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Abstract: Gullies contribute very efficiently to soil loss and degradation, particularly in Mediterranean
environments. While natural factors are involved in gully formation and further development,
anthropic action is almost always an element. Knowledge of formation and development factors are
important if soil protection strategies and measures are to be effective. In this paper, we identify the
most important factors in the development of gullies in a Mediterranean setting based on a study of the
Alva gully (central Portugal). Its development in the last four years is examined, based on a study of
the modification of its morphological characteristics. The analysis was based on principal component
analysis (PCA) to estimate the correlation between the quantitative characteristics, geomorphological
processes, and biophysical variables. The results show that the main factors that seem to control
the spatial variation of soil erosion are the soil penetration resistance, slope, slope shape, and
vegetation cover.

Keywords: gully development; sediment production; Mediterranean environment

1. Introduction

Water erosion problems are a major factor in causing environmental impacts, including
land degradation [1]. This has adverse effects on water quality, ecology, and terrestrial
and aquatic habitats. However, in many regions, soil degradation has severe impacts
on the economy of the country, the family, and on the individual. The water erosion
processes associated with gully formation often lead to considerable agricultural damage
as the soil loses productive capacity and water loses quality. The displaced material can
end up being deposited in areas of high economic interest where it might destroy more
profitable production. In certain circumstances, it can reach watercourses which, in flood
peaks, will carry a larger solid load than before [1–5]. The outcome could be to generate
massive economic damage to humankind [2–11]. Several authors [12,13] state that in some
areas more than 80% of sediment is produced by gully erosion, making it one of the most
destructive types [14,15].

A gully is an erosion channel caused by irregular concentrated water flow, often
throughout and immediately after a heavy rainfall event (Soil Science Society of America,
2008). Authors such as Foster (1986) [16] and Poesen et al. (2003) [17] consider a classic
gully to be a channel deep enough, generally >0.5 m, to interfere with normal ploughing
operations. Gullies are often found in mountainous regions [18–29]. But they are even more
common in the semi-humid and semi-arid regions of Mediterranean countries [30–38].

The impact of gullies as a factor in soil degradation is very important in these re-
gions. Many causes of gully erosion have been identified and these include natural and
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human-induced soil erosion processes [13,17]. A number of anthropogenic factors not
only help to establish gullies, but very often they contribute to their rapid development
and erosive capacity [39–45]. Most notable are forest fires, deforestation, and other causes
of erosion, especially inappropriate cultivation and irrigation systems, overgrazing, log
haulage tracks, road building, and urbanization. Furthermore, various natural factors are
seen as fundamental to the formation of gullies, including topographic thresholds (such as
slope gradients and soil crusts), soil and lithologic controls (soil, lithologic and geomorphol-
ogy factors; soil crusting; piping), land use and climate change (present and past changes
in land use) [13,17]. All these drivers together confirm the importance of increasing the
urgency for gully erosion research and reinforcing the combined efforts of monitoring,
modeling, and managing soil loss processes and landscape degradation [11]. In general,
the progress of gullies is monitored by one of two methods. The first approach is based on
the measurement of the material at the exit of a gully system [46]. However, this method
does not allow the analysis of the gully channel’s development. The second method is
based on the use of topographic data sets, DEM, digital surface models (DSM) or point
cloud (PC) [46–48] and aims to define the evolution of the morphological characteristics of
a gully over a period of time.

In most cases, however, the constraint in spatial definition makes topographic varia-
tions undetectable for most gullies [47], which implies the use of both very high resolution
DEMs [46], and topographic data obtained from photographs using photogrammetric tech-
niques [49]. More recently, a new source of data provided by the LIDAR survey has been
used to detect gullies in forested areas [47] that allows measurements of small variations of
a few centimeters. However, this approach also has some limitations related to continuous
data collection from deeply incised gullies [47]. The number of papers recognizing the
problems related to gullies in Portugal, and the repeated impacts on soil and environment,
has increased significantly in the past few years, especially related to the quantification of
soil erosion rates and, primarily, gully evolution. Nevertheless, works on the monitoring of
a permanent gully system are still scarce [38,49], which could perhaps be related to the very
time-consuming and labor-intensive nature of the task. Such works are in fact particularly
interesting in that they help to identify the main elements in the origin and evolution of
gullies. They could thus contribute to developing strategies that are more effective for soil
conservation work. The main objectives of this work were (a) to analyze the evolution of
a gully located on a granite substratum in a Mediterranean environment, over a 5-year
study period between 2015 and 2019, and (b) to identify the main factors responsible for
the spatial and temporal differences in erosion rates observed within the specified gully.

2. Materials and Methods
2.1. Study Area

The gully under study is located on the right bank of the River Alva, downstream
of the village of Penalva de Alva and opposite Caldas de São Paulo, in the municipality
of Oliveira do Hospital (Figure 1). It develops between road bends on a steep incline of
between 20 and 30%. This is a forest area that was affected by several forest fires between
August 2013 and 2018.

The study area, i.e., where the ravine is located, is part of the Maciço Antigo [Ancient
Massif] which lies within the Central Iberian Zone [50]. From the lithological point of view,
it is part of the Beira uraniferous province and is essentially composed of granitic rocks,
with a predominance of coarse-grained porphyroid granite, calco-alkaline in nature, and
sometimes with orientation of megacrystals [51].
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ulometric point of view, coarse sands predominate over fine sands. The values of the silty-
clayey fraction are very small. The modal class corresponds to sands with a diameter of 2 
mm, and the central tendency measures (median, mean, and graphic mean) point to val-
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the predominance and concentration of sediment in the coarse fractions, revealing the re-
moval of the concentration around the mean. The asymmetry values also suggest an en-
richment in coarse relative to fine sediment. The kurtosis value indicates a leptokurtic 
curve. 
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istics (Cs). The analysis of the temperature-rainfall graphs from the meteorological sta-
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2.2. Monitoring Morphological Changes in the Gully and Statistical Analysis 
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mined during the field surveys using SURFER 8.0 (Scientific Software Corp., Sandy, UT, 

Figure 1. Location of the study area and gully.

The gully is bedded on regolith created by the weathering of granite. From the
granulometric point of view, coarse sands predominate over fine sands. The values of the
silty-clayey fraction are very small. The modal class corresponds to sands with a diameter of
2 mm, and the central tendency measures (median, mean, and graphic mean) point to values
between 1.5 mm, 1.3 mm, and 1.5 mm, respectively. The calibration values confirm the
predominance and concentration of sediment in the coarse fractions, revealing the removal
of the concentration around the mean. The asymmetry values also suggest an enrichment
in coarse relative to fine sediment. The kurtosis value indicates a leptokurtic curve.

As in most of the country, the climate of the study area has Mediterranean characteris-
tics (Cs). The analysis of the temperature-rainfall graphs from the meteorological stations
in the official IPMA network [Portuguese Institute of the Sea and Atmosphere] indicates
only two dry months (July and August) (rainfall in mm equal to or less than twice the
average monthly temperature in ◦C). The annual rainfall ranges from 1100 mm on the
lowest altitude slope to 1300 mm at higher altitudes. Rainfall can sometimes be very heavy
and concentrated.

2.2. Monitoring Morphological Changes in the Gully and Statistical Analysis

The gully and slope were split into cross-sectional profiles, separated by 2 m. Depth
and width were obtained from a BOSCH GR 240 Professional measuring ruler and a BOSCH
GLM 40 laser meter. Depth was determined from the perpendicular distance between
the base of the gully and a horizontal bar. Field surveys were conducted in June 2015
and February 2019. Accumulation and erosion areas, as well as volume, were determined
during the field surveys using SURFER 8.0 (Scientific Software Corp., Sandy, UT, USA) and
ArcGIS 10.2 (Esri, Portugal). The biophysical variables were determined for each section,
as follows:

(a) The slope (%) (determined from the use of a graduated iron bar, in order to
obtain the difference in level measurements for a distance of 1 m); (b) the slope profile
(concave/convex/linear); (c) the average vegetation cover percentage (%) (obtained using
a 1 m2 gridded square, photographed on the ground, digitalized and the percentage
value of each plot calculated); (d) the average soil resistance to penetration, in kg cm−2

(obtained using a pocket penetrometer, Eijkelkamp©—Giesbeek, The Netherlands); (e) the
soil resistance to torsion, in kg cm−2 (obtained using an Eijkelkamp© pocket torsor). Total
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of 402 samples were taken for analysis of the soil penetration resistance and torsional
strength obtained at several points of gully wall, or at least, in the topsoil, at the midpoint
and at the base of the gully wall and averaged [33,52–56].

The data analysis was carried out using MATLAB (R2020). In order to identify the
primary factors influencing denudation/deposition processes at local scale, principal
component analysis (PCA) was considered. Before PCA was carried out, the suitability
of implementing this multivariate technique was first assessed. A correlation matrix
was created to assess possible collinearity among the variables. A correlation coefficient
threshold between variables of |r| > 0.7 (p < 0.05) was considered an appropriate indicator
for the point where collinearity begins to severely distort model estimation and subsequent
prediction [57].

3. Results

The total length of the studied gully is 116 m, and it influences an area close to 0.03 ha.
On average, the gully is about 1.5 m wide and nearly 2 m deep (Table 1).

Table 1. Most important morphological characteristics of gully, sourced in 2019.

Coordinates

x Y Total
length (m)

Mean
width (m)

Maximum
width value

(m)

Mean
depth (m)

Maximum
depth value

(m)
WDR * SSAGH

**
Channel slope

(m m−1)
Plan area

(m2)

40.3337 −7.8471 116 1.33 9.30 2.02 6.65 2.1 0.39 0.36 333.5

* Width depth ratio; ** SSAGH—Surface slope above gully head (m m−1).

A more detailed analysis shows that the gully was formed from the upstream road,
first over hard rock, where the incision is incipient and only a few centimeters in depth at
its deepest. Then, when it started to develop over altered rock, it quickly gained depth,
while its width increased, although with local bottlenecks. The material through which the
downstream ravine develops is characterized by the predominance of sandy material, with
less of the silty-clayey fraction. The modal class corresponds to sands of 2 mm diameter,
and the measures of central tendency (median, mean and graphical mean) point to values
between 1.5 mm, 1.3 mm, and 1.5 mm respectively. The calibration values confirm the
predominance and concentration of the sandy material (the sum of the sediments of more
than 1 mm amounts to more than half of the sediment) revealing a shift of the concentration
around the mean. The asymmetry values also suggest an enrichment in coarse versus fine,
suggesting a leptokurtic particle size distribution. Given the morphological characteristics
of the ravine, two sections are identified, these being gully Section 1 (GS1), which is
developed upstream of a bedrock, while gully Section 2 (GS2) develops between the
bedrock and the cross-section where the gully enlargement becomes obvious. The main
features are described by the variables listed in Table 1. From a morphological point of
view, GS1 is essentially a shallow gully sector, with an average width of less than 1 m and a
depth close to 0.23 m. Considering the relationship between width and depth, the mean
WDR value obtained is close to 3.5. The correlation between gully depth and width is
positive and moderate (r = 0.80) and the correlation between WDR and channel slope is
0.09. Sector GS2 is about 78 m long. In terms of width, the average value is more than 1 m,
but it is higher than 5 m in many segments of the gully. The average depth is approximately
3 m. The mean WDR value obtained is 1.37. The correlation between gully depth and
width is positive and strong (r = 0.93). The correlation between WDR and channel slope is
negative (r = −0.34).

3.1. Gully Evolution

The main bed development of the gully is presented in Figure 2 and is based on the
two levelling surveys carried out in June 2015 and February 2019. As we can see, the most
expressive modifications have occurred in GS2. Although there are areas of deposition and
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denudation, deposition from the gully banks and the upstream sectors perishes. Deposition
occurs mainly between 100 and 104 m and between 118 and 124 m. Denudation occurs
between 84 and 94 m (Figure 2).
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Figure 2. DEM differences between 2015 and 2019 levelling survey. Light where the channel has
deepened, dark where there has been accumulation.

3.2. Key Factors of Enlargement and Depth Variation

Table 2 summarizes the exploratory variables best correlated with gully enlarge-
ment variation and the independent variables. Slope shape and penetrometer resistance
showed the highest correlation values. The correlation of slope shape is positive (r: 0.582;
p-value < 0.01) while the penetrometer resistance is negative (r: −0.529; p-value < 0.01).
The results also show correlation coefficients that are statistically significant with the depth
variation (r: 0.389; p-value < 0.01) and vegetation cover (r: 0.300; p-value < 0.05) variables.

Considering only GS2, where the most significant results were obtained in the variation
in depth, WDR, penetrometer resistance, slope shape, slope, and width variation were
the ones with the best correlations (Table 3). The WDR and the resistance to penetration
has a significant negative correlation with depth variation, r: −0.707 (p-value < 0.01) and
r: −566 (p-value < 0.01) respectively. The slope also has a negative correlation but not
so significant (r: −0.391; p-value < 0.05). There is a positive correlation with slope shape
(r: 0.367; p-value < 0.05) and enlargement variation (r: 0.324; p-value < 0.05).
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Table 2. Spearman correlation between depth variation and some independent variables.

Depth Variation Width Variation WDR Slope Shape Vegetation Cover Slope Resist. to Penet. Resist. to Torc.

Width variation
Correlation Coefficient 0.389 ** 1 0.229 0.582 ** 0.300 * 0.214 −0.529 ** −0.126

Sig. (2-tailed) 0.003 - 0.084 0 0.022 0.107 0 0.344

Depth variation

Correlation Coefficient 1 0.389 ** −0.586 ** 0.391 ** −0.123 −0.182 −0.532 ** −0.152

Sig. (2-tailed) 0.003 0 0.002 0.36 0.173 0 0.254

N 38 38 38 38 38 38 38 38

* Correlation is significant at the 0.05 level (2-tailed); ** correlation is significant at the 0.01 level (2-tailed).

Table 3. Correlation between the variables considered and widening of gully section GS2.

Width Variation Depth Variation WDR Slope Shape Vegetation Cover Slope Resist. to Penet. Resist. to Torc.

Width variation
of GS2

Correlation Coefficient 1 0.324 * −0.707 ** 0.367 * −0.249 −0.391 * −0.566 ** −0.166

Sig. (2-tailed) 0.047 0.000 0.024 0.132 0.015 0.000 0.319

N 38 38 38 38 38 38 38 38

* Correlation is significant at the 0.05 level (2-tailed); ** correlation is significant at the 0.01 level (2-tailed).
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The results of applying PCA suggest that the gully widening and deepening are related
both to the physical properties of the soil, notably the strength and torsion, and to the shape
of the slope. They confirm that the sectors where the gully widens and deepens more are
where the soil shows most change, together with increased slope concavity. On the other
hand, it also suggests that the sectors where the percentage of vegetation is lower is where
there was even more widening and deepening of the channel (Figure 3A).
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The analysis also suggests that the higher slope sectors are those where the percentage
of vegetation cover is lower (Figure 3B). This to some extent reinforces the idea that the
steep slope areas are also those where the erosive dynamics is greater, as borne out by the
widening of the channel and its greater depth. The results suggest an explanation of about
36.9% when considering the physical properties of the soil, in particular the resistance and
the torsion; this figure increases to 55.5% when the slope gradient is considered, and to
71.6% when the slope shape is also taken into account.

The results suggest very significant modifications in the gully channel, particularly
with respect to widening, especially in the final section. Although the gully is about 116 m
long and the period of analysis relatively short, the steepness of the slope and the friable
features of the substrate seem to contribute to this variation. The widening is largely
justified by the collapse of material in the gully walls, especially where there is lower
resistance to penetration and torsion, and the slope is steeper. Furthermore, forest fires,
recurrent over the years, will have aggravated this process.

4. Discussions

Gully erosion is without doubt one of the main environmental problems since it
contributes effectively to soil loss and degradation. The recovery of areas affected by
gullies is generally costly and difficult. Some studies consider the presence of gullies in
about 1–5% of total landscape observation [11], a figure that rises to 10% in Europe [57–60],
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especially in the Mediterranean area. Given the large number of research works on this
topic, one could therefore conclude that knowledge about gully erosion processes, as well
as their control, would leave little room for new insights on the topic. This conclusion
can be refuted to some extent by some research gaps. More research is certainly needed
to understand both the natural and man-made processes of soil erosion, especially their
interaction at different spatial and temporal scales. Furthermore, it is critical for us to be
able to better predict spatial and temporal scales, to forecast their erosion rates as well as
their on-site and off-site impacts, so as to better target erosion control measures. In this
study, we have focused on analyzing the evolution of the topographic attributes of the
gully and identification of factors which had an influence on the occurrence of erosion
(denudation vs. accumulation) between 2015 and 2019. Indeed, the results suggest a very
complex spatial distribution of soil erodibility. The results also indicate effective gully
dynamics which, although not specifically considered in this work, are certainly expressed
as high erosion rates. This conclusion is especially indicated for the gully sector GS2, where
a conspicuous enlargement occurred. In recent decades, several gully-erosion models have
been developed, usually with the purpose of gully-erosion susceptibility mapping. Most
of the time the models resort to the analytic hierarchy process to identify the main factors
controlling the process. Examples are probabilistic models, information value, frequency
ratio, index of entropy, evidential belief function, weights-of-evidence, certainty factor,
and logistic regression. At the same time, remote sensing has enabled the development of
high-resolution digital surface models (DSMs) or by photogrammetry that enable detailed
morphological analyses of centimeter-order [61–65]. These models are often used for
monitoring gullies and measuring erosion rates.

Moreover, the widths, cross-sectional areas, extent, and channel volume of gullies can
be obtained from aerial or satellite images. However, gully floor-widths are typically hard
to measure from such imagery, often resulting in unreliable results. Furthermore, gully
cross-sectional areas are difficult to quantify based on aerial photographs or high-resolution
satellite imagery, but are a fundamental prerequisite for estimating discharge volumes.
Therefore, they are often obtained through field measurements (e.g., Nachtergaele et al.,
2001a, 2001b) [66,67].

Nevertheless, field measurements are also particularly effective, especially in situations
where it is hard to identify differences in soil mechanical characteristics using remote
sensing. In the study area, the physical characteristics of the soil were identified as part of
the fieldwork, making it possible to identify key differences in the evolution of the gully
channel in detail. Other factors considered significant in explaining the gully dynamics,
such as the shape of the slope and the percentage of vegetation cover, were also acquired
from the fieldwork. The shape of the slope is a significant contributing factor to the
explanatory model in the evolution of the gully by contributing to the concentration of
drainage. The use of DSMs means the shape of the slope can be inferred and so it is often
used in hydrological modeling. However, in detailed work, such as the study presented
here, the fieldwork allowed the identification of this variable in a very secure way and with
a high degree of detail. At the same time, the analysis of the vegetation cover evolution in
the field will provide even more reliable results.

In fact, understanding the factors that contribute most to changes in the erodibility
of gully is particularly important when it comes to implementing more effective control
and mitigation strategies, and for defining the most susceptible areas. However, as Ben-
nett & Wells (2019) [60] report, the temporal and spatial variation in the erodibility of
gully sediments can be quite large even without the involvement of strong forces, and
there is no consensus on how to predict such erodibility variation. In our study, the main
factors that seem to control the spatial variation in soil erosion are the soil penetration
resistance, slope, slope shape, and vegetation cover. Penetration resistance was the most
influential factor for spatial variations that occurred in both depth and width. Several
studies consider a soil penetrometer can be a good screening tool for soil physical con-
ditions [56,57]. Kılıç et al. (2021) [68] states that penetration resistance is dependent on a
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number of different properties, e.g., bulk density, water content, water potential. In this
context, Nunes et al. (2010) [32] also found that soil resistance to penetration follows a
similar pattern to bulk density. Erosive processes are in fact determined to some extent by
the physical properties of the soil [55–57,69]. According to Olivares et al. (2011) [70], this is
because of surface sealing, crusting, soil compaction, poor drainage, impeded root growth,
excessive runoff, and accelerated erosion). In this regard, Nunes et al. (2010; 2011) [32,35]
found a negative highly significant correlation between soil resistance to penetration and
runoff and sediment yield.

The gully development is also favored in footslopes and valley floors since they rep-
resent areas where overland flow is concentrated into preferred pathways of flow [68],
especially concave hollows adjacent to drainage lines, as opposed to upland convex hill-
slope sections [69]. Conversely, vegetation cover as offering more protection against
overland flow and water erosion show a negative correlation, which agree with the findings
of different authors in varied environments [32,35,71–77].

As the model was utilizing a limited set of input parameters based on variables that
are easily accessible, the results show a moderate accuracy, meaning that there are sev-
eral environmental factors related to gully erosion initiation and development that need
to be integrated. Although gully contributing factors that are significant in a specific
area are not necessarily important in other areas [78–83], local analyses of gullies have
nonetheless shown that several environmental factors are related to gully erosion initia-
tion and development. Some are local factors (e.g., soil type), and some depend on the
surrounding environment (e.g., land use, climate variability) [33]. The results suggest the
importance of local conditions as determinants of gully evolution, which somewhat limits
the extrapolation of these results to other areas if these conditions are not considered.

In general, topographic attributes such as upstream drainage area, slope, and plan of
curvature are key topographic controls in the formation process [16,80–82]. Soil properties
also play an important role in allowing soil particles to detach and travel with overland
flow. Soil moisture content can affect the soil critical stress and thus influence the formation
and progression of gully erosion [84]. Surrounding land cover and management practices
greatly influence vegetation cover and the ability of terrains to slow the overland flow [17].

5. Conclusions, Limitations, and Further Research

Monitoring a permanent gully (Centre of Portugal) over a 5-year period using intensive
field topographic surveys has enabled us to understand the morphological evolution of the
gully. The gully is similar to most gullies in the Alva catchment; thus, it can be regarded
as representative of the main gully processes acting on this catchment. Very contrasted
behaviors were observed inside the gully. The main factors affecting the spatial variability
of erosion rates on bank slope units were slope gradient and slope profile. The gully was
split into two units based on the morphological aspects. Units GS1 and GS2 showed low
denudation rates, although they are areas that collect most of the runoff. The absence of
regolith did not allow the gully excavation. The main changes occurred in GS3 between 86
m and 94 m. A convex bank slope unit has denudation rates greater than a concave bank
slope, especially with regard to the gully widening.

Despite the contributions provided by this study, certain limitations must be recog-
nized, mainly relating to the methodology and research process. The first lies in the fact
that, as gullying is a threshold-dependent process controlled by a wide range of factors [13]
such as topography, geology, soil type, land use/cover in the drainage areas, and the gully
was not gauged, it is difficult to infer how it responds to input (rainfall) and to the combined
effects of the mentioned factors. Moreover, although it is assumed that the gully material
exposed to erosion is composed primarily of cohesive and non-cohesive clastic sediment,
another gap in this research is due to an insufficient understanding of the controlling
parameters that could affect denudation vs. accumulation. They can also include physical,
geochemical, and biological properties as well as land management practices, all of which
can vary in time. In this regard, the numerous fires that have occurred in the study area in
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recent years, which will certainly have influenced the physical, chemical, and biological
properties of the soil, as well as the percentage of plant cover, are therefore essential to
understanding the hydrological and erosional response in different sections, and they have
not been taken into consideration.
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