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Abstract: Persistent Homology (PH) analysis is a powerful tool for understanding many relevant
topological features from a given dataset. PH allows finding clusters, noise, and relevant connections
in the dataset. Therefore, it can provide a better view of the problem and a way of perceiving if a
given dataset is equal to another, if a given sample is relevant, and how the samples occupy the
feature space. However, PH involves reducing the problem to its simplicial complex space, which
is computationally expensive and implementing PH in such Resource-Scarce Embedded Systems
(RSES) is an essential add-on for them. However, due to its complexity, implementing PH in such
tiny devices is considerably complicated due to the lack of memory and processing power. The
following paper shows the implementation of 0-Dimensional Persistent Homology Analysis in a set of
well-known RSES, using a technique that reduces the memory footprint and processing power needs
of the 0-Dimensional PH algorithm. The results are positive and show that RSES can be equipped
with this real-time data analysis tool.

Keywords: persistent homology; topological data analysis; embedded intelligence; intelligent
resource-scarce embedded systems; TinyML

1. Introduction

The interest in implementing Machine Learning and Data Analysis algorithms closer
to the end-user (edge/end-computing) has increased over the last few years [1–4]. The
need for these algorithms closer to the end-user is due to the need to reduce data traffic and
cloud dependency. Therefore, this implementation reduces the device’s power consumption
and addresses many security, privacy, and safety concerns. However, the problem with
implementing such processing and memory demanding algorithms in Resource-Scarce
Embedded Systems (RSES) is the lack of memory, processing capabilities, and arithmetical
units. Therefore, to achieve the goal of running these algorithms in RSES, it is vital to
re-invent and make optimizations in the algorithms to achieve the same result as in a
high-end computer [5].

Persistent Homology (PH) analysis allows understanding of a problem using Topo-
logical Data Analysis (TDA). TDA reduces a problem to its topological features, reducing
the problem to its simplicial complex space. A simplicial complex space is represented in
terms of points, holes, tetrahedrons, and other geometrical shapes. PH takes snapshots of
the topological space at each step. This allows finding how the dataset behaves, what can
be considered noise during the sampling process to find clusters, and extracting important
features. The PH and TDA tools are widely known because Euler used them to solve the
Seven Bridges of Königsberg problem. These analysis techniques allow one to reduce the
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problems into their main features, which turn the increasingly used high-dimensional data
into easy-to-see and easy-to-understand problems [6,7].

Persistent Homology analysis has helped solve problems across multiple fields, such as
medicine [8–11], chemistry [12,13], image processing [14], physics [15], astronomy [16], and
sensor networks [17,18]. Therefore, Persistent Homology Analysis has been implemented
in a wide range of programming languages (e.g., Cpp [19–22], Python [19,23–26], Java [27],
R [28], Matlab [27,29], and Julia [30]), and it is available in distinct packages that allow
using this analysis method across multiple projects. Besides the wide range of software
available, none is written in plain C, tested in resource-scarce embedded systems, and
neither is designed to perform in such resource-constraint devices.

Besides the many advantages of PH, the tool is computational and memory expensive.
The complexity and memory footprint increase as the dimension at which the analysis is
made. Therefore, implementing PH in RSES requires looking for novel ways of solving the
problem. However, as more and more devices are sampling data in distinct environments,
it is necessary to provide RSES with tools for real-time data analysis. This can make the
devices understand if the dataset being collected is not behaving as it should or reduce
the quantity of traffic sent to the Cloud. Therefore, implementing it into these devices is a
challenge but a powerful add-on to reduce cloud dependency and spread the computational
work across the network.

The present works focus on the implementation of the data analysis tool, so-called
0 Dimensional PH analysis, proposing a methodology that does not comprise the memory
and processing footprint of such resource-constrained devices by resorting to lightweight
techniques, such as bitmask and Boolean logic. As shown, the proposed solution can
provide outcoming similar PH images but is drawn from fewer samples than the main
topological features. With this solution, RSES devices do not need to connect to a Cloud
System, which opens the door to making RSES less cloud-dependent and spreading the
data analysis task across the network. To the best of our knowledge, this is the first attempt
to deploy 0 dimensional PH analysis tool in resource-constrained devices.

2. Persistent Homology Analysis

TDA is responsible for extracting the topological features of a given dataset. TDA
uses a distance function (e.g., Euclidean Distance). However, instead of just looking
at the distance between points, TDA wants to see how the points in a dataset connect.
A connection between two points happens if they have a distance equal to or less than r.
Therefore, one can think of an i-th dimensional sphere around each point with radius r and
the center equal to the point’s coordinates. If two i-th dimensional spheres touch each other,
the points have a connection.

The TDA creates a simplicial space consisting of multiple simplicial complexes. A sim-
plicial complex is a point, a line, a triangle, or any other shape formed by connecting one
or multiple points. Therefore, for each possible r, there is a single simplicial space. As
it is impossible to know which r provides the simplicial space that compresses the main
topological features, a study is made using multiple rs.

PH is the method that takes snapshots of a simplicial space at a given r and then
stores the information using a barcode. A barcode consists of a bar graph displaying the
lifetime of an i-th dimensional hole. Because the main focus of this paper is 0-dimensional
PH, one will focus on explaining the behavior of 0-dimensional barcodes and simplicial
spaces [31–34].

In 0-dimensional PH, a hole dies when a connection between two points happens.
Therefore, each point in 0-dimensional Homology is seen as a simplicial complex. Therefore,
for 0-dimensional PH, one looks at the connection between points and not the empty space
between them. One can find possible clusters by keeping track of the number of simplicial
complexes at each r. Simplicial complexes that die at greater distances are possible point
clusters. Simplicial complexes that die earlier are seen many times as noise, and the r is
used as a filtration value.
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For the 0-dimensional PH analysis, it is possible to withdraw two conclusions: The
first simplicial complex will die at r equal to the minimum distance between points; The
last two simplicial complexes join in the worst-case scenario in a r equal to the maximum
distance between points.

Figure 1 shows how a 0-dimensional PH happens. The top image shows the dataset,
with the orange representing the i-th dimensional sphere growing around each point.
A connection (black line) appears if two orange circles touch. For each connection, a bar
appears at the barcode on the bottom.

Figure 1. Example of a 0-dimensional Persistent Homology Analysis. At the top, the connections
between points form as r increases. At the bottom, the barcode originated from the analysis. Each bar
represents the distance at which a component has died.

3. Methodology

The research method followed for the implementation lies in five steps.
The first was to retrieve the barcode image, distance matrix, and simplices information

from an existing TDA software. The chosen software was the Ripser (version 0.6.1) from
the Scikit-TDA Package. Therefore, the authors verify if the distance matrix obtained from
the third-party tool matches the distance matrix built using our method.

The second step focused on building the barcode from the entire dataset using the
developed method. Therefore, a comparison with the barcode obtained from Ripser was
made. It is verified if the death of the first simplice and the last one occur at the same
distance in both tools. Afterward, the authors have withdrawn the unique values from each
barcode array, verifying if the values are the same, without a significant gap or a difference
higher than 5%. This step verifies that the tool works accordingly to what is expected. Due
to the lack of resources in the selected platforms, this step should first be run on a personal
computer.

The third step was to verify if the death of the last simplice is the same as the maximum
distance found in the distance matrix. Therefore, proving that as soon as one obtains a
single simplice, one no longer has to verify for distances higher than the maximum distance
already obtained.

The fourth step was to build a visual representation of the dataset using a dimensional
reduction tool, verifying if the number of relevant simplices (last three or four) are expected
to have larger or smaller values in terms of distance. Therefore, if the given representation
provides two clusters significantly distant in the euclidean space, the two bars representing
at which distance only two simplices exist up until they merge into one should have a
significant difference in size.
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The fifth step is to reduce the number of samples through random selection and verify
if a smaller batch will provide the same information as the entire dataset. Therefore, proving
that the method should and could be implemented into RSES.

The main concern in implementing 0-dimensional homology analysis in a resource-
scarce embedded system is the memory needed to hold the entire data structure. Most
common implementations of homology use the euclidean distance between points (samples)
to analyze, the device needs to store some samples. This set needs to be big enough to
make assumptions but small enough not to fill the entire device’s memory. Therefore, the
sample matrix and the number of samples (N) are the first variables to consider.

Because 0-dimensional homology looks at the distance, the device must also store the
distance between samples in a matrix for further analysis. Since the distance matrix has the
main diagonal composed of 0 s, and the upper and lower triangles mirror each other, the
entire matrix can be compressed into a small array. N is the number of samples, and for
our method to work, N should always be given by 2p, with p an integer higher than one,
and p ∈ N. The array’s size can be withdrawn by re-writing the combination formula as
the authors propose in Equation (1).(

2p

2

)
=

2p!
2!(2p − 2)!

(1)

After the distance matrix is calculated, the method iterates through each distance (r)
inside the distance matrix. The consideration of each r being a distance value in the matrix
is because the first component will die at the minimum distance existing in the matrix,
and two components can only exist until the maximum distance in the matrix. For each
r, a connection matrix is built. This matrix is a bitmask matrix of row size equal to the
number of samples, and each row has a bit size equal to the number of samples (Figure 2a).
This is the reason for N to be given by 2d. The bit j of row i takes the value 1 if sample i and
j are at a distance equal to or smaller than r.

The connection matrix allows using bitwise logic to search for connected components.
If the AND bitwise logic between rows i and j have any bit equal to 1, then i and j are
connected. The OR bitwise logic between the two rows (after the AND) gives the entire
list of connected points (the simplice). The OR mask is stored at each iteration to avoid
repeating simplices, which shortens the processing time. Each simplice is stored and added
to a linked list afterward (Figure 2b). Because the matrix has a bit-size of (Nsamples)

2,
doubling the sampling size quadruples the memory needed. Notice that the connection
matrix is a mirror matrix with the main diagonal composed of 1s. Therefore, it is possible
to implement the same technique used for the distance matrix. However, it will take more
processing but reduce the memory needed.

For distance r, the method builds the entire set of simplices that exist. Afterward, the
method searches in the BarCode linked list for any node with the same number of simplices.
If any match occurs, the method verifies if r is higher than the distance rm stored in the
node. If true, rm is changed by r, otherwise, rm continues, as the death value for simplices.
If no node matches the simplices’ number, then a new node is created (Figure 3).

Algorithms 1 and 2 explain the pseudo-code used to build the 0-Dimensional Persistent
Homology tool.
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Figure 2. (a) The connection matrix has a row size equal to the number of samples. Each row has a
bit size equal to the number of samples, implemented using 32-bit unsigned integers. If sample i and
j are connected, then bit j in row i has value 1 and bit i in row j has value 1. (b) If the bitwise AND
result between row i and j have any bit with value 1, the two points have a connection path. If they
have a connection path, then the bitwise OR gives us the entire connected points set.

Figure 3. After building the simplices for distance r, the method searches any node in the Bar Code
list with the same number of simplices. If no node matches the search, a new node is created, storing
distance r and the number of simplices. If a match happens, it checks if the distance is higher than r
and changes it if true.
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Algorithm 1 Build BarCode.

build_distance_matrix()
for r in distance_matrix do

if r > r_max or r == 0 then
ignore

else
no_simplices = build_simplices_for_r()

end if
end for
for element in simplices_linked_list do

if element.no_simplices == no_simplices and element.r < r then
element.r = r
break

end if
end for
if r not in simplices_linked_list then

add_to_linked_list()
end if

Algorithm 2 Build Simplices for distance r.

for i in range(no_samples) do
for j in range(no_samples) do

if distance_matrix[i][j] < r then
connection_matrix[i] |= (1«j)

end if
end for

end for
for i in range(no_samples) do

if i not in seen then
logical_or_for_all_1_bits()
np_simplices += 1

end if
end for
return no_simplices

4. Experimental Design

The authors have selected a wide range of development platforms that vary in pro-
cessing power, memory, and hardware to test the hypothesis. The selected platforms and
their main specs are present in Table 1. To avoid developing specific code for each platform,
the authors have used a generic tool platformio and the same framework (Arduino) to
program all boards in equal terms.

Table 1. Experimental tests platform comparison.

Platform MCU Cortex Clock (MHz) Flash (kB) RAM (kB) FPU

Arduino M0+ Pro ATSAMD21G18 M0 48 256 32 No
Arduino Due AT91SAM3X8E M3 84 512 96 No

EK-TM4C123GXL TM4C123GH6PMI M4F 80 256 32 Yes
NodeMCU ESP8266 ESP8266 - 80 1024 128 No

STM32F767ZIT6 STM32F767ZI M7 216 2048 512 Yes

The IRIS dataset was selected to check if the results are equal on all platforms and
quickly verify the method’s integrity. The dataset is simple in terms of features and
classes. However, tests were realized in other datasets to ensure that the results were
equally verified.
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4.1. PCA Representation of the IRIS Dataset

The IRIS dataset represents a classification problem that intends to use four features to
classify iris flowers into three species. Therefore, the dataset occupies a four-dimensional
Euclidean space. To verify if the results obtained for the 0-dimensional Homology analysis
are correct and representative of the dataset behavior, one must try to understand the
expected result from such analysis. As the dataset is represented in four dimensions, a
Principal Component Analysis (PCA) must be done.

PCA is a tool used to lower the dimension of any dataset. It makes an orthogonal linear
reduction that projects the feature space into a subspace generated by a few eigenvectors.
So, PCA does not necessarily discard features; it combines them.

Therefore, by making a PCA analysis of the IRIS dataset, it was possible to reduce the
dataset into a two-dimensional space (Principal Components 1 and 2), which compresses
much of the dataset’s relevant information and allows for a graphical representation of
the feature space. Figure 4 shows the PCA representation of the dataset for the first two
principal components. As the image shows, the expectation is to see four bars live longer
because of the four clusters (three are well visible, and the fourth is composed of the two
top-right green dots).

Figure 4. IRIS Principal Components Analysis representation.

4.2. Comparison of Proposed Method against Third-Party Tool Scikit-TDA Risper

Before running any tests in an MCU, it was essential to test if the code running in a
standard computer could achieve the same results as a third-party generic tool available.
The selected third-party tool was the Ripser available in the Python package Scikit-TDA.
Figures 5 and 6 show the bar codes obtained by analyzing the dataset in both tools. The
results are very similar, and we can see three long bars form. The developed method has
one more bar at the end because the authors have decided not to use the infinity value for
the one component value but the death value of the second component.
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Figure 5. Bar Code obtained from running the developed 0-dimensional homology analysis on the
IRIS dataset. The X-axis represents the death of each component. The Y-axis is the array index.

Figure 6. Bar Code obtained from running the scikit-tda ripser 0-dimensional homology analysis on
the IRIS dataset. The X-axis represents the death of each component. The Y-axis is the array index.

The barcodes are similar, meaning that the developed method provides the same
results as other proven methods. The figures show that the expected bar code behavior
happens once the three bars that live longer than any other represent the four clusters.
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5. Results

Tables 2 and 3 displays the profiling results obtained from running the 0-Dimensional
Homology Analysis in each MCU for 32-Samples and 64-Samples, respectively. The
64-Samples analysis was only possible for the STM32F767 because it had enough memory
to allocate (100 KB) for the iteration that spent more memory.

As the tables show, every platform could perform the 32-Samples analysis. From the
tests, it is possible to understand that an MCU needs to have at least 14KB free for dynamic
allocation to perform such analysis. Only the NodeMCU ESP8266 has allocated a different
amount of memory, which is not understandable by the bare eye. A possibility is that the
NodeMCU implements any memory protection mechanism or alignment to avoid errors or
increase performance.

The execution time seems to be mainly linked to the clock speed, but other variables
need to be considered. The EK-TM4C123GXL has a slower clock than the Arduino Due,
but it runs the analysis slightly faster. One possibility is because the EK-TM4C123GXL has
an FPU.

The EK-TM4C123GXL has the same clock speed as the NodeMCU ESP8266, but the
last one spends less time to achieve a result. However, as Figure 7 shows, the result differs
from all the other ones, which indicates that it handles the arithmetics in a distinct way
than the others.

The Bar Codes in Figures 7–9 present the results obtained from running the IRIS dataset
0-dimensional analysis on 32 samples. The barcodes are equal in all platforms (with small
differences for the NodeMCU 8266). Therefore, the method is platform-independent. The
barcode is also similar to the one obtained from the third-party tool. The important thing
to notice is that the death of the last two simplices (to merge into one) happens at a greater
distance than all others. This is the expected behavior by looking at the PCA Analysis.

The 64-sample analysis was possible only for the STM32F767 platform (Figure 10).
The barcode presents more bars and is closer to the computer analysis, but the most
important features exist in all bar codes.

Therefore, the following study shows that reducing the number of samples is possible
without losing the persistent homology dataset’s fundamentals. However, this may not be
true for all datasets.

Table 2. Profiling results for 32 samples 0-Dimensional Homology Analysis. The memory is in bytes.
The Dynamic Memory field represents the maximum amount of memory used by an iteration. The
table is ordered by execution time.

Platform Flash Memory Ram Memory Dynamic Memory Execution Time (ms)

Arduino M0+ Pro 23,208 7348 13,828 959
Arduino Due 18,396 6764 13,828 505

EK-TM4C123GXL 14,797 8293 13,828 422
NodeMCU ESP8266 270,101 33,188 15,856 267

STM32F767ZIT6 21,596 6292 13,828 70

Table 3. Profiling results for 64 samples 0-Dimensional Homology Analysis. The memory is in bytes.
The Dynamic Memory field represents the maximum amount of memory used by an iteration. The
table is ordered by execution time.

Platform Flash Memory Ram Memory Dynamic Memory Execution Time (ms)

STM32F767ZIT6 23,070 19,399 98,344 1055
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Figure 7. Bar Code result from 0-dimensional Homology analysis in NodeMCU 8266 platform. The
analysis was obtained by randomly sampling 32 samples from the IRIS dataset.

Figure 8. Bar Code result from 0-dimensional Homology analysis in Arduino M0+ Pro platform. The
analysis was obtained by randomly sampling 32 samples from the IRIS dataset.



Sensors 2022, 22, 3657 11 of 13

Figure 9. Bar Code result from 0-dimensional Homology analysis in Arduino Due platform. The
analysis was obtained by randomly sampling 32 samples from the IRIS dataset.

Figure 10. Bar Code result from 0-dimensional Homology analysis in STM32F767 Nucleo-144 plat-
form. The analysis was obtained by randomly sampling 64 samples from the IRIS dataset.

6. Conclusions

The presented work has shown the implementation of 0-dimensional Persistent Ho-
mology analysis in a wide range of Resource-Scarce Embedded Systems. The devices select
encompass a variety of MCU architectures, families, and memory/processing capabilities.
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The work has shown the amount of memory and processing time it takes to achieve the
expected result according to the available hardware. Moreover, it is possible to see that
the usage of 32/64 samples can achieve the same results as the usage of the entire dataset.
Therefore, PH is also a stable and practical method that requires only a variety of samples
to present a good image of the entire dataset, at least for a lower-dimensional dataset.

7. Future Work

The authors consider that the following future directions of the researcher should be:

• Implementation of higher level PH in RSES for very high dimensional datasets.
• Creation of an algorithm to compare barcodes to verify if the collected dataset repre-

sents data obtained previously.
• Develop a dynamic algorithm to re-draw the barcode as new samples arrive.
• Implementation of a federated system to compare multiple barcodes as they are

collected.
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