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Abstract: This study investigated the effect of technology and government policies on carbon dioxide
(CO2) emissions in 36 Organisation for Economic Co-operation and Development (OECD) countries
from 1994 to 2015. This empirical investigation uses econometric models, such as panel quantile
regression and ordinary least squares (OLS). The research uses the method proposed by Lin and Ng
in 2015 to deal with parameter heterogeneity across countries that identified two separate groups.
The empirical results indicated that Gross Domestic Product (GDP), fossil fuel consumption, indus-
trialisation and taxation to GDP intensify CO2 emissions. In contrast, urbanisation (% of the total
population), environmental patents, and environmental tax as a percentage of total tax reduce CO2

gas emissions. Estimates with homogeneity preserve the signs of the parameters but reveal substantial
differences in intensity and that environmental tax revenues (as % of GDP and % of tax) are only
statistically significant for our studied group 1. The conclusions of this study have important policy
implications. The effect of industrialisation on environmental degradation is an observable fact. When
the country reaches the allowable thresholds, it needs to maximize energy consumption. Policymakers
should design policies that help them to promote environmentally sustainable economic growth by
imposing and accumulating environmental taxes. In addition, environmental taxes, the discharge
system and credit could support the modification of in-industrial structures and modes of economic
growth. Policymakers should also use policies that encourage trade in nuclear-generated electricity to
neighbouring OECD countries.

Keywords: carbon dioxide emissions; patents on environment technologies; environmental tax revenue;
economic policy; OECD countries

1. Introduction

Nations around the world have realised the threat of global warming, and since the
Paris climate agreement, most economies have submitted their planned national plans to
clarify mitigation strategies, showing the Intended Nationally Determined Contributions
(INDC). Even though these INDCs reflect few details, these determined contributors are
the optimum ways to understand a nation’s climate actions [1].

The conscience that all living or not things that take place in nature are vital to pre-
serving the world as a pleasant place materialises in the notion of environment. Although
environmental regulations are considered the key component for mitigating global warm-
ing drifts and reforming carbon reduction, these policies are not uniformly implemented.
Moreover, their assessments are limited to a global panel of countries. However, the Orga-
nization for Economic Cooperation and Development (OECD) guideline aims at enhancing
environmental quality by devising stringent policies for climate change awareness. These
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policies include promoting green innovation and emissions regulations through carbon
pricing in which environmental taxes are among the most significant regulations [2]. These
guidelines have also brought innovation to the centre of climate change policy conversations
to find the optimum solution for balancing economic growth and environmental quality.

As technology and innovation emerged as pivotal factors in efficient energy utilization,
mitigating environmental degradation and achieving sustainable development, most studies
(e.g., [3–16]) counted technology and innovation as determining parameters in modelling
energy use and carbon emissions. However, their investigation focus was not on the tech-
nology itself. Nevertheless, patents as an indicator of innovation can significantly reduce
greenhouse gases as they improve the technology through higher energy consumption and
production efficiency, whose impacts have been less researched.

This research aims to investigate the performance of CO2 gas emissions in relation to its
significant determinants, namely gross domestic production (GDP), fossil fuels consumption,
industrialisation, environmental tax revenue as a share of GDP/total taxation, environmental
patents, and urbanisation, using the ordinary least squares (OLS) model estimator, and the
modelling approach quantile regression for OECD countries. Our comprehensive analysis
aims to draw interest in understanding how each parameter can be merged in different ways
to address CO2 gas emissions in OECD countries. Furthermore, to capture the influence
of government regulations on reducing CO2 gas emissions, the capacity of environmental
taxation was examined as a fraction of the total tax burden and the overall tax burden
to GDP.

Our study is not only contributing to the understanding of the drivers of CO2 gas
emissions by providing statistical measures. It is also novel in that it offers policymakers in
OECD countries some valuable insights for designing policies, considering the effect of the
measured parameters on CO2 gas emissions. The empirical investigation is structured into
six sections: Section 2 provides an important literature examination, and Sections 3 and 4
present the data, methodology, and estimation results. Section 5 provides the discussion.
Finally, Section 6 presents the conclusions and policy implications.

2. Literature Review

This part will show the literature relevant to the empirical analysis. First, the rela-
tionship between environmental policies and greenhouse gas emissions was reviewed,
considering environmental tax revenues as an indicator to measure the impact of gov-
ernment regulations. This analysis is followed by a review of the relationship between
phenomena innovation through environmental patents and CO2 gas emissions.

2.1. The Relationship between Environmental Policies and CO2 Gas Emissions

The study by Ahmed shows that stringent environmental policies enhanced green
innovation in 20 OECD countries [17]. However, these regulations may cause short-term
negative economic shocks. Albulescu et al. [2] explored the effect of environmental policy
stringency on the air pollution problem (CO2 emissions) in 32 countries from the OECD
from 1990 to 2015, employing a panel data methodology. The researchers discovered that a
rise in policy stringency negatively affects environmental degradation, and environmental
stringency has a stronger impact in countries with lower levels of environmental degra-
dation. Moreover, there is a need to change policy stringency measures to environmental
degradation levels to improve their effectiveness [2].

He et al. [18] conducted an empirical study of OECD countries and China from 2004
to 2016 to answer if the environmental tax policy helps to reduce pollutant emissions. The
results showed that overall environmental taxes facilitate reducing pollutant emissions in
the selected cases.

The effect of industrial structure and environmental regulations on carbon dioxide
emission in 30 provinces in China was studied by Chen et al. [19], who observed that
industrial restructuring could help to reduce carbon dioxide emissions. However, if the
maximization level of the industrial structure is observed at a lower scale, environmental
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regulation stimulates carbon dioxide emission, and if it is high, environmental regulation
significantly restricts carbon dioxide emission. Thus, policies related to environmental
regulation adequate for indigenous conditions should be formulated based on the evolution
of specific native industrial structures [19].

Neves et al. [20] investigated whether environmental regulation reduces environmental
pollution, such as CO2 gas emissions, in European Union countries between 1995 and 2017.
Their findings showed that environmental regulation effectively reduces CO2 gas emissions
in the long term. In addition, policies that support renewable energy sources reduce CO2 gas
emissions in the short and long term. The effectiveness of these policies is further endorsed
by a decrease in carbon dioxide emissions linked to foreign direct investment, indicating
that the EU has effectively attracted innovative and high-quality investments [20].

In the same vein, Wang and Zhang [21] examined the effects of environmental regula-
tions on CO2 gas emission by considering 282 cities in China. The authors discovered an
inverted U-shaped relationship, showing the direct impact of environmental regulations on
CO2 gas emission. This finding implies that environmental regulations can effectively mod-
erate CO2 gas emissions through technological innovation and restructuring of industrial
structure. However, foreign direct investment indicates a pollution paradise effect within
the constraints of environmental regulations [21]. Finally, Eskander and Fankhauser [22],
in their study of 133 countries between 1999 and 2016, found both long- and short-term
effects of environmental regulation on reducing carbon dioxide emissions.

Baloch et al. [23] analysed the role of governance in mitigating CO2 emissions for Brazil,
Russia, India, China and South African countries (BRICS) from 1996 to 2017. The results
indicated that governance has a negative and significant effect on CO2 emissions, helps to
shape the Environmental Kuznets Curve hypothesis, and reduces CO2 gas emissions in
BRICS countries.

2.2. The Relationship between Innovation and CO2 Gas Emissions

Koçak and Ulucak [24] investigated the impact of energy consumption and R&D
development spending on reducing CO2 gas emissions in OECD countries. Based on their
findings, R&D spending on energy efficiency and fossil energy has an increasing effect on
CO2 gas emissions; however, no significant relationship was found between R&D spending
on renewable energy and CO2 gas emissions. Therefore, the study suggests strong evidence
that R&D spending on energy and storage reduces CO2 gas emissions.

Petrović and Lobanov [25], working on the effect of research and development ex-
penditure on CO2 gas emissions between 1981 and 2014 in 16 OECD countries, show a
negative effect of R&D expenditure on CO2 gas emissions, i.e., high R&D expenditure on
average reduces CO2 gas emissions. However, this hypothesis is not effective in 40% of
countries. The results suggest that the average expected effect of R&D investments on CO2
gas emissions should not be considered adverse until it is empirically estimated, as stated
by different studies.

When considering OECD countries, Cheng et al. [26] investigated the direct and mod-
erating effects of technological innovation, measured by the development of patents, on
CO2 gas emissions. The results show that technological innovation is directly responsible for
reducing CO2 gas emissions. However, this effect is considerably asymmetric and heteroge-
neous at different quantiles. Furthermore, technological innovations affect CO2 emissions
by increasing the negative impacts of renewable energy sources.

Similarly, Alam et al. [27], in their research, also considered OECD countries to investi-
gate the impacts of the stock market and R&D investment on CO2 gas emissions and green
energy consumption. The authors found that the stock market and R&D investment have
a significant long-run equilibrium relationship with CO2 gas emissions and clean energy.
Moreover, the long-run elasticities show a significant positive impact of stock market growth
and R&D on clean energy consumption and a negative effect on CO2 gas emissions.
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Ahmad et al. [28] studied the impacts of innovation shocks in determining CO2
emission levels in OECD economies. The results support that positive innovation shocks
improve environmental quality, but negative shocks disrupt it.

Hashmi and Alam [29] focused on the dynamic relationships between innovation,
environmental regulation, CO2 gas emissions, economic growth and population in OECD
countries, covering the years 1999 to 2014, and showed that an increase in environmen-
tally friendly patents decreases carbon gas emissions, while an increase in environmental
revenues per capita reduces carbon gas emissions in OECD nation-states.

Chen and Lee [30] explored the effect of technological innovation, particularly on
reducing CO2 gas emissions, in 96 countries from 1996 to 2018. Their study found that
both CO2 gas emissions and R&D intensity showed a significant spatial correlation within
these countries. Furthermore, technological innovation does not significantly affect CO2
gas emissions worldwide. However, cluster-based studies have reported that technological
innovation in nations with high technology, high output, and high CO2 gas emissions could
significantly decrease CO2 gas emissions in adjacent countries.

Cheng et al. [31] aimed to disclose the impacts of environmental patents and renewable
energy on CO2 gas emissions considering BRICS economies from 2000 to 2013. The study
showed that renewable energy decreases CO2 gas emissions per capita, the progress of
environmental patents accelerates carbon dioxide emissions per capita, and GDP per capita
increases CO2 gas emissions per capita. Meirun et al. [32] studied the effects of green
technology innovation on economic development and CO2 gas emissions in Singapore,
considering the period from 1990 to 2018, and found a positive and significant relationship
with long-term and short-term carbon dioxide emissions.

Khattak et al. [33] explored the effect of technology innovation, green energy use,
and income on environmental degradation in BRICS economies (e.g., China, India, Russia,
South Africa, and Brazil). Their results indicated that innovation activities did not disrupt
CO2 gas emissions in all countries except Brazil. However, the authors also showed that
green energy consumption had mitigated environmental degradation (CO2 gas emissions)
in BRICS. Furthermore, they found a bidirectional causal relationship between CO2 gas
emissions and technological innovation.

The study on the effect of R&D development expenditure on air pollution (CO2 gas
emissions) conducted by Fernández et al. [34], which included the European Union, the
United States, and China, between 1990 and 2013, showed that R&D expenditure contributed
positively to the reduction of CO2 gas emissions of developed countries. The European
Union is where the effect of this variable is lowest, followed by the United States, where
energy consumption pollutes the most. The results obtained for China are different due
to its economic and environmental performance. Du et al. [35] tried to determine whether
technological innovations fostered a decrease in CO2 emissions in 71 economies between
1996 and 2016. Their findings showed that green technology innovations are only effective
in economies with a high-income level, and innovations do not significantly reduce CO2
emissions for economies with income levels below the threshold.

Dauda et al. [36] investigated the relationship between innovation, trade liberalisation,
and environmental degradation (CO2 emissions) in selected African nations and found
an inverted U-shaped relationship between environmental degradation and innovation.
However, they observed that renewable energy use has less environmental degradation at
the panel level.

Ganda [37] explored the impact of innovation and technology investments on environ-
mental degradation (carbon emissions) in selected OECD economies. The authors found
that consumption and spending on green energy research and development are negatively
correlated with environmental degradation (carbon emissions). The research suggested that
innovation and technology investments in these countries affect emissions differently and
still have the potential to reduce environmental quality. They stressed that patents, includ-
ing specifications of natural environmental standards and researchers empowered with
ecological skills and knowledge, would facilitate the achievement of zero emissions targets.
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Hasanov et al. [38] showed that technological progress and green energy consump-
tion mitigate the CO2 emissions in BRICS countries in the short run. However, the gross
domestic product and import size increased pollution in the long and short term. Therefore,
they recommended implementing measures and regulations and establishing legislative
frameworks that promote technological advances and transition to sustainable energy.

Wang and Zhu [39] investigated whether energy technology innovations contribute to
reducing CO2 gas emissions in China. The results indicated that technological innovation
in renewable energy technologies facilitates the reduction of CO2 gas emissions, while
fossil energy technology innovation is ineffective in reducing carbon emissions. Moreover,
economic growth can agglomerate carbon emissions from low-growth provinces to neigh-
bouring high-growth provinces; mandatory environmental regulation in China would shift
carbon emissions from provinces with strict regulations to neighbouring provinces with
lax regulations.

Abid et al. [40] investigated the effect of technological development innovation, finan-
cial development, and FDI on environmental degradation in G8 countries from 1990 to 2019.
The authors found that these countries showed a statistically significant long-term and
negative relationship between CO2 and foreign direct investment, financial development,
and technological innovation. Furthermore, a long-run bidirectional causality was found
between economic growth, financial development, urbanization, trade openness, CO2 gas
emissions, and energy consumption; however, a unidirectional causality exists between
CO2 gas emissions and foreign direct investment.

Cheng et al. [41] investigated the impact of green energy and innovation on environmen-
tal degradation (CO2 emissions) in OECD countries. Their findings provided comprehensive,
important information on the relationship between carbon emissions per capita and different
variables. More specifically, their impact on carbon emissions per capita is significant and
positive for economic growth but decreases for fast-growing emissions countries. The results
do not support the Environmental Kuznets Curve hypothesis. On the contrary, their impacts
on carbon emissions showed an inverted U-shaped trend for renewable energy at different
quantile levels.

3. Data and Methodology

The data and method used to carry out this empirical investigation will be shown in
this section.

3.1. Data

This study uses data from 36 Organisation for Economic Co-operation and Devel-
opment (OECD) countries from 1994 to 2015. This large sample allows a comprehensive
analysis of CO2 emissions performance through the perspective of GDP, fossil fuel con-
sumption, industrialisation, environmental tax revenues as a share of GDP/total taxes,
environmental patents, and urbanisation, using the fixed effects estimator and quantile
regression modelling approach for a group of rich countries. Data are only available up to
2015, and the period is appropriate for analysing the effect of selected variables and observ-
ing the main flows in terms of environmental regulations and policies in OECD countries.
To our knowledge, this period and 36 OECD countries have not been investigated in the
existing literature. A list of countries (full sample, group 1, and group 2) is presented in the
Appendix A section.

Although the relationships between CO2 gas emissions against its determinants,
including GDP, urbanisation, fossil fuel energy consumption, industrialisation, patents on
environmental technologies, and environmental tax revenue, are widely discussed, the
outcome is mixed [2,20,24,25]. Mostly the studies are criticized regarding their validity of
the expected coefficients, and the econometric approaches applied are not appropriate for
quantitative analysis, which is important to get unbiased and reliable regression outcomes.
Hence, keeping in view the selected period and the effect of the causalities, the variable
GDP and energy consumption are selected by following the studies [42,43]. The variable
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industrialisation is selected by following the studies [43–49]; environmental tax (% of
GDP) is selected by following the studies [50,51]; the variable urbanisation is selected by
following the studies [52–55]; the variable patents on environment technologies is selected
by following the studies [24,26,30,33,34]. Finally, the variable environmental tax revenue (%
of Taxation) is selected by following the studies [2,18,20,21,23]. Table 1 below summarises
the variables, their definition, and the sources.

Table 1. Variable Definitions and Data Sources.

Variable Definition Sources

CO2 Carbon dioxide emissions (metric tons per capita) World Bank
GDP GDP per capita (constant 2015 US$) World Bank
Urb Urban population (% of the total population) World Bank

Fossil Fossil Fuel Energy Consumption (% of Total) World Bank
Indust Industry (including construction), value added (% of GDP) World Bank
Patents Patents on Environment Technologies (% of Total Patents) OECD Database

TaxToGDP Environmental Tax Revenue (% of GDP) OECD Database
TaxPerc Environmental Tax Revenue (% of Taxation) OECD Database

Table 1 above evidence the definitions and data sources of the variables used in this
study, which models CO2 emissions against their determinants, including GDP, urbani-
sation, non-renewable energy consumption, industrialisation, patents on environmental
technologies, and environmental tax revenues. While environmental patents measure
the impact of environmental innovations on CO2 emissions, variable environmental tax
revenues measure the impact of government policies and regulations, considering envi-
ronmental taxation as a fraction of the total tax burden and the overall tax burden and
as a percentage of GDP. In addition, the descriptive statistics of the variables used in this
empirical investigation are shown in Table 2 below.

Table 2. Variables’ Descriptive Statistics.

Main Variables Observations Mean Standard Deviation Minimum Maximum

LnCO2 792 2.038 0.526 0.292 3.292
LnGDP 783 10.141 0.743 8.271 11.566
LnUrb 792 4.313 0.153 3.920 4.583

LnFossil 789 4.243 0.373 2.327 4.590
LnIndust 771 3.229 0.209 2.344 3.716
LnPatents 777 2.162 0.484 −0.083 3.452

LnTaxToGDP 788 0.810 0.424 −3.912 1.680
LnTaxPerc 787 1.933 0.357 −2.407 2.942

Notes: (Ln) denotes variables in the natural logarithms; the command sum of Stata 17.0 was used in this empirical
investigation.

3.2. Methodology

The main model estimation used in this study will be shown in this subsection. First,
we describe a set of initial tests essential to characterise the data and assess which estimation
method is the most appropriate. Then, this section shows the estimation that will be used to
identify the effect of independent variables on CO2 gas emissions. The fixed effects estimator
encompasses different intercepts for the various countries to control for country-specific
unobservable effects that are not captured by the covariates. In contrast to the fixed effects
estimator, the panel quantile regression procedure developed by Canay [56] allows the
identification of the effect of the independent variables (explanatory variables) on different
parts of the conditional distribution of CO2 gas emissions. Finally, we deal with the potential
parameter heterogeneity among countries by forming groups using the method proposed
by Lin and Ng [57]. Parameter heterogeneity is a common feature of panel data and can lead
to biased estimates. This method clusters countries into data-driven groups, thus avoiding
biased estimates and retaining the benefits of panel data estimation.
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Indeed, in order to identify the characteristics of all variables used in this empirical
investigation, the following preliminary tests will be performed:

(I) Shapiro–Wilk test for normality [58]. This test, which relies on order statistics, stipu-
lates that. Indeed, the null hypothesis of this test is that the variables are normally
distributed in the panel data;

(II) The variable inflation factor (VIF) assesses the severity of multicollinearity between
the variables in the econometric model. Indeed, high multicollinearity between the
model variables makes unstable parameter estimates;

(III) Cross-sectional dependence (CSD) test [59]. This test checks the presence of CSD
between the variables in the panel data. According to the null hypothesis, different
units are uncorrelated;

(IV) Panel unit root test (CIPS). This test aims to verify the stationarity among the variables in
the model [60]. The null hypothesis of this test indicated that the series is non-stationary;

(V) Cointegration test [61]. This test checks for cointegration between the variables in the
panel data. The null hypothesis of this test is that variables are not cointegrated;

(VI) The Hausman test [62]. This test identifies fixed effects (FE) or random effects (RE)
estimates in the econometric models. The null hypothesis of this test is that the RE
estimator is consistent and more efficient than FE.

After conducting the preliminary tests, we proceed to the estimation stage. We use
panel quantile regression as the primary method. Quantile regression has several advan-
tages over traditional least squares methods. First, unlike least squares methods that rely
on the conditional mean, it provides a complete picture of covariates’ impact on the depen-
dent variable’s entire distribution. Second, it is robust in the presence of outliers, which
generate large shifts in the least squares estimates. Finally, it does not require normally
distributed data.

We model the relationship between the logarithm of per capita CO2 gas emissions and
the explanatory variables through the following equation:

lnCO2i,t = αi + X′i,tβ(Ui,t) (1)

where the i = 1, 2, . . . , 36 identifies the country, t = 1994, 1995, . . . , 2015 is the observa-
tion year, αi is the country-specific fixed effect, X′i,t is the explanatory variables’ vector,
which includes a constant, lnGDPi,t, lnUrbi,t, lnFossil i,t, lnIndusti,t, lnPatentsi,t, lnTaxToGDPi,t,
and lnTaxPerci,t, β(Ui,t) = (β0, β1, . . . , β7) is the corresponding coefficients vector, and Ui,t
is a uniformly distributed random variable on the interval [0, 1].

It is well known that when the unobserved fixed effects are correlated with the covari-
ates, the simple quantile regression estimates become inconsistent. Canay [56] proposes a
two-stage estimation procedure that avoids this problem when the FE is a pure location
shift, and Ui,t and αi are independent. Let ui,t ≡ X′i,t

[
β(Ui,t)− βµ

]
, where βµ represents the

conditional mean of β(Ui,t). Then, from Equation (1), we get

lnCO2i,t = αi + X′i,tβµ + ui,t (2)

Canay’s two-stage procedure for the estimation of quantile τ’s parameters develops
as follows:

(1) Derive a consistent estimate of βµ, using Equation (2), and let α̂i ≡ T−1
T
∑

t=1

[
lnCO2i,t − X′i,t β̂µ

]
,

where β̂µ is the estimate of βµ;
(2) Estimate the explanatory variables’ coefficients by solving the following problem

β̂(τ) ≡ argminβ
1

T × N

T

∑
t=1

N

∑
i=1

[
ρτ

(
ˆlnCO2i,t − X′i,tβ

)]
(3)
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where ˆlnCO2i,t = lnCO2i,t − α̂i, ρτ is the check function for quantile τ, N, and T are the
number of countries and years in our sample, respectively. Canay [56] demonstrates that
the estimates obtained through this procedure are consistent and asymptotically normal.
In our implementation, we use the fixed effects estimates in the first stage and compute
the bootstrap standard errors for the final estimates using 1000 replications. Finally, we
benchmark the quantile regression results against the traditional fixed effects estimates.

Standard panel data models often implicitly assume the effect of the covariates on
the dependent variable is the same for different cross-sectional units. However, there is no
aprioristic reason to believe the slope coefficients must be equal. Thus, to test the robustness
of our results, we resort to the panel data model with group-specific parameters proposed
by [57]. These authors assume the slope coefficients are the same within a group of countries
but may differ from one group to another. They take an utterly agnostic view about the
number of groups in the panel and their composition and propose a modified K-means
algorithm to achieve conditional clustering. To implement this algorithm, we first need to
choose the number of groups, G, and randomly assign the countries to one of the groups.
Then, the following two-step procedure is repeated until convergence:

(1) Estimate the fixed effects slope coefficients, βg, separately for each group;
(2) Reassign country i to group g′, where g′ is the solution to the following problem

g′ = argming

T

∑
t=1

[ ...
lnCO2i,t −

...
X
′
i,tβg

]2
(4)

where
...

lnCO2i,t and
...
X
′
i,t are the demeaned dependent variable and covariates for country i

at time t. Therefore, step 2 must be done for every country in the sample.
Lin and Ng argue that the estimates are sensitive to the initial group allocation [57].

Thus, we repeat this algorithm one million times for each choice of G.
The final step in Lin and Ng’s method is choosing the optimal number of groups. They

propose choosing the value of G that minimizes the following modified BIC criterion:

BIC
(

G̃
)
= ln

 1
NT

G̃

∑
g=1

∑
i∈Ig

T

∑
t=1

[ ...
lnCO2i,t −

...
X
′
i,t β̂g

]2
+ G̃K

cNT ln(NT)
NT

+
(

G̃− 1
) ln

(
N2)

N2 (5)

where K denotes the number of regressors, cNT =
√

min(N, T), and β̂g is the vector of
estimates for group g.

Given the reduced number of cross-sectional units in our sample, we consider the
possibility that there are, at most, three different groups. First, we run the algorithm described
above 1 million times for G = 2 and choose the group composition that minimizes the modified
BIC criterion. Then, we do the same for G = 3. Finally, we compare the BIC criterion values
for the estimation with one group (just the standard fixed effects estimator), two groups, and
three groups and select the number of groups with the lowest BIC.

4. Empirical Analysis

This section presents the results of the preliminary tests. Estimates of the effect of covari-
ates on CO2 gas emissions for the full sample and the different groups are also presented. In
addition, we chose to analyse the impact of the explanatory variables at the 10th, 25th, 50th,
75th, and 90th quantiles of the dependent variable to get a complete picture of their influence
on the different zones of the distribution of CO2 gas emissions. Table 3 below reveals that
the null hypothesis of a normal distribution is strongly rejected for the dependent and the
independent variables. However, we should note that this lends more weight to our choice of
resorting to quantile regression, as this method does not require normally distributed data.

The inflation variation factors (VIF) show that multicollinearity does not affect our
model. However, all FIV are well below the commonly accepted threshold of 10, and the
average VIF is below the reference value of 6 (see Table 4 below).
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Table 3. Normality test (Shapiro–Wilk test).

Main Variables Obs. W V Z Prob > z

LnCO2 792 0.961 19.883 7.333 0.0000
LnGDP 783 0.952 24.481 7.839 0.0000
LnUrb 792 0.959 20.735 7.436 0.0000

LnFossil 789 0.730 137.430 12.072 0.0000
LnIndust 771 0.966 16.961 6.935 0.0000
LnPatents 777 0.961 19.425 7.270 0.0000

LnTaxToGDP 788 0.848 77.243 10.659 0.0000
LnTaxPerc 787 0.875 63.345 10.172 0.0000

Notes: The command swilk of Stata 17.0 was used in this empirical investigation.

Table 4. VIF-test.

Main Variables VIF 1/VIF Mean VIF

LnGDP 3.58 0.279

1.93

LnUrb 3.45 0.290
LnFossil 1.68 0.596
LnIndust 1.40 0.716
LnPatents 1.27 0.787

LnTaxToGDP 1.09 0.915
LnTaxPerc 1.05 0.949

Notes: The command vif of Stata 17.0 was used in this empirical investigation.

Indeed, Table 5 below shows the results of the Pesaran cross-sectional dependence
test [59]. The absence of cross-sectional dependence is strongly rejected for all variables,
suggesting that common shocks drive their evolution across countries. This phenomenon
implies that standard errors in the traditional fixed-effects estimates are biased. To deal
with it, we use the Driscoll and Kray [63] standard errors in the fixed effects estimates and
bootstrapped standard errors in the panel quantile regressions.

Table 5. CSD-test.

Main Variables CD-Test p-Value Corr Abs (Corr)

LnCO2 29.63 0.000 0.253 0.535
LnGDP 101.98 0.000 0.879 0.879
LnUrb 39.66 0.000 0.339 0.858

LnFossil 39.96 0.000 0.343 0.612
LnIndust 45.68 0.000 0.404 0.550
LnPatents 52.55 0.000 0.461 0.479

LnTaxToGDP 12.70 0.000 0.112 0.465
LnTaxPerc 12.80 0.000 0.113 0.450

Notes: The command xtcd of Stata 17.0 was used in this empirical investigation.

Next, we test all variables for stationarity. Again, we resort to the CSD test [60] since it
is robust in the presence of CSD. Table 6 below reveals that all variables are nonstationary
in the specification without trend, except for LnPatents. When a trend is included, both
LnCO2 and LnPatents are stationary, while the remaining variables are not.

When variables are nonstationary, we have to check whether they are cointegrated.
Otherwise, we could incur the problem of spurious regression. However, all variants of the
Pedroni cointegration test [61] strongly reject the null hypothesis of no cointegration. There-
fore, as shown in Table 7 below, we need not worry about the spurious regression problem.

Finally, the Hausman test (see Table 8 below) slightly rejects the hypothesis that the
RE estimator is consistent. Therefore, this investigation chooses to apply the FE estimator
because of its consistency, although it may be inefficient when the null hypothesis holds.
The alternative of choosing the random effects estimator may result in biased estimates,
which is a more serious problem.
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Table 6. CIPS-test.

Main Variables
CIPS-Test (Zt-Bar)

Lags Without Trend With Trend

Zt-Bar Zt-Bar

LnCO2 1 0.766 −1.861 **
LnGDP 1 0.217 1.599
LnUrb 1 0.094 2.994

LnFossil 1 −0.813 0.128
LnIndust 1 −0.915 2.171
LnPatents 1 −4.898 *** −5.159 ***

LnTaxToGDP 1 1.172 2.943
LnTaxPerc 1 1.376 4.513

Notes: The command multipurt of Stata 17.0 was used in this empirical investigation; *** and ** indicate a
statistically significant at the (1%) and (5%) levels, respectively.

Table 7. Pedroni cointegration test.

Estimator Statistic p-Value

Modified Phillips–Perron test (MPP) 5.485 0.000
Phillips–Perron test (PP) −8.909 0.000

Augmented Dickey–Fuller test (ADF) −10.159 0.000
Notes: The command xtcointtest of Stata 17.0 was used in this empirical investigation.

Table 8. Hausman test.

Test Distribution Statistic p-Value

Chi-squared (7) 13.22 0.0670
Notes: The command hausman of Stata 17.0 was used in this empirical investigation.

Next, we report the estimates for the full sample. Table 9 below reveals the estimates
of panel quantile regression and ordinary least squares (OLS) regression.

Table 9. Estimations for LnCO2.

Independent
Variables

Quantiles (Q) OLS Model

10Q 25Q 50Q 75Q 90Q FE Estimator

LnGDP 0.2511 *** 0.2327 *** 0.2417 *** 0.2226 *** 0.2046 *** 0.2327 ***
LnUrb −0.3777 ** −0.3585 ** −0.3585 ** −0.3337 ** −0.3564 ** −0.3557 ***

LnFossil 0.5507 *** 0.5560 *** 0.5056 *** 0.4567 *** 0.4252 *** 0.4820 ***
LnIndust 0.4025 *** 0.3569 *** 0.3392 *** 0.3165 *** 0.3088 *** 0.3405 ***
LnPatents −0.0567 *** −0.0629 *** −0.0571 *** −0.0322 ** −0.0115 −0.0381 ***

LnTaxToGDP 0.2796 *** 0.2996 *** 0.2498 *** 0.2080 *** 0.2335 *** 0.2450 ***
LnTaxPerc −0.2484 *** −0.2746 *** −0.2035 *** −0.1449 *** −0.1637 *** −0.1967 ***
Constant −2.2499 ** −1.9219 ** −1.7975 ** −1.5060 * −1.0466 −1.6726 ***

Notes: The commands stscc, xtreg, and qreg of Stata 17.0 were used in this empirical investigation. ***, **, and *
denote statistical significance at the (1%), (5%), and (10%) levels, respectively.

Table 9 above reveals that the FE model results show a positive dependence of CO2
gas emissions on GDP. However, the elasticity is lower than one, which means the carbon
intensity of economies decreases as they grow. The quantile regression estimates show the
detrimental impact of economic development on air pollution (CO2 emissions), which is felt
more noticeably in the lowest quantiles. Additionally, the effects of fossil fuel consumption,
industrialisation, and the tax burden as a fraction of GDP on CO2 gas emissions are akin to
GDP—they cause an increase in emissions that predominantly affect the lowest quantiles.
On the contrary, environmental taxation as a fraction of the total tax burden and the number
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of environmentally related patents contribute to reducing emissions. Urbanisation also
mitigates CO2 gas emissions, and its influence is broadly stable across quantiles. Indeed,
Figure 1 below summarises the results found in Table 9 above.
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Finally, we present the estimates for the different groups. According to the modified
BIC criterion, two groups are optimal. Therefore, Table 10 below shows the estimations for
LnCO2 for the two groups.

Table 10. Estimations for LnCO2 for the two groups.

Independent Variables Quantiles (Q) OLS Model

10Q 25Q 50Q 75Q 90Q FE Estimator

LnGDP
G1 0.0975 ** 0.0873 ** 0.0888 ** 0.0858 ** 0.0835 ** 0.0881 *
G2 0.5856 *** 0.6046 *** 0.6059 *** 0.6044 *** 0.5972 *** 0.5988 ***

LnUrb
G1 −2.3890 *** −2.4168 *** −2.4534 *** −2.5096 *** −2.5230 *** −2.4557 ***
G2 −0.6917 *** −0.6912 *** −0.7040 *** −0.6902 *** −0.6515 *** −0.6799 ***

LnFossil
G1 0.2833 *** 0.2855 *** 0.2681 *** 0.2336 *** 0.2121 *** 0.2508 ***
G2 1.6721 *** 1.6928 *** 1.7371 *** 1.7308 *** 1.7554 *** 1.7199 ***

LnIndust
G1 0.4518 *** 0.4197 *** 0.4285 *** 0.3926 *** 0.4147 *** 0.4270 ***
G2 0.0808 * 0.0978 ** 0.1328 *** 0.1383 *** 0.1155 ** 0.1236 ***

LnPatents
G1 −0.0333 * −0.0305 * −0.206 −0.0122 0.0044 −0.0121
G2 −0.0196 −0.0254 ** −0.0101 −0.0028 −0.0045 −0.106

LnTaxToGDP
G1 0.5132 *** 0.5504 *** 0.5367 *** 0.5434 *** 0.5461 *** 0.5299 ***
G2 0.0398 0.0150 0.0180 0.0100 0.0205 0.0274

LnTaxPerc
G1 −0.5404 *** −0.5727 *** −0.5767 *** −0.5805 *** −0.5772 *** −0.5540 ***
G2 0.0120 0.0303 0.0003 0.0183 −0.0014 0.0055

Constant
G1 9.3067 *** 9.7027 *** 9.9305 *** 10.491 *** 10.590 *** 9.9667 ***
G2 −8.5375 *** −8.8487 *** −9.0539 *** −9.1077 *** −9.1736 *** −9.0108 ***

Notes: The commands stscc, xtreg, and qreg of Stata 17.0 were used in this empirical investigation.G1 and G2
represent group 1 and group 2, respectively. ***, **, and * denote statistical significance at the (1%), (5%), and (10%)
levels, respectively.
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Table 10 above shows that the signs of the estimated coefficients agree almost perfectly
with those of the full sample. However, there are some relevant differences. First, the
mitigating effect of patents is only noticeable at the 10th and 25th quantile for group 1 and
at the 25th quantile for group 2. Second, environmental taxation does not influence group
2 countries. Finally, comparing groups 1 and 2, we can observe that GDP and fossil fuel
consumption have a more significant detrimental impact on the latter than on the former. On
the contrary, industrialisation mainly increases emissions from group 1 countries. However,
interestingly, the decrease in CO2 emissions caused by urbanisation is larger for both groups
than in the full sample, particularly for group 1.

5. Discussion

This section will present the possible discussions for the results found in this empiri-
cal investigation. Therefore, the variables LnGDP, LnFossil, LnIndust, and LnTaxToGDP
positively affect the variable LnCO2, i.e., they increase CO2 gas emissions. In contrast,
the variables LnUrb, LnPatents, and LnTaxPerc have a negative impact on the variable
LnCO2, i.e., they mitigate environmental degradation (CO2 gas emissions). In light of these
results, this empirical research raised a question: What are the probable explanations for the
results? In the literature, the positive effect of the LnGDP variable on the LnCO2 variable
has been found by several authors (e.g., [26,31,41–44]).

For example, Fuinhas et al. [42] investigated the effect of electric vehicles, GDP, and
consumption of energy on (GHG) greenhouse gas emissions in 29 countries from the
European Union (EU) between 2010 and 2020. The empirical results from their analysis
indicated that GDP exerts a positive impact on GHGs. In fact, in consonance with the
authors, this positive effect is related to EU countries depending on the consumption of
fossil fuels energy sources to grow through the rapid energy transition process. This idea is
shared by Mendonça et al. [43]. These authors, who studied the effect of economic growth,
population, and green energy sources on environmental degradation (CO2 gas emissions)
in 50 countries over the period 1990–2015 found an increase of 1% in GDP generated 0.27%
in environmental degradation (CO2 gas emissions) in all the countries studied. However,
the same authors also showed that most countries from the EU depend on energy from
non-renewable energy sources to grow.

The positive effect of the LnFossil and LnIndust variables on LnCO2 is related to the
variable LnGDP. Economic growth influences industrialisation processes (and vice versa)
and energy consumption. This view is shared by Fuinhas et al. [42] and Nawaz et al. [44] As
Nawaz et al. [44] said, modern production techniques make industrial production more
attractive and efficient in developing and advanced nations. Therefore, this industrialization
process increases the use of non-green energy sources.

Moreover, the same authors complement that industrialisation substantially influences
economic growth and enhances the quality of life by raising the supply of goods and
services. On the other hand, efforts to increase the gross domestic product per capita
through increased production have a negative effect on the ecosystem. Fuinhas et al. [42]
complement that the positive effect of the independent variables LnFossil and LnIndust
on the dependent variable LnCO2 is related to the high use of polluting energy sources
by households and industries. In European countries, in 1990 for example, 71.2% of final
electricity consumption came from polluting energy sources, while green energy sources
had a share of 4.34% in the energy mix in the EU. However, in 2019, there was a change
in this scenario, where non-alternative energy sources had a share of 69.5% in the energy
mix, while green energy sources had a share of 16%. Other authors also found the positive
impact of independent variables LnFossil and LnIndust on dependent variable LnCO2
(e.g., [43,45–49]).

The positive effect of the independent variable LnTaxToGDP on the dependent variable
the LnCO2 was found by Ren et al. [50], investigating the influence of environmental tax
burden on the economy and society on air pollution (CO2 gas emissions) in 21 countries
from OECD during the period from 1991 to 2014. The authors found that moderate taxes
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could help to reduce air pollution emissions, but the effect of excessive taxation is the
opposite. Therefore, another possible explanation for the positive impact of the independent
variable LnTaxToGDP on the dependent variable LnCO2 could be related to the inefficiency
of the tax burden, as suggested by Fuinhas et al. [51].

Some authors also observed the adverse effect of the variable LnUrb on the variable
LnCO2 (e.g., [52–55,64–66]). According to Koengkan and Fuinhas [52], the negative effect
of urbanization on environmental degradation (CO2 gas emissions) may be related to two
reasons. Firstly, it may be associated with the decrease in urban population impacting energy
consumption by businesses, families, and the transport sector, consequently impacting envi-
ronmental degradation (CO2 gas emissions). According to Europa [67], in some countries
of the European Union (EU), a decrease in urban population is projected, such as Portugal
(−1.6%), Bulgaria (−1.4%), Hungary (−1.7%), Italy (−3.1%), Lithuania (−2.7%), Poland
(−10.3%), Romania (−8.6%), Latvia (−17.7%), and Greece (−16.7%). However, over the
same period, the entire rural population is expected to increase in only four EU countries,
such as Sweden (+10.9%), Ireland (+24.5%), Belgium (+1.0%), and Denmark (+1.2%).

In contrast, almost 20 Member States are expected to have a fall in their entire ru-
ral population, ranging from (−43.5%) in Lithuania to (−0.6%) in Austria. In addition,
substantial falls exceeding 20% are also expected for Latvia’s rural population of almost
(−37.6%), along with the rural populations of Romania (−25.0%), Croatia (−23.3%), and
Bulgaria (−26.8%). Moreover, it could be related to (a) the improvement in energy efficiency
caused by the introduction of new green energy technologies; (b) the diversification of
energy sources, with the inclusion of green energy sources in the energy matrix in large
urban centres; and (c) the introduction of environmental regulations, which encourage the
acquisition of environmentally friendly technologies by industries and households and
restrict the use of fossil fuel-powered cars, or other transport in urban centres, as occurs in
some large cities in OECD countries. In addition, massive investment in public transport
powered by alternative energy sources reduces the use of individual transport.

Several authors have found the negative impact of the LnPatents variable on LnCO2
(e.g., [24–30,33–38,40]). The negative impact of the LnPatents variable has been related to
the increase in patents on alternative/green energy technologies and technologies with high
energy efficiency. For example, green industries are already booming in the EU. Therefore,
the environmental industry sector in the EU grew by more than (50%) between 2000 and
2011. In this sector, more than 3 million people already work for eco-industries. Indeed,
one-third of the global green technology market is supplied by European companies—a
market worth €1 trillion today and expected to double in five years [68]. This increase will
therefore reduce the consumption of fossil fuels energy sources and hence CO2 gaseous
emissions. Moreover, the negative impact of patents on environmental degradation (CO2
gas emissions) indicates that OECD countries are investing massively in green technologies
and eco-innovative initiatives to mitigate the impact of human activity on the environment.

Finally, several authors in the literature have found the negative effect of the inde-
pendent variable LnTaxPerc on the dependent variable LnCO2 (e.g., [2,17,18,20–23,26]).
Thus, the ability of environmental taxation as a fraction of the total tax burden to reduce
environmental degradation (CO2 gas emissions) is due to the efficiency of environmental
policies that reduce the consumption of non-renewable energy sources and, thus, CO2
emissions. Another explanation is that environmental regulation promotes environmental
degradation (CO2 gas emissions) when the optimisation of industrial structures is low.
However, when the optimisation of industrial structures is high, environmental regulation
significantly inhibits carbon dioxide emissions [26].

6. Conclusions, Policy Implications and Limitations

This study provides a comprehensive analysis of CO2 emissions performance through
the perspective of GDP, fossil fuel consumption, industrialisation, environmental tax rev-
enues as a percentage of GDP/total taxes, environmental patents, and urbanisation, using
the fixed effects estimator and quantile regression modelling approach for OECD countries.
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This study considered panel data from 36 OECD member countries from 1994 to 2015.
Our empirical results indicated that GDP, fossil fuel consumption, industrialisation and GDP
tax positively affect and, as a result, intensify CO2 gas emissions. In contrast, urbanisation,
environmental patents, and environmental tax as a percentage of total tax mitigate the CO2
gas emissions in OECD countries. Furthermore, the study validates that industrialisation
accelerates economic growth, thus showing that the positive impact of non-renewable energy
consumption and industrialisation on CO2 emissions is linked to GDP.

Similarly, the positive effect of the GDP tax on CO2 emissions reflects that a moderate
tax burden could help to reduce carbon emissions in member countries. However, the
other variables used in the study, such as urbanisation, show a negative effect on CO2
gas emissions, which could be mainly associated with the reduction of the urban popula-
tion. This result will ultimately affect energy consumption, in particular, from industries,
households, and the transport sector, plus the impact of introducing the latest energy
technologies and renewable sources into larger urban clusters and the induction of envi-
ronmental regulations in the OECD countries. Likewise, environmental patents negatively
affect CO2 gas emissions because of the high patents’ investments in green technologies
and eco-innovation initiatives. Finally, the negative effect of the environmental tax as a
percentage of total taxes on CO2 gas emissions reflects the efficient impact of environmental
policies, which facilitate the reduction of energy consumption and, consequently, CO2
gas emissions. These results confirm most of the previous findings present in the existing
literature. However, the study found that environmental taxation does not influence group
2 countries (Appendix A) when dividing the sampled countries into two groups.

The findings of this study have important policy implications. The effect of industriali-
sation on environmental degradation is an observable fact. Once the country reaches the
permissible thresholds, it is necessary to maximise energy consumption. The policymakers
should design policies that help them to promote environmentally sustainable economic
growth by imposing and accumulating environmental taxes. These environmental taxes,
the discharge system, and the credit could endorse modifying industrial structures and eco-
nomic growth modes. Policymakers should also resort to policies that foster trade of electric
power produced by nuclear energy to neighbouring OECD countries. Using nuclear energy
to produce electricity will ultimately affect the CO2 gas emissions in the importing countries.
Hence, carefully drafted environmental regulations are required in OECD countries to use
energy efficiently.

The study has some limitations that may encourage further research. First, this
study focuses only on the OECD nations considered developed countries. It would be
valuable if a comprehensive analysis compared OECD countries with developing countries,
such as ASEAN and South Asian countries enduring severe threats of CO2 gas emissions.
Future research can also deploy the latest analytical approaches with different periods and
variables and offer forecasts for different country groups.
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Appendix A

Country list: Australia, Austria, Belgium, Canada, Chile, Colombia, Czech Republic,
Denmark, Estonia, Finland, France, Germany, Greece, Hungary, Iceland, Ireland, Israel,
Italy, Japan, Korea, Latvia, Lithuania, Luxembourg, Netherlands, New Zealand, Norway,
Poland, Portugal, Slovak Republic, Slovenia, Spain, Sweden, Switzerland, Turkey, the
United Kingdom, and the United States of America.

Group 1: Australia, Belgium, Canada, Colombia, Estonia, Germany, Hungary, Iceland,
Ireland, Latvia, Lithuania, Norway, Poland, Slovak Republic, Sweden, the United Kingdom,
and the United States of America.

Group 2: Austria, Chile, Czech Republic, Denmark, Finland, France, Greece, Israel,
Italy, Japan, Korea, Luxembourg, Netherlands, New Zealand, Portugal, Slovenia, Spain,
Switzerland, and Turkey.

References
1. Rogelj, J.; Den Elzen, M.; Höhne, N.; Fransen, T.; Fekete, H.; Winkler, H.; Meinshausen, M. Paris Agreement climate proposals

need a boost to keep warming well below 2 C. Nature 2016, 534, 631–639. [CrossRef] [PubMed]
2. Albulescu, C.T.; Boatca-Barabas, M.E.; Diaconescu, A. The asymmetric effect of environmental policy stringency on CO2 gas

emissions in OECD countries. Environ. Sci. Pollut. Res. 2022, 29, 27311–27327. [CrossRef] [PubMed]
3. York, R.; Rosa, E.A.; Dietz, T. STIRPAT, IPAT and ImPACT: Analytic tools for unpacking the driving forces of environmental

impacts. Ecol. Econ. 2003, 46, 351–365. [CrossRef]
4. Shi, A. The impact of population pressure on global carbon dioxide emissions, 1975–1996: Evidence from pooled cross-country

data. Ecol. Econ. 2003, 44, 29–42. [CrossRef]
5. Fan, Y.; Liu, L.C.; Wu, G.; Wei, Y.M. Analyzing impact factors of CO2 gas emissions using the STIRPAT model. Environ. Impact

Assess. Rev. 2006, 26, 377–395. [CrossRef]
6. Martínez-Zarzoso, I.; Bengochea-Morancho, A.; Morales-Lage, R. The impact of population on CO2 emissions: Evidence from

European countries. Environ. Resour. Econ. 2007, 38, 497–512. [CrossRef]
7. Liddle, B.; Lung, S. Age-structure, urbanization, and climate change in developed countries: Revisiting STIRPAT for disaggregated

population and consumption-related environmental impacts. Popul. Environ. 2010, 31, 317–343. [CrossRef]
8. Behera, B.; Vishnu, R. Analysing the impact of anthropogenic factors on the environment in India. Environ. Nat. Resour. Res. 2011,

1, 117. [CrossRef]
9. Wang, Q.; Zhang, H.; Zhang, W. A Malmquist CO2 gas emission performance index based on a metafrontier approach. Math.

Comput. Model. 2013, 58, 1068–1073. [CrossRef]
10. Liddle, B. What are the carbon emissions elasticities for income and population? Bridging STIRPAT and EKC via robust

heterogeneous panel estimates. Glob. Environ. Change 2015, 31, 62–73. [CrossRef]
11. Uddin, M.G.S.; Bidisha, S.H.; Ozturk, I. Carbon emissions, energy consumption, and economic growth relationship in Sri Lanka.

Energy Sources Part B Econ. Plan. Policy 2016, 11, 282–287. [CrossRef]
12. Xu, B.; Lin, B. Assessing CO2 gas emissions in China’s iron and steel industry: A dynamic vector autoregression model. Appl.

Energy 2016, 161, 375–386. [CrossRef]
13. Shuai, C.; Shen, L.; Jiao, L.; Wu, Y.; Tan, Y. Identifying key impact factors on carbon emission: Evidences from panel and

time-series data of 125 countries from 1990 to 2011. Appl. Energy 2017, 18, 310–325. [CrossRef]
14. He, Z.; Xu, S.; Shen, W.; Long, R.; Chen, H. Impact of urbanization on energy related CO2 gas emission at different development

levels: Regional difference in China based on panel estimation. J. Clean. Prod. 2017, 140, 1719–1730. [CrossRef]
15. Lin, S.; Wang, S.; Marinova, D.; Zhao, D.; Hong, J. Impacts of urbanization and real economic development on CO2 gas emissions

in non-high income countries: Empirical research based on the extended STIRPAT model. J. Clean. Prod. 2017, 166, 952–966.
[CrossRef]

16. Shuai, C.; Chen, X.; Wu, Y.; Tan, Y.; Zhang, Y.; Shen, L. Identifying the key impact factors of carbon emission in China: Results
from a largely expanded pool of potential impact factors. J. Clean. Prod. 2018, 175, 612–623. [CrossRef]

17. Ahmed, K. Environmental policy stringency, related technological change and emissions inventory in 20 OECD countries. J.
Environ. Manag. 2020, 274, 111209. [CrossRef]

18. He, P.; Ning, J.; Yu, Z.; Xiong, H.; Shen, H.; Jin, H. Can environmental tax policy really help to reduce pollutant emissions? An
empirical study of a panel ARDL model based on OECD countries and China. Sustainability 2019, 11, 4384. [CrossRef]

19. Chen, X.; Chen, Y.E.; Chang, C.P. The effects of environmental regulation and industrial structure on carbon dioxide emission: A
non-linear investigation. Environ. Sci. Pollut. Res. 2019, 26, 30252–30267. [CrossRef]

20. Neves, S.A.; Marques, A.C.; Patrício, M. Determinants of CO2 gas emissions in European Union countries: Does environmental
regulation reduce environmental pollution? Econ. Anal. Policy 2020, 68, 114–125. [CrossRef]

21. Wang, H.; Zhang, R. Effects of environmental regulation on CO2 gas emissions: An empirical analysis of 282 cities in China.
Sustain. Prod. Consum. 2022, 29, 259–272. [CrossRef]

http://doi.org/10.1038/nature18307
http://www.ncbi.nlm.nih.gov/pubmed/27357792
http://doi.org/10.1007/s11356-021-18267-8
http://www.ncbi.nlm.nih.gov/pubmed/34981390
http://doi.org/10.1016/S0921-8009(03)00188-5
http://doi.org/10.1016/S0921-8009(02)00223-9
http://doi.org/10.1016/j.eiar.2005.11.007
http://doi.org/10.1007/s10640-007-9096-5
http://doi.org/10.1007/s11111-010-0101-5
http://doi.org/10.5539/enrr.v1n1p117
http://doi.org/10.1016/j.mcm.2012.05.003
http://doi.org/10.1016/j.gloenvcha.2014.10.016
http://doi.org/10.1080/15567249.2012.694577
http://doi.org/10.1016/j.apenergy.2015.10.039
http://doi.org/10.1016/j.apenergy.2016.11.029
http://doi.org/10.1016/j.jclepro.2016.08.155
http://doi.org/10.1016/j.jclepro.2017.08.107
http://doi.org/10.1016/j.jclepro.2017.12.097
http://doi.org/10.1016/j.jenvman.2020.111209
http://doi.org/10.3390/su11164384
http://doi.org/10.1007/s11356-019-06150-6
http://doi.org/10.1016/j.eap.2020.09.005
http://doi.org/10.1016/j.spc.2021.10.016


Energies 2022, 15, 8486 16 of 17

22. Eskander, S.M.; Fankhauser, S. Reduction in greenhouse gas emissions from national climate legislation. Nat. Clim. Change 2020,
10, 750–756. [CrossRef]

23. Baloch, M.A.; Wang, B. Analyzing the role of governance in CO2 gas emissions mitigation: The BRICS experience. Struct. Change
Econ. Dyn. 2019, 51, 119–125. [CrossRef]
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25. Petrović, P.; Lobanov, M.M. The impact of R&D expenditures on CO2 gas emissions: Evidence from sixteen OECD countries. J.
Clean. Prod. 2020, 248, 119187. [CrossRef]

26. Cheng, C.; Ren, X.; Dong, K.; Dong, X.; Wang, Z. How does technological innovation mitigate CO2 gas emissions in OECD
countries? Heterogeneous analysis using panel quantile regression. J. Environ. Manag. 2021, 280, 11818. [CrossRef]

27. Alam, M.S.; Apergis, N.; Paramati, S.R.; Fang, J. The impacts of R&D investment and stock markets on clean-energy consumption
and CO2 emissions in OECD economies. Int. J. Financ. Econ. 2021, 26, 4979–4992. [CrossRef]

28. Ahmad, M.; Khan, Z.; Rahman, Z.U.; Khattak, S.I.; Khan, Z.U. Can innovation shocks determine CO2 gas emissions (CO2e) in the
OECD economies? A new perspective. Econ. Innov. New Technol. 2021, 30, 89–109. [CrossRef]

29. Hashmi, R.; Alam, K. Dynamic relationship among environmental regulation, innovation, CO2 gas emissions, population, and
economic growth in OECD countries: A panel investigation. J. Clean. Prod. 2019, 231, 1100–1109. [CrossRef]

30. Chen, Y.; Lee, C.C. Does technological innovation reduce CO2 gas emissions? Cross-country evidence. J. Clean. Prod. 2020, 263,
121550. [CrossRef]

31. Cheng, C.; Ren, X.; Wang, Z.; Yan, C. Heterogeneous impacts of renewable energy and environmental patents on CO2 gas
emission-Evidence from the BRIICS. Sci. Total Environ. 2019, 668, 1328–1338. [CrossRef] [PubMed]

32. Meirun, T.; Mihardjo, L.W.; Haseeb, M.; Khan, S.A.R.; Jermsittiparsert, K. The dynamics effect of green technology innovation on
economic growth and CO2 emission in Singapore: New evidence from bootstrap ARDL approach. Environ. Sci. Pollut. Res. 2021,
28, 4184–4194. [CrossRef] [PubMed]

33. Khattak, S.I.; Ahmad, M.; Khan, Z.U.; Khan, A. Exploring the impact of innovation, renewable energy consumption, and income on
CO2 gas emissions: New evidence from the BRICS economies. Environ. Sci. Pollut. Res. 2020, 27, 13866–13881. [CrossRef] [PubMed]

34. Fernández, Y.F.; López, M.F.; Blanco, B.O. Innovation for sustainability: The impact of R&D spending on CO2 gas emissions. J.
Clean. Prod. 2018, 172, 3459–3467. [CrossRef]

35. Du, K.; Li, P.; Yan, Z. Do green technology innovations contribute to carbon dioxide emission reduction? Empirical evidence from
patent data. Technol. Forecast. Soc. Change 2019, 146, 297–303. [CrossRef]

36. Dauda, L.; Long, X.; Mensah, C.N.; Salman, M.; Boamah, K.B.; Ampon-Wireko, S.; Dogbe, C.S.K. Innovation, trade openness and
CO2 gas emissions in selected countries in Africa. J. Clean. Prod. 2021, 281, 125143. [CrossRef]

37. Ganda, F. The impact of innovation and technology investments on carbon emissions in selected organisation for economic
Co-operation and development countries. J. Clean. Prod. 2019, 217, 469–483. [CrossRef]

38. Hasanov, F.J.; Khan, Z.; Hussain, M.; Tufail, M. Theoretical framework for the carbon emissions effects of technological progress
and renewable energy consumption. Sustain. Dev. 2021, 29, 810–822. [CrossRef]

39. Wang, Z.; Zhu, Y. Do energy technology innovations contribute to CO2 gas emissions abatement? A spatial perspective. Sci. Total
Environ. 2020, 726, 138574. [CrossRef]

40. Abid, A.; Mehmood, U.; Tariq, S.; Haq, Z.U. The effect of technological innovation, FDI, and financial development on CO2 gas
emission: Evidence from the G8 countries. Environ. Sci. Pollut. Res. 2022, 29, 11654–11662. [CrossRef]

41. Cheng, C.; Ren, X.; Wang, Z. The impact of renewable energy and innovation on carbon emission: An empirical analysis for
OECD countries. Energy Procedia 2019, 158, 3506–3512. [CrossRef]

42. Fuinhas, J.A.; Koengkan, M.; Leitão, N.C.; Nwani, C.; Uzuner, G.; Dehdar, F.; Relva, S.; Peyerl, D. Effect of Battery Electric Vehicles
on Greenhouse Gas Emissions in 29 European Union Countries. Sustainability 2021, 13, 13611. [CrossRef]

43. Mendonça, A.K.S.; Barni, G.A.C.; Moro, L.F.; Bornia, A.C.; Kupek, E.; Fernandes, L. Hierarchical modeling of the 50 largest
economies to verify the impact of GDP, population and renewable energy generation in CO2 gas emissions. Sustain. Prod. Consum.
2020, 20, 8–67. [CrossRef]

44. Nawaz, M.A.; Hussain, M.S.; Kamran, H.W.; Ehsanullah, S.; Kupek, E.; Maheen, R.; Shair, F. Trilemma association of energy
consumption, carbon emission, and economic growth of BRICS and OECD regions: Quantile regression estimation. Environ. Sci.
Pollut. Res. 2020, 28, 16014–16028. [CrossRef]

45. Ouédraogo, M.; Peng, D.; Chen, X.; Hashmi, S.H.; Sall, M.I. Dynamic Effect of Oil Resources on Environmental Quality: Testing
the Environmental Kuznets Curve Hypothesis for Selected African Countries. Sustainability 2021, 13, 3649. [CrossRef]

46. Shahbaz, M.; Sharma, R.; Sinha, A.; Jiao, Z. Analysing nonlinear impact of economic growth drivers on CO2 gas emissions:
Designing an SDG framework for India. Energy Policy 2021, 48, 111965. [CrossRef]

47. Dogan, E.; Inglesi-Lotz, R. The impact of economic structure to the environmental Kuznets curve (EKC) hypothesis: Evidence
from European countries. Environ. Sci. Pollut. Res. 2020, 27, 12717–12724. [CrossRef]

48. Koengkan, M.; Losekann, L.D.; Fuinhas, J.A. The relationship between economic growth, consumption of energy, and environ-
mental degradation: Renewed evidence from Andean community nations. Environ. Syst. Decis. 2019, 39, 95–107. [CrossRef]

49. Destek, M.A.; Ulucak, R.; Dogan, E. Analysing the environmental Kuznets curve for the EU countries: The role of ecological
footprint. Environ. Sci. Pollut. Res. 2018, 25, 29387–29396. [CrossRef]

http://doi.org/10.1038/s41558-020-0831-z
http://doi.org/10.1016/j.strueco.2019.08.007
http://doi.org/10.1007/s11356-019-04712-2
http://doi.org/10.1016/j.jclepro.2019.119187
http://doi.org/10.1016/j.jenvman.2020.111818
http://doi.org/10.1002/ijfe.2049
http://doi.org/10.1080/10438599.2019.1684643
http://doi.org/10.1016/j.jclepro.2019.05.325
http://doi.org/10.1016/j.jclepro.2020.121550
http://doi.org/10.1016/j.scitotenv.2019.02.063
http://www.ncbi.nlm.nih.gov/pubmed/30846196
http://doi.org/10.1007/s11356-020-10760-w
http://www.ncbi.nlm.nih.gov/pubmed/32935214
http://doi.org/10.1007/s11356-020-07876-4
http://www.ncbi.nlm.nih.gov/pubmed/32036520
http://doi.org/10.1016/j.jclepro.2017.11.001
http://doi.org/10.1016/j.techfore.2019.06.010
http://doi.org/10.1016/j.jclepro.2020.125143
http://doi.org/10.1016/j.jclepro.2019.01.235
http://doi.org/10.1002/sd.2175
http://doi.org/10.1016/j.scitotenv.2020.138574
http://doi.org/10.1007/s11356-021-15993-x
http://doi.org/10.1016/j.egypro.2019.01.919
http://doi.org/10.3390/su132413611
http://doi.org/10.1016/j.spc.2020.02.001
http://doi.org/10.1007/s11356-020-11823-8
http://doi.org/10.3390/su13073649
http://doi.org/10.1016/j.enpol.2020.111965
http://doi.org/10.1007/s11356-020-07878-2
http://doi.org/10.1007/s10669-018-9698-1
http://doi.org/10.1007/s11356-018-2911-4


Energies 2022, 15, 8486 17 of 17

50. Ren, Y.; Jiang, Y.; Ma, C.; Liu, J.; Chen, J. Will Tax Burden Be a Stumbling Block to Carbon-Emission Reduction? Evidence from
OECD Countries. J. Syst. Sci. Inf. 2021, 9, 1–21. [CrossRef]

51. Fuinhas, J.A.; Marques, A.C.; Koengkan, M. Are renewable energy policies upsetting carbon dioxide emissions? The case of Latin
America countries. Environ. Sci. Pollut. Res. 2017, 24, 15044–15054. [CrossRef] [PubMed]

52. Koengkan, M.; Fuinhas, J.A. Is gender inequality an essential driver in explaining environmental degradation? Some empirical
answers from the CO2 gas emissions in European Union countries. Environ. Impact Assess. Rev. 2021, 90, 106619. [CrossRef]

53. Muhammad, S.; Long, X.; Salman, M.; Dauda, L. Effect of urbanization and international trade on CO2 emissions across 65 belt
and road initiative countries. Energy 2020, 196, 11702. [CrossRef]

54. Salahuddin, M.; Gow, J.; Ali, M.I.; Hossain, M.D.R.; Al-Azami, K.S.; Akbar, D.; Gedikli, A. Urbanization-globalization-CO2 gas
emissions nexus revisited: Empirical evidence from South Africa. Heliyon 2019, 5, 01974. [CrossRef] [PubMed]

55. Poumanyvong, P.; Kaneko, S. Does urbanization lead to less energy use and lower CO2 gas emissions? A cross-country analysis.
Ecol. Econ. 2010, 70, 434–444. [CrossRef]

56. Canay, I.A. A simple approach to quantile regression for panel data. Econom. J. 2011, 14, 368–386. [CrossRef]
57. Lin, C.-C.; Ng, S. Estimation of Panel Data Models with Parameter Heterogeneity when Group Membership is Unknown. J.

Econom. Methods 2012, 1, 42–55. [CrossRef]
58. Royston, J.P. A Simple Method for Evaluating the Shapiro–Francia W′ Test of Non-Normality. J. R. Stat. Soc. Ser. D 1983, 32, 297–300.

[CrossRef]
59. Pesaran, M.H. General diagnostic tests for cross-sectional dependence in panels. Empir. Econ. 2021, 60, 13–50. [CrossRef]
60. Pesaran, M.H. A simple panel unit root test in the presence of cross-section dependence. J. Appl. Econom. 2007, 22, 265–312.

[CrossRef]
61. Pedroni, P. Critical Values for Cointegration Tests in Heterogeneous Panels with Multiple Regressors. Oxf. Bull. Econ. Stat. 1999,

61(S1), 653–670. [CrossRef]
62. Hausman, J.A. Specification Tests in Econometrics. Econometrica 1978, 46, 1251–1271. [CrossRef]
63. Driscoll, J.C.; Kraay, A.C. Consistent Covariance Matrix Estimation with Spatially Dependent Panel Data. Rev. Econ. Stat. 1998,

80, 549–560. [CrossRef]
64. Koengkan, M.; Losekann, L.D.; Fuinhas, J.A.; Marques, A.C. The Effect of Hydroelectricity Consumption on Environmental

Degradation—The Case of South America region. TAS J. 2018, 2, 1521. [CrossRef]
65. Kazemzadeh, E.; Koengkan, M.; Fuinhas, J.A. Effect of Battery-Electric and Plug-In Hybrid Electric Vehicles on PM2.5 Emissions

in 29 European Countries. Sustainability 2022, 14, 2188. [CrossRef]
66. Silvia, N.; Fuinhas, J.A.; Koengkan, M. Assessing the advancement of new renewable energy sources in Latin American and

Caribbean countries. Energy 2021, 237, 121611. [CrossRef]
67. Europa. Population Projections: Urban Growth, Rural Decline. 2021. Available online: https://ec.europa.eu/eurostat/web/

products-eurostat-news/-/ddn-20210520-1. (accessed on 3 November 2022).
68. Europa. Eco-innovation at the Heat of European Policies. 2022. Available online: https://ec.europa.eu/environment/ecoap/

about-action-plan/objectives-methodology_en. (accessed on 3 November 2022).

http://doi.org/10.21078/JSSI-2021-335-21
http://doi.org/10.1007/s11356-017-9109-z
http://www.ncbi.nlm.nih.gov/pubmed/28493188
http://doi.org/10.1016/j.eiar.2021.106619
http://doi.org/10.1016/j.energy.2020.117102
http://doi.org/10.1016/j.heliyon.2019.e01974
http://www.ncbi.nlm.nih.gov/pubmed/31294119
http://doi.org/10.1016/j.ecolecon.2010.09.029
http://doi.org/10.1111/j.1368-423X.2011.00349.x
http://doi.org/10.1515/2156-6674.1000
http://doi.org/10.2307/2987935
http://doi.org/10.1007/s00181-020-01875-7
http://doi.org/10.1002/jae.951
http://doi.org/10.1111/1468-0084.61.s1.14
http://doi.org/10.2307/1913827
http://doi.org/10.1162/003465398557825
http://doi.org/10.32640/tasj.2018.2.46
http://doi.org/10.3390/su14042188
http://doi.org/10.1016/j.energy.2021.121611
https://ec.europa.eu/eurostat/web/products-eurostat-news/-/ddn-20210520-1.
https://ec.europa.eu/eurostat/web/products-eurostat-news/-/ddn-20210520-1.
https://ec.europa.eu/environment/ecoap/about-action-plan/objectives-methodology_en.
https://ec.europa.eu/environment/ecoap/about-action-plan/objectives-methodology_en.

	Introduction 
	Literature Review 
	The Relationship between Environmental Policies and CO2 Gas Emissions 
	The Relationship between Innovation and CO2 Gas Emissions 

	Data and Methodology 
	Data 
	Methodology 

	Empirical Analysis 
	Discussion 
	Conclusions, Policy Implications and Limitations 
	Appendix A
	References

