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Abstract: The COVID-19 pandemic has raised a number of new realities, sets of data, and oppor-
tunities for data-driven approaches, decisions, and conclusions. One particular area for which
developments and data have been made available in record time is related to vaccines and their
impacts on health conditions and saving lives. In this article, we use public domain information to
study the prevalence of vaccines in different countries and how they can save lives. We conclude that
there are different clusters of countries, for some of which solid statistical models were built, and
show that vaccination rates provide significant contributions to saving lives in such countries, with
impacts that can be computed by simulations based upon these models.
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1. Introduction

Due to its high level of contagious and rapid geographical spread, COVID-19 was
declared a pandemic on 11 March 2020, less than three months after the first cases were
diagnosed [1,2].

By the end of November 2020, there were more than 62 million confirmed cases and
1.4 million deaths worldwide [3]. Until then, the pandemic’s impact was mainly correlated
with several factors such as the average age of the population, sanitary conditions, health
conditions, and public health response restrictions [2]. However, since December 2020, with
the rollout of the first vaccination programs [4], the vaccination coverage of the population
has become another essential factor in understanding the pandemic evolution, slowing
down the progress of the disease, reducing the impact of the pandemic, and saving lives [5].

As recognized by [5] in January 2021, “Vaccines do not save lives; vaccination does”.
Despite the efforts of researchers, manufacturers, and governments to produce the first
vaccines in a record period of less than one year [4,5], having the vaccines would not
suffice by itself. In fact, issues such as dosage, schedules, effectiveness, surveillance, public
health response restrictions, and vaccine hesitancy need to be addressed to control the
pandemic [5] and save lives effectively.

Vaccine hesitancy, the reluctance and, more often, refusal to have oneself or one’s
children vaccinated, is indeed, together with political and logistic issues, one of the main
challenges that are influencing the progress of vaccination programs in several coun-
tries [6-8]. This hesitancy seems to be due to multiple reasons such as age, insurance,
confidence in government information, attitude toward vaccines, perceived benefits, and
side effects of the vaccine, among others [6,7]. Since vaccination effectiveness requires a
large majority of the population to be vaccinated, it depends on each person’s willingness
to be vaccinated [5-7]. Therefore, it is not enough to overcome vaccine production and
distribution’s political and logistical problems. It also becomes imperative to convince
everyone to participate in vaccination programs, as otherwise, we will not be able to control
the pandemic.
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Following previous research on the worldwide impact of COVID-19 [2], this study
aims to explore the worldwide influence of vaccination as a tool to control the pandemic
and save lives. By providing evidence that vaccines are efficient on a factual data-driven
basis, we also hope to contribute to reducing vaccine hesitancy.

2. Materials and Methods

Due to its completeness and accessibility to conduct this study, two public datasets
made available by Our World in Data (OWID) [9] were used. One dataset with global data
and one specific to vaccination by the manufacturer. OWID is a project from the Global
Change Data Lab, a non-profit organization based in the United Kingdom. The dataset
was collected on 1 December 2021. It includes worldwide daily COVID-19 related data,
covering confirmed cases and deaths, hospital infirmaries and Intensive Care Units (ICU),
policy responses, tests and vaccination rates, demographics, among other types of data.
The complete list of variables available is detailed in Tables A1 and A2.

The analysis and modeling of the data were performed in Python, following the Cross-
Industry Process Modeling for Data Mining (CRISP-DM) framework [10], using standard
packages employed in Data Science like NumPy [11], Pandas [12], Matplotlib [13], and
Seaborn [14].

2.1. Data Understanding

Summary statistics (Table 1) show that the used global dataset contains 127,297 obser-
vations, spanning from 1 January 2020 to 30 November 2021, and hence does not yet reflect
any of the new COVID-19 dynamics related to the new Omicron variant.

Table 1. Dataset summary statistics (iso_code and date).

Variable Count Min. Max
iso_code 127,297 - -
date 127,297 1 January 2020 30 November 2021

Summary statistics also show that there are some data quality issues related to this
dataset, such as the following:

e  Except for iso_code, continent, location, and date, all other variables had missing val-
ues. The range of missing values varied from 5.7% in total_cases to 96.3% in ex-
cess_mortality. Variables that could be important in measuring the vaccination impact,
such as weekly_icu_admissions and others, had a high proportion of missing values.

e  The number of observations per Geo-Political Entity (GPE), as seen in Figure 1, was
highly skewed. From the 222 GPEs in the dataset, over 100 had more than 500 days of
observations, while for other GPEs, the number was substantially low.

e  Asexpected, since vaccination did not start simultaneously in all GPEs, the number
of observations per GPE with people_vaccinated > 0 was not uniform. As shown in
Figure 2, although many GPEs had more than 100 days of vaccination, in more than
50 GPEs, the number of days since it started was less than 50 days. From the 222 GPEs,
five did not even present any vaccination numbers. Contrastingly, 25% of the GPEs
had vaccination data for more than 243 days.

e  Some GPEs did not consistently provide reports, i.e., reporting later after the beginning
of the pandemic or even not reporting during some days.

e  Gibraltar presented values of people_vaccinated_per_hundred above 100% (121.43%),
which may indicate that the population value was incorrect or that there were vaccinated
persons that were not part of its population.
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Figure 2. Histogram of vaccination cumulative numbers of days per GPE.

Only a few GPEs systematically report their vaccination by the manufacturer. For
that reason, the vaccination by manufacturer dataset only includes data from 39 GPEs. As
presented in Table A2, this dataset has the total of vaccines administered by day or week
(GPEs report in daily or weekly intervals).

2.2. Data Preparation

Due to the high number of columns (variables) with missing values, it was decided to use
only GPEs without missing values in the columns continent, location, date, total_deaths_per_million,
total_cases_per_million, people_vaccinated_per_hundred, people_fully_vaccinated_per_hundred, popu-
lation_density, median_age, aged_70_older, gdp_per_capita, cardiovasc_death_rate, diabetes_prevalence,
life_expectancy, human_development_index, and stringency_index, after 1 March 2020 (March 2020
was the month when the pandemic was declared). This variable selection resulted in the re-
moval of data from mostly small or less developed GPEs: Andorra, Anguilla, Antigua and
Barbuda, Armenia, Aruba, Bermuda, Bonaire Sint Eustatius and Saba, British Virgin Islands,
Cayman Islands, Comoros, Cook Islands, Cuba, Curacao, Dominica, Equatorial Guinea,
Eritrea, Faeroe Islands, Falkland Islands, French Polynesia, Gibraltar, Greenland, Grenada,
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Guernsey, Guinea-Bissau, Hong Kong, Isle of Man, Jersey, Kiribati, Kosovo, Liechtenstein,
Macao, Maldives, Marshall Islands, Micronesia, Monaco, Montenegro, Montserrat, Nauru,
New Caledonia, Niue, North Macedonia, Northern Cyprus, Palau, Pitcairn, Saint Helena,
Saint Kitts and Nevis, Saint Lucia, Saint Vincent and the Grenadines, Samoa, San Marino,
Sao Tome and Principe, Serbia, Sint Maarten (Dutch part), Solomon Islands, Somalia, South
Sudan, Syria, Taiwan, Tokelau, Tonga, Turkmenistan, Turks and Caicos Islands, Tuvalu,
Vatican, Wallis, and Futuna.

To compare values between before and after vaccination, two additional modeling
datasets were created: Before—data from 30 November 2020; After—data from 30 November
2021 However, since all the above-mentioned numeric variables represented accumulated
values or values at the current moment, the column stringency_index was replaced in these
datasets with the median of the stringency_index. This way, instead of having a variable
with the level of public health measures from 30 November 2020 and 30 November 2021,
we used a variable with the median from the beginning of the pandemic until the last date
of the collected dataset (stringency_index_med). Nevertheless, since there were GPEs with
missing values in the variable stringency_index, the observations of those GPEs were also
removed. The removal of those observations resulted in reducing these two modeling
datasets (Before and After vaccination) to information for about 159 GPEs.

As for the vaccination by the manufacturer, data was only available for the last week
of November for 35 GPEs. Therefore, data for the other 2 GPEs was removed. Considering
that not all GPEs reported daily data, the “after” vaccination data was selected from
26 November 2021. This date corresponds to when all GPEs had data available in our
information sources.

2.3. Clustering Model
To study how the 159 GPEs mentioned above were grouped on 30 November 2021,

a clustering model was built using the k-means algorithm. The “elbow” method was
employed to select the number of clusters (k). As presented in Figure 3, the decrease of the
sum of the squared distances slowed at k = 3. Therefore, it was decided to consider the
existence of three clusters of GPEs (named A, B, and C).
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Figure 3. K-means k-selection plot (Elbow method) for clusters of GPEs.
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2.4. Regression Model

To study the factors that could explain the number of deaths and how vaccination
impacted the severity of cases, we opted to build a regression model that can be easily
interpreted. This model was built using the ordinary least squares regression algorithm
implemented in the statsmodels package [15]. The dependent variable in the model was a
new variable, named death_ratio, a simple ratio of the total number of deaths over the total
number of cases.

The correlation between features in the “After vaccination” modeling dataset was
first analyzed to build this model. As depicted in Figure 4, the analysis showed that
several variables, as expected, have high correlation values. Therefore, it can be con-
sidered redundant for regression purposes, such as people_vaccinated_per_hundred and
people_fully_vaccinated_per_hundred with a 0.98 correlation coefficient. Other variables
were tested as independent variables, namely the human development index (HDI) (hu-
man_development_index). The HDI is built from multiple indicators such as life expectancy,
gross income per capita, among others. This composition explains the high correla-
tions between human_development_index and life_expectancy, median_age, aged_70_older, and
gdp_per_capita. However, since there was a high correlation between HDI and the vacci-
nation percentage of the population, it was decided to use only the variable death_ratio as
the dependent variable and people_vaccinated_per_hundred (PV) as the independent variable
in the regression model. This regression dataset was a construct derived from the origi-
nal dataset, where the unit of analysis corresponds to the weeks from December 2020 to
November 2021. To create the dataset, the average value of the two variables was com-
puted per cluster and week. Because the data relationships were found to be not linear,
we also added one variable that was a degree polynomial of the PV variable. Adding
additional polynomials was revealed unnecessary as they did not improve the models’
statistical quality.
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Figure 4. Variables’ Pearson correlation matrix.

3. Results and Discussion

This section provides the main results obtained from our data analysis, incorporating
the discussion of the corresponding most important findings.
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3.1. Descriptive Analysis

Figure 4 shows that besides the expected high positive correlation between peo-
ple_vaccinated_per_hundred and people_fully_vaccinated_per_hundred, aged_70_older and median_age,
life_expectancy, and median_age, there were other interesting patterns in terms of bivariate cor-
relations. In addition to the high positive correlations between human_development_index and
variables used to create that index (gdp_per_capita, life_exprectancy, and others), there was a
highly positive correlation between human_development_index and total_cases_per_million (0.69).
Given that more developed GPEs had a higher median age and higher income [16], this positive
correlation values suggest that more developed GPEs tend to report more cases than other
GPEs. However, the correlations between human_development_index and total_deaths_per_million
(0.50) and between human_development_index and people_vaccinated_per_hundred (0.82) indi-
cate that although developed GPEs tend to report more cases, they also have propor-
tionally fewer deaths, possibly due to their higher vaccination rates. The positive cor-
relation between total_cases_per_million and both people_vaccinated_per_hundred and peo-
ple_fully_vaccinated_per_hundred (around 0.50) seems to indicate that more cases are associ-
ated with higher vaccination rates. However, this high correlation reinforces the idea that
GPEs with less vaccinated people are also less likely to report cases correctly and accurately,
with smaller COVID-19 tests being conducted.

The relatively high correlation between people_vaccinated_per_hundred and people_fully_
vaccinated_per_hundred with median_age, aged_70_older, gdp_per_capita, and human_development_
index, with values between 0.56 and 0.84, also points to a direct relationship between the
vaccination rate and the development level of the GPE. A visualization of the percentage
of the vaccinated population and percentage of people over 70 years old versus the total
of deaths per million of the population can be seen in Figure 5. As shown, there is a clear
contrast between the top, middle, and bottom of this visual representation. At the top, we
can find primarily developed GPEs, as can be asserted by the percentage of the population
over 70 years old in those GPEs. These GPEs, at the top of Figure 5, present the higher
vaccination rates but, in general, not so many deaths as the GPEs in the middle of the
figure, which have lower vaccination rates than the ones at the top and tend to present
more deaths. The vaccination efficacy may explain this tendency. The bottom of the figure
is composed mainly of less developed GPEs with very low vaccination rates. Conversely,
these were also GPEs with smaller numbers of deaths. This fact may be yet one more
indication that these GPEs are not enforcing an adequate COVID-19 monitorization and
reporting policy.

The abyss between the percentage of the population vaccinated between GPEs can be
confirmed in Figure 6. While over 30 GPEs had vaccinated less than 20% of their population,
over 35 GPEs had vaccinated more than 70%.

Another demonstration of the vaccination effect can be seen in Figure 7, which illus-
trates the daily evolution of the pandemic by plotting the seven-day moving average of
daily deaths versus the seven-day moving average of the percentage of the vaccinated
population. Since plotting this information for all the GPEs under study would not produce
an interpretable visualization, we decided to show here only six particular GPEs: Israel,
Great Britain, Portugal, Russia, Spain, and the USA. These GPEs were chosen due to their
development level and the start of vaccination similarity. As distinctly seen, over time, as a
higher percentage of the GPEs’ population is vaccinated, the number of deaths tends to
decrease or stabilize, particularly when the rate of the vaccination reaches values above
60% of the population.

As illustrated in Figure 7, the relationship between vaccination rates and lives saved is
not linear and can also depend on the vaccines being provided to the population. There
seems to be a minimum threshold of around 20% for the vaccination rates to be converted
into significant death decreases, followed by a rapid decrease of deaths per capita and then
a relatively stable situation below five daily deaths per million people.
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Figure 7. Seven-day moving average of daily deaths per million of the population vs. seven-
day moving average percentage of the population vaccinated (examples from GPEs with similar
development level vaccination start dates and profiles).

The resulting clustering model was not balanced in terms of the number of GPEs in
each cluster. While cluster A was composed of 37 GPEs, cluster B was composed of 69 and
cluster C of 53 GPEs.

The analysis of the mean values of the different variables per cluster, as detailed in
Table 2, shows that there may be three distinct clusters of GPE. In cluster A, we find the
GPEs where COVID-19 had a higher reported health impact, with more deaths per cases
(higher death_ratio). This cluster comprises mainly less developed GPEs, as seen in the
variable humand_development_index. These were the GPEs that implemented less restrictive
healthcare measures (stringency_index_med). This application of less restrictive measures
could also be related to stronger economic needs. This lack of economic capacity could also
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explain the lower vaccination percentage in this cluster (9.6%). As seen in Figure 8, the
GPEs of cluster A were primarily from Africa and the Middle East.

Table 2. Mean values per cluster on 30 November 2021.

A B C
people_vaccinated_per_hundred 9.637 73.227 35.795
human_development_index 0.516 0.853 0.705
stringency_index_med 39.465 58.468 63.640
death_ratio 3.117 1.645 2.176

Cluster
A
H B
W cC

Figure 8. GPEs’ clustering geographic representation.

In contrast, we have cluster B, where COVID-19 had a smaller impact in terms of
deaths by cases. Cluster B is formed by the higher developed GPEs. As shown in Figure 8,
Cluster B is composed predominantly of European, North and South American, richer
Asian, and Oceanian GPEs. Lastly, in cluster C, we find the “not-so-developed” GPEs.
These GPEs had a higher number of deaths per cases. Still, much inferior to the impact
found in cluster A. Geographically, as shown in Figure 8, these are primarily GPEs from
Latin America, north Africa, and Asia. Reversely to other indicators, the stringency index
in cluster C is higher than in clusters A and B, thus suggesting that since GPEs in this
cluster did not have the vaccination capability of GPEs of cluster B, they may have opted
for higher levels of public health restrictions.

When comparing the probability of dying in the case of contracting the virus before
the vaccination programs rollout (30 November 2020), or in other words, the odds of dying
from COVID-19 in the case of contracting the virus, as presented in Table 3, it was between
1.8% and 2.8% across the clusters. However, that probability was substantially reduced
after vaccination. Before vaccination, people from the GPEs of cluster B, higher developed
GPEs, and as such, with an older population less capable of surviving the disease, had a
probability of dying of 2.72%. In cluster A that probability was 2.04%, and in cluster B of
1.74%. Notwithstanding, after vaccination, cluster B turned from being the cluster with
the highest probability of dying to being the one with the lowest (1.36%). This decrease
means that in the one year of vaccination, the probability of dying in case of testing positive
decreased 0.32 percentual points (pp) in cluster A, 1.36 pp in cluster B, and 0.18 pp in cluster
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C. The odds ratio shows that in cluster B, the cluster with higher vaccination rates, there
was a 50.7% decrease in the odds of dying compared to the same day in the previous year.
However, in cluster C, the cluster with the second-highest vaccination rate, the decrease
was only 11.1%. In cluster A, the cluster of GPEs with the lowest vaccination rates, the
decrease of the odds of dying was only 16.3%. These results emphasize the impact of
vaccination in reducing the number of deaths.

Table 3. Probabilities and odds of dying in case COVID-19 is contracted.

A B C
Before vaccination Probability of dying 0.0204 0.0272 0.0174
(30 November 2020) Odds of dying 0.0209 0.0280 0.0178
After vaccination Probability of dying 0.0172 0.0136 0.0156
(30 November 2021) Odds of dying 0.0175 0.0138 0.0158
Odds ratio of dying (between the two periods) 0.8373 0.4931 0.8895
p-value of the odds ratio of dying (between the two periods) <0.01 <0.01 <0.01
Difference in the odds ratio of dying (between the two periods) 0.16237 0.5069 0.1105

The difference between clusters is even more evident when analyzing the average
deaths by cases (death_ratio) by the average vaccinated percentage of the population per
week (Figure 9). While in cluster B, it is possible to see a pattern where the increase in
vaccination resulted in a decrease in the death_ratio; the opposite happened in cluster C.
As vaccination increased, death_ratio also increased. In cluster A, there seemed to also be
some sort of discontinuity in the death_ratio time profile evolution. These observations
seem to show once more that only when values above 20% of the population vaccinated
were reached did there emerge a stable pattern of saving lives, leading to values below
1.75 deaths per 100 cases of COVID-19.
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Figure 9. Weekly deaths by cases vs. percentage of the population vaccinated. Cluster A is the cluster
with the highest impact. Cluster B, cluster with smaller impact in terms of deaths by cases. Cluster C,
cluster with second-highest vaccination rate and second-highest death rate.

One possible explanation for the different trends in the two clusters with a higher
percentage of vaccinated people (clusters B and C) could be the types of vaccines that
were mainly administrated in each country. However, as shown in Figure 10, due to the
limitations and types of available data, inference on the efficiency of the different types of
vaccines is hard to make. This limitation makes this particular topic something that may
be studied in more detail as part of future work and further analysis. For instance, the
data now available only includes the number of doses administrated. Since some vaccines
were of a single dose, it is expected for this representation of such vaccines over others to
be underrated. Secondly, most GPEs that provided data by vaccine manufacturers were
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from cluster B, many of which were from the European Union; therefore, having followed
somewhat more similar vaccination policies.
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Figure 10. Vaccines by manufacturer distribution and percentage of people vaccinated on 26 Novem-
ber 2021, and percentage of deaths by cases since 12 January 2020, by GPE. The cluster of each GPE is
presented in parenthesis.

Notwithstanding these limitations, it is possible to see in Figure 10 that Bulgaria and
Romania, two European GPEs from cluster C, are among the GPEs with higher death ratios
after the vaccination started, despite their low vaccination rates (compared to the other
GPEs). Since the distribution of vaccines by manufacturers in Bulgaria and Romania was
not much different from other European Union members, the higher death ratio seemed
to be related to the lower vaccination rate of these GPEs. Among the GPEs represented in
Figure 10, the ones that show a clear, distinct pattern of vaccination by the manufacturer
are Chile, Ecuador, Hungary, and Peru. All of these GPEs are from cluster B. Except for
Chile, the remaining three GPEs are among the top five countries with a higher death
ratio. A lower vaccination rate could explain this high death ratio. However, that is not
the case. Despite having higher death rates, Ecuador, Hungary, and Peru are between
these 33 GPEs the 19th, 9th, and 10th in terms of lower vaccination rates, respectively.
The development level of these GPEs may also have contributed to the higher death ratio
values that were found. Nevertheless, since Ecuador, Hungary, and Peru administered
some types of vaccines that the remaining GPEs did not, this raises the question of the
possible different effectiveness real-life performances of some of the vaccines, something
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that may deserve additional research work to be conducted in the future when more public
domain data becomes available in this regard.

3.2. Regression Model

The global fitted regression model of the ratio of deaths by cases was the following:

death_ratio = 2.3347 — 0.5973 x PV +0.2933 x PV?2 O
R% = 0.355, F(2,156) = 42.97, p < 0.000

This overall regression did not present very interesting statistically significant re-
sults. However, regression models built for each cluster produced significantly improved
statistical models as expected, and shown below:

death_ratio, = 3.0688 + 0.4676 x PV — 0.3933 x PV? )
R? = 0.533, F(2,50) = 28.58

death_ratiog = 1.8516 — 0.2163 x PV + 0.0974 x PV? 3)
R? = 0.889, F(2,50) = 199.4

death_ratioc = 2.0838 + 0.0754 x PV — 0.0292 x PV? @
R? = 0.726, F(2,50) = 66.28

As depicted in Figure 9, the dissimilarity among clusters does justify the impossibility
of building a good single global regression model to explain deaths per case (1). However,
as also suggested by Figure 9, statistically significant models can help understand the
power of vaccination in reducing the number of cases by cluster, particularly in clusters B
and C.

To further study by simulation from the above models the impact of vaccination on
saving lives, we applied the regression models (3) to the respective clusters in the week of
28 November 2021, considering a scenario with the vaccination variable having an increase
of 5%. Therefore, simulating that in the week between 21 and 28 November, it would have
been possible to increase vaccination rates by 5%. As shown in Table 4, it would then
have been possible to save around half a million lives in cluster B GPEs, the ones where
significant vaccine rates have already been achieved.

Table 4. Estimation exercise for the last week of November 2021 in Cluster B GPEs.

Cluster B
Deaths 3,533,115
Cases 176,273,398
Week 28 November 2021 Death ratio (%) 1.649
Vacc. (%) 73.092
Esti . Death ratio (%) 1.709
Additi Stllr;},j‘tpn , Deaths 3,012,163
itiona 5% increase in Vace. (%) 78.092
vaccmnation Saved people 520,952

Vaccination does have a significant impact and potential for saving lives, as illustrated
above, but it is not the only factor that increases the probability of not dying from COVID-19.
When we analyze examples of GPEs from the different clusters (Tables 5-7, Figures 11-13),
distinctive behaviors in the three clusters can be found. There was a high variance in the
death ratio in cluster A, independently of HDI and vaccination rate. In cluster A, the weekly
profiles of death ratio by vaccination rate were very erratic and GPE specific, as shown
in Figure 11. In cluster B, even though the cluster was composed of GPEs with a wide
range of HDI, there seems to be a pattern over time of decrease of the death ratio as the
vaccination rate increases (see Figures 9 and 12). This pattern, as previously mentioned in
Figure 7, seems to be more robust when vaccination rates over 60% are reached. However,
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there are also exceptions, such as Bhutan and Cambodia, two of the less developed GPEs
in cluster B. Cluster C weekly results are indeed the stranger, even when looking at some
examples with different HDI and vaccination rates (Figure 12). Most GPEs in cluster C did
not show a decrease in the death ratio, despite the increase of the vaccination rates. This
situation shows that there seems to be a minimum threshold value of vaccination rates to

make visible its statistical impacts on deaths and on saving lives.
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Table 5. Example of GPEs from cluster A with different HDI, deaths ratio, and vaccination rate on

30 November 2021.
GPE HDI Death Ratio People Vaccinated %
Democratic Republic of 0.480 1.901 015
Congo
Mali 0.434 3.476 3.40
Mozambique 0.456 1.281 19.97
Namibia 0.646 2.766 13.73
Sierra Leone 0.452 1.890 8.64
Zambia 0.584 1.745 4.26

Table 6. Example of GPEs from cluster B with different HDI, deaths ratio, and vaccination rates on

30 November 2021.
GPE HDI Death Ratio People Vaccinated %

Bhutan 0.654 0.114 75.54
Switzerland 0.955 1.136 67.04
Germany 0.947 1.718 70.81
Cambodia 0.594 2.447 83.47
Norway 0.957 0.394 77.56
Portugal 0.864 1.607 89.04

Table 7. Example of GPEs from cluster C with different HDI, deaths ratio, and vaccination rate on

30 November 2021.
GPE HDI Death Ratio People Vaccinated %
Egypt 0.707 5.710 24.40
Romania 0.828 3.176 40.03
Rwanda 0.824 1.337 43.27
Russia 0.543 2.850 45.74
Uganda 0.544 2.550 8.15

South Africa 0.709 3.027 28.75
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4. Strengths and Limitations

One of the most significant strengths of this study is the use of one-year public domain
data from a large number of GPEs. Since not all GPEs had the same easiness of access
to vaccines and not all GPEs are at the same level of development, vaccination did not
have the same impact over all of the GPEs considered. However, it was possible to see
that in developed GPEs with good vaccination coverage, vaccination was, unequivocally,
an effective weapon against COVID-19. Another strength of this study is that it uses
publicly available data from OWID, which is continuously updated. That being the case,
any researcher can reproduce this study and even extend or expand it as time goes by and
more data becomes available. This study also shows how data science fields and methods,
namely statistics, machine learning, and data visualization, combined together, can be used
to better understand complex phenomena, pandemic behavior, and vaccination impacts.

This study is not without limitations, some of which are summarized next. Since
the main objective was to give a global perspective of the vaccination impact, we tried
to analyze data from as many GPEs as possible and in as many dimensions as possible.
However, one important dimension that was not analyzed yet, given data collection
constraints (namely, lack of available data), concerns the stratified impacts and conclusions
associated with each specific COVID-19 virus variant. Such stratified impacts, including
specifically, the effectiveness of vaccines depending on the pandemic prevalence or deaths
by variants (e.g., the Delta VOC), could bring an additional perspective on vaccination
impact and effectiveness. Similarly, more detailed analysis can be considered regarding
stratified data analysis and modeling according to the kinds of vaccines administered in
different countries.

Notwithstanding, to perform such additional studies, more detailed data needs to be
collected and made available for many of the studied GPEs. More detailed data would
ensure that a similar global worldwide analysis could be conducted, along the perspective
adopted in this paper but relying on more detailed data that is not yet available at this
stage. To overcome some of these data limitations, we also ended up removing some GPEs
from our data analysis and modeling efforts, mostly smaller GPEs with high numbers of
missing values.

In fact, this lack of broader stratified quality data and the lack of certain types of
detailed data, such as the vaccines administered by manufacturers, is something all GPEs
should be committed to addressing in order to allow for more detailed data analysis to
be conducted in future studies. Only by making more of this good and detailed quality
data available will data science be able to study further and learn from what has hap-
pened, understand why it happened, and contribute to better decision-making and future
improvements in handling the COVID-19 or other pandemics.

Something that may also influence the outcome of this and future studies and that
GPEs should try to establish for handling pandemics regards the adoption of standardized
criteria to define what are COVID-19 or other virus-related deaths. For example, some
GPEs consider any COVID-19 positive hospitalized patient who died, independently of the
reason the patient was hospitalized as a “COVID-19” death. Others did not adopt the same
criteria. Therefore, this raises additional issues about data comparison, model building, or
an overall consistent data-driven approach to decision-making and understanding of the
phenomena across the world or in different GPEs.

5. Conclusions

This paper aimed at identifying the effectiveness of the vaccination programs against
the COVID-19 virus during their first year of implementation. Vaccination and, even more
so, high vaccination rates have played a pivotal role in saving lives. On the one hand, it
significantly reduced the need for infirmary as well as intensive care unit hospitalizations.
On the other hand, deaths per cases went down substantially. Findings support these
conclusions not only when we address data reporting reality before and after vaccination
but also across clusters of GPEs.
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One should note that cluster B, with the higher developed GPEs, was the only one
showing a more robust model since it was the unique cluster with more comprehensive
data and evolution regarding the rollout of the vaccination programs. Moreover, despite
its more accurate reality check in terms of much more COVID-19 tests, leading to the
identification of much more cases, aggravated by its higher exposure to the pandemic
consequences due to its aging population, cluster B was the one where vaccination won big
over the virus. This evidence envisages the urgent need to ensure clusters A and C follow
suit of what has already been achieved in cluster B.

As a follow-up on the results found in this paper, future research might consider a
detailed analysis of the different variants, namely the Delta variant and the recent Omicron
variant, due to their higher contagious rates and apparent less seriousness in terms of
hospitalizations. It will also be interesting to study both clusters A and C when they
reach much higher vaccination rates and compare them with cluster B vaccination rates
already achieved by these GPEs. Further, a few GPEs, such as Cambodia, have shown
quite unexpected results. Despite achieving vaccination rates over 50%, their deaths per
case do not fall significantly, hence recommending new research to be performed in the
future. Since the currently available data suggest that some vaccines may not be as efficient
as others, further research should also study the relationship between the percentage of
vaccinated people, the types of vaccines administered, and GPEs” development level.
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Appendix A
Table A1 details the content of the OWID dataset.

Table A1. OWID global dataset dictionary.

Variable

Type

Description

total_cases

Confirmed cases

Total confirmed cases of COVID-19

new_cases

Confirmed cases

New confirmed cases of COVID-19

new_cases_smoothed

Confirmed cases

New confirmed cases of COVID-19 (7-day smoothed)

total_cases_per_million

Confirmed cases

Total confirmed cases of COVID-19 per 1,000,000 people

new_cases_per_million

Confirmed cases

New confirmed cases of COVID-19 per 1,000,000 people

new_cases_smoothed_per_million

Confirmed cases

New confirmed cases of COVID-19 (7-day smoothed) per
1,000,000 people

total_deaths

Confirmed deaths

Total deaths attributed to COVID-19

new_deaths

Confirmed deaths

New deaths attributed to COVID-19

new_deaths_smoothed

Confirmed deaths

New deaths attributed to COVID-19 (7-day smoothed)

total_deaths_per_million

Confirmed deaths

Total deaths attributed to COVID-19 per 1,000,000 people

new_detaths_per_million

Confirmed deaths

New deaths attributed to COVID-19 per 1,000,000 people

new_deaths_smoothed_per_million

Confirmed deaths

New deaths attributed to COVID-19 (7-day smoothed) per
1,000,000 people
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Table Al. Cont.

Variable

Type

Description

excess_mortality

Excess mortality

Percentage difference between the reported number of weekly
or monthly deaths in 2020-2021 and the projected number of
deaths for the same period based on previous years

excess_mortality_cumulative

Excess mortality

Percentage difference between the cumulative number of
deaths since 1 January 2020 and the cumulative projected
deaths for the same period based on previous years

excess_mortality_cumulative_absolute

Excess mortality

Cumulative difference between the reported number of
deaths since 1 January 2020 and the projected number of
deaths for the same period based on previous years

excess_mortality_cumulative_per_million

Excess mortality

Cumulative difference between the reported number of deaths
since 1 January 2020 and the projected number of deaths for
the same period based on previous years, per million people

icu_patients Hospital and ICU Number of COVID-19 patients in intensive care units (ICUs)
. . — . Number of COVID-19 patients in intensive care units (ICUs)
icu_patients_per_million Hospital and ICU per 1,000,000 people
hosp_patients Hospital and ICU Number of COVID-19 patients in hospital
. — . Number of COVID-19 patients in hospital per
hosp_patients_per_million Hospital and ICU 1,000,000 people
weekly_icu_admissions Hospital and ICU Number of COVID—1.9 patlents.newl.y admitted to intensive
care units (ICUs) in a given week
. - o . Number of COVID-19 patients newly admitted to intensive
weekly_icu_admissions_per_million Hospital and ICU care units (ICUs) in a given week per 1,000,000 people
weekly_hosp_admissions Hospital and ICU Number of COVID-19 pat1e.nts newly admitted to hospitals in
a given week
weekly_hosp_admissions_per_million Hospital and ICU Number of COVID-19 patients newly admitted to hospitals in

a given week per 1,000,000 people

stringency_index

Policy responses

Government Response Stringency Index: composite measure
based on 9 response indicators including school closures,
workplace closures, and travel bans, rescaled to a value from 0
to 100 (100 = strictest response)

reproduction_rate

Reproduction rate

Real-time estimate of the effective reproduction rate (R) of
COVID-19

total_tests Test & positivity Total tests for COVID-19
new. tests Test & positivity New tests for COVID-19 (g;i});)calculated for consecutive
total_tests_per_thousand Test & positivity Total tests for COVID-19 per 1000 people
new_tests_per_thousand Test & positivity New tests for COVID-19 per 1000 people
new_tests_smoothed Test & positivity New tests for COVID-19 (7-day smoothed)
new_tests_smoothed_per_thousand Test & positivity New tests for COVID-19 (7-day smoothed) per 1000 people
L e The share of COVID-19 tests that are positive, given as a
positive_rate Test & positivity rolling 7-day average (this is the inverse of tests_per_case)
tests_per_case Test & positivity Tests copducted per new con'fir'med case of COVID‘—1‘9, given
as a rolling 7-day average (this is the inverse of positive_rate)
tests_units Test & positivity Units used by the location to report its testing data
total_vaccinations Vaccinations Total number of COVID-19 vaccination doses administered
people_vaccinated Vaccinations Total number of people who received at least one vaccine dose
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Table Al. Cont.

Variable Type Description
people_fully_vaccinated Vaccinations Total number of people W}}o refcelved all doses prescribed by
the vaccination protocol
Total number of COVID-19 vaccination booster doses
total_boosters Vaccinations administered (doses administered beyond the number
prescribed by the vaccination protocol)
I - New COVID-19 vaccination doses administered (only
new_vaccinations Vaccinations .
calculated for consecutive days)
new_vaccionations_smoothed Vaccinations New COVID-19 vaccination doses administered (7-day smoothed)
L - Total number of COVID-19 vaccination doses administered
total_vaccinations_per_hundred Vaccinations : .
per 100 people in the total population
cople vaccinated ver hundred Vaccinations Total number of people who received at least one vaccine
peopre— —Per— dose per 100 people in the total population
. o Total number of people who received all doses prescribed by
people_fully vaccinated_per_hundred Vaccinations the vaccination protocol per 100 people in the total population
total boosters per hundred Vaccinations Total number of COVID-19 vaccination booster doses
- —per— administered per 100 people in the total population
new_vaccinations_smoothed_per_million Vaccinations New COVID-19 vaccination doses administered (7-day
- - —Per- smoothed) per 1,000,000 people in the total population
iso_code Others ISO 3166-1 alpha-3—three-letter country/GPE codes
Continent Others Continent of the geographical location
Location Others Geographical location
Date Others Date of observation
Population Others Population in 2020
population_density Others Number of p'eople divided by land area, me_asured in square
kilometers, most recent year available
median_age Others Median age of the population, UN projection for 2020
aged_65_older Others Share of the population that is 65 years and older, most recent
year available
aged_70_older Others Share of the population that is 70 years and older in 2015
. Gross domestic product at purchasing power parity (constant
gdp_per_capita Others 2011 international dollars), most recent year available
extreme_poverty Others Share of the population 11V1.ng in e?<treme poverty, most recent
year available since 2010
cardiovasc death rate Others Death rate from cardiovascular disease in 2017 (annual
- - number of deaths per 100,000 people)
diabetes_prevalence Others Diabetes prevalence (% of population aged 20 to 79) in 2017
female_smokers Others Share of women who smoke, most recent year available
male_smokers Others Share of men who smoke, most recent year available
handunshing_facilities Others Share of the popu}atlon with basic handwa§hlng facilities on
premises, most recent year available
hospital_beds_per_thounsand Others Hospital beds per 1000 p.eople, most recent year available
since 2010
life_expectancy Others Life expectancy at birth in 2019
A composite index measuring average achievement in three
human_development_index Others basic dimensions of human development—a long and healthy

life, knowledge, and a decent standard of living

The full dictionary and sources of the dataset are available at https://github.com/owid/COVID-19-data/tree/
master/public/data (accessed on 1 December 2021).
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Table A2. OWID vaccinations by manufacturer dataset dictionary.

Variable Type Description

Location Others Geographical location
Date Others Date of observation

Vaccine Vaccinations Manufacturer of the vaccine

Total doses administered. For vaccines that require
multiple doses, each individual dose is counted

The full dictionary and sources of the dataset are available at https://github.com/owid/COVID-19-data/tree/
master/public/data/vaccinations (accessed on 1 December 2021).

total_vaccinations Vaccinations
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