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EDITORIAL
A call for a national strategy for indoor air quality
Since the V century B.C. we have known from the Hippo-
crates, “On Airs, Waters and Places”, that one of the most
frequent causes of disease is the bad quality of air.1

When a person with COVID-19 breathes, coughs or
sneezes, droplets and aerosols, that contain SARS-CoV2
virus, are released.2,3 In addition, unlike other infectious
diseases, it has been shown that an asymptomatic individual
with COVID-19 in the incubation period can transmit the
virus by talking or breathing.4

In fact, contrary to the belief that bio-aerosol formation
exclusively results from aerosol-generating procedures, the
production of infectious aerosols may occur from normal
expiratory activities, such as breathing and speaking.5,6

Aerosol emission rate will depend on the type of the respira-
tory activity and loudness of speech. Small aerosols are
mainly produced in lower respiratory tract. Nevertheless,
activities such as speaking, singing or coughing and sneezing
will induce further aerosol formation in upper areas such as
the larynx and the oral/nasal regions.7,8 The implications of
these features for transmission are of particular importance
in the case of indoor settings for human gatherings, such as
restaurants or choirs for example, where events of increased
spreading occur.9,10 These so called super-spreading events
are characterized by a large number of infections caused by
a single index case, and further support the aerosol trans-
mission mode of SARS-CoV-2.11 The latter are implied as
major drivers of the pandemic and are responsible for multi-
ple secondary cases.12

The current surge of the Omicron variant, with increased
infectiousness, highlights the concerns over airborne trans-
mission supported in novel outbreak reports.13,14

As the transmission via aerosols is a major pathway
for spreading SARS-CoV-2, promoting measures to reduce
indoor concentrations, namely though ventilation
improvement, can contribute to minimizing the risks. This
action was recognized in March of 2021 by the World
Health organization (WHO) in its document “Roadmap to
improve and ensure good indoor ventilation in the context
of COVID-1900.15

Consequently, the rapid growth of knowledge of the
mechanism behind the airborne transmission of COVID-19 is
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leading to a paradigm shift in the way we see and manage
the propagation of respiratory infections.16

Existing legislation for water quality rules that if harmful
micro-organisms are detected in the water drinking or bath-
ing need to be immediately prohibited and actions need to
be implemented to avoid health risk. The quality of the air
we breathe in the multiple microenvironments should also
be protected by a similar approach! In particular, in closed
spaces presenting a high density of occupancy (such as
schools, transports, restaurants, shared offices etc.), the
indoor air quality (IAQ) should be systematically monitored,
in order to identify and implement the most effective meas-
ures(ventilation, filtration and air disinfection) to ensure
healthy air for all.

Indoor Air Quality (IAQ) is defined in the Glossary of
Indoor Air Sciences17 published by the International Society
of Indoor Air Quality and Climate (ISIAQ) as “An indicator of
the types and amounts of pollutants in indoor air that can
cause discomfort or risk of adverse effects on human and
animal health or damage to vegetation”. To quantify it, the
average concentration of one or more IAQ parameters is
assessed at a representative conditions of occupancy of use
of the buildings during a given period of exposure (e.g., over
an interval of 8 h, corresponding to the usual time of occu-
pancy of a building during a working day). The contaminants
in indoor air can be classified into three categories:

- Chemicals (Carbon Dioxide, Carbon Monoxide, Formalde-
hyde, Volatile Organic Compounds, Ozone, Nitrogen Diox-
ide, Sulfur Dioxide and Radon)

- Particulate Matter (PM10 and PM2.5 are the size fractions
that are the most analyzed)

- Microbiological agents (Bacteria and Fungi (most com-
monly evaluated), and Virus)

These categories are not necessarily mutually exclusive,
since the particulate matter load can be composed of a cer-
tain number of bio-particles.

Achieving a target condition for IAQ means to ensure that
the concentrations of the airborne contaminants are main-
tained lower than the reference values laid down by legal
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authorities, taking into account the state-of-the-art knowl-
edge about the health risks associated to exposure or the
caused annoyance.

To assess the risk of an adverse effect associated to IAQ,
it is fundamental to evaluate the exposure dose, which is
dependent on the length of evolution of the air concentra-
tion of the hazardous agent and on the duration of the expo-
sure interval, and also influenced by individual factors.
Thus, the risk of developing an IAQ-related health outcome
(e.g., infection by a virus as SARS-CoV-2) is typically propor-
tional to the concentration of the stressor in the air and on
the duration of the exposure.

The first step to accurately estimating the health risks
include the definition and use of robust methodologies for
accurately controlling IAQ A great number of monitoring,
sampling and analysis methods, equipment, probes and
other devices have been developed in the area of IAQ assess-
ment. The available solutions present a wide diversity in
terms of typology (e.g., samplers, monitors, and sensors),
price, performance, target parameters and of the readiness
of the measuring results. In the case of the assays that
require sampling followed by laboratorial analysis, as is the
case with microbiological contaminants, the time to get the
quantified result of the concentration at a given moment
may require some days. Regarding the online instruments
(monitors and sensors), they can readily measure the con-
centrations at high frequency, typically at one minute log-
ging intervals, providing high time-resolved data, offering
better understanding of pollutants’ concentrations, espe-
cially for those episodes that exhibit relevant temporal var-
iations. This typology includes some affordable indoor
environmental quality monitoring systems, capable of mea-
suring the levels of multiple parameters such as tempera-
ture, humidity, particulate matter and carbon dioxide (CO2)
using low-cost sensors.18,19 These kinds of solutions have
been considered reliable tools for a simplified but highly
informative investigation of IAQ.

The concentration of CO2 in indoor spaces represents an
indicator of the existence of adequate air renewal and
whether there is enough fresh air inside buildings. CO2 is co-
exhaled with aerosols containing SARS-CoV-2 by people
infected with COVID-19 and can be used as an indirect mea-
sure of the risk of the existence of high levels SARS-CoV-2
concentrations within enclosed spaces.20 In fact, if an indoor
setting presents conditions for the accumulation of CO2, it is
also prone to promoting the accumulation of other contami-
nants generated indoors (including SARS-CoV-2). Particulate
matter (PM2.5) has been also correlated with the spread of
COVID-19.21-23

Moreover, temperature and relative humidity sensors are
highly accurate and since SARS-CoV-2 remain active at low
temperatures and high relative humidity, these parameters
must be monitored to allow a proper evaluation of indoor
environments.24

Although low-cost sensors have several limitations, they
can at least provide a reliable qualitative assessment of the
indoor environment and detect inadequate ventilation sys-
tems. IAQ monitoring systems have been used by several
researchers in the past few years. These devices can be con-
nected to the Internet to provide real-time monitoring data.
The data can be consulted anywhere and anytime. Moreover,
these systems can trigger notifications when the measured
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values are above the defined healthy standards. These moni-
toring systems are easy to use and to install, are modular
and provide scalability.25,26

Most IAQ recommendations and standards27�29 define
both the reference concentrations for some indoor pollu-
tants, the values about the accepted annoyance level (e.g.
percentage of dissatisfied people) and the ventilation
requirements that, for a given emission rate of pollutants,
will allow the indoor climate to comply with the two previ-
ous criteria. The quality of the air indoors may be expressed
as the extent to which human requirements are met.

Possible action strategies to ensure a good IAQ inside
buildings are: a) removal/attenuation of polluting sources,
b) localized extraction, c) dilution of pollutants in fresh air
and d) air cleaning /air filtration. The first of these strate-
gies implies, for example, the use of building materials,
coatings and furniture with low emission rates of contami-
nants, while the second applies to places with localized pol-
luting sources where it is known from the outset that there
will be emission rates high (e.g. in the stove area in a
kitchen). Filtering and cleaning the air is justified, on the
one hand, when the fresh air outside presents, from the out-
set, concentrations of pollutants above what is recom-
mended, and, on the other hand, if there are multiple
localized sources of pollutants in the indoor environment
not known or not foreseeable and, if for the pollutant in
question, there is properly efficient removal equipment.
This last circumstance, corresponding to the existence of
dispersed and unpredictable emission sources in terms of
their location, is also treatable through the dilution of pollu-
tants with fresh air, corresponding to what is normally called
ventilation. This is defined as a process in which air is sup-
plied or removed from a given space to control the air qual-
ity and the thermal environment. Ventilation is necessary to
supply oxygen for human metabolism and to dilute the con-
centrations of bioeffluent gasses and other chemical, physi-
cal or biological pollutants that may be emitted or admitted
into buildings.

The ventilation requirements of a given indoor compart-
ment can be defined on the basis of the fresh air flow
required for the dilution of pollutants (m3/h/person or m3/
h/m2) or on the basis of the so-called air exchange rate, usu-
ally expressed by the number of complete air volume
changes per unit of time (e.g. 3 air changes per hour). The
definition based on the fresh air flow-rate per occupant or
per unit of area or volume is the most appropriate, as it
takes into account the greater or lesser density of polluting
sources present in the space, which does not happen in the
case of the air exchange rate.

In most IAQ and ventilation standards, two parts are con-
sidered in the process of defining regulatory values for the
fresh air flow-rate. The first takes into account the pollutant
load associated with the occupants (metabolic CO2, body
odors, methane, particles, bio-aerosols, etc.) and the sec-
ond, the pollutant load related to the building itself (emis-
sions from construction materials, coatings, furniture,
combustion processes, cleaning products, etc.).

Since CO2 is the most abundant bio-effluent, with an
emission rate proportional to the level of metabolic
activity and with a good correlation with the emission
rates associated with the remaining bio-effluents, the
concentration of this gas is the most commonly used to
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define reference values for the part of IAQ associated
with occupancy. As there are simple analytical expres-
sions that relate the fresh air flows, either with the
instantaneous values of the spatial average concentration
of CO2, or with the values of the so-called equilibrium
concentration of this gas, for a given space, it is very
practical to use it as reference for defining ventilation
requirements.30 On the other hand, the fact that, in par-
ticular, CO2 sensors based on the NDIR (non-dispersive
infrared radiation) method, have evolved to present an
excellent metrological price/quality ratio, makes it possi-
ble to use them extensively to manage IAQ to minimize
the risk of inhaling biocontaminants at doses that could
be infectious.

The typical 1000 ppm value, recommended in most inter-
national regulations, for the concentration of CO2 in indoor
environments, resulted from studies carried out in the early
1990s31 in which an empirical analytical expression was
obtained establishing the relationship between the average
level of dissatisfaction and the excess of CO2 concentration
in indoor air relative to outdoor air. It was decided to limit
the percentage of dissatisfied people to a maximum value of
20%, which corresponded to an excess of concentration in
relation to the outside air of 650 ppm. At that time, average
concentrations of CO2 in the atmosphere in unpolluted areas
were in the order of 350�380 ppm, which resulted in a value
for the absolute concentration in indoor spaces of 1000 ppm.

Once this value has been defined for the indoor air con-
centration of CO2, it is possible to calculate the fresh air
flow that, for a given generation rate of this pollutant inside
the compartment and a given concentration of CO2 in the
outdoor fresh air admitted into the room, prevents it from
being overtaken. Where the space is occupied by adults,
with a body mass corresponding to the 50% percentile (1.7 m
in height and 70 kg in weight), with a sedentary type activity
(metabolism rate of 1.2 met), the fresh air flow-rate that
guarantees that the concentration of CO2 does not exceed
the 1000 ppm, is 30 m3/(h.person).

Of course, better or worse IAQ conditions may be
achieved if, for the same conditions, the fresh air flow-rate
per person is increased or decreased. In the EN16798�1
standard,32 four categories are considered for each aspect
of indoor environmental quality (thermal, acoustic and
visual environments and IAQ, depending on what exigency
level is considered for the building. The CO2 concentration
above outdoors may range from 550 ppm to 1350 ppm, which
corresponds to fresh air flow-rates of 36 m3/(h.person) and
14.4 m3/(h.person) respectively.

It is easy to understand that the definition of the ventila-
tion requirements before the COVID-19 pandemic was mostly
the result of a tradeoff between the targeted IAQ and the
energy consumption of ventilation processes. Since the
energy consumption to move the air in ventilation circuits is
proportional to the third power of the air flow-rate, there
was a certain reluctance to strongly increasing the flow-
rates. Of course, on account of the COVID-19 pandemic the
boundary conditions for this problem became completely
different because the main objective became to achieve the
maximum dilution of biocontaminants in indoor environ-
ments, minimizing the risk of contagion. Thus, it has been
widely recommended to operate the mechanical ventilation
systems with the maximum potential fresh air flow-rate.
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The result of this type of recommendation, in terms of the
achieved indoor CO2 concentration value, depends very
much on the actual installed ventilation system. In buildings
with modern mechanical or hybrid ventilation systems,
indoor CO2 concentration values of 750 ppm may be reached
with fresh air flow-rates about 50 m3/(h.person).

In recent decades, IAQ monitoring in Portuguese buildings
has created potential for important evidence in characteriz-
ing IAQ conditions in different settings. The great majority
of the studies aiming to evaluate IAQ developed in Portugal
were conducted in educational settings.

In fact, several studies conducted in Portuguese schools
consistently demonstrated that a substantial number of
classrooms present mean CO2 concentrations higher than
1000 ppm.33 34�40 Because most schools in Portugal rely on
natural ventilation, in the cold season, schools are described
to be especially at risk of exhibiting poor IAQ conditions, as
compliance with adequate ventilation rates often causes
complaints related to issues with thermal comfort. Nonethe-
less, there is some evidence to show that high CO2 levels can
occur in classrooms independently of the season.39,41 In gen-
eral, findings from the studies conducted in Portugal suggest
that strategies for adjusting density of occupation to the
classroom characteristics, for controlling indoor sources of
pollution (e.g., the use of low-emitting materials) and for
promoting natural ventilation, even during teaching periods,
need to be properly explored in the school building stock in
Portugal. This will help identify effective measures for pro-
moting healthy air for children and school staff while miti-
gating preventable environmental harm.

Studies assessing indoor environment conditions of homes
of children conducted in Portugal have also provided evi-
dence on the existence of environmental conditions in
homes for exhibiting levels of IAQ indicators that do not
comply with national and/or WHO guidelines. In particular,
the existence of insufficient ventilation rates (estimated
based on the assessed levels of CO2) have been reported as
a consistent observation in the studies conducted.42�44

To date, most of the Portuguese geriatric studies on
indoor exposure have aimed at evaluating IAQ in nursing or
elderly care centres. From these activities, situations of
indoor CO2 concentrations higher than 1000 ppm have been
reported in some the audited facilities.45,46 CO2 levels seem
to be particularly high in the bedrooms, which were identi-
fied as the main microenvironment accounting for the elders'
daily average.45 For restaurants, although the available
information is very limited, there is evidence that the moni-
tored CO2 concentrations in dining rooms can greatly exceed
1000 ppm, suggesting inefficient ventilation in these indoor
spaces.47

From a comprehensive evaluation of IAQ of 20 public
indoor swimming pools located in the Northern region of Por-
tugal, it was found that peak values of CO2 exceeding
1000 ppm were found in 5 out of the 20 swimming pools for
the typical periods of the highest attendance.48

In some Hospital areas investigated in Portugal, the
recommended limits for CO2, particles, total VOCs, form-
aldehyde, bacteria and fungi are exceeded.49 Such find-
ings reinforce the need for further IAQ assessment plans
in clinical settings and for the establishment of specific
regulation to guarantee that hospitals are indeed truly
health-promoting environments.
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Indoor spaces like restaurants have been a focus of atten-
tion during the different COVID-19 waves.50 A recent study
shows that there are significant differences in the ventila-
tion quality in various Spanish restaurants which might trans-
late into different infection risks.51

During the year 2021 a group of researchers called atten-
tion to the risk of opening schools without robust mitigating
measures. One of them was the inclusion of CO2 monitors to
evaluate air quality indoors.52

This simple measure was shown to be doable in schools53

and provides a visual indication for improving class room air
quality.54

Even in some Hospital areas ventilation maybe subopti-
mal,55 so the optimal strategies to achieve target CO2 levels
must be implemented.56

How can we be so sure that mitigation strategies to
improve IAQ translate into better outcomes?

In an official CDC publication, the incidence of Covid-19
was shown to be 37% lower in schools that forced teachers
and staff to wear masks and 39% lower in schools that
improved ventilation.57 Ventilation strategies associated with
lower school incidence of infections included natural ventila-
tion methods alone (35% lower incidence) or in combination
with filtering methods (48% lower incidence). Another recent
study, sponsored by the US CDC, demonstrated that air puri-
fiers with portable HEPA filters reduce exposure to simulated
SARS-CoV-2 aerosols indoors (in a conference room) by 65%,
increasing to 90% when combined with mask use.58

In order to ensure the acceptance and the active par-
ticipation in the measures to improve IAQ and mitigate
related risks, it is crucial to properly engage the popula-
tions in the process. As example, the UK's Independent
Scientific Advisory Group for Emergencies (Indie-SAGE)
proposed on 8 October 2021 a system to transmit techni-
cal information, in a simple way, on mechanical and nat-
ural ventilation in indoor public spaces in buildings of all
sizes and typologies.59

The proposed scheme includes familiar visual systems in
color-coded (green to red) door/room labeling using icons to
represent the behavioural mitigations needed to use spaces
safely and the consequent quality/safety of spaces.

So, in educational environments, restaurants, theatres,
public buildings and offices the dissemination of educational
materials should be considered to inform citizens about the
importance of IAQ, how ventilation conditions can be
improved and on how they can assess the quality of air.

Reducing the spread of SARS-CoV2 necessarily involves
a combination of behavioural measures, such as the cor-
rect use of the mask, social distancing, reducing the
time spent in spaces with high occupancy density, per-
sonal hygiene, respiratory etiquette, testing and isola-
tion. In addition to these measures, the correct design
and maintenance of building ventilation systems are criti-
cal in preventing the transmission of SARS-CoV-2. Thus, it
is essential not only to raise awareness among the popu-
lation, but also to develop clear guidelines for building
managers on ventilation and maintenance routines that
protect the occupants of enclosed spaces.

In order to respond to the new requirements brought
about by COVID-19, several organizations around the
world have developed guidelines for the management of
buildings,60-62 namely their heating, ventilation and air
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conditioning (HVAC) systems, with a view to the reduc-
tion of disease transmission. These guidelines converge
on eight fundamental strategies:

Adapt ventilation to the needs of different spaces in a
building. Ventilation plays an essential role in the dilution of
pollutants in interior spaces and in the removal of infectious
agents. More than ever, the area of spaces, the number of
occupants and their metabolic activity should be considered
when sizing the outdoor air flows to be supplied in different
locations. Adequate ventilation is one of the main strategies
to reduce the risk of transmission by SARS-COV-2.

Promote ventilation by opening windows. In buildings
with natural ventilation it is recommended to open windows,
even if it may cause some discomfort. In buildings with
mechanical ventilation, ventilation provided by opening win-
dows can also be used to increase the ventilation rate. It is
recommended that windows are opened about 15 min before
the spaces are occupied, especially if they were previously
occupied by other people, and then reopened regularly.

Increase HVAC system uptime. In buildings with mechan-
ical ventilation systems, it is advisable to extend the operat-
ing time of the HVAC system in order to reduce the viral load
inside the building. Ventilation systems must operate 24 h a
day, seven days a week, and may operate at a reduced speed
during the non-occupancy period. However, at least two
hours before and after using the building, the system must
operate at rated speed.

Do not recirculate air in the Air Handling Units (AHUs).
Air recirculation in AHUs can reintroduce and distribute viral
material in spaces that are interconnected by duct networks
to the same equipment. Thus, the registration of the fresh
air intake of the AHUs must be activated at 100% and the air
recirculation must be deactivated, even when there are air
filters in the return vents, since these are rarely HEPA (high
efficiency rated particulate arrestance) and, as such, are
not able to effectively filter viral particles.

Control the pressure between spaces. The pressure differ-
ence between areas must be maintained so that airflow moves
from less contaminated areas to more contaminated areas.

Operate the exhaust system of sanitary facilities
permanently. In order to avoid the fecal-oral route of
transmission, it is recommended that the exhaust system
of sanitary facilities work 24 h a day and seven days a
week, that the window is kept closed to guarantee the
negative pressure of the space and that the toilet lid
remains closed during flushing to minimize the emission
of possibly contaminated droplets.

Select suitable air purifiers. Portable air purifiers can be
particularly useful in confined spaces and when ventilation
with outside air is not sufficient to remove pollutants. The
air inside buildings contains several classes of contaminants,
from particles, with different chemical and physical charac-
teristics, to gasses with very different properties. Air puri-
fiers are used to reduce the concentration of these
contaminants and their working principle depends on the
class of contaminants to be removed. When the objective is
to reduce the transmission of SARS-COV-2, we are faced with
the presence of particles containing very small viruses
(between 0.1 and 1mm), so the most effective purifiers
physically remove the particles through the use of HEPA fil-
ters. Alternatively, devices that use electrostatic filtering
principles may also have very positive results. In addition to
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the filtration capacity, air purifiers must be selected accord-
ing to the number of air changes they can ensure per hour,
therefore, they must be suitable for the volume of the space
where they will be installed.63

Monitor IAQ. CO2 is an excellent indicator of ventila-
tion effectiveness and is easily measured using low-cost
sensors.64 CO2 sensors can be coupled to traffic light sys-
tems that indicate to occupants when it is necessary to
open windows to promote greater ventilation of spaces.
CO2 sensors may also be associated with mechanical ven-
tilation, in the so-called demand control ventilation sys-
tems, allowing an automatic adjustment of the supplied
fresh air flow. CO2 monitoring also allows building manag-
ers to identify areas at greatest risk of infection.
Conclusions

Current evidence urges the need for the architectural design
to consider suitable airflow patterns that prevent cross
infections between occupants. The HVAC system design
should, therefore consider multiple elements such as
energy, economy, emissions and also comfort and IAQ.65 The
latter, applies not only to novel constructions, but probably
more importantly, to the renovation of existing buildings,
especially considering the need to ease other individual
restrictive measures.

The cost of providing additional ventilation may be more
than offset by savings that result from the gains in productiv-
ity and the reduction of sick leave.66,67 Transmission preven-
tion through better indoor air quality will be effective
against any airborne virus.

Government financial support is needed to implement
appropriate standards. In the building sector retrofitting
measures considered in the PRR, the Recovery and Resil-
ience Plan, besides the improvement of energy efficiency,
structural quality and other factors, indoor environmental
quality should also be a major action point.
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