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Abstract: In the present work, 0.25 wt%GNP-Ti composites were prepared through powder met-
allurgy route by adopting three types of mixing modes to investigate the extent of mixing on the
mechanical and tribological properties. Dry ball milling, wet ball milling, and rotator mixing were
independently employed to homogenize the composite constituents. Three types of composite pow-
ders obtained were subsequently sintered into composite pellets by cold compaction followed by
vacuum sintering. Morphological investigation of composite powders performed by SEM revealed
better homogenization of GNPs in Ti matrix for dry ball milled composite powder, whereas wet ball
milled and rotator mixed composite powders showed aggregation and bundling of GNPs. Micro
Vickers hardness of composites produced via dry ball milling is 4.56% and 15.7% higher than wet
ball milled and rotator mixed samples, respectively. Wear test performed by pin-on-disk tribometer
showed higher wear loss for wet ball milled and rotator mixed composites in comparison to dry
ball milled.

Keywords: titanium; graphene nanoplatelets; titanium matrix composites; morphology; mechanical
properties; tribological properties

1. Introduction

Metal matrix composites (MMCs) have been regarded as an essential class of engineer-
ing materials due to their better thermal and mechanical performance [1,2]. Conventionally,
titanium and its alloys seem to be a better choice for automotive, aerospace, and bio-medical
applications owing to the medium density, moderate mechanical strength, good corrosion

Molecules 2022, 27, 2666. https://doi.org/10.3390/molecules27092666 https://www.mdpi.com/journal/molecules

https://doi.org/10.3390/molecules27092666
https://doi.org/10.3390/molecules27092666
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/molecules
https://www.mdpi.com
https://orcid.org/0000-0002-2006-4197
https://orcid.org/0000-0001-7405-0324
https://orcid.org/0000-0002-1299-8758
https://doi.org/10.3390/molecules27092666
https://www.mdpi.com/journal/molecules
https://www.mdpi.com/article/10.3390/molecules27092666?type=check_update&version=2


Molecules 2022, 27, 2666 2 of 18

and oxidation resistance, better fracture toughness, and biocompatibility. However, their
use in many applications is limited because of poor wear resistance and lower electri-
cal and thermal properties [3,4]. Poor tribological performance of titanium, for example,
inferior fretting behavior and lower wear resistance, are chiefly due to its low thermal
conductivity and less plastic shearing resistance [5]. In addition, many structural and
engineering applications require a higher degree of mechanical strength. To overcome
such deficiencies in titanium, numerous reinforcement materials have been incorporated to
develop titanium matrix composites (TMCs) [6]. Various ceramic reinforcements have been
reported in the literature to improve the strength and wear resistance of Ti and its alloys.
Shufeng et al. investigated the synergic effect of in situ synthesized TiC-TiB reinforcements
on microstructure and mechanical properties of TMCs and observed a 1.7 times increase in
tensile strength accompanying a 12.5% decline in ductility for 13.6 vol% reinforcement [7].
Ti/TiC nanocomposites were synthesized by Gu et al., who found optimum content of TiC
as 12.5 wt% to achieve a 2 times increase in microhardness and considerably low coefficient
of friction (COF) and wear rate [8]. Wang et al. achieved 3.5 times higher compressive
strength at the expense of a 20% decline in strain to failure for in situ synthesized nano-
metric TiC-Ti composites compared to un-reinforced Ti [9]. Al2O3-Ti nanocomposites were
produced by Zarghani et al. through friction stir processing and noticed 1.5 times enhance-
ment in compressive yield strength for 3.9 vol% Al2O3-Ti in comparison to as received
Ti [10]. Huang et al. obtained 1.36 times increase in tensile strength for 5 vol%TiB nanowires
reinforced Ti-6Al-4V composites compared to that of un-reinforced alloy [11]. Pan et al.
developed in situ formed TiC-Ti composites and showed 62% higher nano-indentation
hardness and 30% lower COF than pure Ti [12]. Recently, Jin et al. found a 68.6% increase
in hardness and 32.6% improvement in wear resistance of TiB2-Ti composites produced
by selective laser melting [13]. However, reported enhancement in mechanical strength
and wear resistance is achieved at the cost of lightweight, toughness, thermal, and electri-
cal properties because ceramics have higher densities, low fracture toughness, and poor
thermal and electrical conductivity than titanium [14].

In view of the above, lightweight reinforcement materials having high strength, tough-
ness, and electrical and thermal conductivity are indispensable in realizing the goal of
producing titanium composites for aerospace, automotive, and bio-medical applications.
In this perspective, carbonaceous materials, for example, carbon fiber (CF), nano-diamond
(ND), carbon nanotubes (CNTs), and graphene nanoplatelets (GNPs), emerged as an
ideal choice thanks to their superior chemical and physical characteristics [15,16]. Nano-
diamonds reinforcement (0.35 wt%) in the Ti matrix resulted in a 71.5% reduction in wear
rate, as investigated by Saba et al. [17]. CNTs due to the high aspect ratio, high strength,
and self-lubrication properties appear to be a promising reinforcement for TMCs [18].
Research conducted by Kuzumaki et al. demonstrated a 5.5 times improvement in hard-
ness of Ti through 0.8 vol% CNTs reinforcement [19]. Kondoh et al. achieved a 1.2 and
1.5 times increase in tensile and yield strength, respectively, for 0.35 wt% CNT-Ti composites
without much reduction in the ductility [20]. Moreover, 3 wt% CNT-Ti composites were
produced by Xue et al., wherein they confirmed good compressive strengthat elevated
temperature when subjected to higher strain [21]. Wang et al. reported 61% compressive
strength enhancement for 0.4 wt% CNT-Ti composites [22]. Munir et al. researched on
the powder metallurgy processing of CNT-Ti composite and investigated the influence
of processing parameters and CNTs content on microstructural, mechanical, and wear
properties. Increase in compressive strength by 1.5 times and wear reduction by a factor of
3.4 were reported for 0.5 wt% CNT-Ti composites [23–25]. However, among carbonaceous
reinforcement materials, graphene has led the race, because it is gifted with low density
(1.8 g/cm3), high strength (125 GPa), high elastic modulus (1.1 TPa), very good electrical
conductivity (2 × 108/ohm/m), remarkable thermal conductivity (5 × 103 W/m/K), very
high specific surface (2630 m2/g), and outstanding self-lubrication behavior [26]. Graphene
is basically a two-dimensional single atomic layer of SP2 hybridized carbon atoms arranged
in a honeycomb lattice with a bond length of 0.142 nm. Its extraordinary self-lubrication is
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due to easy sliding on the densely packed surface [27]. However, the synthesis of perfect
single layer graphene with ideal properties is not practicable [28]. Therefore, multilayer
graphene with more than 10 layers, termed as graphene nanoplatelets (GNPs), retaining
most of the single layer properties has been proved to be a more suitable reinforcement
choice for composites applications [29].

Therefore keeping in mind the aim to develop lightweight, tough, and wear resistant
composites, a systematic literature survey regarding GNPs-Ti composites has been carried
out which shows that research in this area is in the initial stage. Prior works synthesized the
GNPs-Ti composites through the powder metallurgy (PM) route and explored some signifi-
cant aspects. Yang et al. produced graphene platelets (GPs) reinforced titanium composite
via ball milling, cold compaction, and microwave sintering. They reported an 8% increase
in thermal conductivity for 0.4 wt% GP, while the maximum compressive strength was
recorded at 0.3 wt% GPs [30]. Song et al. synthesized TMCs reinforced by multilayer
graphene (MLGs) through solution ball milling and spark plasma sintering (SPS) and
found an optimum content of 0.5 wt% MLGs for improvement in microscopic mechanical
properties and scratch resistance of TMCs, but properties declined at 1.5 wt% MLGs. [31].
Cao et al. achieved a 12%, 20%, and 15% increase in tensile strength, yield strength, and
elastic modulus, respectively, for 0.5 wt% graphene nanoflakes (GNFs) reinforced Ti-6Al-4V
composites fabricated via blending, wet mixing, hot isostatic pressing (HIP), and isothermal
forging. Notably, enhancement in mechanical properties was registered without the loss of
ductility [32]. Gurbuz et al. developed 0.15, 0.30, 0.45, and 0.60 wt% GNPs-Ti composites
by blending, ball milling, cold compaction, and vacuum sintering. Optimized sintering
conditions were noticed at 1100 ◦C, 120 min for 0.15 wt% GNPs-Ti composites, displaying a
86% increase in hardness [33]. Mu et al. have explored the influence of GNPs contents and
its dispersion on the mechanical performance of TMCs, in addition to the role of secondary
processing such as hot rolling on mechanical properties of GNP-Ti composite, produced
through wet ball milling and spark plasma sintering. Tensile strength and yield strength
were enhanced to 24% and 27%, respectively, for 0.4 wt% GNPs, whereas for 0.8 wt%
GNPs-Ti composite system, the nanoindentation test showed a 96% hardness increase in
the direction perpendicular to hot rolling [34,35]. Guo et al. used ball milling and SPS
to fabricate Ti-6Al-4V matrix composites reinforced by Ni-P coated GNFs with varying
content from 0.25 to 1.5 wt%. They observed a uniform distribution of GNFs and reported
a 1.6 times increase in compressive yield stress for 0.5 wt% GNFs while maintaining 34.2%
ductility [36].

Despite some very encouraging outcomes, the field is still open to explore the full
perspective of graphene reinforced titanium matrix composites for their effective use in
aerospace, automotive, and bio-medical sectors. Processing of these composites poses
some big challenges. Since the first and crucial step in PM is the homogenous mixing of
composite constituents to attain optimum property attributes in sintered composite [37],
the primary target in developing GNPs-Ti composites is to overcome the challenge of
GNPs aggregation in the titanium matrix because GNPs dispersion in metal matrices is
even more difficult than CNTs, due to the very high specific surface area of graphene [38].
Therefore, ample homogenization of GNPs-Ti composites powders before consolidation is
the most vital process phase. Earlier works focused on PM processing by employing one
type of homogenizing approach. Keeping in view the applications demand of TMCs such
as landing gear and turbine engine parts for aircraft and bone and dental implants [39,40],
there is a need to explore and compare various homogenizing techniques and optimize the
best suitable method to reach the targeted attributes, for example, enhanced mechanical
and tribological characteristics. To the authors’ best knowledge, no comprehensive study
on the investigation of homogenizing methodology’s influence on the mechanical and
tribological performance of GNPs-Ti composites has been published so far.

The main purpose of this research is to produce GNPs-Ti composites with a higher
level of mechanical and tribological performance suitable for the longer and proficient
functioning of aerospace and bio-medical components. Therefore, this work is primarily
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designed to develop 0.25 wt% GNP-Ti composites through PM processing by adopting three
different homogenizing approaches: dry ball milling, wet ball milling, and rotator mixing.
The influence of homogenizing methodologies on morphological variations of composite
powders and its connection with the mechanical strength and tribological properties of
developed composites have been investigated.

2. Experimental Part
2.1. Materials

Matrix material used in this research is commercially pure titanium powder, having a
mean particle size of 28.8 µm and bulk shape morphology as evident in Figure 1a,b. The
chemical composition of as received Ti powder is presented in Table 1. For reinforcement,
GNPs having an average thickness of 5–25 nm and a length of 1–20 µm are used. The
morphology of GNPs is shown in Figure 1c. Both raw materials were purchased from
Guangzhou Jiechuang, Co., Ltd. (Guangzhou, Guangdong, China).
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Figure 1. Stating materials: (a) particle size analysis of Ti powder; SEM micrographs showing
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Table 1. Chemical composition of as received Titanium powder.

Element Concentration (%)

Fe Al Ti

0.036 0.021 99.943

2.2. Processing

The solid-state powder metallurgy route is adopted to produce 0.25 wt% GNP-Ti
composite samples. In the first step, GNPs are homogenized in Ti powder through three
different mixing techniques to obtain three types of composite powders. In the second
stage, composite powders are cold pressed followed by vacuum sintering to obtain three
types of sample batches. Samples preparation through this route is described in subsequent
sections, and processing parameters are summarized in Table 2.

2.2.1. Dry Ball Milling

In this technique, 0.25 wt% GNP-Ti composite powder is obtained through ball milling
in dry form by employing a planetary ball mill (PM 4, Retsch, Germany). Besides composite
constituents, 0.3 wt% stearic acid (SA) is added as a process control agent (PCA). The
function of PCA during mechanical alloying is to avoid cold welding and accelerate the
fracturing of powder particles [41]. GNPs and Ti powders in weighed quantity are put into
a steel vial (500 mL, ID = 100 mm) together with the tungsten carbide balls as a milling
media. Balls of dissimilar sizes (5 mm and 10 mm diameter) are used to bring in more
collisions and promote fracturing over cold welding [42]. Ball to powder ratio (BPR) is set
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at 6:1. Ball milling is performed at 225 rpm for 3 h in dry argon atmosphere to prevent
oxidation of freshly produced surfaces [43].

Table 2. Processing parameters for 0.25 wt% GNP-Ti composites.

Sample Batch

Composite Constituents Mixing Consolidation

Method Medium Charge
Ratio Speed Time Compaction

Pressure
Sintering

Temperature
Sintering

Time
Heating and
Cooling Rate

Sintering
Environment

1 Dry
ball milling

Tungsten
carbide balls

Balls to
powder
ratio 6:1

225 rpm 3 h

400 MPa 1100 ◦C 2 h 10 ◦C/min 10−3 vacuum2 Wet
ball milling

Tungsten
carbide balls

Balls to
powder
ratio 6:1

225 rpm 3 h

3 Rotator mixing Stainless
steel blade

Volume
filled 1/3 300 rpm 3 h

2.2.2. Wet Ball Milling

In wet ball milling, initially, GNPs slurry is prepared by dispersing GNPs in methanol
at a ratio of 1 mg/1 mL, via 30 min ultrasonication in a water bath at 60 ◦C. Secondly, Ti
powder slurry is produced by mixing it in methanol at the proportion of 1 g/2 mL by
ultrasonication for 30 min in the water bath at 60 ◦C. In the third step, two slurries are
mixed thoroughly by a 30 min magnetic stirring to obtain the composite slurry. Then,
composite slurry is charged into a steel vial (500 mL, ID = 100 mm) along with milling
media of tungsten carbide balls of 5 mm and 10 mm in diameter. Ball to powder ratio (BPR)
is 6:1 and wet ball milling is conducted at 225 rpm for 3 h. Finally, ball milled slurry is
dried completely at 100 ◦C in the oven.

2.2.3. Rotator Mixing

To prepare 0.25 wt% GNP-Ti GNPs composite powder via rotator mixing, first GNPs
and Ti powder slurries are prepared as in Section 2.2.2. Then, a rotator mixer with the
stainless-steel blade is employed to mix these two slurries at 300 rpm for 3 h. After that,
composite slurry prepared is fully dried in the oven at 100 ◦C.

2.2.4. Consolidation

GNP-Ti composite powders (0.25 wt%) prepared via three mixing methods are con-
solidated by uniaxial cold compaction and subsequent vacuum sintering. In the first step,
composite powders are charged in a steel die with an inner cavity diameter of 19 mm
and cold pressed at 400 MPa using a hydraulic press (15-Ton, STENHFJ). Zinc stearate is
incorporated to act as a die lubricant [44]. Successively, pressed compacts termed as green
pellets are sintered in a vacuum furnace (Energyen, Korea) at 1100 ◦C for 2 h at a heating
and cooling rate of 10 ◦C/min under 10−3 Pa vacuum.

2.3. Characterization

Particle size analysis of as received Ti powder is performed by the laser diffraction par-
ticle size analyzer (Mastersizer 3000E, Malvern Instruments, Malvern, UK). The morphol-
ogy of Ti powder and GNPs is examined by field emission scanning electron microscope
(FE-SEM MIRA-III, TESCON, Kohoutovice, Czech Republic) in the secondary electron
imaging mode at an accelerating voltage of 20 KV. The purity of Ti powder is analyzed by
inductively coupled plasma-optical emission spectroscopy (ICP-OES). This technique is
preferred because its detection limits are in the parts per billion (ppb) to parts per million
(ppm) range and can analyze trace impurities in metal and alloys. Further, chemical and
ionization interferences relatively do not occur in ICP-OES, which gives highly accurate
results. Principles of operation, samples detail, and analyzing procedures can be found
elsewhere [45,46].

Morphological modifications induced in 0.25 wt% GNP-Ti composite powders by
homogenizing methods are investigated by FE-SEM in secondary electron imaging mode
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at an accelerating voltage of 20 KV. Raman spectroscopy (Horiba HR 800 UV) is used to
investigate the quality of as received graphene and its structural integrity in composites.
A HE-NE laser of 633 nm wavelength is used at a numerical aperture of 50× lens with
600 g/mm grating. Raman scattering is performed at six different points of each sample
with a scattering range of 200–3500 cm−1. The crystal structure of raw materials and phase
composition of composites are analyzed by X-ray diffraction (XRD) technique, using Rigaku
X-ray diffractometer with Cu Kα radiation over 2θ scanning range of 20–80◦.

The green density of cold compacted pellets is calculated by the geometrical method,
while the sintered density of composite pellets is determined by the Archimedes principle
using a densimeter (AU-900S, Dong Guan Hong Tuo Instrument Company, Guangdong,
China) having an accuracy of 10−3 g. Samples for hardness measurement are prepared by
a series of grinding and polishing steps to attain a 1 µm finish. Polished specimens are
ultrasonically cleaned in ethanol for 30 min and dried in an oven. Hardness measurement is
performed by a Vickers micro-hardness tester (Karl Frank, Wurzburg, Germany) equipped
with a pyramid diamond indenter at a load of 980.7 mN for 15 s. As 100% dense composite
material fabrication is not possible through the described PM route. Therefore, hardness
reading may vary to some extent at different locations of the same sample due to the
presence of porosity [47,48]. Because of this, 6 readings were recorded at various points of
the sample, and an average was taken.

Tribological properties of composites are studied by performing the wear test on
pin-on-disk tribometer (MT-Spain). Specimens in round shape (18 mm diameter, 6 mm
thickness) are prepared through grinding up to 2000 grit finish. Before testing, each
specimen is ultrasonically cleaned in ethanol for 30 min, dried in the oven, and weighed
carefully using an electronic weighing balance having accuracy up to 4 decimal places. The
specimen is fixed at a rotating disk while diamond pin is employed as the counter body.
Wear tests are run at 10 N load, 3 mm track radius, 100 rpm, 190 m sliding distance, in the
dry state at 25 ◦C and 55%RH. As a result of the wear test, wear tracks are produced at the
sample surface, and the removed material or wear debris is collected. The sample is cleaned,
dried, and weighed again to record the wear mass loss. The wear rate is determined as
per ASTM G-99. The coefficient of friction (COF) is plotted from machine data up to
the sliding distance at which the constant COF value is reached. The wear behavior or
wear mechanisms involved are studied by examining the worn surfaces pattern and wear
debris morphology through FE-SEM in secondary electron imaging mode at an accelerating
voltage of 20 KV. Energy dispersive x-ray analysis (EDX) of worn surfaces and collected
wear debris has been performed by FE-SEM.

3. Results and Discussion
3.1. Morphological Evolution of Composite Powders

Figure 2 shows the morphology of as received Ti and 0.25 wt% GNPs-Ti composite
powders prepared via three different mixing techniques. A significant change in the
morphology of composite powders has been observed compared to as received Ti powder.
In addition, SEM images manifested the dependence of composite powder morphology and
GNPs dispersion pattern on the mixing method. In contrast to bulk shaped morphology
of unreinforced Ti powder (Figure 2a), dry ball milled composite powder exhibits more
flattened and smaller Ti particles (Figure 2b). On the other hand, relatively less reduction
in particle size and almost insignificant morphology shift from bulky to flattened has
been noticed for both wet ball milled and rotator mixed composite powders (Figure 2c,d).
Moreover, the homogenous distribution of GNPs in Ti matrix is also of great importance in
connection with final composite properties. In this perspective, different GNPs dispersion
patterns were seen concerning the mixing route as obvious in Figures 2 and 3. It can be
noticed in Figures 2c and 3b that wet ball milled composite powder present some kind
of GNPs agglomeration which appears to be bundled and clustered. Nevertheless, for
rotator mixed composite powder, the extent of agglomeration is relatively less, and GNPs
seem to be folded as obvious in Figures 2d and 3c. These detected variations in particles
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morphology and GNPs distribution pattern may be attributed to the different mechanisms
and process dynamics of the homogenizing approach. It is expected that during the dry
ball milling of composite powder, at certain milling energy and time, a dynamic balance of
compression, shear, and impact forces is reached [49]. Therefore, as a result, Ti particles
are flattened due to the pressing action of compressive forces, while particles shearing
during ball milling yields cracks on the surface, and ultimately, impact forces break down
the particles into smaller fragments [50]. In addition, high impact forces during dry ball
milling contribute to the attachment of GNPs onto the surface of Ti particles, resulting
in better homogenization of the composite powder [35]. Conversely, wet ball milling has
a minor impact on the beneficial modification of Ti particle size and shape, in addition
to GNPs clustering in Ti matrix. This may be ascribed to the inadequate compressive
and impact forces hindered by the wet medium leading to poorer composite powder
characteristics [51], whereas for rotator mixed composite powder, particles fragmentation
into smaller ones does not happen owing to the nonexistence of grinding media. However,
prevailing rotational forces lead to less accumulation of GNPs in Ti matrix in contrast with
wet ball milling [52].
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3.2. Raman Spectroscopy

Effective use of graphene as reinforcement in Ti composites is largely associated
with the retention of structural properties during the composites’ synthesis process [53].
Raman spectroscopy is a powerful non-destructive technique to investigate the quality and
structural integrity of carbonaceous materials. It gives a characteristic spectrum of any
material depending on the vibrational modes of its molecules [54]. Figure 4 represents the
Raman spectra of starting graphene and 0.25 wt% GNP-Ti composite powder produced by
the dry ball milling method. Spectra reveal typical D, G, and 2D bands of graphene at 1340,
1575, and 2690 cm−1, respectively. D-band in spectra is related to the concentration and
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measure of disorders in C-C bond in graphitic materials. G-band represents the in-plane
vibration of C-C bonds and the extent of metallicity or graphitization. 2D-band is associated
with multilayer graphene structure [55]. Composite powders also show D, G, and 2D bands
peaks at 1340, 1575, and 2690 cm−1, respectively, corresponding to starting GNPs peaks.
This confirms the presence and survival of un-reacted GNPs in composite powders after
homogenizing [23]. Ti peaks are not revealed in the observed spectral range which may be
due to the reason that no active vibrational modes are present in Ti to be detected by Raman
spectroscopy [56]. Relatively less intensity of the 2D-band than the G-band is observed
in spectra of graphene and composite powder as well, which indicates the existence of
graphene in multilayers [57].
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Raman peak intensity ratio (ID/IG) is the measure of structural defects in graphitic
materials [58]. ID/IG ratio of starting graphene material is determined as 0.24, whereas for
composite powder it is 0.5. This points out the presence of limited defects in as received
GNPs. Intensity ratio ID/IG is relatively higher for composite powder, which is an obvious



Molecules 2022, 27, 2666 9 of 18

indication of induced structural defects in GNPs present in composite powder due to
the homogenization process [53]. Further analysis of Raman spectra of 0.25 wt% GNP-
Ti composite powders shows peaks at 260, 418, and 605 cm−1. These peaks indicate
the formation of interfacial compound TiC during milling. This observation is further
supported by a relatively higher spectrum background in composite powder than as
received GNPs, which is also ascribed to the TiC formation due to harsh ball milling
conditions. Similar findings have been reported in earlier works [23,57].

3.3. XRD Analysis

XRD patterns of as received graphene nanoplatelets, pure titanium, and 0.25 wt%
GNP-Ti composites are presented in Figure 5. XRD peaks shown in Figure 5a are charac-
teristic of graphene confirming its quality [59,60], whereas pure Ti and 0.25 wt% GNP-Ti
composites exhibited elemental Ti peaks having hexagonal close packed (hcp) structure,
as evident in Figure 5b. Ti Peaks are indexed as (001), (002), (101), (102), (110), (103),
(112), and (201), which correspond to hexagonal Ti [61]. However, in all composites, peaks
corresponding to graphene are not detected because in this study the weight fraction of
GNPs is very low (0.25%), whereas XRD has a detection limit for the identification of low
concentrations of nano-sized second phase [62]. Further, XRD patterns do not show the
peaks of interfacial compound TiC. However, there is a possibility for the formation of
nanocrystalline TiC due to the reaction between Ti and graphene during the homogenizing
and sintering process [23]. This argument is well supported by the Raman spectroscopy
results presented in Section 3.2. However, the identification of very small amounts of TiC
in GNP-Ti composites through the XRD technique may not be possible due to the XRD
detection constraint of XRD [63].
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3.4. Density and Sinterability of Composites

As discussed in Section 3.1, the morphology of composite powder and pattern of GNPs
dispersion in the matrix are mainly dependent on the mixing method, and consequently,
density and sinterability of the composites are also modified. Theoretical densities of the
composites were computed by the rule of mixture [64]

ρc = ρGNPWGNP + ρMWM (1)

where ρ is the density; W is the weight fraction, and the subscripts “C”, “GNP”, and “M”
denote the composite, GNPs, and Ti matrix, respectively. Theoretical density calculated
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from the above equation and experimentally measured green and sintered densities are put
into the below equation to compute the sinterability (Ø) of composites.

Ø = ρs − ρg/ρth − ρg (2)

where ρs, ρg and ρth are the sintered, green, and theoretical densities, respectively. Results
are shown in Table 3. This suggests that the composite samples processed through dry ball
milling display the highest green and sintered density, whereas those processed through
wet ball milling display the lowest. Sinterability of composite powder compact depends
upon particle size, shape, particle size distribution, and homogenous mixing of composite
constituents in addition to sintering conditions [47]. Therefore, dependency of sinterability
upon the mixing approach may be linked to the morphology evolution of Ti particles
and GNPs dispersion style in the matrix. It is quite evident from Figure 2 that composite
powder mixed via dry ball milling presented flattened morphology and a reasonable
fraction of smaller particles as well. Moreover, GNPs adherence to Ti particles (Figure 3a)
leads to its homogenous dispersion. These aspects have a substantial role in promoting
the sintering kinetics through easy and quick material transport [44,65]. Consequently, the
sinterability of composites produced via dry ball milling is higher, and the density also
exhibits an analogous trend. In the case of wet ball milled and rotator mixed composites,
GNPs agglomeration has a negative impact on density. During mixing and consolidation,
GNPs aggregation promotes friction between GNPs interlayers and also between GNPs
layers and Ti particles. As a consequence, constraint in GNPs rearrangement and reduction
in the contact area between GNPs and Ti particles result in relatively higher porosity and
lower density [66]. Table 4 presents the density and porosity of various GNP-Ti composites
processed through the pressureless sintering method.

Table 3. Density and sinterability of 0.25 wt% GNP-Ti composites.

Composites
Processed via

Theoretical
Density
(g/cm3)

Green Density Sintered Density

SinterabilityActual
(g/cm3)

Relative
(%)

Actual
(g/cm3)

Relative
(%)

Dry ball milling 4.53 3.8 ± 0.1 84.0 ± 2.0 4.4 ± 0.1 97.0 ± 2.0 0.82 ± 0.04
Wet ball milling 4.53 3.5 ± 0.1 77.0 ± 2.0 4.2 ± 0.1 93.0 ± 2.0 0.68 ± 0.04
Rotator mixing 4.53 3.5 ± 0.1 77.0 ± 2.0 4.3 ± 0.1 95.0 ± 2.0 0.78 ± 0.04

Table 4. Density and porosity in sintered GNP-Ti composites.

Composite System Processing Relative Density (RD)
(%)

Porosity (%)
(100-%RD) References

0.25 wt% GNP-Ti
Dry ball milling

97.0 ± 2.0 3.0 ± 2.0 This studyCold compaction
Vacuum sintering

0.25 wt% GNP-Ti
Wet ball milling

93.0 ± 2.0 7.0 ± 2.0 This studyCold compaction
Vacuum sintering

0.25 wt% GNP-Ti
Rotator mixing

95.0 ± 2.0 5 ± 2.0 This studyCold compaction
Vacuum sintering

0.30 wt% GNP-Ti
Dry ball milling

96.67 3.33 [33]Cold compaction
Vacuum sintering

0.30 wt% GNP-Ti
Dry ball milling

95 5 [30]Cold compaction
Microwave sintering
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3.5. Mechanical Strength of Composites

The mechanical strength of a material is directly related to its hardness, as reported by
many researchers [67–69]. Therefore, in this study, hardness measurement is performed
on synthesized composites to evaluate their mechanical performance. Figure 6 depicts
the hardness of three types of composites concerning homogenizing method. Composites
synthesized via dry ball milling exhibit higher hardness than others. This trend points out
the dependence of mechanical strength upon the composite constituents homogenizing
approach, and this is believed to be caused by two factors, namely, porosity level in sintered
composite and GNPs role as nano-reinforcement. It is well known that the strength of a
material can be increased by reducing the extent of plastic deformation by restricting the
dislocation movement [70,71]. The presence of porosity in the composite compact has a
negative effect on its strengthening efficiency. Because pores facilitate easy dislocation
movement, a consequently higher degree of plastic deformation results in reduced hard-
ness [72,73], as is the case of composites processed through wet ball milling and rotator
mixing in the present work (Figure 6).
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Secondly, the role of nano-metric reinforcements in improving the mechanical strength
of composite materials through the well-known strengthening mechanisms is widely
accepted [74,75]. Graphene nanoplatelets being the only few layers of atomically thin
graphene have proved to be the most effective nano-reinforcement for boosting the strength-
ening efficiency of metal matrices through the contribution of their strengthening mecha-
nisms [29,76]. These mechanisms are: (i) Hall–Petch strengthening due to the restriction of
grain growth by the GNPs pinning effect [77], (ii) Orowan strengthening because of disloca-
tions looping around possibly formed in situ TiC dispersoids [78], (iii) Taylor relationship
or enhanced dislocation density (EDD) effect due to the mismatch of elastic modulus (EM)
and coefficient of thermal expansion (CTE) between GNPs and Ti matrix [10], (iv) efficient
load transfer effect from Ti matrix to GNPs by interfacial shear stress because of high elastic
modulus of GNPs and strong interface bond by TiC between GNPs and Ti matrix [74],
(v) contribution from dispersion strengthening effect owing to homogenously dispersed
GNPs and in situ formed TiC particles in the matrix, and (vi) solid solution strengthen-
ing by the interstitial carbon atoms in titanium lattice [79]. However, the strengthening
mechanisms’ contribution is largely dependent on GNPs content and their homogenous
dispersion in matrix material [80]. Generally, higher GNPs contents favor more strengthen-
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ing efficiency. However, it has been reported that strength declines beyond 0.5 wt% GNPs
due to their agglomeration and clustering [31].

It is worth mentioning here that the results obtained in this study are in close agreement
with the above argument and prior works, as evident in Table 5. Correlating the hardness
results with the morphological evolution study of composite powders, it is obvious that
good adherence of GNPs onto the Ti particle surface favors uniform dispersion in the
dry ball milled sample (Figure 2b), so the sintered composite displays higher hardness.
In contrast, apparent GNPs aggregation and bundling have been observed in wet ball
milled and rotator mixed composite powders, respectively (Figure 2c,d), and hence they
exhibit relatively less hardness. In view of above, the dry ball milling approach has shown
good potential to adequately homogenize the 0.25 wt% GNP-Ti composite constituents and
achieve good mechanical strength in the final composite.

Table 5. Hardness of GNP-Ti composites.

Composite System Processing Hardness References

0.25 wt% GNP-Ti
Dry ball milling

440 ± 20 HV0.1 This studyCold compaction
Vacuum sintering

0.25 wt% GNP-Ti
Wet ball milling

420 ± 20 HV0.1 This studyCold compaction
Vacuum sintering

0.25 wt% GNP-Ti
Rotator mixing

380 ± 20 HV0.1 This studyCold compaction
Vacuum sintering

0.30 wt% GNP-Ti
Dry ball milling

519 ± 35 HV0.5 [33]Cold compaction
Vacuum sintering

0.30 wt% GNP-Ti
Dry ball milling 435 ± 28 HV1 [57]Spark plasma sintering

3.6. Tribological Performance

Table 6 presents the results of tribological testing performed on composite samples, in
relation to coefficient of friction (COF) and wear rate. It is inferred from the results that
composites processed via dry ball milling present relatively less wear loss than wet ball
milled and rotator mixed ones, so they exhibit reduced wear rate and coefficient of friction.
As discussed in Section 3.5, the strength of composites is directly related to the degree of
sinterability and homogenous GNPs dispersion in the matrix. The hardness of a material
is linked to its wear properties in some way [81]. Consequently, for composites produced
via dry balling, the extent of plastic deformation will be lower, thereby producing less
abrasion, which results in reduced wear loss and consequently lower COF value as evident
in Figure 7. On the other hand, a somewhat higher porosity level and GNPs clustering in
the Ti matrix promote plastic deformation, thus producing more wear debris, so higher
wear loss and COF are recorded for composites processed via wet ball milled and rotator
mixing. However, slightly better wear resistance has been observed for rotator mixed
composites than wet ball milled composites because of relatively less GNPs agglomeration.
Figure 8 shows SEM images of worn surfaces for three types of composite samples. The less
plowing effect is observed for the composite produced via the dry ball milling method in
comparison with the other two. Delamination of layers occurs because of the adhesive wear
mechanism, whereas it is obvious that due to the higher plowing effect and abrasion, the
abrasive wear mechanism is operative for the wet ball milled and rotator mixed composite
samples. Observations are also well supported by the morphological investigation of wear
debris as evident in Figure 9. EDX results presented in Figures 10 and 11 confirmed the
absence of wear debris from the counter surface.
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Table 6. Tribological results obtained by the wear test performed through pin-on-disk tribometer.

Composites
Produced through

Wear Loss
(g)

Wear Rate
mm3/Nm

Coefficient
of Friction

Dry ball milling 0.0013 ± 0.0002 0.00012 0.350
Wet ball milling 0.0072 ± 0.0002 0.00084 0.413
Rotator mixing 0.0063 ± 0.002 0.00072 0.415
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It has been found in earlier works that improved tribological performance of GNP
reinforced metal and ceramics matrix composites occurs because of the low shear, protective
nature, and self-lubrication behavior of graphene [82,83]. Therefore, its homogenous
dispersion in metal matrices may result in the formation of a stable and thin dry lubricant
film between the sliding surfaces which considerably lowers the coefficient of friction and
wear loss [38,84]. Thus, GNPs because of their load bearing capability in metal matrices
and ability to form a stable lubricating tribofilm render reduced shear forces, resulting in
a lesser degree of plastic deformation beneath the surface mating area, hence improving
wear resistance [85]. However, this valuable contribution would be decreased if GNPs
agglomeration and aggregation occur [86]. Thus, 0.25 wt% GNP-Ti composites produced
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via dry ball milling have displayed good tribological performance for their safe and effective
use in applications demanding wear and friction control.
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4. Conclusions

In the present research, 0.25 wt% GNP-Ti composites prepared via powder metal-
lurgy route were investigated regarding the influence of composite constituents mixing
methods upon composite properties. Dry ball milling, wet ball milling, and rotator mixing
approaches were employed, and their link with morphological evolution of composite
powder, sinterability, mechanical strength, and tribological performance were explored.
Major outcomes are summarized below:

• The morphological study shows better homogenization of composite constituents for
dry ball milled composite powders owing to the adherence of GNPs to Ti particles as
a result of impact forces. GNPs aggregation for wet ball milled and rotator mixed has
been observed.

• Density and sinterability of composites produced through the dry ball milling method
display higher values due to the better sintering kinetics resulting from the parti-
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cles’ flattened morphology, good combination of small and large particles, and well
dispersed GNPs.

• Composites processed via dry ball milling show better mechanical strength, as the
micro Vickers hardness is 4.56% and 15.7% higher than that of wet ball milled and
rotator mixed composites, respectively. This improvement is due to the relatively
denser composite and the greater role of the strengthening mechanisms as a result of
GNPs’ uniform dispersion.

• The self-lubricating characteristics of GNPs have a key role in improving the tribo-
logical properties of 0.25 wt% GNP-Ti composites through the protective tribofilm
formation. The effect is more pronounced in the case of dry ball milled composites
due to well homogenized GNPs in the Ti matrix.

• For effective use in aerospace and tribological applications, 0.25GNP-Ti composites
with improved mechanical and tribological performance have been synthesized via the
powder metallurgy route by adopting the homogenizing approach of dry ball milling.
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