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The rovibrational partition functions of diatomic molecules are calculated using a classical framework plus
quantum, semiclassical, and semiempirical corrections. The most popular methods to calculate such corrections
are briefly reviewed and applied to the benchmark H2 molecule. A novel hybrid scheme is proposed and
applied to H2, HCl, and ArO. Each method is analyzed with a view to find an economical way to calculate
such corrections for polyatomic systems.

1. Introduction

Accurate values of the rovibrational partition function (qvr)
are frequently needed in chemistry and physics. They are
required to calculate the equilibrium properties of molecular
systems,1 and the rates of chemical reactions using transition
state theory.2,3 In principle, qvr can be evaluated exactly in
quantum statistical mechanics by carrying out the following
explicit summation of Boltzmann factors

where â ) 1/(kBT), kB is the Boltzmann constant,T is the
temperature,εi is the rovibrational energy associated with state
i, andgi is the corresponding degeneracy factor. However, the
calculation of highly excited states with spectroscopic accuracy
is currently feasible only for systems with a few degrees of
freedom,4-6 which limits the evaluation of the rovibrational
partition function using eq 1 to small molecules and low
rotational states.7-10

In turn, qvr assumes in classical statistical mechanics the
form1,11

with HCM(q, p) being the classical Hamiltonian,h the Planck
constant,n the number of degrees of freedom,q the generalized
coordinate vector, andp its conjugate momenta. In turn, the
subscriptB implies that the hypervolume of integration is
restricted to phase space regions corresponding to a bound state
situation,i.e., 0 e HCM(q, p) e De, whereDe is the dissociation
energy of the molecule12 (throughout this work we assume as
reference energy the minimum of the potential energy surface).
A major advantage of the classical approach is the appreciably
smaller computational cost in comparison to the quantum one,
which allows a treatment of molecular systems with a large
number of degrees of freedom. Yet, it is well-known thatqvr

CM

overestimatesqvr
QM at low temperatures, while converging to

the latter at the high-temperature limit;1 for a recent discussion
on the range of applicability of classical statistical mechanics

to calculate the vibrational partition function for triatomic
systems, see ref 13.

For molecular simulations it is essential to have an economical
recipe to introduce corrections into the partition functions
evaluated within the classical framework. The idea for introduc-
ing such corrections comes from the early days of quantum
mechanics. Such corrections can be based on “strictly” quantum,
semiclassical and semiempirical formulations. A well established
strictly quantum approach comes from the seminal work of
Wigner14 and Kirkwood.15 They have shown that the quantum
probability function (and hence the quantum partition function)
in phase space can be obtained through an expansion in powers
of p ) h/2π. The Wigner-Kirkwood (WK) expansion has been
extensively employed in molecular simulations of liquids,16-19

and to calculate the partition functions of hindered rotors20 and
diatomic molecules.21,22 Another procedure to correctqvr

CM

from quantum mechanics is due to Green23 and Oppenheim and
Ross24 (GOR). Similar to the WK method, the GOR approach
consists of writing the quantum Hamiltonian within the phase
space formalism as an expansion in powers ofp, which is then
used in eq 2; for applications of the GOR method in molecular
simulations, see ref 25.

Other approaches to correct the classical partition function
come from path integral formulations,26,27and are of semiclas-
sical nature. One such a proposal due to Feynman and Hibbs27

uses the Feynman path integral formulation of quantum
mechanics, and consists of approximating the integration of the
energy functional over all paths by using an effective potential.
Since their proposal, several forms of the effective potential
have been suggested and applied to various physical prob-
lems,19,28-34 including the calculation of the molecular rovibra-
tional partition function.35 The second proposal comes from
Miller and co-workers36-39 and is based on an approximation
of the Feynman path integrals by their classical counterpart
which, are in turn approximated by using a “semiclassical”
potential. Such an approach has been utilized in the context of
molecular vibration-rotation dynamics.40

A simple semiempirical procedure to correct the classical
partition function was suggested by Pitzer and Gwinn.41 In the
Pitzer-Gwinn method, the quantum partition function is ap-
proximated as the classical partition function scaled by the ratio
of the quantum and classical partition functions for a reference

qvr
QM(T) ) ∑

i

gi exp(-âεi) (1)

qvr
CM(T) ) 1

hn ∫∫B
exp{-â HCM(q,p)} dq dp (2)
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system in which the later assume analytical form. Usually the
reference system is a generalized harmonic oscillator po-
tential. This is a very useful approximation, with several vari-
ants of it having been tested for realistic potential energy
surfaces.22,28,35,42-45

The main goal of the present work is to study the efficiency
of the above methods and discuss their advantages and dis-
advantages in molecular partition function calculations. We also
seek to establish a simple procedure in which the computational
effort is relatively inexpensive and easy to generalize to mul-
tidimensional systems. This employs an hybrid effective po-
tential which is built from effective potentials reported by
previous authors. Our purpose follows a claim made in previous
work13,46 (hereafter referred to as papers I and II) to seek a
general economical procedure for calculating accurate values
of internal partition functions based on realistic potential energy
surfaces.

For the evaluation of the phase space or configurational
integrals which arise from the quantum, semiclassical, or
semiempirical corrections discussed here we employ the method
described in papers I and II. The method is based on a Monte
Carlo technique proposed by Barker to calculate the density of
states in transition state theory.47 We have limited our study to
diatomic systems since exact quantum partition functions can
be easily computed to test the methodologies discussed in the
present work. However, both the approaches to correctqvr

CM

and the Monte Carlo technique are given for the general
n-dimensional case.

As case studies, we consider H2, HCl, and ArO in their ground
electronic states. While the first two systems represent chemi-
cally stable species with different well depths, the latter is a
weakly bound van der Waals molecule. For H2, we have tested
numerically all the methods reported above. Such a systematic
study will help us to figure out a novel scheme to introduce
quantum corrections into the classical partition function. This
new approach is then tested on the HCl and ArO molecules.
For H2, the calculations are limited to the vibrational partition
function to avoid the inclusion of nuclear spin degeneracy factors
which arise when the rotational motion is considered. Moreover
as pointed out by Taubmann et al.,22 an exact calculation of the
vibrational partition function for H2 is a rather challenging task
due to the large anharmonicity of the associated potential energy
curve. On the other hand, the breakdown of the classical picture
is more serious for vibrational than rotational motions, since
rotational quanta are much smaller than vibrational ones.
However, for HCl, and ArO, we report calculations of the full
rovibrational partition function.

The paper is organized as follows. In section 2, we summarize
the technical details. This includes an outline of the Monte Carlo
technique used in the classical calculations, a description of the
potential energy curves, and the details referring to the calcula-
tion of the rovibrational energy levels. Section 3 reviews the
various methods to include corrections in the classical vibrational
partition function: the Wigner-Kirkwood (WK) expansion,
Green-Oppenheim-Ross (GOR) expansion, linear approxima-
tion of the classical path (LCP) approach, quadratic Feynman-
Hibbs (QFH) approximation of Feynman path integral, and the
Pitzer-Gwinn (PG) approximation. A novel hybrid LCP/QFH
method is also reported in the present work is reported in section
4. Some conclusions are in section 5.

2. Technical Details

2.1. Monte Carlo Procedure.For all calculations reported
in sections 3 and 4, it will be necessary to solve a multidimen-

sional integral of the following general form:

where{xi} are variables of the integrand functionf, andB stands
for an appropriate volume of integration in (k-1)-dimensions
defined by

whereB is a scalar andF ak -dimensional function. An example
is the classical partition function, for which we have em-
ployed13,46 an efficient Monte Carlo scheme to evaluate it for
polyatomic systems. This method is an adaptation of Barker’s
algorithm,47 which is based on stratified (guided) sampling
procedures. The basic idea is to choose a sampling domain
which coincides, as much as possible, with the integration
domain. Thus, the variables will not be sampled independently.
Instead, one establishes a hierarchy into the sampling proce-
dure such that the efficiency of the Monte Carlo method is
maximized. As a result, the sampled points form a normalized
but nonuniform distribution, requiring the use of weighting
factors.

The algorithm may be summarized in the following steps:
1. Find x̃ ) (x̃1, ..., x̃k) which defines the minimum ofF(x1,

..., xk).
2. Find the interval (x1

min, x1
max) for variablex1 with all other

variables fixed at the values obtained in step 1, according to

3. Sample randomlyx1 within this range to obtainx1
S,

according to

whereê is a random number between 0 and 1.
4. Starting withi ) 2, find new values for the remaining (k

- i + 1) variables which define the minimumF(x1
S, ...,xi-1

S , xi,
..., xk)

5. Find the integration domain (xi
min, xi

max) for xi with the
first (i - 1) variables fixed at the sampled values and the
other (k - i) variables at the values obtained in step 4, ac-
cording to

6. Sample randomlyxi inside this range to obtainxi
S as in

step 3.
7. Repeat steps 4-6 for i ) 3, ..., K until the value (xk

S) of
the last variable is sampled. This will result in the selection of
a sampled point within the boundary surfaceB defined by eq
4. Note that the range of theith variable is conditioned with
respect to all values of the variables previously selected.

8. Calculate the weight factor for each sampled pointg, xg
S

) (x1
S, ..., xk

S), according to

which represents the hypervolume associated toxg
S.

I ) ∫ ...∫B
f(x1, ..., xk) dx1...dxk (3)

B ) F(x1, ..., xk) (4)

F(x1
min, x̃2, ..., x̃k) ) F(x1

max, x̃2, ... , x̃k) ) B (5)

x1
S ) x1

min + (x1
max - x1

min)ê (6)

F(x1
S, ..., xi-1

S , xi
min, x̃i+1, ..., x̃k)

F(x1
S, ..., xi-1

S , xi
max, x̃i+1, ..., x̃k) ) B (7)

wg ) ∏
i)1

k

(xi
max - xi

min) (8)
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9. Repeat steps 3-8 M times to calculate the integral in eq
3 as

wherefg ) f(xg
S) is the function to be integrated andM is the

total number of sampled points. The standard deviation associ-
ated with eq 9 is47

2.2. Potential Energy Curves.We summarize in this section
the potential energy curves used for H2, HCl, and ArO. Although
more sophisticated models48,49 are available for H2 and HCl,
we have adopted curves which have been extensively used by
others in calculations of the partition function.

The H2 molecule can be a benchmark system for such an
application due to its strong anharmonicity, as discussed by
Taubmann et al.22 It will be described by a Morse curve50

defined by

whereDe is the equilibrium dissociation energy,ω a parameter,
andre the equilibrium interatomic distance; Table 1 gathers the
numerical values of the involved parameters. For this model,
the vibrational spectrum is given analytically as51

under the condition

This leads to a total of 17 vibrational bound states for H2

For HCl, we employ the empirical Hulbert-Hirschfelder
curve52 defined by

wherey is the reduced internuclear distance

andb andc are parameters defined by

The values ofA0, A1, andA2 depend on experimental constants
through the relations:

where re has the meaning assigned above, andDe has been
obtained as

In turn, D0 is the spectroscopic dissociation energy,Be the
rotational constant,Re the vibrational-rotational coupling
constant, andωe, ωexe, ωeye, ωeze are the anharmonicity
constants in the Dunham series expansion. Such experimental
parameters are tabulated in ref 53, and gathered in Table 2. One
obtainsDe ) 0.16969Eh.

To represent ArO, we have utilized the Hartree-Fock
approximate correlation energy (HFACE) model54 proposed by
Varandas and Silva for diatomic interactions of both chemically
stable and van der Waals molecules. It assumes the form

where

and

The values of the relevant parameters are given in Table 3, while
De ) 2.7979937× 10-4Eh.

2.3. Eigenvalue Calculations.For comparison with the
methods based on the classical framework, we evaluate also
the corresponding quantum sum-over-states in eq 1. For this,
we must solve the one-dimensional Schro¨dinger equation

TABLE 1: Parameters for the Morse Potential of H2:65 All
Quantities in au

De ) 0.1744
ω ) 1.02764
re ) 1.40201
µ ) 918.6446

I ≈ IM )
1

M
∑
g)1

M

wgfg (9)

σ2 )
1

M(M - 1)
∑
g)1

M

(wgfg - IM)2 (10)

V(r) ) De{1 - exp [-ω(r - re)]}
2 (11)

Eν ) De[(ν + 1
2)] x2ω2p2

Deµ
- [(ν + 1

2)]1/2 ω2p2

2µ
ν ) 0, 1,... (12)

ν <
x2µDe

pω
- 1

2
(13)

V(r) ) De[(1 - e-y)2 + cy3e-2y (1 + by)] (14)

y(r) )
ωe

2(BeDe)
1/2 (r - re

re
) (15)

b ) 2 - 1
c ( 7

12
-

DeA2

A0
) (16)

c ) 1 + A1(De

A0
)1/2

(17)

TABLE 2: Spectroscopic Parameters for HCl:53 All
Quantities in au

D0 ) 1.6293169× 10-1 ωe ) 1.3627859× 10-2

Be ) 4.826752× 10-5 ωexe ) 2.4066110× 10-4

Re ) 1.3996304× 10- ωeye ) 1.0223128× 10-6

re ) 2.40855517 ωeze ) -5.54966× 10-8

µ ) 1785.6866

TABLE 3: Numerical Coefficients for the ArO HFACE
Potential:54 All Quantities in au

a ) 111.806996 A6 ) 4.6547873
b ) 1.956897 A8 ) 3.8038890
r0 ) 6.4651a0 A10 ) 3.2525512
C6 ) 32.17 B6 ) 9.6802180
C8 ) 589.99661 B8 ) 7.9933059
C10 ) 13176.4259 B10 ) 6.6003615
µ ) 20824.7929

A0 )
ωe

2

4Be
(18)

A1 ) -1 -
Reωe

6Be
2

(19)

A2 ) 5
4

A1
2 -

2ωexe

3Be
(20)

De ≈ D0 + 1
2

ωe - 1
4

ωexe + 1
8

ωeye + 1
16

ωeze (21)

V(r) ) a exp(-br) - ∑
n)6,8,10

Cn

øn(r)

rn
(22)

øn(r) ) [1 - exp (-Anx - Bnx
2)]n (23)

x ) r
5.5+ 1.25r0

(24)
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where ν and l are the vibrational and rotational quantum
numbers, respectively. We have employed here for its solution
the well-established discrete variable representation (DVR)
method55-58 as reported by Colbert and Miller.57 For each
rotational quantum numberl, we have then usedN ) 500
equally spaced DVR grid points, keeping all eigenvalues with
an energy smaller than the dissociation energy (ενl e De). To
warrant convergence, the integration intervals were set at (a,
b) ) (0.0, 25.0a0) and (a, b) ) (3.0, 50.0a0) for the for HCl
and ArO systems, respectively. The calculations led to a total
of 941 and 57 rovibrational energy levels for HCl and ArO up
to l ) 64 andl ) 20, respectively. For H2 we have used the
exact eigenvalues given by eq 12, since only the vibrational
partition function is calculated for this system.

3. Corrections to the Classical Partition Function

We now discuss briefly the methods used to apply quantum,
semiclassical, and semiempirical corrections to the classical
partition function. To assess their efficiency, all such methods
are employed to evaluate the vibrational partition function of
H2. For each method, the formulas will be written in terms of
generalized coordinates (q) and conjugate momenta (p) such
that they can be applied to the rovibrational partition function
of any polyatomic molecule. The calculations of the involved
integrals will be carried out using the Monte Carlo technique
described in section 2, withM ) 106 and rmax ) 25.0a0. We
will examine first the classical vibrational partition function of
H2 in order to investigate the quality of the various correction
schemes.

3.1. The Wigner-Kirkwood Expansion. Wigner14 and
Kirkwood15 derived a quantum mechanical version of the
Boltzmann probability distribution function in phase space.
Within their approach, the quantum partition function is
expressed as the following expansion in powers ofp2:

where the functions{æi(q, p)} can be obtained from a recursive
formula, andB has the meaning previously defined. Note that
eq 26 reduces to the classical expression whenp f 0 (or T f
∞). Thus, the classical partition function can be seen as the
zeroth-order approximation, with the quantum effects being
given by the higher-order corrections. The first term in the WK
expansion assumes the form

with terms up to sixth-order being given in ref 59. As such
terms contain high-order derivatives of the potential energy
surface, their application to realistic systems is difficult. For
example, in the popular one-dimensional hindered-rotor case,
the evaluation of terms up top4 in the WK expansion has been
carried out with the aid of a computer algebra code.20 Thus, we
will limit our calculations to the termp2 in eq 26.

For diatomic molecules, eq 27 yields

and the WK vibrational partition function up to second-order
assumes the form

with B standing for 0e (pr
2/2µ) + V(r) e De. The results for

the vibrational WK partition function of H2 obtained from eq
29 are given in Table 4. For comparison, we also give in this
table the quantum and classical vibrational partition functions
from eq 1 and eq 2, respectively. As it is well-known, the WK
expansion up to second-order assumes negative values at low
temperatures; for H2 is found to occur at T= 1250 K, in
agreement with ref 22. Clearly, Table 4 shows that the results
from the WK expansion start to converge to the quantum results
at a lower temperature than the classical ones. This is also seen
from Figure 1, where the errors relative to the quantum result
[4qv

WK ) (qv
WK - qv

QM)/qv
QM] are plotted. For example, atT )

2000 K, the error inqv
WK is = 11% while that ofqv

CM is = 45%.
For T ) 9000 K, one observes a deviation of 0.3% inqv

WK, and
of 1.8% inqv

CM. Moreover, the WK partition function assumes
accurate values (4qv

WK e 0.01) for temperatures aboveT )
3000 K.

3.2. Green-Oppenheim-Ross Expansion.The incorpora-
tion of quantum effects in classical simulations via thep2

expansion can be done by substituting the classical Hamiltonian
in eq 2 by an approximate quantum Hamiltonian written in the
phase space representation formalism. This approach has been
suggested by Green23 and Oppenheim and Ross,24 and is
frequently employed in molecular dynamics25,60simulations. The
basic equation of this approach is25,60

where

and the classical Hamiltonian and functions{æi} are the same
as in the WK expansion. As before, we truncate the expansion
at p2 term. Thus, we use

Theqv
GOR results obtained for H2 from eq 30 are given in Table

4. As seen, the GOR expansion leads to ill-conditioned results
for low temperatures due to the fact that the Hamiltonian can
assume large negatives values. Only for temperatures around
3000 K, the method begins to give acceptable values, and only
at T ≈ 4000 K does|4qv

GOR| becomes smaller than|4qv
CM|, see

Figure 1. However, its error relative to the quantum partition

[-p2

2µ
d2

dr2
+ p2

2µr2
l(l + 1) + V(r)] ψνl(r) ) ενlψνl(r) (25)

qvr
WK(T) )

1

hn
∫∫B

exp{-âHCM (q, p)} (1 +

∑
i)1

∞

p2i æi(q, p)) dq dp (26)

æ1(q, p) ) -â2

8µ
32V(q) + â3

24µ
[(3V(q))2 +

(p ‚ 3)2 V(q)/µ] (27)

æ1(r, pr) ) -â2

8µ ( d2

dr2
+ 1

r
d
dr) V(r) + â3

24µ [( d
dr

V(r))2
+

pr
2

µ
d2

dr2
V(r)] (28)

qv
WK(T) ) 1

h∫∫B
exp{-â(pr

2

2µ
+ V(r))} [1 +

p2 æ1(r, pr)] dr dpr (29)

qvr
GOR(T) ) 1

hn ∫∫B
dq dp exp{-âHQM(q, p)} (30)

HQM (q, p) ) HCM (q, p) -
1

â
∑
i)1

∞

p2iæi(q, p) (31)

HQM (q, p) ) HCM (q, p) + âp2

24µ {332V (q) -

â [(3V( q))2 +
(p ‚ 3)2

µ
V (q)]} (32)
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function is always larger than inqv
WK for the temperature range

considered in the present work. Convergence toqv
QM starts atT

g 6900 K.
3.3. Semiclassical Approach.The “better than classical”

approach proposed by Miller36 to approximate the Boltzmann
density matrix was named classical path approximation. This
semiclassical approach is based upon a classical-limit ap-
proximation to the quantum mechanical time evolution propaga-
tor U(t) and a relation between time and the reciprocal
temperature (t ) ipâ). This led to a number36-39 of approximate
expressions for the partition function, which differ on the way
in which the potential is expanded. In particular, we employ
LCP approximation given by36,38

Note that there is no limiting condition on the energyâ, with

the configurational integral being solved by sampling the whole
coordinate space. Note especially that to examine the vibrational
partition function of a diatomic, one just requires to replaceq
by the radial coordinate.

The values ofqv
LCP and corresponding Monte Carlo errors

are given for H2 in Table 4. Moreover, the errors relative to the
quantum results are displayed in Figure 1. The results show a
better agreement at low temperatures when compared to the
previous quantum approaches (qv

WK andqv
GOR). In additionqv

LCP

does not diverge for Tf 0. At a temperature of 1000 K, where
qv

WK is negative with a relative error of 321% andqv
GOR is very

large, qv
LCP shows a deviation of 75%. We also observe that

qv
LCP is accurate within 10% atT ≈ 1900 K, while converging

to qv
QM for T = 4000 K (the relative errors are smaller than

1%). However, it starts to diverge forT > 5500 K: atT )
9000 K the relative error is already∼6%. As discussed in ref
12, this arises due to the fact that eq 33 implicitly considers
the contribution of dissociative species.

3.4. The Quadratic Feynman-Hibbs Approximation. The
Feynman path integral formalism is one of the most appealing
approaches to evaluate the quantum mechanical partition
function.61 However, its application to large systems is com-
putationally very demanding.62 In the context of quantum
corrections, a simple approximation which was proposed initially
by Feynman and Hibbs27 consists of replacing the classical
potential by an effective one. In this case, the partition function
assumes the form ofqCM where the integration over momenta
is carried out explicitly (as in the LCP approach) and the
classical potential is replaced by an effective quantum one. The
simplest is the quadratic Feynman-Hibbs27 potential obtained
by keeping only quadratic fluctuations around the classical paths.
The QFH partition function assumes the form

TABLE 4: Vibrational Partition Function a of H2 Calculated Using Various Approaches

T/K qv
CM qv

WK qv
GOR qv

LCP qv
QFH qv

LCP/QFH qv
PG qv

QM

300 4.792(-2)b -8.416(-1) c 7.696(-3) 1.653(-9) 1.065(-6) 4.619(-5) 3.082(-5)
1.8(-3)d 7.6(-2) c 2.2(-4) 1.8(-11) 8.4(-8) 1.8(-6)

500 7.978(-2) -4.474(-1) c 2.096(-2) 1.400(-4) 1.059(-3) 2.453(-3) 1.965(-3)
2.3(-3) 3.5(-2) c 4.1(-4) 1.4(-6) 5.1(-5) 7.2(-5)

700 1.118(-1) -2.611(-1) c 3.991(-2) 4.266(-3) 1.002(-2) 1.348(-2) 1.166(-2)
2.8(-3) 2.1(-2) c 6.2(-4) 3.9(-5) 3.6(-4) 3.3(-4)

1000 1.600(-1) -9.824(-2) c 7.706(-2) 3.209(-2) 4.382(-2) 4.856(-2) 4.444(-2)
3.3(-3) 1.2(-2) c 9.4(-4) 2.7(-4) 1.1(-3) 1.0(-3)

1500 2.410(-1) 7.125(-2) c 1.545(-1) 1.181(-1) 1.292(-1) 1.338(-1) 1.277(-1)
4.1(-3) 6.7(-3) c 1.5(-3) 8.9(-4) 2.5(-3) 2.3(-3)

2000 3.227(-1) 1.972(-1) c 2.415(-1) 2.165(-1) 2.244(-1) 2.283(-1) 2.219(-1)
4.7(-3) 4.4(-3) c 2.0(-3) 1.5(-3) 3.5(-3) 3.3(-3)

3000 4.887(-1) 4.074(-1) 1.434(+2) 4.221(-1) 4.104(-1) 4.140(-1) 4.167(-1) 4.116(-1)
5.7(-3) 2.4(-3) 3.0 2.9(-3) 2.6(-3) 5.0(-3) 4.9(-3)

4000 6.584(-1) 5.993(-1) 6.582(-1) 6.039(-1) 5.981(-1) 5.995(-1) 6.012(-1) 5.978(-1)
6.6(-3) 1.7(-3) 5.5(-3) 3.7(-3) 3.5(-3) 6.1(-3) 6.0(-3)

5000 8.326(-1) 7.868(-1) 8.068(-1) 7.875(-1) 7.846(-1) 7.844(-1) 7.853(-1) 7.833(-1)
7.4(-3) 1.4(-3) 6.5(-3) 4.4(-3) 4.2(-3) 7.1(-3) 7.0(-3)

6000 1.0122 9.752(-1) 9.860(-1) 9.767(-1) 9.755(-1) 9.716(-1) 9.718(-1) 9.709(-1)
8.1(-3) 1.3(-3) 7.4(-3) 5.1(-3) 5.0(-3) 7.8(-3) 7.8(-3)

7000 1.1980 1.1672 1.1739 1.1782 1.1780 1.1630 1.1626 1.1627
8.7(-3) 1.4(-3) 8.2(-3) 5.7(-3) 5.6(-3) 8.5(-3) 8.5(-3)

8000 1.3908 1.3645 1.3689 1.4012 1.4016 1.3601 1.3591 1.3599
9.3(-3) 1.5(-3) 8.9(-3) 6.4(-3) 6.3(-3) 9.2(-3) 9.1(-3)

9000 1.5906 1.5676 1.5707 1.6563 1.6571 1.5634 1.5619 1.5630
9.9(-2) 1.7(-2) 9.5(-3) 7.0(-3) 6.9(-3) 9.8(-3) 9.7(-3)

a See the text for nomenclature.b Given in parantheses is the power of 10 by which the numbers should be multiplied.c Unconverged results.
d Second entry for each temperature gives the standard Monte Carlo deviation.

Figure 1. Relative errors of the approximate vibrational partition
function of hydrogen molecule as a function of temperature: (b) ∆
qv

CM, (1) ∆qv
WK, (9) ∆qv

GOR, (2) ∆qv
LCP, (- ‚) ∆qv

QFH, (- -) ∆qv
PG, and

(s) ∆qv
LCP/QFH (see the text for nomenclature).

qvr
LCP(T) ) ( µ

2πâp2)3n/2 ∫ dq

exp{-â[V(q) + â2p2

24µ
(∇V(q))2]} (33)

qvr
QFH(T) ) ( µ

2πâp2)3n/2 ∫ dq

exp{- â[V(q) + âp2

24µ
∇2V(q)]} (34)
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which has been extensively used in molecular dynamics
simulations of liquids.18,33

The values ofqv
QFH and∆qv

QFH for H2 are shown in Table 4
and Figure 1, respectively. As shown, the behavior of QFH
vibrational partition function is similar to the LCP one. The
basic difference occurs at low temperatures, whereqv

QFH

underestimates the exact value of the vibrational partition
function whileqv

LCP overestimates it. For example, atT ) 700
K, qv

QFH is 63% smaller than the quantum one, whereasqv
LCP is

larger thanqv
QM by about 242%. In general, the QFH ap-

proximation leads to results better than the LCP approximation,
reaching an accuracy of 10% atT ≈ 1400 K and converging to
the quantum sum-over-states forT ≈ 2400 K. However, as for
qv

LCP, qv
QFH diverges for high temperatures.

3.5. Pitzer-Gwinn Approximation. The scheme developed
by Pitzer and Gwinn41 has a semiempirical nature and was
originally developed to include quantum corrections in the
calculation of thermodynamic functions for molecules with
internal rotation. In their approach, the partition function is
approximated by its classical component scaled by the ratio of
the quantum over classical partition functions for a reference
system where both are known exactly. If the reference system
is described by a harmonic potential, then one obtains41-43

whereqv
CM(T) is the classical partition function, and

are, respectively, the quantum and classical partition functions
for the harmonic oscillator calculated with the zero of energy
at the bottom of the potential curve;V is the vibrational
fundamental frequency. The zero point energyε0 appearing in
the expression forqHO

QM can be calculated by using different
methods,42 such as the harmonic and Dunham formulas. In this
work, we have used the relationε0 ) hV/2. Furthermore, since
the zeroth and the first vibrational levels are known, we have
considered the frequencyν in eq 36 to be the frequency
associated to the 1r0 transition. Despite its simple form, the
PG correction is known to be fairly accurate and hence is
frequently used.63

Numerical values ofqv
PG and the associated Monte Carlo

errors are reported for H2 in Table 4, while∆qv
PG is depicted in

Figure 1. For temperatures below 1900 K, they show a better
agreement with the quantum result than all previous corrections
(qv

WK, qv
GOR, qv

LCP, andqv
QFH). In fact, for temperatures of a few

hundred kelvin,qv
PG still gives values of the same order of

magnitude of the quantum ones (∆qv
PG ≈ 0.50 atT ) 300 K,

whereasqv
PG reaches an accuracy of 10% atT ≈ 900 K). For

intermediate temperatures, the other approaches correct better
the classical partition function: the QFH partition function is
better than the PG one for 1900e T/K e 5200, and the WK
expansion gives better results for 2900e T/K e 4500. The
Pitzer-Gwinn values converge toqv

QM for lower temperatures
values than in the GOR and LCP ones:T ≈ 3200 K forqv

PG, T
≈ 6900 K for qv

GOR, andT ≈ 4000 K for qv
LCP. Moreover, for

the highest temperature considered in the present work (T )
9000 K) a deviation of only 0.07% is still obtained forqv

PG.

4. A Hybrid LCP/QFH Correction

We have found thatqv
WK andqv

GOR diverge at low tempera-
tures because the corresponding expansions (probability distri-
bution for WK and quantum Hamiltonian for GOR) in phase
space formalism are truncated atp2. However, they both con-
verge to the quantum sum-over-states quicker than the classical
result. On the other hand, the LCP and QFH methods give close
results toqv

QM at low temperatures:qv
LCP overestimates whereas

qv
QFH underestimates the quantum vibrational partition func-

tion. Unfortunately, both the methods diverge at high temper-
atures since they are based on the solution of the configurational
integral rather than the total phase space integral in eq 2. In
this section, we suggest an hybrid scheme which aims to keep
the advantages of the LCP and QFH methods while discarding
their nondesirable features.

From the GOR approach, it is easy to demonstrate25 by
integrating the phase space integral in eq 32 over the momenta
between-∞ and∞ that the effective quantum potential is given
by

where thep2 term can be seen as a mixture of the correction
terms in eqs 33 and 34. Moreover, we have seen in section 3.2
that the GOR approach diverges at low temperatures, which is
mainly due to the fact that-â2(∇V(q))2 assumes very large
negative values. Conversely, the LCP method has been shown
to reach large positive deviations at low temperatures. This
suggests that an average of the LCP and QFH quantum effec-
tive potentials may lead to acceptable results at such low-
temperature regimes. Equivalently, the termsâ∇2V(q) and
â2(∇V(q))2 may be thought as being of the same order of
magnitude, and hence be profitably combined. Thus, our

qV
PG(T) ) qV

CM(T)
qHO

QM(T)

qHO
CM(T)

(35)

qHO
QM(T) )

exp(-âε0)

1 - exp(-âhν)
and qHO

CM(T) ) 1
âhν
(36)

TABLE 5: Rovibrational Partition Function a of HCl
Calculated Using Various Approaches

T/K qvr
CM qvr

LCP/QFH qvr
QM qvr

FPIb

300 1.1690 3.7718(-3)c 1.6526(-2) 1.67(-2)
1.7(-1)d 7.2(-4) 8.0(-4)

400 2.2370 7.0418(-2) 1.3008(-1) 1.39(-1)
2.7(-1) 1.2(-2) 5(-3)

500 3.6074 3.4172(-1) 4.7205(-1) 4.9(-1)
3.8(-2) 4.7 (-2) 2.0(-2)

600 5.2885 9.5499(-1) 1.1538 1.17
4.7(-1) 1.1(-1) 2.0(-2)

900 12.248 5.4206 5.7147 5.76
7.6(-1) 3.8(-1) 7.0(-2)

1000 15.217 7.8115 8.0999
8.4(-1) 4.8(-1)

1200 22.139 13.851 14.115 14.2
1.0 6.9(-1) 2.0(-1)

2000 63.324 53.240 53.569 53.6
1.7 1.5 5.0(-1)

4000 268.19 257.04 257.62 257.0
3.5 3.4 2.0

5000 431.70 420.43 421.11 420.0
4.4 4.3 3.0

6000 641.27 629.99 630.74 636.0
5.3 5.3 5.0

7000 900.13 888.91 889.65
6.2 6.2

9000 1567.8 1557.0 1557.3
8.1 8.0

a See the text for nomenclature.b Fourier path integral (FPI) results
from ref 64.c Given in parantheses is the power of 10 by which the
numbers should be multiplied.d Second entry for each temperature gives
the standard Monte Carlo deviation.

VQM(q)) V(q) + p2

24µ
{2â∇2V(q) - â2 (∇‚V(q))2} (37)
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approach consists of adding the following effective potential
to the classical Hamiltonian:

where

andâ implies the above-discussed restriction on the integration
hypervolume.

For the diatomic case, the effective potential reduces to

From eq 38, one then obtains the rovibrational partition function
as

while the vibrational partition function assumes the form

The results of such an hybrid approach to the vibrational
partition function are presented in Table 4 for the vibrational
partition function of H2. Clearly, for low and medium temper-
atures, the agreement ofqv

LCP/QFH with the quantum results is
good. Moreover, no sign of divergence is manifest at high
temperatures which contrasts with the LCP and QFH ap-
proaches. In fact,qv

LCP/QFH reaches an accuracy of 10% atT =

750 K while starting to converge toqv
QM at T = 2100 K. In

addition, atT ) 9000 K, a deviation of only 0.03% is obtained.
Although qv

LCP/QFH gives the best overall results when com-
pared with the quantum ones, theqv

PG and qv
QFH methods are

still the best for T e 700 K and 2600e T/K e 4800,
respectively. These features can also be seen from Figure 1.

To test further the validity of the LCP/QFH approach
suggested in the present work, we have computed the rovibra-
tional partition function of HCl and ArO by using eq 41. The
results are given in Table 5 and Table 6. For comparison, we
also give the exact quantum and classical results from eq 1 and
eq 2. For comparison, we also report the results obtained by
using the Fourier path integral formalism64 (qvr

FPI) based on the
same potential curve.

Table 5 shows thatqvr
LCP/QFH is much more accurate thanqvr

CM

over the whole range of temperatures. In comparison withqvr
QM

andqvr
FPI, the agreement is seen to be satisfactory even at low

temperatures. Specifically, atT ) 600 K, whereqvr
CM has an

error of 358% and the Fourier path integral formalism has an
error of 1.4%, one finds forqvr

LCP/QFH a deviation of 17%. At
medium temperatures (T≈ 2000 K)qvr

LCP/QFH is comparable in
accuracy toqvr

FPI, while becaming more accurate with increas-
ing temperature.

As expected,13 Table 6 shows that similar considerations apply
for ArO but for much lower temperatures than in the cases of

TABLE 6: Rovibrational Partition Function a of ArO
Calculated Using Various Approaches

T/K qVr
CM qVr

LCP/QFH qVr
QM

2.5 8.0560(-1)b 1.6874(-4) 2.6069(-3)
3.8(-2)c 1.6(-5)

5.0 3.2648 3.0101(-1) 4.0479(-1)
7.8(-2) 9.7(-3)

10.0 13.956 7.6740 7.4753
1.6(-1) 9.1(-2)

15.0 33.432 25.973 25.254
2.3(-1) 1.8(-1)

25.0 93.008 85.760 83.976
3.7(-1) 3.4(-1)

50.0 256.73 252.65 249.04
6.7(-1) 6.6(-1)

75.0 377.50 375.15 371.48
8.7(-1) 8.7(-1)

100.0 461.48 459.99 456.78
1.0 1.0

a See the text for nomenclature.b Given in parantheses is the power
of 10 by which the numbers should be multiplied.c Second entry for
each temperature gives the standard Monte Carlo deviation.

TABLE 7: Ratio of Various Partition Functions a as a Function of the Reduced Temperatureτ for H 2, HCl, and ArO

H2 HCl ArO

τ T/K qv
CM/qv

QM qv
LCP/QFH/qv

QM T/K qvr
CM/qvr

QM qvr
LCP/QFH/qvr

QM T/K qvr
CM/qvr

QM qvr
LCP/QFH/qvr

QM

0.2 623.2 14.763 0.7738 427.0 13.255 0.6012 4.36 13.266 0.6114
0.3 934.8 4.1841 0.9733 640.4 3.9282 0.8557 6.54 3.8321 0.9257
0.4 1246.5 2.4141 1.0075 853.9 2.3090 0.9386 8.72 2.2414 1.0125
0.5 1558.1 1.8100 1.0126 1067.4 1.7500 0.9718 10.90 1.6977 1.0302
0.6 1869.7 1.5291 1.0118 1280.9 1.4889 0.9848 13.08 1.4471 1.0307
0.7 2181.3 1.3742 1.0100 1494.3 1.3450 0.9899 15.26 1.3114 1.0282
0.8 2492.9 1.2791 1.0081 1707.8 1.2568 0.9922 17.44 1.2302 1.0257
0.9 2804.6 1.2164 1.0066 1921.3 1.1986 0.9935 19.61 1.1779 1.0239
1.0 3116.2 1.1726 1.0053 2134.8 1.1582 0.9944 21.79 1.1423 1.0226
1.2 3739.4 1.1171 1.0035 2561.7 1.1070 0.9957 26.15 1.0984 1.0209
1.4 4362.6 1.0844 1.0023 2988.7 1.0769 0.9966 30.51 1.0732 1.0196
1.6 4985.9 1.0634 1.0015 3415.7 1.0578 0.9972 34.87 1.0573 1.0184
1.8 5609.1 1.0492 1.0009 3842.6 1.0448 0.9976 39.23 1.0465 1.0172
2.0 6232.4 1.0392 1.0005 4269.6 1.0356 0.9980 43.59 1.0388 1.0161
2.5 7790.4 1.0241 1.0002 5337.0 1.0217 0.9985 54.49 1.0269 1.0135

a See the text for nomenclature.

qVr
LCP/QFH(T) ) 1

hn ∫∫â dqdp exp{-â[HCM(q, p) +

Veff(q)]} (38)

Veff(q) ) p2â
48µ

{∇2V(q) + â(∇V(q))2} (39)

Veff(r) ) p2â
48µ{( d2

dr2
+ 1

r
d
dr)V(r) + â ( d

dr
V(r))2} (40)

qVr
LCP/QFH(T) ) 1

h3 ∫∫â dr dθ dφ dpr dpθ dpφ

exp{-â[pr
2

2µ
+

pθ
2

2µr2
+

pφ
2

2µr2 sin2 θ
+ V(r) + Veff(r)]} (41)

qV
LCP/QFH(T) ) 1

h∫∫â dr dpr

exp{-â[pr
2

2µ
+ V(r) + Veff(r)]} (42)
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H2 and HCl. For example, atT ) 5.0 K whereqvr
CM shows a

deviation of 700%,qvr
LCP/QFH has an error of only 25.6%. Such

an observation can be rationalized from the zero point of energy
(ε0) values of the three molecules:ε0 ) 2165.866 cm-1 for
H2, ε0 ) 1483.759 cm-1 for HCl, andε0 ) 15.148 cm-1 for
ArO. For this, we use the following reduced temperature13

whereT is in K, andε0 in cm-1. Table 7 reports the values of
the ratiosqvr

CM/qvr
QM and qvr

LCP/QFH/qvr
QM as a function ofτ; for

reference, the correspondingT values are also tabulated. Clearly,
similar trends are observed for the deviations ofqLCP/QFH from
qQM as a function ofτ. For example, atτ ) 0.5, qCM shows a
deviation of 81% for H2, 75% for HCl, and 70% for ArO, while
the corresponding deviations forqLCP/QFH are 1.3%, 2.8%, and
3.0%. Moreover, forτ = 1.2, qCM shows an error of 10% for
the three diatomic systems whileqLCP/QFH reaches the same
accuracy atτ = 0.25 for H2 and ArO, and atτ = 0.35 for HCl.
Thus, the LCP/QFH hybrid method proposed here can reliably
be used to calculate the rovibrational partition functions of
diatomic molecules for temperatures aboveT ) 0.3ε0/kB.

5. Conclusions

Several quantum, semiclassical, and semiempirical corrections
to the classical partition function of molecular systems have
been analized. In addition, a novel hybrid procedure (LCP/QFH)
has been proposed. A numerical application to H2 has shown
that this new method performs generally better than previous
ones, namely for temperatures above∼700 K. Similar perfor-
mances are anticipated for the HCl and ArO cases also reported
in this work. In fact, it blends the advantages of two popular
semiclassical methods (LCP and QFH) but restricted to the
bound phase space. Although applications were done only for
diatomic molecules, there is no reason of principle why it should
not work equally well for larger polyatomics. Work along these
lines is currently in progress.
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