF-MS system. For surface water
samples, two discs for sampling collection were analysed. The adsorbents of the duplicated
discs were extracted simultaneously. In the case of groundwater samples, only one POCIS
sampler was used per collection point.

Ultra-Performance Liquid Chromatography-High Resolution Mass Spectrometry
(UHPLC-QqTOF-MS) Analysis

Extracts were analysed on a UHPLC-QqTOF-MS system composed of an UltiMate®

3000 RSLCnano system (Thermo Scientific Inc., Waltham, MA, USA), interfaced with
a QqTOF Impact II mass spectrometer with an ESI source (Bruker Daltonics, Bremen,
Germany). Three aliquots were analysed in both ESI positive and negative mode for each
water extract, and as a control, a “blank” sample of the mixture water/methanol (4:1).

Chromatographic separation was achieved with a Kinetex C18 column (150 × 2.1 mm;
2.6 µm particle size; Phenomenex, Torrance, CA, USA), using an elution gradient of
0.1% v/v formic acid in water (mobile phase A) and 0.1% v/v formic acid in acetonitrile
(mobile phase B), at a flow rate of 200 µL/min. The elution conditions were as follows:
0–1.4 min, isocratic 7% B; 1.4–10.0 min, linear gradient to 50% B; 10–15 min, linear gradient
to 100% B; 15–18 min isocratic 100% B; 18–19 min, linear gradient to 7% B; 19–25 min,
isocratic to 7% B. The injection volume was 20 µL. The column and the autosampler were
maintained at 35 ◦C and 8 ◦C, respectively. The mass spectrometer parameters were set
as follows: endplate offset: 500 V; capillary voltage: 4.5 and 2.5 kV (positive and negative
mode, respectively); nebuliser: 2.8 bars; dry gas: 8 L/min; dry temperature: 200 ◦C.
Internal calibration was performed for sodium formate clusters, with a sodium formate
solution 10 mM introduced to the ion source via a 20 µL loop, at the beginning of each
analysis using a six-port valve. Calibration was then performed using high-precision
calibration mode (HPC). The mass spectra were acquired in the broadband collision-
induced dissociation (bbCID) mode in a range between 50–1000 m/z, with a scan speed of
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1 Hz. MS/MS experiments were performed in a data-dependent-acquisition (DDA) mode
with an acquisition rate of 3 Hz using a dynamic method with a fixed cycle time of 3 s.
Dynamic exclusion duration was 0.4 min. The 49 standards were analysed in the MRM
acquisition mode, with collision energy defined according to the mass, load of each ion and
an isolation window of 5 Da. Under the instrumental conditions used, the TOF (FWHM)
resolution power is between 36,000–40,000 to m/z 226.1593, 430.9137 and 702.8636.

4.2.3. Data Analysis and Validation

Mass spectrometry data were processed using the Data Analysis 4.4 and Target Analy-
sis 1.3 software (Bruker Daltonics). An in-house mass library was built for 49 standards
plus 620 suspected substances (insecticides, fungicides, herbicides, drugs, metabolites).
For the 49 standards previously analysed by MRM, the database includes the expected
retention time, accurately measured mass, molecular formula, and qualifier ions for each
standard compound. The (possible) elemental composition of peaks of interest was cal-
culated using the algorithm Smart Formula 3D within Bruker software for the remaining
compounds. This library was used for accurate mass screening for (non)target compounds
and unknowns using the Find-Compounds-Chromatogram via SigmaFiTTM tools of the
Target Analysis software, which creates a “peak chromatogram base” for m/z values above
a threshold intensity value. Values for retention time deviation lower than 0.3 min; mass de-
viation less than 5 ppm and mSigma less than 100 were considered acceptable for positive
confirmation (mSigma < 100, acceptable, <50 good, and <25 excellent). After screening in
Target Analysis, the Data Analysis potentialities were then used to check the data manually.
Analysing the samples with a QqTOF mass spectrometer, the pharmaceuticals in complex
matrices were detected at concentrations as low as 50 ng/L.

4.2.4. Chemicals and Reagents

Methanol HPLC Ultragradient Gold, formic acid 99% and ammonia solution 25% were
purchased from Carlo Erba Reagents, SAS (Marseille, France). H2O - Pierce™. Water, ace-
tonitrile and formic acid LC-MS grade Optima® were from Fisher Chemical (Hampton,
NH, USA), state abbrev if USA, country). Caffeine-13C3 (99%, 1 mg/mL in methanol) was
obtained from Sigma-Aldrich (Schnelldorf, Germany). Standards (purity ≥97%) of all the
chemicals listed (tert-butylazine; desethyl-tert-butylazine; dimethoate; atrazine; desethy-
latrazine; tebuconazole; alachlor; omethoate; bentazone; diuron; linuron; chlorotoluron;
cymoxanil; thiamethoxam; clothianidin; imidacloprid; acetamiprid; thiacloprid; simazine;
isoproturon; cybutryne; methiocarb; quinoxyfen; chlorpyrifos; 2,4D; MCPP; aclonifen;
bifenox; MCPA; dichlorvos; bezafibrate; ibuprofen; amoxicillin·3H2O; azithromycin; di-
clofenac; α-ethinylestradiol; β-estradiol; erythromycin; clarithromycin; trimethoprim;
ciprofloxacin; enrofloxacin; sulfamethoxazole; bisoprolol; carbamazepine) were purchased
from Sigma-Aldrich.

4.3. Consumption of Detected Antibiotics

Information on pharmaceuticals sales data (corresponding to 2017) by the package,
pharmaceutical form, and quantitative composition relative to the detected antibiotics, were
obtained from the Department for the Medicine’s Economic Assessment of the INFARMED,
thus allowing estimation of the amount of active substance for each compound [106]. These
substances comprise the exclusive hospital use medicines and human primary health care
sector. The data of antibiotics explicitly used in farm animals were gathered on the ESVAC
report [107].

4.4. Physicochemical Properties and Key Pharmacokinetic Features of Detected Antibiotics

A review focused on the primary physicochemical and pharmacological characteristics
was performed to interpret the possible correlations between the detected and consumed
antibiotics. Pharmacokinetic features of antibiotics, particularly the proportion of excretion
as the parent compound and bioavailability, may contribute to a major or lesser environ-
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mental impact related to the corresponding reported occurrence in different environmental
compartments [62]. Thus, besides degradation products found in the environment, knowl-
edge of metabolic reactions in the human body and the treated animal was considered.
Metabolites will be herein referred to as the molecules resulting from biotransformation of
the chemical structure within the body of humans and treated animals. The main phar-
macokinetic features were summed up in Table 3. The physicochemical properties were
gathered up in Table 2.

5. Conclusions

The passive sampler (POCIS) allows an increase of sensitivity not achievable with grab
sampling monitoring in surface water and groundwater. The detection and the unequivocal
identification of antibiotics/enzyme inhibitors and antiviral substances were performed
with liquid chromatography-high resolution mass spectrometry.

The most frequently detected active substances in surface water were as follows:
enrofloxacin/ciprofloxacin, clarithromycin/erythromycin, tetracycline, sulfamethoxazole,
and abacavir. In groundwater, enrofloxacin/ciprofloxacin, norfloxacin, trimethoprim,
lincomycin, abacavir and tetracycline were recovered. Metabolites were not detected in
water bodies. Noticeable was the detection of enzyme inhibitors, tazobactam and cilastatin,
which are both for exclusive hospital use. The North region and Algarve (South) were the
areas with the most significant frequency of substances in surface water. The relatively
higher detection of substances downstream of the effluent discharge points compared
with a low detection in upstream samples could be attributed to the low efficiency in
urban wastewater treatment plants or agricultural pressure. The environmental impact is
more critical due to active substances in drinking water or premix medicated feeds in the
veterinary site.

Furthermore, the detection of substances of exclusive human use (abacavir, tazobactam
and cilastatin) prove the weak efficiency of urban wastewater treatment plants. Ground-
water contamination was demonstrated upon the presence of substances in wells. A
linkage between the detection frequency of detected substances and their consumption
was not established.

This screening approach is essential not only to identify substances in order to perform
further quantitative environmental risk assessment but also to establish possible water
quality standards and confirm the classification of these molecules as possible priority or
priority hazardous substances.

The greatest challenge of this survey data will be to promote an ecopharmacovigilance
framework, implementing measures to avoid misuse/overuse of antibiotics and slow down
emission and antibiotic resistance. The information and the analysis provided in this work
has highlighted the imperative need to implement such an ecopharmacovigilance framework.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/
10.3390/antibiotics10080888/s1, Table S1. Surface-water: characterisation of the sampling stations;
Table S2. Groundwater: characterisation of the sampling stations; Table S3. Detection of frequency
and geographic distribution of Pharmaceuticals in Surface Water (2017_2018_2019) March-April,
April-May, May-June and Set-Out; Table S4. Detection of frequency and geographic distribution of
Pharmaceuticals in groundwater (2017_2018_2019).
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