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An accurate single-sheeted double many-body expansion potential energy surface has been obtained for the
ground electronic state of the hydrogen cyanide molecule via a multiproperty fit to ab initio energies and
rovibrational data. This includes 106 rovibrational levels and 2313 discrete points, which are fit with a rmsd
of 4 cm-1 and 2.42 kcal mol-1, respectively, and seven zero first-derivatives that are reproduced at three
stationary points. Since the potential also describes accurately the appropriate asymptotic limits at the various
dissociation channels, it is commended both for the simulation of rovibrational spectra and reaction dynamics.

1. Introduction

A few years ago, we reported1 a global single-valued potential
energy surface for the ground electronic state of HCN (here-
tofore referred to as DMBE I) from a fit to the ab inito data of
Bowman et al.2 using the double many-body expansion3-5

method. Although an extensive but by no means exhaustive
revision of the literature prior to 1995 has then been made,1 an
update may be required since the title system continues to attract
much attention due to its prototypical relevance on fundamental
issues such as isomerization,6-9 high-lying vibrational states,10

potential-energy surface crossings,11 and quantum chaos.12

Moreover, the simulation of HCN/HNC13,14 vibrational-
rotational (rovibrational) spectra is of great importance in
astrochemistry, particularly in what concerns the detection and
assignment of HNC rovibronic levels,15,16 and the equilibrium
constant for the isomerization process HCNh HNC.17 It is also
well established that HCN plays a key role in the combustion
chemistry of nitrogen species,18,19 where new reaction routes
involving this molecule continue to be discussed (see, e.g., ref
20). Furthermore, due to its fundamental importance, several
reaction dynamics studies involving HCN have been reported.21-24

The most recent potential energy surface for HCN comes from
the work of van Mourik et al.,13 who have based it on a fit to
highly accurate ab initio data. Several analytical or semiana-
lytical HCN/HNC potential energy surfaces had, however, been
reported previously,1,2,25-27 some of which by explicitly fitting
spectroscopic data.27-31 Smith et al.32 have discussed the
sensitivity of empirical fits to spectroscopic data, and suggested
that the ab initio based potential energy surfaces can be globally
better than fully empirical ones. The potentials of Bowman et
al.,2 our previous DMBE I1 form, and the function of van Mourik
et al.13 have all been modeled along such lines by employing
ab initio energies as key data for their calibration.

Starting with an accurate ab initio potential, it seems
reasonable to make small corrections to fine-tune the potential
such as to achieve spectroscopic accuracy, although the
procedure may not be warranted a priori. For example, Wu et
al.31 fitted J ) 0 andJ ) k ) 1 rovibrational data aiming to
improve the Bowman et al.2 potential energy surface for HCN

and found that the final form is a smooth function of the
coordinates only when fittingJ ) 0 states alone, becoming
nonsmooth when theJ ) k ) 1 states are also included. In
fact, besides the somewhat straightforward (but often very
cumbersome) technical problems that appear when using
unrealistic or excessively flexible functions and the subtleties
encountered in the experimental data itself, it seems that the
inversion problem for polyatomic molecules poses problems of
a more fundamental nature. Indeed, it is now consensual that
the problem of modeling a polyatomic potential energy surface
exclusively from a fit to rovibrational data is generally an
undetermined one (i.e., the data can be properly mimicked
without leading to the true potential), especially when several
minima and barriers are involved. For example, Gadzy and
Bowman28 have shown that it is possible to fit a large set of
spectroscopic data for HCN without obtaining a reasonable
estimate of the potential barrier for isomerization. Moreover,
Carter et al.30 have reported an empirical potential function from
vibrational states of the HCN isomer up to ca. 18 000 cm-1

(this is well above the isomerization barrier) that gives reason-
able estimates for localized stretching states observed up to
30 000 cm-1 10,33,34 without allowing for the HCNh HNC
isomerization process. Whether the delocalized isomerization
states of HCN not yet observed experimentally (see ref 8 for a
survey of the literature and a theoretical proposal toward their
detection) can lead to a better-posed formulation for the
inversion problem based exclusively on spectroscopic data
remains therefore an open question.

In the present work, we revisit the issue of obtaining an
accurate DMBE model for the potential energy surface of HCN.
Our main goal is to slightly improve the long-range functional
form reported elsewhere35 and, following previous work on
SO2,36,37 fit the potential to highly accurate rovibrational data
for the HCN34,38-45 and HNC46-48 isomers. For this, we employ
a multiproperty fit that uses accurate ab initio data2,13,49as the
starting point. From such a fit, one expects to obtain a globally
accurate potential energy surface for HCN/HNC that is shaped
by the spectroscopic data in the valence regions associated to
the deep minima while being guided there by the ab initio
energies, follows the latter at intermediate regions, and is ruled
by the best semiempirical estimates of the long-range forces at
asymptotic channels.
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Another efficient scheme for including spectroscopic infor-
mation in potential energy surfaces is the energy switching35

method. This has been used to obtain local spectroscopic
accuracy for several molecular systems, including multisheeted
potential energy surfaces.50-53 Although easy to use, the method
relies by its own nature on the quality of the available
spectroscopic local potential energy expansions. Although an
hybrid approach using an energy switching/fitting methodology
may still be employed,53 its value is yet to be tested on systems
such as the title one where subtleties such as the double
minimum and isomerization barrier are present.

A final remark to emphasize that the potential energy surface
is calibrated from experimental data, and hence it will account
implicitly for nonadiabatic and mass-dependent effects. As a
result, the final potential energy surface will lie beyond the strict
concept that originates from the Born-Oppenheimer ap-
proximation, where such effects do not manifest on the potential
energy surface. Specifically, we have considered a single
isotopomer of the hydrogen cyanid molecule to extract the
rovibrational data, namely1H12C14N. Although isotopic mass
effects could possibly be better accounted for via a simultaneous
fit of the data pertaining to all other isotopomers once weighted
according to some scheme, they are likely to be small and
possibly within the error of the least-squares fit. Thus, such
effects will be heretofore ignored.

The paper is organized as follows. In section 2, we describe
the formal representation of the DMBE II potential energy
surface, with details of the three-body dispersion, electrostatic,
and extended Hartree-Fock (EHF) energies being given in
sections 2, 2.1, and 2.2, respectively. Section 3 gives the
technical details involved on the least-squares fitting procedure,
whereas the main topographical features of the DMBE II
potential energy surface are discussed in section 4. The major
conclusions are in section 5.

2. Double Many-Body Expansion Potential Energy
Surface

Within the DMBE framework,3-5 a single-sheeted potential
energy surface for HCN assumes the form

where VEHF,i
(n) and Vdc,i

(n) are the (n ) 2 and 3)-body extended
Hartree-Fock (EHF) and dynamical correlation terms, and
Velec

(3) is the three-body electrostatic energy (note that the
electrostatic contributions are absent at two-body level as
long as charge overlap effects are ignored). For the two-body
terms, we have employed the EHFACE2U54 potential energy
curves reported in ref 1, where the reader is referred for details.

In second-order of perturbation theory, the dynamical cor-
relation energy is mainly due to the long-range dispersion energy
which is given by the sum of the pair interactions and hence
can be expressed as a sum of inverse powers of the interfragment
separation for each channel. For the title system, one may
distinguish atom-atom and atom-diatom channels but such a
distinction is formal except at the asymptotic limits (note that
we are not explicitly accounting for the pure three-body atom-
atom-atom contributions which arise in the third-order of long-
range perturbation theory). Thus, when the three atoms are well
separated, the second-order dispersion energy is given by the

sum of three atom-atom contributions, whereas at each atom-
diatom asymptote, it is given by the sum of the atom-diatom
intermolecular dispersion interaction plus the intramolecular one.
Two approaches have been developed to mimic such a behavior.
The first method uses only the knowledge of the atom-atom
interaction contributions and interpolates in the remaining of
configuration space by considering the united-atoms formed
from the coalescing atom-atom and atom-atom-atom interac-
tions at the limit of vanishingly small interatomic distances.3

An improved scheme to describe the atom-diatom interactions
as a function of the intramolecular coordinate has also been
reported.55 As the knowledge of atom-diatom interactions
improved, a second approach has been suggested which uses
switching forms to allow the switch from the atom-atom to
the atom-diatom regimes35,56 In ref 1, we have used the first
approach to construct the HCN DMBE I potential energy
surface, whereas in the present work, we adopt the somewhat
simpler switching methodology to obtain DMBE II. Thus, we
write the three-body dynamical correlation in the form35

wherei labels the channel A- BC associated with each atom-
diatom interaction;Ri is the diatomic internuclear distance,ri

is the separation of atom A from a certain point located in the
BC diatomic bond distance, andθi is the angle between these
two vectors (see Figure 1). In turn,Cn

(i)(Ri,θi) are atom-diatom
long-range dispersion coefficients to be defined later, andøn-
(ri) is the usual dispersion damping functions.57 Moreover, the
three-dimensional switching function assumes the form

with the numerical parameters being taken asê ) 1 a0
-1 andη

) 6. This value has been chosen in order to make the atom-
diatom dispersion contributions active only when the diatomic
internuclear distances are a factor of 3-fold larger than the mean
value of the two other distances. As noted above, there are
regions of configuration space where the concept of atom-pair
and atom-diatom interactions become ambiguous. To avoid
overcounting the dynamical correlation through such terms, we
follow our previous approach35 by switching-off the atom-atom
contributions at the atom-diatom limits. Several functional
forms have been investigated to represent this switching
function, with the best results (judged on a basis of smoothness
of the potential energy surface at regions where accurate ab

Figure 1. Coordinates used for the HCN/HNC system. TheAi denote
parameters with numerical values equal to the atomic masses.

V(R) )∑
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initio energies are missing) being now obtained by multiplying
the two-body dynamical correlation term for theith pair by
∏j*i(1 - fj).

Following previous work,36,37 we have chosen to use Jacobi
coordinates for the representation of the dynamical correlation,
as such coordinates are the most akin to the definition of center
of dispersion.58 This introduces some parametersAi with values
numerically equal to the atomic masses which will then be fixed
for all isotopomers of HCN. Thus, no explicit mass-dependence
will be introduced on the definition of the potential energy
surface. However, as already noted, the final surface implicitly
accounts for nonadiabatic and mass effects via the fit to the
spectroscopic data, which makes it fall beyond the strict concept
that emanates from the Born-Oppenheimer approximation. For
the purpose of simplicity, we have also used the approxima-
tions36

Finally, the atom-diatom dispersion coefficientsCn
(i)(Ri,θi) of

eq 2 assume the form

wherePL are Legendre polynomials withL ) 0, 2,..,n - 4 for
n ) 6, 8,..., andL ) 1, 3,..., n - 4 for n ) 7, 9, .... For
homonuclear diatomics, only even anisotropic terms contribute
to the dispersion energy expansion. Although odd terms should
be considered in constructing the HCN potential energy surface,
this will not be done explicitly since the odd leading term isn
) 7 and hence should not be the dominant one. In turn, the
radial dependence of the dispersion coefficients is modeled by
the expression59

whereai andbi are fitting parameters andr ) R - RM; b1 )
a1, andRM is the internuclear distance associated to the position
of the maximum in eq 7. All coefficients in eq 7 have been
numerically defined elsewhere,1 and hence will not be given
here.

2.1. Electrostatic Energy. The long-range electrostatic
potential terms of the HCN system arise from the interaction
of the permanent quadrupole moment of the carbon atom with
the permanent dipole and quadrupole moments of NH. Follow-
ing previous work,1 we describe the electrostatic energy by the
form

where R, r, and θ are the Jacobi coordinates for C-NH
interaction,θa is the angle that defines the atomic quadrupole
orientation, andφab is the corresponding dihedral angle. Note
that the coefficientsC4(R, r) andC5(R, r) include the associated

charge-overlap damping functions57

whereDNH(R) andQNH(R) are the permanent electrostatic dipole
and quadrupole moments of NH, andQC the permanent
electrostatic quadrupole moment of the carbon atom. Moreover,
the angular functionsADQ andAQQ assume the form60

Using now the classical-optimized-quadrupole (COQ)
model,1,61-64 the angleθa assumes the analytical form36

As this expression may have singularities on the derivatives at
the linear geometries,65 the angleθ in eq 12 has been scaled to
read cosθ f cos θ′ (1-10-4 cos θ′6), thus removing such
singularities without affecting too much its shape. After
substitution of eq 12 into eqs 10, 11, and 8, the analytical COQ
model is obtained. The analytical dependence of the CH
quadrupole and dipole moments in the internuclear distance are
also taken from ref 1.

2.2. Three-Body EHF Energy.The three-body EHF energy
is the term that remains after subtracting the sum of the two-
body diatomic energies, long-range three-body dispersion, and
electrostatic energies from the total potential energy. It is this
term that contains the least-squares fitting parameters, being
modeled via a distributedn-body approach66 with n ) 3

where each of theR ) 1, 2, 3 polynomials has the form

The complete set of least-squares parameters amounts to 168
cijk

R linear coefficients and 18 nonlinear ones: 9γi
R, and 9Ri,ref

R,â .

3. Least-Squares Fitting Procedure

The calibration of the EHF term of the DMBE potential
energy surface for ground-state HCN has been done by using
an automated multiproperty fitting procedure previously em-

ri )
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cosθi ) 1
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ployed37 to fit experimental rovibrational data, structural
information, and ab initio energies for ground-state SO2.

The fitted experimental rovibrational data consists of 49
frequencies for HCN (J ) 0), 11 for HNC (J ) 0), 12 for HCN
(J ) 1), 9 for HNC (J ) 1), 14 for HCN (J ) 2), and 11 for
HNC (J ) 2), in a total ofM ) 106 frequencies taken from
Refs. 38-43. For J ) 0, we have taken the reported band
centers, whereas forJ ) 1, 2, the frequencies have been
generated with the spectroscopic constants of Maki et al.42 for
HCN and of Maki and Mellau48 and Northrup et al.47 for HNC.
The l-type splitting of the states with vibrational angular
momentum quantum numberl ) 1, 2 has also been taken into
account. The fitted levels have been weighted according to the
reported experimental error bars, ranging fromwi ) 10 to 103

(see Tables 1-4).
For HCN, the automated assignment of the calculated

rovibrational levels raises a more cumbersome problem than
the one described elsewhere37 for the ground electronic state of

SO2. This is mostly due to the occurrence of two isomers for
the title system (HCN and HNC), and to the fact that one
requires to calculate vibrational states for values of total angular
momentum greater than zero,J > 0. All rovibrational calcula-
tions have been carried out using the DVR3D and ROTLEV3
suite of programs of Tennyson and co-workers,67 which employ
the two-step approach of Tennyson and Sutcliffe68 for treating
theJ > 0 case. The Jacobi coordinate option has been utilized
with 35 DVR grid points for the H-CN atom-diatom coor-
dinater, 25 for the CN diatomic coordinateR, and 60 for the
angular coordinateθ. Following Harris et al.,14 the parameters
of the Morse oscillator basis have been taken asRe ) 2.3 a0,
De(R) ) 29.0Eh, ωe(R) ) 0.0105Eh, re ) 3.2 a0, De(r) ) 5.0
Eh, andωe(r) ) 0.004Eh where the involved coordinates are
indicated for clarity (see ref 67 for technical details). An energy
cutoff of -70 000 cm-1 (the potential minimum is located at
-109 570 cm-1) has been used for the 1D solutions, and 1000
2D solutions are used for building the final 3D matrix with
dimensions tested over the range 1500-3000. The diagonal-
ization problem has then been solved in the order (R f r f θ)
for obtaining the lowest 200 states. ForJ > 0, 60 states have
been calculated from the 200 states obtained in a decoupled

TABLE 1: Fitted HCN J ) 0 Vibrational Band Origins
Relative to the HCN Zero-Point Energy and Leading
Coefficient in Eq 20

N (n1n2n3) calc exp. error w/103 d1
2

1 (0 2 0) 1411.39 1411.42 -0.03 1 0.976
2 (1 0 0) 2097.12 2096.85 0.27 1 0.996
3 (0 4 0) 2802.02 2802.96 -0.94 1 0.923
4 (0 0 1) 3313.72 3311.48 2.24 1 0.981
5 (1 2 0) 3502.89 3502.12 0.77 1 0.967
6 (2 0 0) 4173.19 4173.07 0.12 1 0.462
7 (0 6 0) 4172.85 4174.61 -1.76 1 0.540
8 (0 2 1) 4685.96 4684.31 1.65 1 0.896
9 (1 4 0) 4889.30 4888.00 1.30 1 0.902

10 (1 0 1) 5393.69 5393.70 -0.01 1 0.977
11 (0 8 0) 5524.62 5525.81 -1.19 1 0.769
12 (2 2 0) 5571.96 5571.89 0.07 1 0.959
13 (0 4 1) 6039.43 6036.96 2.47 1 0.744
14 (3 0 0) 6228.73 6228.60 0.13 1 0.993
15 (1 6 0) 6256.27 6254.38 1.89 1 0.817
16 (0 0 2) 6520.12 6519.61 0.51 1 0.966
17 (1 2 1) 6759.98 6761.33 -1.35 1 0.881
18 (0 10 0) 6856.81 6855.53 1.28 1 0.687
19 (2 4 0) 6953.28 6951.68 1.60 1 0.883
20 (2 0 1) 7454.37 7455.42 -1.05 1 0.974
21 (3 2 0) 7619.20 7620.22 -1.02 0.01 0.950
22 (0 2 2) 7852.64 7853.51 -0.87 1 0.834
23 (1 4 1) 8109.04 8107.97 1.07 1 0.714
24 (4 0 0) 8264.47 8263.12 1.35 0.01 0.992
25 (2 6 0) 8315.98 8313.53 2.45 0.01 0.785
26 (1 0 2) 8582.70 8585.58 -2.88 1 0.963
27 (2 2 1) 8813.10 8816.00 -2.90 1 0.867
28 (3 4 0) 8994.43 8995.22 -0.79 1 0.863
29 (0 4 2) 9169.21 9166.62 2.59 0.01 0.618
30 (3 0 1) 9496.47 9496.44 0.03 1 0.971
31 (0 0 3) 9625.75 9627.09 -1.34 1 0.954
32 (1 2 2) 9908.81 9914.40 -5.59 0.1 0.820
33 (2 0 2) 10629.18 10631.40 -2.22 0.1 0.960
34 (4 4 0) 11013.30 11015.90 -2.60 0.1 0.843
35 (5 2 0) 11650.48 11654.59 -4.11 0.1 0.937
36 (1 0 3) 11672.21 11674.50 -2.29 0.1 0.951
37 (4 6 0) 12365.79 12364.42 1.37 0.1 0.725
38 (0 0 4) 12641.91 12635.89 6.02 0.1 0.943
39 (3 0 2) 12659.85 12657.88 1.97 0.1 0.957
40 (3 10 0) 13007.93 12999.49 8.44 0.1 0.359
41 (5 4 0) 13011.76 13014.80 -3.04 0.1 0.481
42 (6 2 0) 13635.82 13638.03 -2.21 0.1 0.930
43 (2 0 3) 13707.80 13702.25 5.55 0.1 0.829
44 (5 6 0) 14356.90 14357.05 -0.15 0.1 0.694
45 (4 0 2) 14670.53 14653.66 16.87 0.1 0.951
46 (1 0 4) 14680.15 14670.45 9.70 0.1 0.943
47 (2 2 3) 14979.62 14988.20 -8.58 0.1 0.756
48 (6 4 0) 14986.28 14992.06 -5.78 0.1 0.797
49 (0 0 5) 15581.90 15551.94 29.95 0.1 0.933

rmsd 5.86

TABLE 2: Fitted HNC J ) 0 Vibrational Band Origins
Relative to the HNC Zero-Point Energy and Leading
Coefficient in Eq 20

N (n1n2n3) calc exp. error w/103 d1
2

1 (0 2 0) 926.48 926.51 -0.03 1 0.954
2 (0 4 0) 1873.01 1873.74 -0.73 1 0.884
3 (1 0 0) 2023.65 2023.86 -0.20 1 0.992
4 (1 2 0) 2934.70 2934.82 -0.12 1 0.952
5 (1 4 0) 3868.36 3868.35 0.01 1 0.877
6 (2 0 0) 4027.08 4026.40 0.68 1 0.991
7 (0 0 1) 3651.84 3652.66 -0.82 1 0.965
8 (0 2 1) 4536.00 4534.45 1.55 1 0.841
9 (0 4 1) 5435.81 5435.66 0.14 1 0.656

10 (1 0 1) 5664.55 5664.85 -0.31 1 0.963
11 (0 0 2) 7171.33 7171.41 -0.08 1 0.940

rmsd 0.62

TABLE 3: Fitted HCN J > 0 Rovibrational Energies
Relative to the HCN Zero-Point Energy

N (n1, n2
l n3) J calc exp. error w/103

1 (0 00 0) 1 2.96 2.96 0.00 1
2 (0 11e 0) 1 715.02 714.94 0.09 1
3 (0 11f 0) 1 715.04 714.95 0.09 1
4 (0 31e 0) 1 2115.95 2116.41 -0.47 1
5 (0 31f 0) 1 2115.98 2116.45 -0.47 1
6 (1 00 0) 1 2099.97 2099.77 0.20 1
7 (1 11e 0) 1 2808.81 2808.51 0.29 1
8 (1 11f 0) 1 2808.82 2808.53 0.29 1
9 (0 00 1) 1 3316.70 3314.42 2.28 1

10 (0 51e 0) 1 3496.58 3498.08 -1.50 1
11 (0 51f 0) 1 3496.63 3498.13 -1.50 1
12 (0 20 0) 1 1414.34 1414.39 -0.05 1

rmsd 0.93
1 (0 00 0) 2 8.87 8.87 0.00 1
2 (0 11e 0) 2 720.94 720.85 0.09 1
3 (0 11f 0) 2 720.98 720.89 0.09 1
4 (0 20 0) 2 1420.28 1420.33 -0.04 1
5 (0 22e 0) 2 1435.33 1435.44 -0.11 1
6 (0 22f 0) 2 1435.33 1435.44 -0.11 1
7 (0 31e 0) 2 2121.87 2122.34 -0.47 1
8 (0 31f 0) 2 2121.97 2122.43 -0.47 1
9 (1 00 0) 2 2105.84 2105.55 0.29 1

10 (1 11e 0) 2 2814.68 2814.31 0.36 1
11 (1 11f 0) 2 2814.72 2814.36 0.36 1
12 (0 00 1) 2 3322.57 3320.24 2.33 1
13 (0 51e 0) 2 3502.53 3503.95 -1.42 1
14 (0 51f 0) 2 3502.67 3504.09 -1.42 1

rmsd 0.86
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Coriolis-basis run, wherek (the quantum number associated
to the projection ofJ on thezbody-fixed axis) is a good quantum
number. For the relatively modest number of states needed
in our fitting procedure (which extends to ca. 15 500 cm-1

above zero-point energy of HCN or ca. 19 000 cm-1 above the
HCN minimum) it was verified by using larger basis sets and
matrix tests that the calculations are converged to within ca.
0.02 cm-1. The expectation values required for the assign-
ment of the frequencies and to calculate the derivatives of
the potential with respect to the least-squares parameters based

on the Hellmann-Feynman theorem

have been obtained by employing the DVR wave functions
generated in the DVR3D code. ForJ > 0, the expansionψnJ)∑k

CkφnJk in terms of the DVR3D solutionsφnJk with neglected
off-diagonal Coriolis coupling terms is used, with theCk

coefficients being obtained from the ROTLEV3 solutions. Of
course, the DVR pivots may differ with the values ofk andJ
but, as〈ænJk|φnJk′〉 ) δkk′, one gets for the expectation value of
an operatorÂ

which reduces to the usual67 one term expression forJ ) 0 and
k ) 0. For the automated assignment of the vibrational-
rotational states of HCN and HNC, we have employed the
scheme shown in flow diagram of Figure 2. For each total
angular momentumJ and parityp () e, f), the fit starts with
the separation of HCN and HNC states using the expectation
values〈n|cosθ| n〉. Then, the vibrational quantum numbers are
estimated using the approach of Menou and Leforestier69

where∆Qi
2 ) Qi

2 - 〈Qi〉2 (i ) 1-3) is obtained from theQi

normal mode eigenvectors, and the degeneracy of the bending
(di ) 2) and stretching (di ) 1) modes has been taken into
account. The assignment of the vibrational quantum numbers
is complemented with a Dunham expansion fit to the calculated

TABLE 4: Fitted HNC J > 0 Rovibrational Energies
Relative to the HNC Zero-Point Energy

N (n1 n2
l n3) J calc exp. error w/103

1 (0 00 0) 1 3.02 3.02 0.00 1
2 (0 11e 0) 1 465.55 465.75 -0.19 1
3 (0 11f 0) 1 465.57 465.77 -0.20 1
4 (0 20 0) 1 929.52 929.55 -0.03 1
5 (0 31e 0) 1 1403.68 1403.55 0.13 1
6 (0 31f 0) 1 1403.73 1403.59 0.13 1
7 (1 00 0) 1 2026.64 2026.86 -0.22 1
8 (1 11e 0) 1 2481.28 2481.49 -0.20 1
9 (1 11f 0) 1 2481.30 2481.51 -0.20 1

rmsd 0.16
1 (0 00 0) 2 9.07 9.07 0.00 1
2 (0 11e 0) 2 471.60 471.79 -0.20 1
3 (0 11f 0) 2 471.66 471.86 -0.20 1
4 (0 20 0) 2 935.62 935.65 -0.03 1
5 (0 22e 0) 2 945.29 945.32 -0.03 1
6 (0 22f 0) 2 945.29 945.32 -0.03 1
7 (0 31 0) 2 1409.76 1409.62 0.14 1
8 (0 31f 0) 2 1409.88 1409.75 0.13 1
9 (1 00 0) 2 2032.64 2032.86 -0.22 1

10 (1 11f 0) 2 2487.34 2487.55 -0.21 1
11 (1 22f 0) 2 2953.32 2953.32 0.00 1

rmsd 0.14

Figure 2. Flowchart of scheme used for automated assignment of states in HCN/HNC.

∂En

∂ck
) 〈n|∂HVr

∂dck
| n〉 ) 〈n|∂V(R;c)

∂dck
| n〉 (15)

〈A〉nJ )∑
k
∑
Râγ

(Ck φnJk
Râγ)2ARâγ (16)

ni )
di

2

〈n|∆Qi
2| n〉

〈0|∆Qi
2| 0〉

-
di

2
(17)
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states similar to the one used in ref 37

The vibrational constantsωi, xij, andyijk are fitted to theJ ) 0
calculated vibrational states, and the experimental rotational
constantsBe (1.48 and 1.52 cm-1 for HCN and HNC) and the
vibrational constantg22 (5.31 and 3.77 cm-1 for HCN and HNC)
has been included to account for the rotational and vibrational
angular momentum effects on states withJ > 0. The fit of
Dunham expansion has been performed iteratively. This allows
the code to correct possible misassignments from eq 17 through
the variation of one quanta in the vibrational quantum numbers
which appear to be incorrectly assigned within 20 cm-1. The
vibrational angular momentum quantum numberl is attributed
within the course of the fit. The overall numerical procedure is
complemented by a visual inspection of selected plots of the
wave functions.

The experimental equilibrium geometries of HCN (ref 70)
and HNC (ref 71) have also been included in the fit by imposing
that the derivatives of the potential energy surface at such
geometries should vanish: the corresponding least-squares
weights arewi ) 105. A similar procedure has been used to
impose the best ab initio estimate of the saddle-point geometry13

for the HCNh HNC isomerization process, with the associated
weight beingwi ) 103. This results inL ) 7 independent
derivatives to fit (note that HCN and HNC have linear structures
at equilibrium).

As for the ab initio data, we have included in the fit 256
points CCSD(T) of van Mourik et al.13 with wi ) 10 and 1602
CCSD(T) points of Bowman et al.2 with wi ) 1. These have
been chosen from the set of 2172 points reported in ref 2 and
have values of the H-CN Jacobi coordinate confined tor e 4
a0. All ab initio energies have been scaled linearly such as to
reproduce the best estimate of the dissociation energy of HCN
obtained by Martin,49 ∑De ) 313.07( 0.25 kcal mol-1 (the
value obtained from the fit is∑De ) 313.25 kcal mol-1). Also
included in the least-squares fit, mainly for guiding purposes
at regions not covered by the ab initio data and rovibrational
frequencies, are 44 scaled FVCAS points1 obtained for C‚‚‚H‚
‚‚N regions (wi ) 0.1), 627 long-range points (wi ) 1) for values
of the Jacobi coordinater > 5.5 a0 (these are obtained as the
sum of the two-body diatomic terms and three-body dispersion
and electrostatic energies), and 298 short-range points (wi ) 1)
estimated from the pairwise sum of the three diatomic curves.
In addition, we include in the fit the energies of the minima (wi

) 104) and saddle-point (wi ) 103) geometries referred to above.
All such data resulted in a total ofN ) 2830 energy points to
fit, with the final objective function assuming the form

A strategy that we found convenient has been to initiate the
multiproperty fit with the parameters that are obtained in a fit
without including rovibrational data. Using such a scheme and

the LMDER routine of MINPACK72 package which is based
on an improved version of the Levenberg-Marquadt method,73

the convergence is typically reached in 10 iterations (the actual
number in the final calculation has been 11). As in previous
work,1,37the nonlinear parameters of the potential energy surface
(γi

R and Ri,ref
R ) have been optimized by trial-and-error, being

kept fixed in the global fitting procedure. In the present case,
the initial estimates appeared to be acceptable, and no further
optimization was deemed to be necessary. The final numerical
values of the coefficients in the three-body extended-Hartree-
Fock energy expression (eq 13) are given in Table 5.

TABLE 5: Numerical Values of the Extended
Hartree-Fock Energy (Eq 13) in Atomic Units

γi
R ) 1.0 (i ) 1,2,3;R ) 1,2,3)

R1,ref
1 )2.179 R2,ref

1 )2.013 R3,ref
1 )4.192

R1,ref
2 )2.209 R2,ref

2 )4.087 R3,ref
2 )1.878

R1,ref
3 )2.2439 R2,ref

2 )2.2365 R3,ref
2 )2.6252

c1) 10.92614897 c2) -2.15094369 c3) 4.66712639
c4) -0.93355317 c5) 0.07388937 c6) -0.00581373
c7) 1.79552186 c8) 0.42307198 c9) 0.65109812
c10) 0.22250188 c11) -0.00450556 c12) 3.20875763
c13) -1.10809665 c14) 1.38008740 c15) -0.73826492
c16) -0.00240126 c17) -0.00851555 c18) 0.14413940
c19) -0.12772900 c20) -0.08111239 c21) 0.01635428
c22) -2.64618793 c23) 0.07188256 c24) -1.10077986
c25) 0.03490019 c26) 0.02981174 c27) -1.24185388
c28) 0.37584994 c29) -0.64015096 c30) 0.16136704
c31) -0.54840297 c32) 0.43779935 c33) -0.53388404
c34) -0.05890346 c35) 0.52667620 c36) -0.12872456
c37) 0.37359114 c38) -0.53407940 c39) 0.12465432
c40) -0.32926566 c41) 0.50155691 c42) -0.27429301
c43) 0.11297664 c44) 0.33335490 c45) -0.19574933
c46) -0.00103075 c47) -0.51848178 c48) 0.16372773
c49) -0.07052615 c50) -0.38579401 c51) -0.24703050
c52) -0.26807452 c53) 0.02219876 c54) -0.15165573
c55) 0.27461932 c56) 0.01951989 c57) -6.32864772
c58) 0.00781387 c59) -2.01142533 c60) 0.03176006
c61) 0.05152176 c62) -0.03364220 c63) 1.36851972
c64) 0.51442840 c65) 1.06415401 c66) 0.26178394
c67) 0.08306160 c68) -2.99500788 c69) -0.05528879
c70) -0.93179045 c71) -0.09186703 c72) 0.58275080
c73) 0.18743374 c74) 0.50817255 c75) -0.20017513
c76) 0.03598664 c77) -0.00694277 c78) 4.92635283
c79) 1.21067162 c80) 1.63981689 c81) 0.07814425
c82) -0.26586504 c83) 0.08816060 c84) 0.28757116
c85) 0.04326971 c86) 0.08018842 c87) 2.01780981
c88) 0.36517843 c89) 0.50284830 c90) 0.20566244
c91) 0.17578528 c92) 0.04430687 c93) -0.88311335
c94) -0.07486152 c95) -0.18734318 c96) -0.04105320
c97) -0.14321130 c98) -0.07100476 c99) -0.14391147
c100) -0.44685090 c101) 0.11627019 c102) -0.24918009
c103) -0.17343872 c104) -0.15367870 c105) -0.27343789
c106) 0.03395466 c107) -0.01012963 c108) 0.00489888
c109) 0.04765734 c110) -0.02148892 c111) 0.03927479
c112) 0.02319051 c113)-20.28094430 c114) -4.83531346
c115) -8.69722270 c116) -1.74855395 c117) -0.17012484
c118) 0.05528207 c119) 0.68285182 c120) -1.16393803
c121) 0.21859666 c122) -0.53971073 c123) -0.12638619
c124) -6.79524926 c125) 0.26555619 c126) -2.01754907
c127) 0.27622481 c128) -0.05475426 c129) -0.54288549
c130) 0.06540113 c131) -0.07754464 c132) -0.35253059
c133) -0.01244964 c134) 1.37236364 c135) 4.93902240
c136) 1.54088197 c137) 1.49631455 c138) 0.30000322
c139) 1.28142249 c140) 0.06097499 c141) 1.12939032
c142) -0.16077004 c143) -1.06598809 c144) 1.38282044
c145) -0.30676711 c146) -0.57184746 c147) 0.50451405
c148) -0.22761979 c149) -4.21417556 c150) 0.31848256
c151) -1.33584846 c152) 0.24505559 c153) -0.18571813
c154) -1.84014685 c155) -0.34292371 c156) -0.25393482
c157) -0.72723840 c158) 0.32476573 c159) 1.14785452
c160) 0.87062710 c161) 0.69087461 c162) 0.07850074
c163) 0.37538358 c164) 0.44975720 c165) -0.32247933
c166) 0.02015619 c167) -0.32098648 c168) 0.10629444

En ) ∑
i)1

3 (ni +
di

2)ωi +∑
i)1

3

∑
j)1

3 (ni +
di

2)(nj +
dj

2)xij +

∑
i)1

3

∑
j)i

3

∑
k)j

3 (ni +
di

2)(nj +
dj

2)(nk +
dk

2)yijk + g22l
2 +

Be[J(J + 1) - l2] (18)

F ) ∑
i ) 1

N

wi(Vi - Vi
ab)2 +∑

j ) 1

L

wj(dVj

dR)2

+

∑
n)1

M

wn(En
calc - En

exp)2 (19)
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In Tables 1-4, we summarize the errors obtained in the fitted
rovibrational data, while a graphical view of the errors obtained
for the pure vibrational states is shown in Figure 3. In turn,
Table 6 collects the errors associated to the fitted ab initio
energies. It is seen that they are typically smaller than about 1
up to 40 kcal mol-1 above the absolute minimum of the potential
energy surface, growing to around 2 kcal mol-1 for the total of
2313 points below 200 kcal mol-1.

A graphical display of the positions of the HCN/HNC
calculated vibrational states, together with the minimum-energy
path of the final potential energy surface for the HCNh HNC
isomerization process is shown in Figure 4. Note that the
expectation value〈θ〉 defines the location of each state as a point,
while the line defines its uncertainty as〈θ2〉 - 〈θ〉2. Note
especially the many delocalized states that lie above the barrier
(shown by the solid line), which poses an intricate problem to
their assignment and hence to their use for obtaining the
potential energy surface by inversion of the spectroscopic data.
An useful method for characterizing vibrational states is the
natural expansion analysis.74-77 Using this methodology, the

wave function for each staten is expanded as a product of
functions, namely

when theθ coordinate is singled out, with equivalent expansions
holding for the r and R coordinates. Within the DVR ap-
proximation,{dq

2} and{Fq} are, respectively, the eigenvalues
and eigenvectors of the matrix

where ψn
Râγ are the values of the wave function at the (rR,

Râ,θγ) DVR set of points corresponding to the coordinates (r,
R,θ); see also ref 78. As it is well established,74-77 the resultd1

> 1/2 implies a dominant function in the natural expansion and
indicates that the coordinate is essentially uncoupled from the
other two. Values ofd1

2 for the θ natural expansion obtained
for the calculatedJ ) 0 states are given (for the fitted levels)
in the last columns of Tables 1 and 2 and shown graphically as
a function of the vibrationally averaged angle (〈θ〉) for all
calculated states in Figure 5. [A full list of the numerical data
can be obtained from the authors upon request.] Clearly, the
nonlocalized states reported in Figure 4 correspond to those lying
below the reference line ofd1

2 < 0.5. Note that a few such
states lie close to the borderline, corresponding to nearly
separable states at an average angular geometry in the vicinity
of the transition state (this is indicated by the arrow). Note
further that most such states lie close to inflection points (or
points with a small angular curvature) along the minimum
energy path for isomerization, as shown by the solid line (-dV/
dθ) in Figure 5. Also indicated are the fitted energies which
correspond as expected to well localized states. Recall that the
nonassigned levels (which are possibly observable8) correspond
to the majority of the calculated ro-vibrational energies and
cannot obviously be fitted by the current approach. However,
since the energies of the assigned levels are mimicked with a
good accuracy, one may expect those of the unassigned states
to offer reliable clues to experimental observation.

4. Features of the Potential Energy Surface

Table 7 provides an exhaustive list of the minima and saddle-
points of index 1 existing on the DMBE potential energy surface

Figure 3. Errors between the experimental and fitted pure vibrational
energies of HCN and HNC.

Figure 4. Minimum-energy path for isomerization, HCNh HNC.
Also indicated are the vibrational states of HCN/HNC.

TABLE 6: Stratified Root-Mean-Squared Deviations
between the Energy Points and the Analytical DMBE
Potential for HCN

points energy (kcal mol-1) rmsd (kcal mol-1)

59 20.0 0.81
243 40.0 1.01
561 60.0 1.25
891 80.0 1.48

1148 100.0 1.70
1377 120.0 1.86
2313 200.0 2.42

Figure 5. First coefficient (d1
2) of the natural expansion as a function

of the expectation value of the angular coordinate (〈θ〉) for all calculated
J ) 0 states. Also shown is the angular component of the gradient
along the minimum energy path,-dV/dθ.

ψn(r, R,θ) ) ∑
q

dqFq(θ)G(r, R) (20)

Aγ′γ ) ∑
R

∑
â

ψn
Râγ ψn

Râγ′ (21)
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(hereafter referred to as DMBE II) obtained in the present work.
The global HCN and local HNC appear to be the only minima.

The most important saddle-point is the CNH† that connects those
two minima. Other two first-order saddle-points have been
detected for weakly bound regions associated to C‚‚‚H‚‚‚N
structures, but they do not appear to play an important role in
the chemistry of the title system as they lie above all atom-
diatom asymptotes.

All the major topographical features of the potential energy
surface can be seen in Figures 6-8 which present contour plots
for an hydrogen atom moving around a partially relaxed CN
radical (2.1144e RCN/a0 e 2.3144), a nitrogen atom moving
around a partially relaxed CH molecule (1.953e RNH/a0 e
2.153), and a carbon atom moving around a partially relaxed
NH radical (1.865e RNH/a0 e 2.065). In Figure 6 are visible
the HCN and HNC minima, as well as the saddle-point CNH†

that connects them. The minimum energy path is indicated by
a dashed line. In turn, Figure 7 shows the HCN minimum and
regions associated to CH‚‚‚N structures, whereas in Figure 8
are visible the HNC minimum and NH‚‚‚C regions. Note that
the atom-diatom dissociation energy is indicated by a dashed
contour in the last two plots. A global view of the potential
energy surface is shown in Figure 9 using a relaxed triangular
plot79 in hyperspherical coordinates.

5. Conclusions

We have obtained a single-valued double many-body expan-
sion (DMBE II) potential energy surface for the ground
electronic state of the hydrogen cyanide molecule (HCN) from
a multiproperty fit to ab initio energies and spectroscopic
rovibrational data. The new surface should be valuable for

TABLE 7: Stationary Points of DMBEII Potential Energy Surface a

R1/a0 R2/a0 R3/a0 E/Eh ∆E ω1 ω2 ω3

HCN 2.179 2.013 4.192 -0.4992 313.3b 3447.88 729.01 2128.26
(2.179)c (2.013)c (4.192)c (313.07(0.25)d (3343.1)e (727.0)e (2127.4)e

HNC 2.209 4.087 1.878 -0.4750 15.08 3813.71 462.50 2056.98
(2.209)f (4.087)f (1.878)f (14.8(1.0)g (3813.4, 3816.6)h (460.5, 468.2)h (2059.1, 2059.9)h

CNH† 2.244 2.237 2.625 -0.4237 48.09 2926.92 1193.01i 2032.51
(2.258)i (2.241)i (2.634)i (48.4(1.0)g

TS2 4.830 2.863 1.967 -0.1165 4237.42 1092.42i 180.88
TS3 5.620 3.508 2.112 -0.1152 2713.89 235.15 298.47i
TS4 6.080 2.759 3.321 -0.0640 2109.52i 650.41 650.54

a Harmonic frequencies are in cm-1 and∆E in kcal mol-1. Experimental and other theoretical values are presented in parentheses.b Atomization
energy.c Experimental geometry (see ref 70).d Atomization energy best estimate (see ref 49).e Experimental harmonic frequencies (see refs 42.
f Experimental geometry from ref 71.g Theoretical estimate (see ref 80).h Experimental harmonic frequencies (see refs 47 and 48).i Theoretical
estimate (see ref 2).

Figure 6. Contour plot for a hydrogen atom moving around a partially
relaxed CN diatomic. Contours start atEmin ) - 0.499Eh with ∆E )
0.01Eh.

Figure 7. Contour plot for a nitrogen atom moving around a partially
relaxed CH diatomic. Contours start atEmin ) -0.499Eh with ∆E )
0.02Eh.

Figure 8. Contour plot for a carbon atom moving around a partially
relaxed NH diatomic. Contours start atEmin ) - 0.499Eh with ∆E )
0.02Eh.

Figure 9. Relaxed triangular plot79 in hyperspherical coordinates.
Contours start atEmin ) - 0.499Eh with ∆E ) 0.01Eh.
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studying the HCN/HNC spectra up to very high energies,
particularly in what concerns spectra simulation and evolution
of the delocalized isomerization states or localized stretching
states above the barrier for isomerization. Naturally, it would
be interesting to search for regular patterns among the nonas-
signed levels. In fact, one wonders whether some of the
unassigned levels may be attributed to the transition state
structure and define accordingly a spectroscopy of the transition
state. Work along this direction is currently in progress. Since
the DMBE surface of the present work is globally accurate, it
can also be useful to calculate the vibrational states of HCN/
HNC up to dissociation. Finally, as the dissociation channels
are correctly described, it can be used for reaction dynamics
studies.
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