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Calculation of the Rovibrational Partition Function Using Classical Methods with Quantum
Corrections
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The rovibrational partition functions of diatomic molecules are calculated using a classical framework plus
quantum, semiclassical, and semiempirical corrections. The most popular methods to calculate such corrections
are briefly reviewed and applied to the benchmagkniblecule. A novel hybrid scheme is proposed and
applied to H, HCI, and ArO. Each method is analyzed with a view to find an economical way to calculate
such corrections for polyatomic systems.

1. Introduction to calculate the vibrational partition function for triatomic
systems, see ref 13.

For molecular simulations it is essential to have an economical
recipe to introduce corrections into the partition functions
evaluated within the classical framework. The idea for introduc-
ing such corrections comes from the early days of quantum
mechanics. Such corrections can be based on “strictly” quantum,
semiclassical and semiempirical formulations. A well established
strictly quantum approach comes from the seminal work of
oM Wignert4 and Kirkwood?!® They have shown that the quantum
oy (1) = Z g exp(—pe) (1) probability function (and hence the quantum partition function)

: in phase space can be obtained through an expansion in powers

) ) of A = h/2z. The Wigner-Kirkwood (WK) expansion has been
where 3 = 1/(keT), ks is the Boltzmann constand, is the extensively employed in molecular simulations of liquifist®

temperatureg; is the rovibrational energy associated with state an to calculate the partition functions of hindered réasd
i, andg; is the corresponding degeneracy factor. However, the jiziomic molecule@l22 Another procedure to correaS

calculation of highly excited states with spectroscopic accuracy o, quantum mechanics is due to Gr&mnd Oppenheim and

is currently feasible only for systems with a few degrees of p .4 (GOR). Similar to the WK method, the GOR approach
A . o9 . ,

freedpm‘,‘ Wh'Ch "”?'ts the evaluation of the rovibrational ;g ngists of writing the quantum Hamiltonian within the phase

partition function using eq 1 to small molecules and low space formalism as an expansion in powers,afihich is then

i 10 . N € .
rotational states. . _ o . used in eq 2; for applications of the GOR method in molecular
In turn, g assumes in classical statistical mechanics the simylations, see ref 25.

formt.11

Accurate values of the rovibrational partition functiam,)
are frequently needed in chemistry and physics. They are
required to calculate the equilibrium properties of molecular
systems, and the rates of chemical reactions using transition
state theory:® In principle, q,r can be evaluated exactly in
guantum statistical mechanics by carrying out the following
explicit summation of Boltzmann factors

Other approaches to correct the classical partition function
come from path integral formulatioR%2” and are of semiclas-
q\?rM(T) = ln j‘ fB exp{—BHM@a,p)} dgdp (2) sical nature. One such a pro_posal due to Feynman and Hibbs
h uses the Feynman path integral formulation of quantum
mechanics, and consists of approximating the integration of the
with HM(q, p) being the classical Hamiltoniah,the Planck energy functional over all paths by using an effective potential.
constantn the number of degrees of freedogithe generalized Since their proposal, several forms of the effective potential
coordinate vector, ang its conjugate momenta. In turn, the have been suggested and applied to various physical prob-
subscript B implies that the hypervolume of integration is lems!®2%34including the calculation of the molecular rovibra-
restricted to phase space regions corresponding to a bound statdonal partition functior®® The second proposal comes from
situation,i.e.,, 0 < H°M(q, p) < D, whereDg is the dissociation ~ Miller and co-worker&3° and is based on an approximation
energy of the moleculé (throughout this work we assume as of the Feynman path integrals by their classical counterpart
reference energy the minimum of the potential energy surface).which, are in turn approximated by using a “semiclassical”
A major advantage of the classical approach is the appreciablypotential. Such an approach has been utilized in the context of
smaller computational cost in comparison to the quantum one, molecular vibratior-rotation dynamicg?
which allows a treatment of molecular systems with a large A simple semiempirical procedure to correct the classical
number of degrees of freedom. Yet, it is well-known thg' partition function was suggested by Pitzer and Gwfihim the
overestimatetq\?rM at low temperatures, while converging to Pitzer—~Gwinn method, the quantum partition function is ap-
the latter at the high-temperature linifor a recent discussion  proximated as the classical partition function scaled by the ratio
on the range of applicability of classical statistical mechanics of the quantum and classical partition functions for a reference
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system in which the later assume analytical form. Usually the sional integral of the following general form:
reference system is a generalized harmonic oscillator po-

tential. This is a very useful approximation, with several vari- = . f(Xg, oory X) OXqe.. (3)
ants of it having been tested for realistic potential energy f fB 1 - % OXg. O
surface$?.28,3542:45

. . . where{x} are variables of the integrand functibmndB stands
The main goal of the present work is to study the efficiency (o 4 appropriate volume of integration ik—1)-dimensions
of the above methods and discuss their advantages and disyefined by

advantages in molecular partition function calculations. We also
seek to establish a simple procedure in which the computational B=F(Xy .. %) (4)
effort is relatively inexpensive and easy to generalize to mul-

tidimensional systems. This employs an hybrid effective po- \yhereB is a scalar ané ak -dimensional function. An example
tential which is built from effective potentials reported by s the classical partition function, for which we have em-
previous authors. Our purpose follows a claim made in previous ployed346 an efficient Monte Carlo scheme to evaluate it for
work!34¢ (hereafter referred to as papers | and I) to seek a polyatomic systems. This method is an adaptation of Barker's
general economical procedure for calculating accurate valuesyigorithm?? which is based on stratified (guided) sampling
of internal partition functions based on realistic potential energy procedures. The basic idea is to choose a sampling domain
surfaces. which coincides, as much as possible, with the integration

For the evaluation of the phase space or configurational domain. Thus, the variables will not be sampled independently.
integrals which arise from the quantum, semiclassical, or |nstead, one establishes a hierarchy into the sampling proce-
semiempirical corrections discussed here we employ the methodgure such that the efficiency of the Monte Carlo method is
described in papers | and Il. The method is based on a Monte maximized. As a result, the sampled points form a normalized
Carlo technique proposed by Barker to calculate the density of pyt nonuniform distribution, requiring the use of weighting
states in transition state thedt{We have limited our study to  factors.

diatomic SyStemS since exact quantum partition functions can The a|gorithm may be summarized in the fo”owing Steps:
be easily computed to test the methodologies discussed in the 1. Findk = (%, ..., %) which defines the minimum dfF(xy,

present work. However, both the approaches to cortqéﬁft e X

and the Monte Carlo technique are given for the general 2. Find the interval["™", X" for variablex; with all other

n-dimensional case. variables fixed at the values obtained in step 1, according to
As case studies, we consides, HICI, and ArO in their ground

electronic states. While the first two systems represent chemi- |:(X'1“i”, Koy oo %) = FOO™ X, ..., %) = B (5)

cally stable species with different well depths, the latter is a

weakly bound van der Waals molecule. For, We have tested 3. Sample randomlyx; within this range to obtainxf,

numerically all the methods reported above. Such a systematicaccording to
study will help us to figure out a novel scheme to introduce
quantum corrections into the classical partition function. This xf= X (XX — i g (6)
new approach is then tested on the HCI and ArO molecules.
For H,, the calculations are limited to the vibrational partition
function to avoid the inclusion of nuclear spin degeneracy factors
which arise when the rotational motion is considered. Moreover
as pointed out by Taubmann et Zan exact calculation of the %)
vibrational partition function for His a rather challenging task "™ . . . - min oma .
due to the large anharmonicity of the associated potential energy,. 5 '.:'nd the Integration domainl™, ™) for x; with the

. . first (i — 1) variables fixed at the sampled values and the
curve. On the other hand, the breakdown of the classical plctureother K — i) variables at the values obtained in step 4, ac-
is more serious for vibrational than rotational motions, since P

wheref is a random number between 0 and 1.
4. Starting withi = 2, find new values for the remaining (
— i + 1) variables which define the minimufR(x, ..., x> ;, X,

rotational quanta are much smaller than vibrational ones. cording to
However, for HCI, and ArO, we report calculations of the full s min -
rovibrational partition function. FOq, - Xisfl' R IETR)
The paper is organized as follows. In section 2, we summarize s S max o o
the technical details. This includes an outline of the Monte Carlo FOG o X0 % Ky 0 %) =B (1)

technigue used in the classical calculations, a description of the o . ) .
potential energy curves, and the details referring to the calcula- 6- Sample randomly; inside this range to obtair® as in
tion of the rovibrational energy levels. Section 3 reviews the Step 3.

various methods to include corrections in the classical vibrational 7. Repeat steps46 for i = 3, ..., K until the value %) of
partition function: the WignerKirkwood (WK) expansion, the last variable is sampled. This will result in the selection of
Green-Oppenheim-Ross (GOR) expansion, linear approxima- a sampled point within the boundary surfagelefined by eq
tion of the classical path (LCP) approach, quadratic Feyrman 4. Note that the range of thi¢h variable is conditioned with
Hibbs (QFH) approximation of Feynman path integral, and the respect to all values of the variables previously selected.
Pitzer-Gwinn (PG) approximation. A novel hybrid LCP/QFH 8. Calculate the weight factor for each sampled pgimg
method is also reported in the present work is reported in section= (xf, x?) according to

4. Some conclusions are in section 5.

k
2. Technical Details wy =[] 6™ = x™) ®)

2.1. Monte Carlo Procedure.For all calculations reported
in sections 3 and 4, it will be necessary to solve a multidimen- which represents the hypervolume associatexiglo
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TABLE 1: Parameters for the Morse Potential of H,:65 All
Quantities in au

Prudente et al.

TABLE 2: Spectroscopic Parameters for HCI3 Al
Quantities in au

D= 0.1744
o =1.02764
re=1.40201
1 = 918.6446

9. Repeat steps-38 M times to calculate the integral in eq

3as
1 M
=—wa
M &

wherefy = f(xg) is the function to be integrated amd is the
total number of sampled points. The standard deviation associ-
ated with eq 9 ¥

1 M
L Y U
M(M—l)gZ\(ng )

2.2. Potential Energy CurvesWe summarize in this section
the potential energy curves used for, HCI, and ArO. Although
more sophisticated modé¥s'® are available for K and HCI,

©)

(10)

we have adopted curves which have been extensively used by

others in calculations of the partition function.

The H, molecule can be a benchmark system for such an
application due to its strong anharmonicity, as discussed by
Taubmann et &? It will be described by a Morse curfe
defined by

V(1) = D1 — exp [Fo(r — 1)1}’
whereDe is the equilibrium dissociation energy,a parameter,
andr. the equilibrium interatomic distance; Table 1 gathers the
numerical values of the involved parameters. For this model,
the vibrational spectrum is given analytically?hs

(11)

E—D [ ] /2th2 [ 1/2 w2h2
r=0,1,.. (12)
under the condition
V2uDe 1
" The 2 (13)

This leads to a total of 17 vibrational bound states for H
For HCI, we employ the empirical HulberHirschfelder
curve®? defined by

V(N =DJ(l —e)?+cye ¥ (1+by]  (14)

wherey is the reduced internuclear distance

W r—re
y(r) = 2(B—Dgl’2 ( ) (15)
andb andc are parameters defined by
b 2—%(112—%) (16)
D.\12

c=1+ Al(AO) a7

Do = 1.6293169 10!
. = 4.826752x 10°5

0o = 1.3996304x 10~
= 2.40855517

1= 1785.6866

we=1.3627859% 102

weXe = 2.4066110x 10*
weye = 1.0223128x 10°°
weZe = —5.54966x 1078

TABLE 3: Numerical Coefficients for the ArO HFACE
Potential:>* All Quantities in au

a=111.806996 As = 4.6547873
b= 1.956897 Ag = 3.8038890
ro=6.465%k Ao = 3.2525512
Ce=32.17 Bs = 9.6802180
Cg = 589.99661 Bg = 7.9933059

C10=13176.4259
u =20824.7929

Bio= 6.6003615

The values ofy, A1, andA; depend on experimental constants
through the relations:

AO - 4Be (18)
oL
A=- — (19)
6B,
5,0 20X,

e

wherere has the meaning assigned above, &ndhas been
obtained as

1 1 1 1

De%DO‘i‘Ea)e—Za)eXe‘f'éwJe‘f‘l—eweZe (21)
In turn, Do is the spectroscopic dissociation ener@y, the
rotational constanta. the vibrationat-rotational coupling
constant, andwe, weXe, WeYe, WeZe are the anharmonicity
constants in the Dunham series expansion. Such experimental
parameters are tabulated in ref 53, and gathered in Table 2. One
obtainsDe = 0.1696%;,.

To represent ArO, we have utilized the Hartrdeock
approximate correlation energy (HFACE) mcdgdroposed by
Varandas and Silva for diatomic interactions of both chemically

stable and van der Waals molecules. It assumes the form

%)
V(r) = aexp(hr) — C, (22)
=68,10 "
where
(1) =1 — exp CAX — BA)]" (23)
and
x = ! (24)

55+ 1.25,

The values of the relevant parameters are given in Table 3, while
= 2.7979937x 10 “Ep.

2.3. Eigenvalue Calculations.For comparison with the
methods based on the classical framework, we evaluate also
the corresponding quantum sum-over-states in eq 1. For this,
we must solve the one-dimensional Satirger equation
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o | A 22 1d 3 {/d 2
— + (4 1)+ V)| (1) = e, (25) __pfd 1d B (_ )
2 2ur? Y ¥ @4(r, p,) 8 32 tog V(r) + 24 drV(r) +
where v and | are the vibrational and rotational quantum p_rzd_zv(r) 28)
numbers, respectively. We have employed here for its solution “ dr?

the well-established discrete variable representation (DVR)

method>>8 as reported by Colbert and Milléf. For each and the WK vibrational partition function up to second-order
rotational quantum numbdr we have then usetl = 500 assumes the form
equally spaced DVR grid points, keeping all eigenvalues with

an energy smaller than the dissociation enekgy £ D¢). TO WK 1 p;

warrant convergence, the integration intervals were seaat ( & (1) =7, J 5 exp) =B o +V(f [1+

b) = (0.0, 25.@p) and @, b) = (3.0, 50.@y) for the for HCI K2 dr do. (29
and ArO systems, respectively. The calculations led to a total @4(r, p)] dr dp; (29)
of 941 and 57 rovibrational energy levels for HCIl and ArO up with B standing for 0= (pf/2,u) + V() = De. The results for

to | = 64 andl = 20, respectively. For fHlwe have used the - A . .
exact eigenvalues given by eq 12, since only the vibrational the V|bra_t|ona_l WK partition function .Of biobtained fr_om eq
partition function is calculated for this system. 29 are given in Table 4. For comparison, we alsp give |n.th|s
table the quantum and classical vibrational partition functions
from eq 1 and eq 2, respectively. As it is well-known, the WK
expansion up to second-order assumes negative values at low
We now discuss briefly the methods used to apply quantum, temperatures; for His found to occur at T= 1250 K, in
semiclassical, and semiempirical corrections to the classical agreement with ref 22. Clearly, Table 4 shows that the results
partition fUnCtion. To assess their efﬁciency, a" SUCh methOdS from the WK expansion start to Converge to the quantum resuns
are employed to evaluate the vibrational partition function of at 5 |Jower temperature than the classical ones. This is also seen
Ha. For each method, the formulas will be written in terms of from Figure 1, where the errors relative to the quantum result
generalized coordina;eq)(and conjlugat.e moment@)(such_ [ AqVWK — (qVWK _ quM)/QSM] are plotted. For example, at=
that they can be applied to the rovibrational partition function 554 K, the error irg"X is ~ 11% while that ofgc™ is = 45%.

f any pblamc e, e callators of s s £’ 1o oo  evnton o . 0
g g Y€ o 1.8% in a-™. Moreover, the WK partition function assumes

described in section 2, witM = 10° and rmax = 25.080. We WK

will examine first the classical vibrational partition function of accurate valuesAg, ~ = 0.01) for temperatures above =
H, in order to investigate the quality of the various correction 3000 K. . . .
schemes. 3.2. Green-Oppenheim—Ross Expansion.The incorpora-

3.1. The Wigner—Kirkwood Expansion. Wigne4 and tion of.quantum effects in clagsic_:al simulatiqns via ﬂfn% .
Kirkwood!® derived a quantum mechanical version of the €XPansioncan be dqne by substituting thg cla§3|cal Haml'ltonlan
Boltzmann probability distribution function in phase space. N €d 2 by an approximate quantum Hamiltonian written in the
Within their approach, the quantum partition function is phase space representation formahs_m. This approach has been
expressed as the following expansion in power&%f suggested by Greghand Oppenheim and Ro3sand is

frequently employed in molecular dynanfe®simulations. The
basic equation of this approacl#3§°

2

3. Corrections to the Classical Partition Function

1
Qur(T) = . J Joexp{—pHM @, p)} (1 +

€M =2 [ fy dach exp(~pH"@,p)}  (30)
Z h? ¢(d, p)) da dp (26)

= where
where the function§gi(g, p)} can be obtained from a recursive " oM 12,
formula, andB has the meaning previously defined. Note that HM (g, p)=HM(@.p) —= Y K?p(a.p) (31)
eq 26 reduces to the classical expression when0 (or T — BE

). Thus, the classical partition function can be seen as the
zeroth-order approximation, with the quantum effects being
given by the higher-order corrections. The first term in the WK

expansion assumes the form

and the classical Hamiltonian and functidng} are the same
as in the WK expansion. As before, we truncate the expansion
ath? term. Thus, we use

2 3 B ﬂhz{ -
@4(0, p) = —g—ﬂ vAV(a) + fT,u [(YV(q) + H (@.p) = H™" (@ p) + 52137V (@ 2
(P VIEDi] (2) leviar+ &P v} @

with terms up to sixth-order being given in ref 59. As such
terms contain high-order derivatives of the potential energy Theq§ " results obtained for kfrom eq 30 are given in Table
surface, their application to realistic systems is difficult. For 4. As seen, the GOR expansion leads to ill-conditioned results
example, in the popular one-dimensional hindered-rotor case,for low temperatures due to the fact that the Hamiltonian can
the evaluation of terms up fe# in the WK expansion has been assume large negatives values. Only for temperatures around
carried out with the aid of a computer algebra céti€hus, we 3000 K, the method begins to give acceptable values, and only
will limit our calculations to the ternk? in eq 26. atT ~ 4000 K doegAqS°R becomes smaller thamgS"|, see

For diatomic molecules, eq 27 yields Figure 1. However, its error relative to the quantum partition
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TABLE 4: Vibrational Partition Function 2 of H, Calculated Using Various Approaches

T/K qu qWK CIGOR qLCP CIQFH qLCP/QFH q\F,’G quM

300 4.792¢-2)° —8.416(1) c 7.696(-3) 1.653(-9) 1.065(6) 4.619¢5) 3.082(-5)
1.8(-3) 7.6(-2) c 2.2(-4) 1.8¢11) 8.4(-8) 1.8(-6)

500 7.978¢-2) —4.474(-1) c 2.096(-2) 1.400(4) 1.059¢-3) 2.453(-3) 1.965(3)
2.3(-3) 3.5(-2) c 4.1(-4) 1.4(-6) 5.1(C-5) 7.2(-5)

700 1.118¢1) —2.611¢1) c 3.991(-2) 4.266(-3) 1.002(-2) 1.348(-2) 1.166(-2)
2.8(-3) 2.12) c 6.2(4) 3.9¢-5) 3.6(-4) 3.3¢4)

1000 1.600¢1) —9.824(-2) c 7.706(-2) 3.209¢-2) 4.382(-2) 4.856(-2) 4.444(¢-2)
3.3(-3) 1.2¢2) c 9.4(~4) 2.7(-4) 1.13) 1.06-3)

1500 2.410¢1) 7.125(-2) c 1.545(-1) 1.181¢1) 1.292(1) 1.338(1) 1.277¢1)
4.1(-3) 6.7C-3) c 1.5(3) 8.94) 2.5(3) 2.3¢3)

2000 3.227¢1) 1.972¢1) c 2.415(-1) 2.165(1) 2.244(-1) 2.283(-1) 2.219¢1)
4.7(-3) 4.4(-3) c 2.0(-3) 1.5(-3) 3.5(-3) 3.3(-3)

3000 4.887¢1) 4.074¢-1) 1.434¢2) 4.221€1) 4.104¢-1) 4.140€-1) 4.167¢1) 4.116¢1)
5.7(-3) 2.4(-3) 3.0 2.9¢3) 2.6(-3) 5.0(-3) 4.9¢-3)

4000 6.584{1) 5.993(-1) 6.582(-1) 6.039(-1) 5.981(-1) 5.995(-1) 6.012(-1) 5.978(-1)
6.6(-3) 1.7¢-3) 5.5(3) 3.7¢-3) 3.5C3) 6.13) 6.03)

5000 8.326( 1) 7.868(1) 8.068(1) 7.875¢1) 7.846(-1) 7.844(-1) 7.853(-1) 7.833¢1)
7.4(-3) 1.4(-3) 6.5(-3) 4.4(-3) 4.2(-3) 7.1¢-3) 7.0¢-3)

6000 1.0122 9.752(1) 9.860(1) 9.767¢1) 9.755(1) 9.716(1) 9.718¢1) 9.709¢1)
8.1(-3) 1.3(-3) 7.4(3) 5.1¢-3) 5.0C-3) 7.83) 7.8(3)

7000 1.1980 1.1672 1.1739 1.1782 1.1780 1.1630 1.1626 1.1627
8.7(-3) 1.4(-3) 8.2(-3) 5.7¢-3) 5.6(3) 8.53) 8.5(-3)

8000 1.3908 1.3645 1.3689 1.4012 1.4016 1.3601 1.3591 1.3599
9.3(-3) 1.5(-3) 8.9(-3) 6.4(-3) 6.3C-3) 9.2(-3) 9.1(-3)

9000 1.5906 1.5676 1.5707 1.6563 1.6571 1.5634 1.5619 1.5630
9.9(-2) 1.7¢-2) 9.5(-3) 7.06-3) 6.9C3) 9.8(-3) 9.7¢-3)

aSee the text for nomenclatureGiven in parantheses is the power of 10 by which the numbers should be multfdliadonverged results.

dSecond entry for each temperature gives the standard Monte Carlo

0.1

0.05 -

Aq,

-0.05 -

-0.1

) L 1 s " ) L 1
1000 2000 3000 4000 5000 6000 7000 8000 9000

TK
Figure 1. Relative errors of the approximate vibrational partition
function of hydrogen molecule as a function of temperatu®) A4
A, (v) Agy, (M) AGER, (a) A, (— ) AT, (— —) AQ(S, and
( ) AqLCP’QFH (see the text for nomenclature).

function is always larger than 'nﬁ,"’K for the temperature range
considered in the present work. Convergencqv% starts afl
> 6900 K.

3.3. Semiclassical ApproachThe “better than classical”
approach proposed by Mill&to approximate the Boltzmann
density matrix was named classical path approximation. This

semiclassical approach is based upon a classical-limit ap-

proximation to the quantum mechanical time evolution propaga-
tor U(t) and a relation between time and the reciprocal
temperaturet(= iAf3). This led to a numbéf3° of approximate
expressions for the partition function, which differ on the way
in which the potential is expanded. In particular, we employ
LCP approximation given 1538

LCP(-I—) (zﬂééhz)smz f "

2
o v + £ (vv(q))z]} (33)

Note that there is no limiting condition on the energywith

deviation.

the configurational integral being solved by sampling the whole
coordinate space. Note especially that to examine the vibrational
partition function of a diatomic, one just requires to replgce

by the radial coordinate.

The values ofg;“" and corresponding Monte Carlo errors
are given for Hin Table 4. Moreover, the errors relative to the
guantum results are displayed in Figure 1. The results show a
better agreement at low temperatures when compared to the
previous quantum approacheg'( andg®°"). In additiong,“"
does not diverge for ¥ 0. At a temperature of 1000 K, where
o’ is negative with a relative error of 321% ag@®is very
large, -7 shows a deviation of 75%. We also observe that
a7 is accurate within 10% &F ~ 1900 K, while converging
to q@" for T =~ 4000 K (the relative errors are smaller than
1%). However, it starts to diverge far > 5500 K: atT =
9000 K the relative error is already6%. As discussed in ref
12, this arises due to the fact that eq 33 implicitly considers
the contribution of dissociative species.

3.4. The Quadratic Feynman-Hibbs Approximation. The
Feynman path integral formalism is one of the most appealing
approaches to evaluate the quantum mechanical partition
function®! However, its application to large systems is com-
putationally very demanding. In the context of quantum
corrections, a simple approximation which was proposed initially
by Feynman and HibB$ consists of replacing the classical
potential by an effective one. In this case, the partition function
assumes the form @™ where the integration over momenta
is carried out explicitly (as in the LCP approach) and the
classical potential is replaced by an effective quantum one. The
simplest is the quadratic FeynmaHibbs’ potential obtained
by keeping only quadratic fluctuations around the classical paths.
The QFH partition function assumes the form

3n/2
qe (M) = (Znﬂhz) S dq
2
exp{ ﬁ[V(q)+'3h ZV<q)]

& } (34)
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which has been extensively used in molecular dynamics TABLE 5: Rovibrational Partition Function @ of HCI
simulations of liquidg8:33 Calculated Using Various Approaches

The values of>™™ and Aq®™ for H, are shown in Table 4 TIK oM gLCPIQFH " PP
a_nd F_|gure 1, fgspectlve_ly. As ;hqwn, the behavior of QFH 54 11690 3.7718(3F  1.6526(2) 1.67C2)
vibrational partition function is similar to the LCP one. The 1710 7.2(4) 8.0(-4)
basic difference occurs at low temperatures, whegf&" 400 2.2370 7.0418(2)  1.3008¢1)  1.39(1)
underestimates the exact value of the vibrational partition 271  1.2(-2) 5(=3)
function whileg,“" overestimates it. For example, Bit= 700 500 3.86(37245 43%4(?2?(1) 4.7205¢1) g'ggig
K, g2 is 63% smaller than the quantum one, wherg$ is 600 5.2885 9.5495(1)  1.1538 117
larger thang® by about 242%. In general, the QFH ap- 47(-1)  1.1¢1) 2.0-2)
proximation leads to results better than the LCP approximation, 900 12.248 5.4206 5.7147 5.76
reaching an accuracy of 10% &t 1400 K and converging to 7.6C1) 3.:8(1) 7.062)
1000 15.217 7.8115 8.0999
the quantum sum-over-states fbr: 2400 K. However, as for 8.4(1) 4.8¢-1)
a:°", @™ diverges for high temperatures. 1200  22.139 13.851 14.115 14.2
3.5. Pitzer—Gwinn Approximation. The scheme developed 1.0 6.9¢1) 2.0-1)
by Pitzer and Gwinft has a semiempirical nature and was 2000 16?324 1553-240 53.569 . ggf)
or|g|nall_y developed to mclqde quantum corrections in t_he 4000 268.19 557.04 257 62 2570
calculation of thermodynamic functions for molecules with 35 34 20
internal rotation. In their approach, the partition function is 5000 431.70 420.43 421.11 420.0
approximated by its classical component scaled by the ratio of 4.4 4.3 3.0
the quantum over classical partition functions for a reference 6000  641.27 629.99 630.74 636.0
system where both are known exactly. If the reference system 5.3 53 5.0
. . . . . 7000 900.13 888.91 889.65
is described by a harmonic potential, then one obtin 6.2 6.2
" 9000 1567.8 1557.0 1557.3
po  cm q‘H?O('D - 8.1 8.0
q, (M =9,7(M qCM(T) (39) a See the text for nomenclatureFourier path integral (FPI) results
HO from ref 64.¢ Given in parantheses is the power of 10 by which the
numbers should be multiplied Second entry for each temperature gives
Whereq\?M(T) is the classical partition function, and the standard Monte Carlo deviation.
- 4. A Hybrid LCP/QFH Correction
(T = exp(—peg) and T = 1 . o
HO 1 — exp(phv) HO Bhw We have found thatj, ™ and o dlverg_e at low tempera-
(36) tures because the corresponding expansions (probability distri-

bution for WK and quantum Hamiltonian for GOR) in phase

are, respectively, the quantum and classical partition functions Space formalism are truncatedtét However, they both con-

for the harmonic oscillator calculated with the zero of energy Verge to the quantum sum-over-states quicker than the classical

at the bottom Of the poten’[ia| curve] is the Vibrationa| result. On the Other hand, the LCP and QFH methods giVe Close

fundamental frequency. The zero point eneegyappearing in  results tagy at low temperaturesg,“” overestimates whereas

the expression fopSY can be calculated by using different 7 " underestimates the quantum vibrational partition func-
methods*2 such as the harmonic and Dunham formulas. In this tion. Unfortunately, both the methods diverge at high temper-
work, we have used the relatiep = hu/2. Furthermore, since  atures since they are based on the solution of the configurational
the zeroth and the first vibrational levels are known, we have integral rather than the total phase space integral in eq 2. In
considered the frequency in eq 36 to be the frequency this section, we suggest an hybrid scheme which aims to keep
associated to the<10 transition. Despite its simple form, the the advantages of the LCP and QFH methods while discarding
PG correction is known to be fairly accurate and hence is their nondesirable features.
frequently used? From the GOR approach, it is easy to demonstpaksy
Numerical values of® and the associated Monte Carlo integrating the phase space integral in eq 32 over the momenta
errors are reported for Hn Table 4, whiIeAqu is depicted in between—o andw that the effective quantum potential is given
Figure 1. For temperatures below 1900 K, they show a better by
agreement with the quantum result than all previous corrections

WK _GOR _LCP QF My oy h? 2 2 2
(0, ", 09,750, , andg; ™. In fact, for temperatures of a few VR (@)= V(q) + =—{28VV(q) — B (V-V(Q))Z3 (37)
hundred kelvin,q® still gives values of the same order of 24u

: G
magnltud(PaGof the quantum onead[® ~ 0.50 atT = 300 K, where theh? term can be seen as a mixture of the correction
whereasq, ” reaches an accuracy of 10% e 900 K). For terms in egs 33 and 34. Moreover, we have seen in section 3.2
intermediate temperatures, the other approaches correct bettef,ot the GOR approach diverges at low temperatures, which is
the classical partition function: the QFH partition function is mainly due to the fact that-B%(VV(q))? assumes very large
better than the PG one for 1960 T/K = 5200, and the WK eqative values. Conversely, the LCP method has been shown
expansion gives better results for 2980T/K = 4500. The 5 reach large positive deviations at low temperatures. This
Pitzer-Gwinn values converge g for lower temperatures suggests that an average of the LCP and QFH quantum effec-
values than in the GOR and LCP onéBx 3200 K forg{®, T tive potentials may lead to acceptable results at such low-
~ 6900 K forgo° andT ~ 4000 K for g;°". Moreover, for  temperature regimes. Equivalently, the ter®2/(q) and
the highest temperature considered in the present work ( %(VV(q))2 may be thought as being of the same order of
9000 K) a deviation of only 0.07% is still obtained fq?e. magnitude, and hence be profitably combined. Thus, our
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TABLE 6: Rovibrational Partition Function @ of ArO
Calculated Using Various Approaches

TIK " gy a7

2.5 8.0560¢ 1)° 1.6874(-4) 2.6069¢-3)
3.8(-2)° 1.6(-5)

5.0 3.2648 3.010H1) 4.0479¢1)
7.8(-2) 9.7¢-3)

10.0 13.956 7.6740 7.4753
1.6(-1) 9.1¢-2)

15.0 33.432 25.973 25.254
2.3-1) 1.8(-1)

25.0 93.008 85.760 83.976
3.7¢-1) 3.4(-1)

50.0 256.73 252.65 249.04
6.7C-1) 6.6(1)

75.0 377.50 375.15 371.48
8.7C-1) 8.7¢-1)

100.0 461.48 459.99 456.78
1.0 1.0

a See the text for nomenclatureGiven in parantheses is the power
of 10 by which the numbers should be multipli€Gecond entry for
each temperature gives the standard Monte Carlo deviation.

approach consists of adding the following effective potential
to the classical Hamiltonian:

a,,- "M = % J [ s dadp exp{—BH(a, p) +
V(@)]} (38)

where

h%p

Ve(q) = 2%

{VAV(9) + B(VV())} (39)

andp implies the above-discussed restriction on the integration
hypervolume.

For the diatomic case, the effective potential reduces to

2 2
VEf(r) = %{ (dd—rz + %%)V(r) +8 (%V(r))z} (40)

From eq 38, one then obtains the rovibrational partition function
as

Prudente et al.

1
qerCP/QFFkT) = 5 f f 5 dr d d¢ dp, dp, dp,
S < P

ex;{ ° 2u - 2ur? " 2ur?sin 0

while the vibrational partition function assumes the form

Q ‘e £ [, o

+V(r) + V(1) } (41)

2
exp{ —ﬁ’% +V(r) + \/eﬁ(r)]} (42)

The results of such an hybrid approach to the vibrational
partition function are presented in Table 4 for the vibrational
partition function of H. Clearly, for low and medium temper-
atures, the agreement gf-CP/QF* with the quantum results is
good. Moreover, no sign of divergence is manifest at high
temperatures which contrasts with the LCP and QFH ap-
proaches. In facg, -°P/QFHreaches an accuracy of 10%Tat
750 K while starting to converge " at T ~ 2100 K. In
addition, afT = 9000 K, a deviation of only 0.03% is obtained.
Although "% gives the best overall results when com-
pared with the quantum ones, ta® and g@™ methods are
still the best forT < 700 K and 2600< T/K =< 4800,
respectively. These features can also be seen from Figure 1.

To test further the validity of the LCP/QFH approach
suggested in the present work, we have computed the rovibra-
tional partition function of HCI and ArO by using eq 41. The
results are given in Table 5 and Table 6. For comparison, we
also give the exact quantum and classical results from eq 1 and
eq 2. For comparison, we also report the results obtained by
using the Fourier path integral formaliét(q’”") based on the
same potential curve.

Table 5 shows that.“”°™is much more accurate thaf"
over the whole range of temperatures. In comparison gth
andd”!, the agreement is seen to be satisfactory even at low
temperatures. Specifically, &t = 600 K, whereg-™ has an
error of 358% and the Fourier path integral formalism has an

error of 1.4%, one finds fog,""'?™ a deviation of 17%. At
medium temperatures (& 2000 K) ¢;°"°"is comparable in

accuracy tag,”, while becaming more accurate with increas-

ing temperature.
As expected? Table 6 shows that similar considerations apply
for ArO but for much lower temperatures than in the cases of

TABLE 7: Ratio of Various Partition Functions 2 as a Function of the Reduced Temperature for H,, HCI, and ArO

H, HCI ArO

. TIK /e gLCPIQFH QM TIK oM/ (LCPIQFH QM TIK MG (LCPIQFH QM
0.2 623.2 14.763 0.7738 427.0 13.255 0.6012 4.36 13.266 0.6114
0.3 934.8 4.1841 0.9733 640.4 3.9282 0.8557 6.54 3.8321 0.9257
0.4 1246.5 2.4141 1.0075 853.9 2.3090 0.9386 8.72 2.2414 1.0125
0.5 1558.1 1.8100 1.0126 1067.4 1.7500 0.9718 10.90 1.6977 1.0302
0.6 1869.7 1.5291 1.0118 1280.9 1.4889 0.9848 13.08 1.4471 1.0307
0.7 2181.3 1.3742 1.0100 1494.3 1.3450 0.9899 15.26 1.3114 1.0282
0.8 2492.9 1.2791 1.0081 1707.8 1.2568 0.9922 17.44 1.2302 1.0257
0.9 2804.6 1.2164 1.0066 1921.3 1.1986 0.9935 19.61 1.1779 1.0239
1.0 3116.2 1.1726 1.0053 2134.8 1.1582 0.9944 21.79 1.1423 1.0226
1.2 3739.4 11171 1.0035 2561.7 1.1070 0.9957 26.15 1.0984 1.0209
1.4 4362.6 1.0844 1.0023 2988.7 1.0769 0.9966 30.51 1.0732 1.0196
1.6 4985.9 1.0634 1.0015 3415.7 1.0578 0.9972 34.87 1.0573 1.0184
1.8 5609.1 1.0492 1.0009 3842.6 1.0448 0.9976 39.23 1.0465 1.0172
2.0 6232.4 1.0392 1.0005 4269.6 1.0356 0.9980 43.59 1.0388 1.0161
25 7790.4 1.0241 1.0002 5337.0 1.0217 0.9985 54.49 1.0269 1.0135

a See the text for nomenclature.
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H, and HCI. For example, af = 5.0 K whereg"" shows a
deviation of 700%g-°"°""has an error of only 25.6%. Such

J. Phys. Chem. A, Vol. 105, No. 21, 2008279

(10) Koput, J.; Carter, S.; Handy, N. @. Phys. Chem. A998 102

(1i) Landau, L.; Lifshitz, EStatistical PhysicsPergamon Press: New

an observation can be rationalized from the zero point of energy york, 1969.

(e0) values of the three moleculesy = 2165.866 cm? for
H,, €0 = 1483.759 cm? for HCI, andeg = 15.148 cm? for
ArO. For this, we use the following reduced temperatéire

.
=" 0608l 43)
€ €0

whereT is in K, andeg in cm™L. Table 7 reports the values of
the ratiosgCM/qQ" and g.°7°™q@" as a function ofr; for
reference, the correspondifalues are also tabulated. Clearly,
similar trends are observed for the deviationgét/QFH from
g°M as a function ofr. For example, at = 0.5, g™ shows a
deviation of 81% for H, 75% for HCI, and 70% for ArO, while
the corresponding deviations fqkCP/RFH are 1.3%, 2.8%, and
3.0%. Moreover, for = 1.2, ™ shows an error of 10% for
the three diatomic systems whilgCP/FH reaches the same
accuracy at = 0.25 for H, and ArO, and at = 0.35 for HCI.

Thus, the LCP/QFH hybrid method proposed here can reliably

be used to calculate the rovibrational partition functions of
diatomic molecules for temperatures abdves 0.3¢y/ks.

5. Conclusions

Several quantum, semiclassical, and semiempirical corrections%v
to the classical partition function of molecular systems have
been analized. In addition, a novel hybrid procedure (LCP/QFH)

has been proposed. A numerical application tohids shown

that this new method performs generally better than previous

ones, namely for temperatures abev@00 K. Similar perfor-

mances are anticipated for the HCIl and ArO cases also reported

in this work. In fact, it blends the advantages of two popular

semiclassical methods (LCP and QFH) but restricted to the
bound phase space. Although applications were done only for
diatomic molecules, there is no reason of principle why it should

not work equally well for larger polyatomics. Work along these
lines is currently in progress.

Acknowledgment. This work has the support of Fundiac
para a Ciacia e Tecnologia, Portugal, under program PRAXIS
XXI. It has also benefited from an EC grant under Contract
CHRX-CT 94-0436. One of us (F.V.P.) also acknowledges
partial financial support from Fundag Coordengé@o de Aper-
feicoamento de Pessoal dévdl Superior (CAPES, Brazil).

References and Notes

(1) McQuarrie, D. A.Statistical MechanigsHarper and Row: New
York, 1976.

(2) Johnston, H. SGas-Phase Reaction Rate TheoRonald: New
York, 1966.

(3) Truhlar, D. G.; Isaacson, A. D.; Garrett, B. G. Trheory of
Chemical ReactiorBaer, M., Ed.; CRC: Boca Raton, 1985; Part IV, p 65.

(4) Badc, Z.; Light, J. C.Annu. Re. Phys. Chem1989 40, 469.

(5) Tennyson, J. ITheoretical High-Resolution Molecular Spectros-
copy, Jensen, P., Bunker, P. R., Eds.; Wiley: New York, 2000.

(6) Prudente, F. V.; Costa, L. S.; Acioli, P. B. Phys. B: At. Mol.
Opt. Phys.200Q0 33, R285.

(7) Neale, L.; Tennyson, Astrophys. J1995 454, L169.

(8) Harris, G. J.; Viti, S.; Mussa, H. Y.; Tennyson, JChem. Phys.
1998 109 7197.

(9) Partridge, H.; Schenke, D. W. Chem. Phys1997 106, 4618.

(12) Riganelli, A.; Prudente, F. V.; Varandas, A. J.JCPhys. Chem.
A. Submitted for publication.

(13) Riganelli, A.; Prudente, F. V.; Varandas, A. J. Bhys. Chem.
Chem. Phys200Q 2, 4121.

(14) Wigner, E.Phys. Re. 1932 40, 749.

(15) Kirkwood, J. G.Phys. Re. 1933 44, 31.

(16) Powles, J. G.; Rickayzen, ®lol. Phys.1979 38, 1875.

(17) Gibson, W. GMol. Phys.1975 1, 1.

(18) SesSelL. M. Mol. Phys.1993 78, 1167.

(19) Thirumalai, D.; Hall, R. W.; Berne, B. J. Chem. Phys1984
81, 2523.

(20) Witschel, W.; Hartwigsen, GChem. Phys. Lettl997 273 304.

(21) Taubmann, GJ. Phys. B: At. Mol. Opt. Phy4.995 28, 533.

(22) Taubmann, G.; Witschel, W.; SchoendorffJLPhys. B: At. Mol.
Opt. Phys.1999 32, 2859.

(23) Green, H. SJ. Chem. Phys1951, 19, 955.

(24) Oppenheim, |.; Ross, Phys. Re. 1957 107, 28.

(25) Allen, M. P.; Tildesley, D. JComputer Simulations of Liquids
Clarendron Press: Oxford, 1987.

(26) Feynman, R. PRev. Mod. Phys.1948 20, 367.

(27) Feynman, R. P.; Hibbs, A. Ruantum Mechanics and Statistical
Mechanics McGraw-Hill: New York, 1965.
(28) Doll, J. D.; Myers, L. EJ. Chem. Phys1979 71, 2880.
(29) Giacchetti, R.; Tognetti, WPhys. Re. Lett. 1985 55, 912.
(30) Giacchetti, R.; Tognetti, VPhys. Re. B 1986 33, 7647.
(31) Feynman, R. P.; Kleinert, HPhys. Re. A 1986 34, 5080.
(32) Janke, W.; Kleinert, HChem. Phys. Lettl987 137, 162.
(33) SeSelL. M. Mol. Phys.1993 78, 1167.
(34) SesSel. M. Mol. Phys.1994 81, 1297.
(35) Messina, M.; Schenter, G. K.; Garrett, C.BChem. Physl993
4120.
(36) Miller, W. H. J. Chem. Phys1971, 55, 3146.
(37) Hornstein, S. M.; Miller, W. HChem. Phys. Lettl972 13, 298.
(38) Miller, W. H. J. Chem. Phys1973 58, 1664.
(39) Stratt, R. M.; Miller, W. H.J. Chem. Physl977, 67, 5894.
(40) Fukui, K.; Cline, J. I.; Frederick, J. H. Chem. Physl997 107,
4551.
(41) Pitzer, K. S.; Gwinn, W. DJ. Chem. Phys1942 10, 428.
(42) Isaacson, A. D.; Truhlar, D. Q. Chem. Phys1981, 75, 4090.
(43) Isaacson, A. D.; Truhlar, D. G. Chem. Phys1984 80, 2888.
(44) Frankiss, S. GJ. Chem. Soc., Faraday Trank974 70, 1516.
(45) Hui-Yun, P.J. Chem. Physl1987 87, 4846.
(46) Riganelli, A.; Wang, W.; Varandas, A. J. @. Phys. Chem. A
1999 103 8303.

(47) Barker, J. RJ. Phys. Chem1987, 91, 3849.

(48) Varandas, A. J. C; Silva, J. D. Chem. Soc., Faraday Trans. 2
1992 88, 941.

(49) Pém-Gallego, A.; Abreu, P. E.; Varandas, A. J.XCPhys. Chem.
A 200Q 104 6241.

(50) Morse, P. MPhys. Re. 1929 34, 57.

(51) Pauling, L.; Wilson, E. Blntroduction to Quantum Mechanics
McGraw-Hill: New York, 1935.

(52) Hulbert, H. M.; Hirschfelder, J. Ql. Chem. Phys1941, 9, 61.

(53) Huber, K. P.; Herzberg, GMolecular Spectra and Molecular
Structure IV Constants of Diatomic Moleculégan Nostrand Reinhold:
New York, 1979.

(54) Vvarandas, A. J. C; Silva, J. D. Chem. Soc., Faraday Trans. 2
1986 82, 593.

(55) Baye, D.; Heenen, P. H. Phys. A: Math. Genl986 19, 2041.

(56) Muckerman, J. TChem. Phys. Lett199Q 173 200.

(57) Colbert, D. T.; Miller, W. H.J. Chem. Phys1992 96, 1982.

(58) Prudente, F. V.; Costa, L. S.; Soares Neto, J. Mol. Struct.
(THEOCHEM) 1997, 394, 169.

(59) Haberlandt, R. ZPhys. Chem1974 255, 1136.

(60) Singer, J. V. L.; Singer, KCCP5 Quarterly1984 14, 24.

(61) Topper, R. QAdv. Chem. Phys1999 105, 117.

(62) Srinivasan, J.; Volobuev, Y. L.; Mielke, S. L.; Truhlar, D. G.
Comput. Phys. Commug00Q 128 446.

(63) McClurg, R. B.; Flagan, R. C.; Goddard, W. A., JlIiChem. Phys.
1997 106, 6675.

(64) Topper, R. Q.; Towa, G. J.; Truhlar, D. G.Chem. Phys1992
97, 3668.

(65) Marston, C. C.; Balint-Kurti, G. Gl. Chem. Phys1989 91, 3571.



