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Abstract: Brain iron deficiency (BID) constitutes a primary pathophysiological mechanism in restless
legs syndrome (RLS). BID in rodents has been widely used as an animal model of RLS, since it
recapitulates key neurochemical changes reported in RLS patients and shows an RLS-like behavioral
phenotype. Previous studies with the BID-rodent model of RLS demonstrated increased sensitivity
of cortical pyramidal cells to release glutamate from their striatal nerve terminals driving striatal
circuits, a correlative finding of the cortical motor hyperexcitability of RLS patients. It was also
found that BID in rodents leads to changes in the adenosinergic system, a downregulation of the
inhibitory adenosine A1 receptors (A1Rs) and upregulation of the excitatory adenosine A2A receptors
(A2ARs). It was then hypothesized, but not proven, that the BID-induced increased sensitivity of
cortico-striatal glutamatergic terminals could be induced by a change in A1R/A2AR stoichiometry in
favor of A2ARs. Here, we used a newly developed FACS-based synaptometric analysis to compare
the relative abundance on A1Rs and A2ARs in cortico-striatal and thalamo-striatal glutamatergic
terminals (labeled with vesicular glutamate transporters VGLUT1 and VGLUT2, respectively) of
control and BID rats. It could be demonstrated that BID (determined by measuring transferrin
receptor density in the brain) is associated with a selective decrease in the A1R/A2AR ratio in
VGLUT1 positive-striatal terminals.

Keywords: adenosine A1 receptor; adenosine A2A receptor; restless legs syndrome; brain iron
deficiency; striatum; cortico-striatal terminals; thalamo-striatal terminals

1. Introduction

Restless legs syndrome (RLS) is a common sensorimotor disorder, whose basic com-
ponents include a primary sensory experience, akathisia (an urgent need to move), and
in about 80% of patients a secondary motor component, periodic leg movements during
sleep (PLMS), can be found [1,2]. It has been postulated that the overlying framework
of the disease is a biological bias toward maintaining alertness even in the face of severe
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sleepiness [3]. It is generally accepted that brain iron deficiency (BID) is one of the pri-
mary pathophysiological mechanisms in RLS [2–4]. In fact, BID in rodents recapitulates
key neurochemical changes reported in RLS patients and shows an RLS-like behavioral
phenotype [3,4]. These neurochemical changes include presynaptic hyperdopaminergic
and hyperglutamatergic states [2–4]. Utilization of the BID-rodent model of RLS could
allow the identification of new neurochemical pathways and changes not previously re-
ported in the human condition. Alterations in the adenosinergic system found in the BID
rodent model [3,5] was an important new translational finding that led to a new potential
treatment for RLS [6,7].

More specifically, BID in rodents was found to differentially modify the levels of
the main adenosine receptor subtypes in the brain, downregulating and upregulating the
levels of A1 receptors (A1Rs) and A2A receptors (A2ARs), respectively [8,9]. The changes
in A1R density were found both in the cortex and striatum and occurred under a less
severe iron-deficient (ID) diet, as compared with the changes in A2AR density, which only
occurred with a more severe ID diet [9]. The generalized decrease in A1R density was
then interpreted as a hypoadenosinergic state, and it was hypothesized to account for both
the reported hyperdopaminergic and hyperglutamatergic states in RLS [3,5]. In fact, it is
well established that A1Rs mediate the universal adenosine-mediated inhibitory control of
glutamatergic transmission in the brain [10]; A1Rs are also indirectly and directly involved
in the adenosine-mediated brake of dopaminergic transmission [11,12]. A generalized
A1R-dependent hypoadenosinergic state could provide the basis for the sensory-motor
symptoms of RLS (akathisia and PLMS) and, since A1Rs are involved in the homeostatic
sleep mechanism [13], could also account for the biological bias toward alertness/arousal
seen in RLS.

A specific correlative finding of the hyperglutamatergic state of RLS was the demon-
stration in the BID-rodent model of an increased sensitivity of cortical pyramidal cells to
release glutamate by their efferent striatal nerve terminals [14]. The functional isolation
of these terminals, using an in vivo optogenetic-microdialysis technique, demonstrated
that they are targets of drugs with therapeutic efficacy in RLS, including the dopaminergic
compounds pramipexole and ropinirole and the α2δ ligand gabapentin [2,15]. The three
compounds significantly counteracted glutamate release by cortico-striatal terminals from
rats with BID [14], and their efficacy most probably depends on the presence of presynap-
tic inhibitory dopamine receptors (D2 and D4 subtypes) and voltage-dependent calcium
channels expressing α2δ units [14,16].

Importantly for the adenosine perspective, striatal glutamatergic terminals are also
endowed with A1Rs and A2ARs, which we previously demonstrated to form A1R-A2AR
complexes (heteromers) [17]. It was proposed that these A1R-A2AR heteromers provide a
mechanism to fine-tune modulation of striatal glutamate release, whereby low concentra-
tions of adenosine would preferentially activate A1Rs, promoting inhibition of glutamate
release, while high concentrations would activate A2ARs. As occurs in different brain
glutamatergic synapses, the activation of A2ARs would promote glutamate release by al-
losterically counteracting A1R activation in the A1R-A2AR heteromer and directly through
adenylyl cyclase signaling [17–19]. A recently reported functionally important property of
the A1R-A2AR heteromer is the loss of constitutive activity of the A2AR [20]. We therefore
hypothesized that changes in the density of A1R and A2AR in cortico-striatal glutamater-
gic terminals could be involved in the BID-induced increased activity of cortico-striatal
terminals. Downregulation of A1Rs should lead to a decrease in the ability of low basal con-
centrations of adenosine to tonically inhibit glutamate release, but also to an increase in the
population of A2ARs not forming heteromers and, therefore, showing constitutive activity,
a mechanism that would be more relevant upon concomitant upregulation of A2ARs.

That changes in A1R/A2AR stoichiometry in favor of A2ARs could be involved in
the BID-induced increased sensitivity activity of striatal terminals was supported by a
recent study that also used the in vivo optogenetic-microdialysis technique. It was first
shown that an A1R antagonist, which counteracts the activation of A1Rs by endogenous
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basal levels of adenosine, increases the sensitivity of cortico-striatal terminals to release
glutamate [21]. In addition, increasing the extracellular levels of adenosine by application
of dipyridamole, an inhibitor of equilibrative nucleoside transporters ENT1 and ENT2,
inhibited basal and optogenetically-induced glutamate release by cortico-striatal terminals
from rats with BID and controls [21]. These preclinical results predicted a possible clinical
role of dipyridamole in RLS, which we could confirm in two recent clinical studies [6,7].
However, the actual BID-induced change in the A1R/A2AR stoichiometry in cortico-striatal
terminals still needs to be demonstrated. In the present study we directly address this
question by using a newly developed FACS-based synaptometric analysis to compare the
relative abundance on A1Rs and A2ARs in cortico-striatal glutamatergic terminals of control
and BID rats.

2. Results
2.1. Diet-Induced Anemic Phenotype and Bid

As shown in Table 1, rats fed with the iron deficient diet (n = 11) showed a classical
anemic phenotype, including a 16% reduction in body weight, severe reduction in red blood
cell- and hemoglobin-related parameters, hypolymphocytemia, thrombocytopenia and a
91% reduction in serum iron content, as compared with controls (n = 10). The concomitant
decrease in the level of iron in the brain can be determined by directly measuring the iron
content or indirectly, as here documented, by analyzing the density or expression of the
transferrin receptor, (TrfR), which is specifically upregulated with chronic cellular iron
deficiency [22–24].

2.2. Flow-Synaptometric Analysis of Striatal Nerve Terminals

Working with isolated striatal nerve terminals allows for the evaluating of the presy-
naptic density of adenosine receptors without the masking effect of high post-synaptic
adenosine receptor levels, which is often a problem in microscopy (Figure 2A,B; see
Section 4). Furthermore, this approach permits a robust and sensitive quantitative analysis
of the colocalization of presynaptic markers [25]. First, we evaluated the frequency of
striatal terminals (positive for synaptophysin; SYN+) that were positive for vesicular trans-
porter VGLUT1 (VGLUT1+), VGLUT2 (VGLUT2+), A1R (A1R+) or A2AR (A2AR+) and the
total A1R+/A2AR+ ratio. VGLUT1+ and VGLUT2+ striatal terminals correspond to cortico-
striatal and thalamo-striatal glutamatergic terminals, respectively [26–28]. The frequency
of presynaptic A2AR labeling was about half of what we previously observed in striatal
nerve terminals of CD-1 mice and Wistar rats [25], therefore most probably representing
an underestimation. Unfortunately, from several other commercial antibodies, only the
Nittobo/Frontiers anti-A2AR antibody showed sufficient selectivity in our assay when com-
paring its labeling to striatal nerve terminals of wild-type and A2AR KO mice (see Section 4).
The most likely explanation for this discrepancy is that the Nittobo/Frontiers anti-A2AR
antibody was raised against mouse A2ARs and it is not equally sensitive for different rat
strains (M. Watanabe, personal communication). Nevertheless, a decreased sensitivity
in the detection of A2ARs should not affect the conclusions related to a BID-dependent
alteration of the frequency of receptors in the striatal glutamatergic terminals.

As Figure 2C demonstrates, BID did not affect the relative abundance of glutamatergic
terminals in the striatum. Notably, the ratio of VGLUT1+ and VGLUT2+ terminals was
comparable to what one can infer from electron microscopy studies [28]. There was
a tendency for a decreased frequency of A1R labelling (Figure 2D1) and an increased
A2AR labelling (Figure 2D2) for the total synaptosomal population, but without reaching
statistical significance. Nevertheless, when the ratio of A1Rs and A2ARs labeling frequencies
were calculated within the same animals, there was a marked and statistically significant
reduction in the A1R+/A2AR+ ratio in the BID group (Figure 2D3).
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Table 1. Body weight and haematological parameters.

Parameter Group Mean S.E.M. p

Body Weight (g) control 296.4 8.47
0.0002BID 248.5 6.62

Erythrocytes (1012/L)
control 6.68 0.08

<0.0001BID 2.34 0.20

Hemoglobin (g/dL) control 14.2 0.23
<0.0001BID 5.20 0.31

Hematocrit (L/L)
control 0.44 0.01

<0.0001BID 0.12 0.01

Mean Corpuscular Volume (fL) control 65.1 0.54
0.0029BID 57.3 2.76

Mean Globular Haemoglobin (pg) control 21.1 0.24
0.287BID 26.4 2.83

Mean Corpuscolar Haemoglobin
(g/dL)

control 32.4 0.21
0.0093BID 44.9 3.16

Red Cell Distribution Width (%)
control 12.1 0.14

<0.0001BID 23.3 2.36

Leukocytes control 9.28 1.06
0.0717BID 6.43 0.97

Segmented Neutrophils control 1.21 0.16
0.8642BID 1.09 0.27

Eosinophils control 0.08 0.05
0.4814BID 0.054 0.03

Lymphocytes (109/L)
control 7.51 0.81

0.0317BID 4.99 0.66

Monocytes (109/L)
control 0.45 0.11

0.1782BID 0.29 0.09

Thrombocytes (109/L)
control 777.0 26.6

0.0215BID 1247.6 131.1

Serum Iron Concentration
(µmol/L)

control 44.1 2.78
<0.0001BID 4.39 0.25

Statistical comparisons between BID rats and controls were made with an unpaired Student’s t-test.

Figure 1. Increased density of transferrin receptor (TrfR) in the cerebral cortex of rats with BID as
compared with controls (CTRL). (A) Representative blot with 10 µg proteins obtained from total
cortical homogenates of three pairs of CTRL and rats with BID. (B) TrfR density values were compared
to their respective β-actin density values after reprobing the stripped membranes and the average of
TrfR/β-actin ratios from CTRL rats were taken as 100%. Statistical comparisons between rats with
BID and controls were made with two-tailed unpaired Student’s t-test (* = p < 0.05).
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Figure 2. Localization of A1R and A2AR in striatal terminals (A) Representative flow synaptometry
dual parameter dot-plot of striatal synaptosomes for size (forward scatter; proportional to the particle
size) and for complexity/granularity (side scatter). The logarithmic scales of the x and the y axes
represent signal intensity in arbitrary units. Red dots represent FITC-labeled synaptosomes, while
blue dots are size calibration beads. (B) Representative fluorescence histogram documenting the
selectivity of anti-synaptophysin labeling. Specific signal (M2 region) for single-labeled synaptosomes
was calculated by subtracting the percentage of labeling by the secondary antibodies alone (histogram
filled with green representing synaptosomes incubated only with FITC-conjugated anti-rabbit an-
tibody) from the percentage of labeling by the antibody of interest (histogram in red color). M1
region represents the unlabeled synaptosomes. Note that similar controls were also carried out for
the other primary antibodies. (C) Striatal presynaptic frequency (as % of synaptophysin positive
terminals, SYN+) of vesicular glutamate transporters 1 and 2 (VGLUT1/2). (D1) Percentage of A1R+

cortico-striatal terminals, (D2), percentage of A2AR+ cortico-striatal terminals, and (D3) ratio between
the frequency of inhibitory A1R excitatory and the A2AR. The inter-animal variability of A1R and
A2AR labelling masks the difference between control and BID in panels D1 and D2, while in panel D3

there is an intra-animal normalization of A2AR labelling to A1R labelling, better illustrating the effect
of BID. For panels D1–D3, all raw data with the corresponding statistical analyses can be accessed in
Supplementary Table S1. Bars represent mean + S.E.M. of n = 8–11 animals. Statistical comparisons
were made with a two-tailed unpaired Student’s t-test (n.s. = not significant; * = p < 0.05).

Subsequently, we calculated the labelling frequency of A1Rs and A2ARs in cortico-
striatal (VGLUT1+) nerve terminals. Figure 3 (panels A1–A3) show representative dot
plots for dual-labelled synaptosomes. In synaptosomes from rats with BID, the apparent
reduction in the percentage of A1R colocalization with VGLUT1 and the increase in the
percentage of A2AR colocalization with VGLUT1 were not statistically significant (Figure 3,
panels B1 and B2), while the A1R+/A2AR+ ratio in VGLUT1+-terminals was significantly
decreased (Figure 3, panel B3). On the other hand, BID did not significantly alter either
the percentage of A1R+ or A2AR+ in thalamo-striatal (VGLUT2+) nerve terminals or the
A1R+/A2AR+ ratio in those terminals (Figure 4).
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striatal terminals (VGLUT2 positive) terminals that are positive for (A1) A1R+, (A2) A2AR+ and
(A3) ratio between the inhibitory A1R and the excitatory A2AR. Bars represent mean + S.E.M. of
n = 8–11 animals. Statistical comparisons between rats with BID and controls were made with a
two-tailed unpaired Student’s t-test (n.s. = not significant).

3. Discussion

The present results provide a mechanistic explanation for the previously reported
increased sensitivity of cortico-striatal glutamatergic terminals in rodents with BID [14,21]:
a change in A1R/A2AR stoichiometry in favor of A2ARs. Taking into account the technical
limitations imposed by the relative low sensitivity of the A2AR antibodies, this change in
A1R/A2AR stoichiometry indicates that it should lead to a decrease in the population of
A2ARs forming heteromers with A1Rs in those glutamatergic terminals [17]. A2ARs have a
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significant constitutive activity which is blunted upon heteromerization with A1Rs [20]. Our
theory is that A2ARs, freed from the inhibitory control of A1Rs, recover their constitutive
activity, which plays a major role in the BID-induced increased excitability of the cortico-
striatal glutamatergic terminals.

We have recently found evidence for a predominant heterotetrameric structure of
three different striatal A2AR heteromers, constituted by A2AR homodimers and either A1R,
dopamine D2 receptor (D2R) or cannabinoid CB1 receptor (CB1R) homodimers [19,20,29].
A2AR-D2R heteromers are localized postsynaptically, in striato-pallidal GABAergic neu-
rons [11,30], while A2AR-CB1R heteromers are also localized in the cortico-striatal termi-
nal [20,25]. It has been recently shown that, different from the A2AR-A1R heteromers, the
A2AR in the A2AR-CB1R heteromer preserves its constitutive activity [20]. Results of the
same study suggest that the well-established cannabinoid-induced inhibition of striatal
glutamate release can mostly be explained by a CB1R-mediated counteraction of the A2AR-
mediated constitutive activation of adenylyl cyclase in the A2AR-CB1R heteromer [20]. A
relative increase in the population of A2ARs not forming heteromers with A1Rs would also
favor a relative increase of A2ARs forming heteromers with CB1Rs, which would also be
expected to increase the population of A2ARs with constitutive activity.

Although it was initially thought that A1R-A2AR heteromers permit a fine-tune mod-
ulation by adenosine, by which low and high concentrations of adenosine preferentially
activate the signaling of A1Rs and A2ARs, respectively (see Introduction and [17]), recent
results from optogenetic-microdialysis experiments with the ENT1/ENT2 inhibitor dipyri-
damole question this hypothesis. Thus, the direct striatal administration of dipyridamole
significantly decreased basal levels of glutamate and counteracted the optogenetic-induced
glutamate release by cortico-striatal terminals in both rats with BID and naïve controls [21].
According to the initial hypothesis of operation of the A1R-A2AR heteromer, the opposite
effect, an increase in glutamate release, should have been expected if adenosine had reached
the optimal extracellular concentration to activate the A2ARs. In fact, results also obtained
with in vivo microdialysis experiments showed that exogenously added selective A2AR
agonists, such as CGS21680, induce glutamate release in the striatum [31,32] by directly
activating presynaptic A2ARs in glutamatergic terminals [33,34]. Given dipyridamole’s
inability to increase glutamate release, the increase in extracellular adenosine induced by
the drug seems to preferentially affect only A1Rs and not be of sufficient concentration to
activate A2ARs. An additional explanation for the preferential activation of A1Rs vs. A2ARs
with dipyridamole is the evidence for nearer co-localization of A1R with equilibrative
nucleoside transporters in specific cellular microdomains [35]. Conversely, accumulating
evidence indicates that, in other microdomains, the activation of A2ARs by endogenous
adenosine requires a particular pool of extracellular adenosine originated from the CD73-
mediated formation of ATP-derived extracellular adenosine [36–38], in accordance with
the physical association of CD73 and A2ARs in the striatum [39]. However, we would favor
the first explanation for the effect of dipyridamole in cortico-striatal nerve terminals, since
A2AR-A1R heteromerization implies a tight co-localization of both receptors in the same
microdomain of the plasma membrane.

On the other hand, selective A2AR antagonists, such as SCH-442416 or MSX-3 (pro-
drug of the active compound MSX-2), but not KW-6002 (istradefylline), counteract striatal
glutamate release induced by electrical or optogenetic stimulation of cortico-striatal neu-
rons [14,30,40,41]. Importantly, most A2AR antagonists are inverse agonists, including
SCH-442416 and MSX-2 (results in preparation), while only KW-6002 is a neutral antago-
nist [42], which therefore cannot counteract a constitutive activity of the A2AR. Altogether,
these findings with increased endogenous adenosine (with dipyridamole) and exogenous
A2AR ligands are compatible with the constitutive activity of A2ARs (not forming het-
eromers with A1Rs) playing a more significant role in modulating (enhancing) the basal
excitability of cortico-striatal terminals than its activation by endogenous adenosine. On
the other hand, endogenous adenosine mostly plays a negative modulation of the excitabil-
ity of cortico-striatal terminals by preferentially acting on A1Rs (forming or not forming
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heteromers with A2ARs). By promoting a preferential adenosine-mediated presynaptic
activation of A1Rs vs. A2ARs, dipyridamole could be considered as an indirect agonist of
striatal presynaptic A1Rs localized in cortico-striatal terminals.

As briefly reviewed in the Introduction, BID in rodents constitutes a model of RLS
with construct validity. Rats with BID show an increased sensitivity of cortico-striatal
synapses [14], which could be mechanistically related to the well-established cortical motor
hyperexcitability of RLS patients [43–45]. The present study provides further support for
a role of adenosine signaling in this increased sensitivity, more specifically, for a change
in A1R/A2AR stoichiometry in favor of A2ARs in cortico-striatal glutamatergic terminals.
In fact, previous experiments had already shown a decrease in A1R density in the cortex
and striatum and an increase in A2AR density in the striatum of rodents with BID [8,9].
These neurochemical changes have not yet been reported in patients with RLS, which
would further validate the rodent with BID as an animal model of RLS. The “adenosine
hypothesis” of RLS, however, is supported by the efficacy of dipyridamole in treating RLS
symptoms [6,7].

Co-localization of A1Rs and A2ARs is not specific for the glutamatergic terminals of
the striatum and changes in A1R/A2AR stoichiometry in favor of A2ARs in glutamatergic
terminals of other brain areas can also be involved in brain conditions other than RLS. For
instance, there is compelling evidence from animal models of a cortical and hippocampal
upregulation of A2ARs, without a concomitant upregulation of A1Rs, in glutamatergic
synapses upon aging and Alzheimer’s disease (AD) [46–49]. We propose that the relief of
A1R-mediated inhibition of the constitutive activity of the A2AR in the A1R-A2AR heteromer
represents a common mechanism involved in neuropsychiatric conditions with increased
glutamatergic transmission. Therefore, blocking the constitutive activity of presynaptic
A2ARs with selective inverse agonists or increasing the activation of presynaptic A1Rs with
a preferential indirect A1R agonists like dipyridamole could provide valuable therapeutic
approaches for those neuropsychiatric disorders.

4. Materials and Methods
4.1. Animals

All experiments were performed in accordance with the local animal welfare commit-
tee (Centre for Neuroscience and Cell Biology, University of Coimbra, Portugal), European
Union guidelines and the Federation of Laboratory Animal Science Associations (FELASA)
and were approved by the Animal Care Committee (ORBEA) of the Center for Neuroscience
and Cell Biology of the University of Coimbra, Coimbra, Portugal (license number 257).
Sprague-Dawley rats were purchased from Charles-River (Écully, France) for breeding.
Animals throughout the study were housed with 12 h light on/off cycles under controlled
temperature (23 ± 2 ◦C) and ad libitum access to food and water. All efforts were made to
minimize the number of animals used and to minimize their stress and discomfort. On
post-natal day 16 (PND16), the food of the lactating dams was changed from regular rat
chow to a rat chow containing 48 ppm or mg/kg Fe2+ (code: TD.80396; ssniff Spezialdiäten
GmbH, Soest, Germany). On PND21, the litter was weaned, and 19 male pups were ran-
domly assigned to the adjusted control group (receiving chow with 48 ppm Fe2+) and BID
group (receiving the modified TD.80396 diet containing residual, 6–8 ppm Fe3+). Two to
three pups were housed per cage.

4.2. Determination of Peripheral Iron Deficiency and Bid

28 days after the initiation of the iron diet, rats were weighed, then deeply anesthetized
with halothane in a chamber (no reaction to tail pinch or handling, while still breathing),
and decapitated with a stainless-steel guillotine for immediate tissue collection in ice-cold
sucrose solution. Some of the dissected brain parts were snap-frozen in liquid nitrogen,
while the striata were used instantly for the preparation of purified synaptosomes (see
below), which were then snap-frozen and stored at −80 ◦C until use within a month. In
addition, the blood was collected in tubes with 0.5 M K2EDTA to perform supplementary



Molecules 2022, 27, 1489 9 of 13

hematological analysis by a local external laboratory (Laboratory of Beatriz Godinho,
Coimbra, Portugal).

4.3. Purified Synaptosomes
4.3.1. Preparation of S1 Fraction

Synaptosome preparation and purification was carried out according to the protocol
described by Dunkley et al. [50], with some changes introduced by us [25]. The brains were
quickly collected in an ice-cold solution of 320 mM sucrose, 1 mM EDTA and 5 mM Tris,
pH 7.4. The pair of striata were isolated and homogenized, using a Potter Teflon, in 6 mL
sucrose. This homogenate was divided into three 2 mL Eppendorf tubes, and centrifuged
at 4000 g for 5 min. The first supernatants (S1) of the first two low-speed centrifugations
were layered on top of the discontinuous Percoll gradient for purification.

4.3.2. Discontinuous Percoll Gradient

Percoll gradients (Percoll diluted in the above sucrose solution to 3%, 10%, 15% and
23%) were prepared as detailed before [25,50]. In 15 mL centrifuge tubes, 2 mL of the S1
synaptosomal fraction were layered gently with a peristaltic pump on top of the Percoll
gradients. The gradients were centrifuged at 25,000 g for 11 min at 4 ◦C. The purified
synaptosomes were removed between the 15% and 23% layers and subsequently, diluted
to 15 mL with HEPES buffered medium (HBM) with the following constitution: 140 mM
NaCl, 5 mM KCl, 5 mM NaHCO3, 1.2 mM NaH2PO4, 1.2 mM MgCl2, 10 mM glucose, and
10 mM HEPES, pH 7.4. The samples were centrifuged at 22,000 g for 11 min at 4 ◦C, the
pellet was collected, diluted in 2 mL of HBM and centrifuged at 5000 g for 11 min at 4 ◦C
and the final pellet was snap-frozen in liquid nitrogen and stored at −80 ◦C until use.

4.3.3. Immunolabeling and Flow Synaptometry Analysis

Immunochemical labeling was performed according to a method for staining of in-
tracellular antigens [25,51] for flow cytometry. The pellets obtained after purification in
gradients were fixed in 1 mL of 0.25% paraformaldehyde in phosphate buffered saline
(PBS; 135 mM NaCl, 1.3 mM KCl, 3.2 mM NaH2PO4, 0.5 mM KH2PO4 and 10 mM EDTA)
for 1 h at 4 ◦C. After fixation, they were centrifuged at 5000 g for 3 min at 4 ◦C. The pellet
was incubated with PBS with 0.2% Tween 20 for 15 min at 37 ◦C and then centrifuged
at 5000 g, and subsequently, washed and pelleted with 0.5 mL of PBS for 3 min at 4 ◦C.
The resulting pellet was resuspended and diluted in ~200 µL PBS. For immunolabeling,
5 µL of these resuspended synaptosomes were incubated with 100 µL of primary and
secondary antibodies, all diluted in PBS with 2% normal goat serum (Jackson Immunore-
search, West Grove, PA, USA), for 30 min at 4 ◦C. As primary antibodies, we used rabbit
monoclonal anti-synaptophysin (1:300; Synaptic Systems, Goettingen, Germany), mouse
monoclonal anti-VGLUT1 (1:100; Synaptic Systems), mouse monoclonal anti-VGLUT2
(1:10,000; Synaptic Systems), rabbit polyclonal anti-A1R (1:300; Invitrogen, Walthan, MA,
USA) and guinea pig polyclonal anti-A2AR (1:30; Frontiers/Nittobo, Tokyo, Japan). As
secondary antibodies, we used goat IgG anti-mouse Cy3 (1:200; Jackson Immunoresearch),
goat IgG anti-rabbit FITC (1:200; Jackson Immunoresearch) and goat IgG anti-guinea pig
Cy5 (1:200; Abcam, Cambridge, UK). The optimal dilution for the primary and secondary
antibodies was determined previously (Ferreira et al., 2015). After each incubation, three
washes were carried out for 3 min each, with PBS 0.2% Tween 20, at 5000 g at 4 ◦C. Negative
controls without primary antibodies were also carried out, containing only synaptosomes
and secondary antibodies.

4.3.4. Detection of Synaptosomes and Data Analysis

Labeled synaptosomal pellets were then resuspended in PBS and were analyzed in
a FACSCalibur flow cytometer (four channels; Becton, Dickinson and Company, East
Rutherford, NJ, USA). The right dilution for each sample was adjusted to work within
a count of 300–400 events per second. Approximately 30,000 events were collected for
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analysis. From earlier electron microscopy studies (see for instance ref. [28]), we inferred
that the size of striatal glutamatergic synapses falls predominantly between 0.5 and 2 µm.
Thus, with the help of the Invitrogen Flow Cytometry Sub-micron Particle Size Reference
Kit, we calibrated the gating of our equipment for this size range (Figure 2A). Data analysis
was performed using BD Cell Quest Pro software. Data were plotted in a dual-parameter
dot plot to analyze the percent of co-localization through the upper right quadrant. A
threshold was set on forward light scatter to exclude debris. To correct for spectral overlap
during multicolor flow cytometry experiments, color compensation was performed. The
specific labeling of each sample is calculated by subtracting the percentage of labeling
the sample with that of the respective controls and with the percentage of PBS debris
(Figure 2B).

4.4. Western Blotting

To test the effectiveness of the BID protocol on the brain, cortical samples of both the
control and the BID group were homogenized and sonicated in 1% SDS, then proteins were
quantified with the colorimetric bicinchoninic acid (BCA) assay. Next, the samples were
denaturated with SDS sample buffer (500 mM Tris, 600 mM dithiothreitol, 10.3% SDS, 30%
glycerol and 0.012% bromophenol) at 70 ◦C for 20 min. From each sample, 10 µg of protein
was loaded into the gels and subsequently separated by polyacrylamide gel electrophoresis
(SDS-PAGE), using a 4% stacking gel (4% bis-acrylamide, tris-HCl (0.5 M, pH 6.8), 10% SDS,
10% ammonium persulfate, 1% tetramethylethylenediamine (TEMED) and a 10% resolving
gel 10% bis-acrylamide, tris-HCl (1.5 M, pH 8.8), 10% SDS, 10% ammonium persulfate,
1% TEMED), first at 60 V for 15 min and then at 120 V for 60 min. Then, proteins were
transferred to nitrocellulose membranes at 0.75 A for 2 h, at 4 ◦C with agitation, with CAPS
solution (N-cyclohexyl-3-aminopropanesulfonic acid) buffered solution with methanol
(10 mM CAPS; 10% methanol, pH 11.0). The membranes were blocked with 3% bovine
albumin serum (BSA; Merck Biosciences, Darmstadt, Germany) in Tris-buffered saline
(10 mM Tris; 150 mM NaCl) containing 0.1% Tween-20 (TBS-T) for 1 h at room temperature.
The membranes were then incubated with a monoclonal mouse anti-transferrin receptor
antibody (1:2000; Invitrogen), overnight at 4 ◦C. After incubation, membranes were washed
for 3 × 5 min in TBS-T and then incubated with secondary antibody (goat anti-rabbit IgG
peroxidase conjugated; Thermo Scientific, Walthan, MA, USA) with 3% BSA for 2 h at
room temperature. After washing three times for 5 min, the membranes were processed
for protein detection using an enhanced chemiluminescence kit (Pierce™ECL Western
Blotting Substrate, Thermo Scientific 32106), and the bands visualized on a on a ChemiDoc
Plus imaging system (BioRad, Hercules, CA, USA). After stripping, the membranes were
reprobed with an anti-β-actin antibody (1:20,000; Merck Biosciences) for normalization of
protein density. Quantification of the optical density of the bands was performed using the
Image Lab™ software version 6.0.1 (BioRad).

Supplementary Materials: The following supporting information can be downloaded at Table S1:
Data and statistics for Figure 2.
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