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Abstract — Sonic crystal acoustic screens have been in progressive research and development in the last two
decades as a technical solution for mitigating traffic noise. Their behaviour is quite different from that observed
in classical barriers, with the latter being based on physically blocking the direct sound propagation path (only
allowing diffracted noise to reach sensible receivers), and sonic crystals providing attenuation efficiency based
on the creation of “band-gaps” at specific frequency ranges, due to the Bragg’s interference phenomenon. The
distinct physical mechanisms of these two types of noise barriers complicates the use of classical simplified or
even numerical models developed for traditional barriers to simulate and predict the attenuation performance
of a sonic crystal, and alternative methods become thus required. In the acoustics scientific literature, several
authors have proposed estimation and simulation methods based on different numerical tools to predict the
sound insulation provided by these new noise abatement solutions. This paper presents a comparative evalua-
tion of some of these methods, with emphasis on the assessment of their accuracy versus memory usage in order
to determine which one is the most suitable for optimization methodologies in the design of new devices with

improved acoustic performance.
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1 Introduction

Noise pollution is a major environmental problem affect-
ing urban areas close to transportation infrastructures; thus,
reducing its impact on citizens is an important challenge to
be faced. Actions can be taken at both emission or transmis-
sion phases; and probably the most used devices to reduce
the sound transmission of outdoor noise sources are the
acoustic barriers placed between the source and the area
to be protected. Since the efficiency of noise reduction by
means of barriers depends directly on their height, appropri-
ate implementations are sometimes intrinsically linked to a
heavy environmental, urban, visual or aesthetic impacts.
In recent decades, a solution based on Sonic Crystal Acoustic
Screens (SCAS) has been applied to reduce these impacts,
with an acceptable acoustic performance. Sonic crystals
are defined as heterogeneous media embedded in air, formed

*Corresponding author: fredondo@fis.upv.es

by periodic arrangements of acoustic scatterers separated by
a predetermined lattice constant [1]. These structures
provide a noise control mechanism related with the fact that
the multiple sound wave scattering process leads to
frequency ranges, called band gaps, in which the wave prop-
agation is restricted [2], as formulated by the Bragg’s
interference principle. There are several studies that show
the application of these concepts in the development of Noise
Reducing Devices (NRD) as Sonic Crystal Acoustic Screens
(SCAS) [3, 4]. The most recent advances on these devices
have been achieved mainly thanks to the application of
numerical methods in their design and optimization
processes.

The importance of correctly predicting the acoustic
performance of new NRDs, even before prototyping them,
has led the scientific community to develop and validate
several numerical methods that evaluate the acoustic
performance of these devices. In fact, these simulation
methods have led to the improvement of technology in
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the field of acoustics and the development of new NRD, as
in the case of sonic crystals.

Optimization methodologies applied together with
numerical simulation methods are powerful design tools,
since they allow devices with improved acoustic perfor-
mance and new functionalities to be obtained [5]. Thus,
to optimize the acoustic performance of sonic crystals noise
barriers, an accurate simulation method with low memory
usage is needed to tackle a complex optimization process
that requires multiple iterations and an accurate prediction
of the acoustic performance of the different proposed
designs. The current work aims to study the relationship
between the accuracy of several numerical methods, and
their associated memory usage. In order to compare the
accuracy of the different methodologies in a simple manner,
objective parameters describing the performance of the
noise barrier predicted by each method need to be com-
pared, preferably making use of single number descriptors.
The standards EN 1793-2 and EN 1793-6 [6, 7] describe test
methodologies for measuring the airborne sound insulation
of NRDs, depending on whether or not the device will be
installed in reverberant areas, and define single valued
figures of merit called DLy or DLg;, which weigh the insu-
lation measured in one-third octave bands. In this paper,
we will apply a parameter analogous to the above-
mentioned “figure of merit”, referred as global single-number
rating of Sound Insulation index (DLg;), whose estimated
error will be used to assess the accuracy of the numerical
methods under study.

Similarly, the computational cost has been defined in
terms of a single numerical value independent of the techni-
cal characteristics of the computer equipment used. Thus,
the figure of merit applied in this work to evaluate the
computational cost is the memory usage. Since reducing
simultaneously at each method, the two figures of merit —
i.e. reducing the estimated error while reducing the memory
usage — is not affordable; it can be accepted that we are
performing a multi-objective evaluation of each numerical
method attending to two antagonistic objectives, accuracy
and cost. Therefore, a single answer about which is the
perfect method and the optimum values of the control
parameters cannot be stated. However, for each particular
design, the results discussed in this work shall provide a
guide for selecting the most appropriate numerical method
and control parameter values.

The paper is developed as follows. First, the numerical
methods used in this study will be briefly reviewed, as well
as the control parameters of each method directly associ-
ated with their accuracy and memory usage. Secondly,
the simulation scheme used for all methods will be described
and the methodology used to calculate a global airborne
sound insulation index for all simulation methods will be
presented. Then, the results of the simulations for each of
the methods will also be illustrated and a systematic study
of the estimated error of global transmission coefficient,
¢(t), and the associated memory usage is carried out.
Finally, the conclusions and discussions of the study will
be presented.

2 Simulation methods under study

Several methods have been used in the last decades to
evaluate the performance of periodic structures in acoustics.
One of the first proposed methods was Multiple Scattering
(MS). This numerical method simulates the propagation
and interaction of wave fields with obstacles. In the classical
MS formulation, applied to sound waves interacting with
rigid scatterers, the total acoustic field is calculated consid-
ering that the field reflected by one obstacle induces further
reflected or scattered fields to all the other obstacles, in an
iterative manner. In the particular case of cylinders, the
reflected field can be obtained analytically, as a result,
MS is a semi-analytical method.

In 1913, Zaviska [8] described the MS method for study-
ing the scattering behaviour of finite arrays in 2D acoustic
fields. Later, Von Ignatowsky applied this method to inves-
tigate the physical phenomenon of normal incidence in an
infinite row of cylinders, in 1914 [9]. Subsequently, several
authors [10, 11] presented extensions of those works applied
to the case of oblique incidence.

An important parameter affecting the accuracy of this
method is the number of iterations or reflections considered
in calculations, commonly called the order of the approach.
Periodic boundary conditions are not applicable in this
method. Therefore, since in this work we are simulating
periodic structures, the number of repetitions of the unit cell
is taken as a control parameter that affects both accuracy
and memory usage.

As an alternative to semi-analytic methods, there are
domain discretization methods, such as Finite Element
Method (FEM) or Finite-Difference Time-Domain (FDTD)
Method. The FEM method, applied in the present paper is a
mesh-based method with second-order Lagrangian elements
that solves problems by turning a differential problem into
an algebraic one by discretizing a continuous medium into
several finite elements connected to each other at nodal
points. All elements are delimited by sides of other elements
or by the contour of the domain. The shape functions define
the elemental stiffness matrix of each element which, when
assembled, generate the global stiffness matrix. The system
of equations is solved by establishing the appropriate bound-
ary conditions, obtaining solutions for each mesh node.

There are many studies that legitimate the use of FEM to
evaluate the behaviour of periodic structures. As an exam-
ple, in [12], FEM has been used to analyse periodic structures
and the generation of band-gaps. M. Liu et al. used a wave-
let-based FEM to investigate the band structure of 1D
phononic crystals [13], and, more recently, Sanchez-Perez
et al. [14] used a 2D FEM model for the design of a SCAS.

In this method, the accuracy and memory usage of
calculation is majorly associated with the mesh size. For
achieving a reasonable accuracy, this size is conditioned
by geometrical parameters, such as the wavelength and
the different sizes of the elements.

Another domain-based method is the so-called Finite-
Difference Time-Domain (FDTD). This method, originat-
ing from electromagnetism [15], was adapted to acoustics
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about two decades ago [16]. In the case of sound waves in
fluids, conservation of momentum and continuity equations
are written as two linked update equations for sound pres-
sure and particle velocity, allowing the impulsive response
of a system, and therefore its transfer function, to be
obtained. The main advantage is that, being a technique
that works in the time domain, a single simulation can
cover a large frequency range, while its main disadvantage,
as in other volumetric methods, is that the memory usage
increases enormously when the integration domain is large
compared to the wavelength.

The works of Cao et al. [17] and Miyashita [18] can be
mentioned as precursor works on the use of FDTD for the
study of sonic crystals. In the first one, it was demonstrated
that this technique allows the band-structure calculations
in a very effective way, while the second one is focused in
the study of wave guides based on sonic crystals.

In the case of FDTD, the accuracy and memory usage
will depend almost exclusively on the size of the grid of
nodes. For the sake of simplicity, other aspects, such as
the type of Perfectly Matched Layer (PML), the use of
non-Cartesian grids or conformal techniques will not be
considered here. The Courant number has been set to 1,
in order to ensure the stability of the numerical technique.

Differently from the FEM and FDTD, the Boundary
Element Method (BEM) is based on the discretization of
the boundaries of the analysis domain. Mathematically,
BEM is based on the application of the boundary integral
equation at a set of nodes defined along a discretized bound-
ary, allowing for the construction of a system of equations
whose solution is the acoustic pressure or the normal parti-
cle velocity at these boundary nodes. This method requires
a priori knowledge of the Green’s function associated with
the problem under study.

Some works can also be found regarding the application
of the Boundary Element Method (BEM), such as the work
of Li et al. [19], in which BEM is used to perform band-gap
calculations of solid sonic crystals, and the work by Koussa
et al. [20], in which BEM is used to study the efficiency of an
acoustic barrier complemented by a sonic crystal. Gao et al.
[21] also analysed the band structure using BEM together
with the block SS method. According to the authors, this
approach has proven to be effective, allowing the numerical
eigenfrequency analyses of periodic phononic structures. An
interesting approach was proposed by Karimi et al. [22],
who developed a specific BEM algorithm tailored for the
analysis of periodic systems, which exploits the periodicity
of the geometry to reduce the computational cost.

As for FDTD and FEM, the accuracy provided by BEM
calculations is dependent on a number of parameters, which
impact on the implementation and memory usage of the
method. Indeed, it is known that BEM response improves
as the discretization of the boundaries is refined (i.e. as more
elements are used), although this also leads to larger systems
and higher computational demands. In addition, the math-
ematical formulation of BEM requires the definition of inter-
nal interpolation functions within each element, which are
usually polynomial, and that lead to different numbers of
internal nodes. In practice, constant elements (with just

one internal node) are widely used, although linear (with
two internal nodes) or quadratic (with three internal nodes)
may be used for improved accuracy and for better geometri-
cal description (considering curved elements).

In recent decades, a new class of numerical methods has
emerged, namely meshless methods, which have been in pro-
gressive development, aiming mostly at reducing memory
usage and the effort involved in the discretization of the
problem geometry. Within this class, the Method of Funda-
mental Solutions (MFS) has deserved attention for acoustic
problems, since, as happens with BEM, it makes use of
Green’s functions that can directly account for infinite or
semi-infinite spaces. However, its mathematical formulation
and implementation is much simpler, since it is based on a
collocation approach without requiring any numerical or
analytical integration. In fact, the method is simply based
on a linear superposition of fundamental solutions to approx-
imate the solution of the problem, assuming sources located
outside of the computational domain to avoid singularities in
the solution. There is extensive literature regarding the MF'S
and its application to acoustic scattering and/or radiation
problems, such as the early works of Fairweather et al. [23].

There are only a few examples in the literature regard-
ing the application of the MFS to the study of Sonic
Crystals. The first application of the MFS in this field is
due to Martins et al. [24], who proposed the use of the
MEFS to evaluate the sound insulation provided by a peri-
odic structure made of rigid scatterers. Santos et al. [25],
extended the formulation to allow considering elastic shell
scatterers. However, in both works, the classic formulation
of the MFS was used, involving the discretization of all
scatterers, and disregarding the periodicity of the structure.
More recently, Godinho et al. [26] successfully used an
improved version of the MF'S, developed for finite periodic
structures. In Godinho et al. [27], the method was further
developed to allow accounting for infinite periodic struc-
tures along one direction, in a very efficient manner.

The accuracy of the MFS is dependent on several fac-
tors, which must be defined when establishing a specific
model. These factors include the number of collocation
points used to describe the geometry (and of virtual sources
used to simulate the acoustic field), and increasing this
number leads to improved results, although at the cost of
larger equation systems. In addition, for the MFS the posi-
tion of the virtual sources with respect to the physical
boundary is also known to have a strong influence on the
quality of the results; positioning these sources too close
to the boundary leads to poor accuracy (due to the proxim-
ity of a singularity to the physical domain), while placing
them at large distances can lead to numerical instabilities,
due to poorly conditioned systems.

3 Simulation Scheme and calculations

As aforementioned, the main aim of this work is to eval-
uate the suitability of different methods for the simulation
of sonic crystal structures. For this assessment, several
variations of the same scheme, consisting of sonic crystals
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Figure 1. Schematic representation of the system configuration used in the simulations.

structures with a fixed lattice constant, have been simu-
lated by all considered methods, with different radii of the
scatterers. The geometry of the studied configuration
(Fig. 1) consists of a square array of cylindrical scatterers
placed in four rows, separated by the lattice constant,
a = 0.17 m, so that the first band gap, usually called
Bragg’s gap, appears around the frequency of 1000 Hz,
the most relevant frequency of the normalized traffic noise
spectrum, standardized by EN 1793-3 [28]. In order to
study the ideal behaviour of this sonic crystal neglecting
diffraction effects at its edges we should model an infinite
three-dimensional volume where scatterers are assumed
infinitely long and thus reflections over the ground are
neglected. This infinite domain is unaffordable computa-
tionally, but in the case of perpendicular plane wave inci-
dence, its mathematical solution is equivalent to that of a
simplified two-dimensional (2D) numerical model, consist-
ing of a single cell of the structure where periodic boundary
conditions are imposed on both lateral contours of the com-
putational domain (Fig. 1). At this single cell, where 2D
simulations are performed, we will consider an incident
plane wave impinging perpendicularly the screen, and sev-
eral measurement points located in a square array along
the measurement area, in 12 lines parallel to the plane
wave-front, separated a/4 from each other, the first of these
lines being placed 3a/2 apart from the centre of the nearest
scatterer. In order to avoid duplication of data, since the
unit cell is symmetrical with respect to an axis perpendicu-
lar to the plane wave-front passing through the centre of
the scatterers, the measurement points are placed between
this symmetry axis and one lateral boundary. It must be
said that periodic boundary conditions can be applied for
all methods except MS, in fact, for this method, the number
of repetitions of the 2D unit cell is considered a control
parameter affecting the accuracy of the results (Tab. 1).

Several scatterer diameters were tested. For the sake of
brevity, we present here only three representative cases.
The results will be shown for each of these three diameter
values, expressed as a fraction of the lattice constant,
0.25 a, 0.5 a, 0.75 a.

With the aim of obtaining a single figure of merit to
quantify the acoustic performance of the evaluated devices,
the Sound Insulation index (DLg;) was calculated, based on
the standard EN 1793-6 [7],

18
100,1Lj 1070,1SI/
DLg = —10log—————. (1)
Z 100.1L/
j=1

Being L, the normalized A weighted sound pressure level, in
decibels, of traffic noise in the jth one-third octave band
defined in EN 1793-3 [28] and SI; the average Sound Insu-
lation index at the measurement points in the jth one-third
octave band of the frequency range of interest (100—
5000 Hz).

In other words, DLg; was obtained from a global trans-
mission coefficient, 7, namely:

DLg; = —10 log t (2)

being 7 obtained as a weighted average of the jth third
octave values of the transmission coefficient, t;

18
j=1

where the coefficients C; express the normalized traffic
noise spectrum with A-weighting, obtained from its nor-
malised one-third octave band levels, L;, by the expression:

100,]Lj

€=
Z 100,1Lj
j=1

J

(4)

And analogously, transmission coefficients of the jth third

octave band (1) are related with the Sound Insulation index
(SL) by

Tj — 1070.181/. (5)

In the time domain method (FDTD), to calculate t; at each
measurement point, the Fourier transform of the impulse
response is obtained and averaged in one third octave
bands. In frequency methods, a number of frequencies for
each one third octave band, separated a constant octave
fraction between them, are evaluated and t; is obtained
by averaging the results of all the frequencies inside a band.
Finally, 7, is averaged for all the measurement points.

To evaluate the accuracy of the calculations, the indica-
tor used has been the estimated error of the global transmis-
sion coefficient, &(t). For this estimation we need to obtain
the values of convergence of the transmission coefficients
per third octave band, 7;cony, as will be described in the
Results section. Then, the estimated error of the global
transmission coefficient is obtained as

(1) = | D il = Teom) (6)
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Table 1. Numerical values of the main parameter considered in each of the simulation methods, as well as the secondary parameters.

Method Main parameter Limit values Additional parameters Time/freq
MS Repetitions of the unit cell 1-64 Reflection order = 3 NFT =6
Number of terms in the
Bessel functions = 5
FEM Mesh quality Min. number of elements per Element order. NFT =6
Wavelength* =Y to4 Triangles, i.e. 3 nodes
Max. number of elements per
wavelength” = 2-2000
Growth factor = 1.8-1.1
Curvature factor 0.8-0.2
FDTD Number of grid points per 1-50 Courant—Friedrichs— Total time of flight/time
wavelength Lewy number = 1 of flight of the 4
cells = 20;
BEM Number of boundary elements 1-100 Element order. NFT =6
per wavelength Constant elements, with
1 central node.
MFS Number of virtual sources and 1-100 Distance form virtual NFT =6
collocation points per source to boundary:
wavelength 40% of the radius of the

scatterer

" Elements or cell points per wavelength refers to the smallest wavelength evaluated (4000v/2 Hz).

Just like this indicator, &(t), quantifies the concept of
“accuracy”, the concept “computational cost” will be quanti-
fied in this work by the memory usage. The computational
cost is a common way of evaluating the efficiency of simu-
lations [29, 30], but it can be associated with two concepts,
(1) the memory usage or (ii) the computational time, CPU
time, or number of operations, which are highly dependent
on the type of code implementation and hardware. In this
work, therefore, the authors have opted for the memory
usage to evaluate the computational cost of each
simulation.

4 Preliminary studies

To properly calculate the estimated error, &(t), necessary
to quantify the accuracy, we need to define a criterion for the
calculation of the convergence transmission coefficients,
Tjconvs applied at equation (6). With this aim we have
performed, for each method, several preliminary series of
simulations observing that the dispersion plots between
the control parameters vs sound insulation, DLg;, showed
a convergence value of DLg; slightly different between meth-
ods, as shown in Table 2. Given this difference between
methods, we have defined the convergence value of DLg;
as that with an error two orders of magnitude smaller than
the error between methods. That is, our series of simulations
finish when the dispersion of a set of three simulations with
consecutive values of the control parameter is smaller than
one hundredth of the average error between methods. Then,
the average value of the convergence transmission coeffi-
cients, 7;cony, Obtained from these last three values of the
series is taken to evaluate the estimated error of any simula-
tion performed at preliminary studies, leading to define the
set of control parameters (Fig. 2).

Table 2. DLg values calculated with the limit values of the
control parameters for each numerical method and for each of
the diameters referred to.

DLg; [dB (A)] d=025a d=050a d=075a
MS 0634003  245+004 507 +0.17
FEM 073+ 0.06  2.60 +0.08  5.06 + 0.09
FDTD 0.66 +0.04 2424011 515+ 0.22
BEM 0.679 + 0.018  2.56 + 0.04  5.07 + 0.08
MFS 0.678 = 0.016 249 + 0.05  5.01 & 0.05

From the evidence of the preliminary studies, we can dif-
ferentiate between two types of control parameters accord-
ing to their effect on memory usage and accuracy. Some
parameters affect the accuracy only in a range, so we can
define for them a saturation value, whereas other parame-
ters affect the accuracy and memory usage in its whole
range. We will name these second type of parameters as
main control parameters. The additional parameters are
kept constant for the rest of the paper. Figure 2a represents
the accuracy as a function of a control parameter, such as
the number of elements per wavelength in BEM. It can be
appreciated that any decrease of this control parameter
leads always to a better accuracy; on the contrary, there
are other parameters, such as simulation time in FDTD —
shown in Figure 2b — whose variations in an interval gener-
ate an effect on accuracy, but their effect saturates, with no
benefit generated by modifying their value above the satura-
tion value. This example is easy to understand, since if we
perform the FDTD simulation in a time so short that the
inner reflections between the elements of the sound screen
are still taking place, the measures of the microphones are
still uncompleted; but once all the possible inner reflections
have been completed, it makes no sense to consider longer



6
(a | BEM
10
o —d=025a
Py ~-d=05a
- ;
kS
-2
§ 10°¢
5}
©
2
[
E10%
@
Ll
10
10

Number of elements per wavelength
FDTD d = 0.5a

—t =40ms
comp

’ oot

=50ms

Estimated error of t

0 1.0 Zb 3b 4I0 50
Number of elements per wavelength

(d)

M.P. Peiro-Torres et al.: Acta Acustica 2021, 5, 28

(b) . FDTD d = 0.5a
10
—10 cells per wavel.
20 cells per wavel.
402 \\__/__ ----30 cells per wavel.
S
— £ 4
S |
) 3[4
- 1075,
k5 O
I
% 107 s
Lu ~“.,._.__-___-._--- PSS O TR
10°

0 10 20 30 40 50 60
tsimulated (ms)

BEM. 20 elements per wavelength

—d=0.75a
0.9f ----d=0.5a
v ettty P d=0.25a
5 0.8t
8 o7t
=
8 06l N
& .
= 05
©
S 04
O
0.3
0% 2 4 6 8 10 12

Number of frequencies per third octave band. NFT

Figure 2. Evolution of the estimated error of the global transmission coefficient 7 (a) in BEM as a function or the number of elements
per wavelength, and in FDTD as a function of (b) the time simulated and (c) the number of elements per wavelength. (d) Global
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times. On the contrary, the mesh size in a volumetric
method always will affect the quality of the result, since dis-
cretization is just an approach to solve differential equations
in a continuous media (Figs. 2a and 2c). Bearing this in
mind, we have centred the study in the control parameters
with influence, at any range, in both memory usage and
accuracy. On the other hand, the constant value chosen
for the secondary parameters, such as time in FDTD or
reflection order in MS, has been notably oversized with
the unique exception of NF'T in frequency domain methods,
Figure 2d. This control parameter has not been evaluated at
saturation neither in all the range. The reason is that its
effect is highly similar for both four frequential methods
and, additionally, its value does not affect the memory
usage, just the total computation time.

Summarizing, the main control parameters considered
in the study, have reduced to only one per method are:
(i) element size for FEM, FDTD and BEM, (ii) number
of repetitions of the unit cell for MS and (iii) number of
virtual sources in MFS. Regarding the additional parame-
ters, the number of frequencies for each one-third octave
band was set at 6, similarly, the FDTD simulation time
was set to 20 times the time required by the sound to cross
perpendicularly the sonic crystal. It is noteworthy that,
although these two control parameters affect the computa-
tional time, they do not significantly affect the memory

usage as estimated in the present work. In the case of
MS, the number of terms in the Bessel function was set
at 5 on the recommendation of several authors [31], and
the reflection order set at 3. The main control parameters
and the additional parameters are listed in Table 1.

Finally, it must be stated that computational cost,
represented here by memory usage, is dependent not only
on the control parameters of the method but also on the
particular code implementations. For this work all the
simulations are carried by self-made (by the authors) codes
running on Matlab™. All the implementations are basic
ones, not including optimization of memory usage, paral-
lelization or GPUs processing.

5 Results and discussion

The convergence value of the sound insulation index
(DLg;) for the five tested methods is shown at Table 2.
A difference of about hundredths of a decibel can be appre-
ciated between methods. The DLg error in this table has
been obtained by error propagation from the errors of 1,
estimated as the difference between ;... for each single
method and the average of the five tested methods.

For a fast inspection of the differences between methods
found, shown in Table 2, the sound insulation index as a
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Figure 3. SI; vs. frequency, in one-third octave bands, for all the considered methods: (a) d = 0.25 a; (b) d = 0.5 a; (¢) d = 0.75 a.

function of frequency (SI)) is plotted in Figure 3 for each
method. Small differences are observed for high values of
the diameter of the scatterers in the first band gap
(1 kHz) for the MS method. In this case, the sound insula-
tion is slightly underestimated. On the other hand, more
evident differences appear in the second band gap (around
2 kHz), particularly for the larger scatterers (d = 0.75 a).
The underestimation of this second band gap by MS is
especially noticeable.

As stated in the introduction, the evaluation of the five
numerical methods considered is based on the knowledge of
the estimated error of the global transmission coefficient as
a function of the memory usage involved. And the varia-
tions of both, memory usage and estimated error is defined
for a particular range of variation of the main control
parameter associated to each method. For the estimated
error of sound insulation in this final evaluation, we have
obtained ;.. as the average of the convergence transmis-
sion coefficients of the five methods. Figure 4 represents the
estimated errors versus the memory usage for each diameter
and method considered. As expected, the higher the
memory usage, the lower the estimated error. This trend
is broken in the case of data with higher memory usage,
since the reference value for the error estimation has been
obtained as the average of all the methods, so that no error
smaller than the estimated error between methods can be
found. For the highest memory usage, the estimated error
values achieved are around one hundredth of a decibel.

As an objective evaluation criterion, the best results are
those that offer the least estimated error involving lowest
memory usage. In other words, representing the estimated
error as a function of the memory usage, the best methods
are those whose curves are closest to both axes. In some

cases, the curve represented by one method may cross with
the curve of another method, so there is no absolute prefer-
ence between them, and the best option would depend on
the aims of a particular project.

In a first inspection of the three graphs in Figure 4, there
are clear performance differences between the studied
methods, according to the evaluation criteria described.
BEM and MFS seem to show a much better convergence
than the rest, and FEM presents more favourable results
than FDTD and MS. Furthermore, for larger scatterer
diameters, FEM shows no significant differences with
MFS or BEM. Indeed, for that case, the total number of
elements of BEM (or collocation points in MFS) required
to discretize each scatterer is larger, and thus leads to a
larger memory usage. By contrast, for these larger diameter
scatterers, domain discretization methods such as FEM or
FDTD benefit from a small reduction in mesh size (due to
the larger void in the mesh corresponding to the scatterers),
and thus have improved performance.

A deeper analysis shows that BEM and MFS methods
offer very similar behaviour, as can be seen in the three
graphs of Figure 4 and the convergence value of DLg
(Tab. 2). Furthermore, in the case of d = 0.25 a there is
almost an overlap of BEM and MFS curves, whereas in
d=0.5 aand d = 0.75 a this overlap is only for small mem-
ory usages. Although this difference could seem to indicate
an irregular behaviour of one of these two methods, it is
indeed due to the fact that the reference value for the error
estimation has been obtained as an average from several
methods. Thus, the method whose convergence value of
DL is closer to the average of the values of convergence
will present a curve that converges better. In fact, for all
methods, the shape of the curve depends on the difference
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Figure 4. Estimated error of the global transmission coefficient T versus memory usage for all the studied methods: (a) d = 0.25 a;

(b) d=0.5a; (c) d=0.75 a.

between the convergence DLg; value of each method and
the average of values of convergence, so their accuracy is
affected by the inaccuracy of the other methods.

It is also interesting to note that FEM performs better
when the scatterers diameter is larger, as the graph for
d = 0.75 a in Figure 4c shows. This may be due to the
way the mesh is defined. As it is the usual practice, a trian-
gular flat mesh has been used, which adapts to the geometry
and has a growth function in order to achieve the desired
average size, being larger size in the areas far from the scat-
terers and smaller in areas close to them (see Fig. 5). Thus,
the size gradient will be more abrupt in d = 0.25 @ than in
d = 0.75 a leading to worse behaviour for smaller radius,
either because the mesh variability is an additional difficulty
for the calculation or simply because of the excess memory
usage needed to create the finer meshes surrounding the
smaller obstacles. For this reason, the FEM curve of
d = 0.25 a, not only presents the worst performance with
respect to its counterparts of other diameters, but it is also
the one that presents a more irregular behaviour, with some
increases in estimated error when rising memory usages, in
low memory usages ranges. However, as the memory usage
increases, i.e., the size of the mesh elements decreases, the
representation of the elements becomes more reliable and
the results present fewer estimated errors.

Thus, FEM, as a domain discretization method, varies
the quality of its calculation according to the way in which
the mesh elements are defined to adapt them to the domain

Figure 5. FEM triangular flat mesh with a high growth factor
adapted to the scatterers geometry.

to be simulated. However, this is not reflected in other
methods. In the case of FDTD, the curve that defines its
estimated error as a function of the memory usage, is shifted
in the axis of the abscissa about 2-3 orders of magnitude
with respect to the methods that give better results
(BEM and MFS). This could be due to the fact that the
mesh is Cartesian. Therefore, a large mesh size implies a
poor definition of the shape of the scatterers, and a poor
treatment of the wave dynamics, especially of its high
frequencies. But since the method does not make an extra
adaptation of the mesh to the geometry of the scatterers,
its curve is not affected by the size of the scatterers.
Regarding the difference of several orders of magnitude
between the memory usage of the FDTD and that of the
MFS, BEM or FEM, it does not imply such a large decrease
in the quality of the method, as might be apparent when
observing the presented plots. It may be noted that
frequency methods use the memory space multiple times,
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as many times as frequencies to be considered. In FDTD, on
the other hand, a unique time domain simulation is
made and then, by means of a Fourier transform, the trans-
fer function is obtained. In our case, since we have taken
6 frequencies per each of the 18 one-third octave bands,
the number of repetitions performed by the frequency
methods is 108.

Finally, MS shows the worse curves between frequency
methods, as well as the most discrepant values in the sound
insulation curves at convergence, shown in Figure 3. These
evidences do not directly rule out the method, it simply
evidences that it is the least adapted to periodic structures.
In fact, it is the only method in which we could not use
periodic conditions.

6 Conclusion

The aim of the present work is to help the researchers in
the task of finding a simulation tool that provides
maximum precision at the lowest memory usage for the
simulation of the acoustic performance of periodic struc-
tures. It is essential to have a numerical method with such
characteristics when carrying out an optimization process,
as this process involves a large number of simulations.

For the particular case raised in the study, both BEM
and MF'S are the best methods for performing optimization
processes and determining the acoustic performance of
these periodic structures. Comparing the results offered
by FDTD and FEM, both volumetric methods but with
different calculation philosophy — since one is based on time
domain and the other on frequency domain — we appreciate
that FEM effectively gives more accurate results requiring
less computational cost, but as explained above, this may
be due to the parameter chosen by the authors to estimate
it, i.e. memory usage. If other parameters such as computa-
tional time had been taken into account, the results would
have been different. As mentioned above, in that case the
type of implementation and the hardware used would have
been determinant.

The option of using calculation time to evaluate the per-
formance of methods was discarded because the calculation
time depends strongly on the particular code implementa-
tion of the method and the particular computer on which
it is run. For further research, it is proposed to evaluate
not only the memory usage, but also the computational
time. Shorter calculation times would shorten the iteration
time in optimization processes, leading to greater efficiency
of these processes and allowing them to be used as compet-
itive design tools. It could also be interesting to include in
the simulation processes absorbent materials and resonant
cavities in the acoustic scatterers, which will improve the
acoustic performance of the device.

It could be premature to extrapolate the results
obtained and discussed in this work to other geometries
since each of the methods considered has its own peculiari-
ties, and therefore can be better adapted to particularities
such as resonant cavities or absorbents. This may make
one method or another more suitable in other situations

that have not been considered here. For instance, only
FEM and FDTD methods can be straightforwardly applied
to simulate heterogeneous or non-linear media.

Notations

BEM Boundary Element Method

FEM Finite Element Method

FDTD Finite Difference Time Domain
MFS Method of Fundamental Solutions

MS Multiple Scattering

NRD Noise Reducing Device

PML Perfectly Matched Layer

SCAS Sonic Crystals Acoustic Screens
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