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Abstract: The purpose of this study was to classify Huntington’s disease (HD) stage using support
vector machines and measures derived from T1- and diffusion-weighted imaging. The effects of
feature selection approach and combination of imaging modalities are assessed. Fourteen premanifest-
HD individuals (Pre-HD; on average > 20 years from estimated disease onset), eleven early-manifest
HD (Early-HD) patients, and eighteen healthy controls (HC) participated in the study. We compared
three feature selection approaches: (i) whole-brain segmented grey matter (GM; voxel-based measure)
or fractional anisotropy (FA) values; (ii) GM or FA values from subcortical regions-of-interest (caudate,
putamen, pallidum); and (iii) automated selection of GM or FA values with the algorithm Relief-
F. We assessed single- and multi-kernel approaches to classify combined GM and FA measures.
Significant classifications were achieved between Early-HD and Pre-HD or HC individuals (accuracy:
generally, 85% to 95%), and between Pre-HD and controls for the feature FA of the caudate ROI
(74% accuracy). The combination of GM and FA measures did not result in higher performances. We
demonstrate evidence on the high sensitivity of FA for the classification of the earliest Pre-HD stages,
and successful distinction between HD stages.

Keywords: Huntington’s disease; grey matter density; fractional anisotropy; classification; support
vector machine; basal ganglia

1. Introduction

The first known neurodegenerative processes in Huntington’s disease (HD) begin in
the dorsal caudate, affecting primarily the medium spiny neurons, and progress ven-
trally and laterally to the putamen [1–4]—in structural magnetic resonance imaging
(MRI) both the caudate and the putamen are usually referred to as hallmarks of HD
neuropathology [5,6]. In addition, it has been shown that neurodegeneration can be quan-
tified more than one decade prior to the estimated clinical onset (YTO; years to onset)
of clinical motor symptoms [2,6–15], along with characterization of structural changes at
different stages of manifest HD [5,13,16–24]. Similarly, white matter (WM) volume loss and
WM structural changes have been reported both prior to HD clinical onset [6,11,13,14,17]
and at different stages of manifest HD [25–32].

Standard approaches to data analysis of structural MRI and diffusion-weighted imag-
ing (DWI) have enabled the identification of brain alterations related to HD stage and
progression [24,33,34]. However, if given one individual’s dataset, identification of the
disease stage cannot be performed automatically. Machine-learning methods are currently
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viewed as the preferred methodological approach to answer this question, given their
inherent sensitivity to spatially distributed and subtle effects, while also holding the po-
tential to return better predictive-value and specificity on disease stage and progression.
As such, supervised methods have been explored within the framework of prodromal
and early-stage biomarkers in pathological neurodegeneration [35], with the ultimate
goal of achieving a valuable assessment of novel neuroprotective therapies. Yet, only a
few studies have focused on Huntington’s disease, either to differentiate between clin-
ical groups from cross-sectional data [17,18,21,36], or to predict clinical outcomes from
longitudinal data [37,38].

The studies by Klöppel and colleagues used segmented grey matter (GM) [18] and
measures extracted from DWI [17] as inputs to the classifiers, respectively. An accu-
racy of 69% was achieved with whole-brain segmented GM for gene carriers close to
YTO [18]—that is with at least 33% chances of developing signs of HD within 5 years. An
increase in classifier’s performance to 83% accuracy was attained when regions of interest
(ROIs) were selected on the basis of prior voxel-based morphometry (VBM) analysis [18].
The regions with highest contribution included the striatum, insula, and part of the pari-
etal cortex. In contrast, accuracies were not above chance level for premanifest HD gene
carriers (Pre-HD) participants far from YTO—that is with less than 10% probability of
developing symptoms within 5 years. With whole-brain fractional anisotropy (FA) maps
used as features [17], accuracies of 82% were achieved when classifying between healthy
controls (HC) and Pre-HD participants further from YTO (mean 19 YTO, as defined by
Langbehn et al. [9]).

Combinations of several neuroimaging modalities to classify HD groups has seldom
been explored [21,36]. Rizk-Jackson et al. [21] compared MRI, DWI, and functional MRI
(fMRI) modalities applying to each, and in separate, linear single-kernel SVMs and also
linear discriminant analysis (LDA). The authors explored feature selection approaches,
including whole-brain and pre-defined ROIs on the basis of anatomical atlases. The
best SVM classifiers’ performance was achieved for voxel-based GM basal ganglia ROIs
(73% accuracy) and basal ganglia volumes (73% accuracy)—LDA results for the basal
ganglia volumes surpassed all these, achieving an accuracy of 76%. In turn, the study by
Georgiou-Karistianis and colleagues [36] used quadratic discriminant analysis (QDA), as
a multivariate classifier, to MRI-derived datasets composed of volumes, mean diffusivity
(MD), or FA values of the basal ganglia nuclei, accubens, and thalamus, as well as motor and
neurocognitive measures. The highest discriminative accuracy (77.5%) between Pre-HD
and HC groups was achieved with the inclusion of all of these measures simultaneously.
For the comparison between HC and symptomatic HD patients, higher discrimination
accuracies (97.1%) were attained with FA values from the selected subcortical structures.

In this study, we sought to explore the use of segmented GM from structural MRI
and FA values estimated from DWI, with several feature selection approaches, in the
classification of HD stage. We further provide information on the differentiation of Pre-HD
individuals that are on average far from estimated clinical onset (YTO), since informed
decisions are sought on when to initiate disease-modifying treatments while function
remains intact, which requires measurable markers of early neurodegeneration. We verify
the high sensitivity of FA features for the classification of the earliest Pre-HD stages.

2. Materials and Methods
2.1. Participants

Twenty five HD gene carriers—14 Pre-HD and 11 Early-HD individuals—and eighteen
age- and gender-matched healthy controls (HC) participated in this study, after giving
written informed consent. Participants were recruited through the movement disorder unit
of the Neurological Department at Centro Hospitalar e Universitário de Coimbra, and the
National Association for Huntington’s disease. The premanifest gene carriers (Pre-HD,
≥36 CAG repeats) had no signs of motor abnormalities, having a Total Motor Score (TMS)
of 0–5 on the Unified Huntington’s Disease Rating Scale—Motor subscale (UHDRS-Motor)



J. Pers. Med. 2022, 12, 704 3 of 15

and a Total Functional Capacity (TFC) score of 13 in this UHDRS subscale [39]. YTO
(Years To Onset) of the Pre-HD participants were estimated using the model proposed
by Langbehn et al. [9]. The Early-HD patients (Stage I, ≥36 CAG repeats) had a TMS of
>5 and a TFC score of 10–13, thus they were still relatively autonomous and had a relatively
normal daily life. Control participants were recruited from the community (individuals
with no known neurological disorders nor at risk for HD), and from the patients’ families
(negative genetic status siblings, children, and/or spouses). The study was in accordance
with the Declaration of Helsinki and approved by the local Ethics Committee at the Faculty
of Medicine of the University of Coimbra.

Due to the inability to carry on with magnetic resonance imaging acquisitions or due
to artifacts in the data, DWI data were not acquired or analyzed for one Early-HD patient
and two Pre-HD participants. The pool of participants for the structural MRI (GM) analysis
was composed of 18 HC, 14 Pre-HD, and 11 Early-HD participants. For the DWI (FA)
analysis the sample was composed of 18 HC, 12 Pre-HD, and 10 Early-HD participants.
The groups’ demographic, genetic, and clinical characteristics are detailed in Table 1.

Table 1. Demographics of the three groups of participants (Mean ± SD).

GM and FA GM FA

HC Pre-HD Early-HD Pre-HD Early-HD

N 18 14 11 12 10
Sex, M/F 6/12 5/9 4/7 4/8 4/6

Age (range) 36.4 ± 11.3
(18–62)

35.8 ± 9.5
(19–58)

45.1 ± 14.2
(26–71)

34.6 ± 7.6
(19–48)

45.7 ± 14.7
(26–71)

CAG (range) - 41.4 ± 1.8
(39–45)

44.0 ± 2.7
(39–48)

41.4 ± 2.0
(39–45)

43.8 ± 2.7
(39–48)

YTO (range) - 20.3 ± 10.5 *
(−0.9–43.1) - 21.7 ± 9.4

(10.2–43.1) -

Disease duration (range) - - 5.4 ± 2.5
(2–12) - 5.6 ± 2.5

(2–12)
* For GM data, one Pre-HD participant was close to YTO, whereas all others were above 10.2 YTO.

2.2. Image Acquisition

Participants were scanned on a 3T research scanner (Magnetom TIM Trio, Siemens) and
using a 12-channel birdcage head coil. Two high-resolution 3D T1-weighted (T1w) multi-
echo magnetization-prepared rapid gradient echo (MEMPRAGE) scans were collected per
participant (176 slices, 1 mm3 voxel resolution, repetition time (TR) 2530 ms, inversion time
(TI) 1100 ms, echo time (TE) 1.64/3.5/6.36/7.22, 256 × 256 matrix, no gap, flip angle = 7,
bandwidth 651 Hz/px, 2× GRAPPA with 32 reference lines). Diffusion-weighted volumes
were acquired for each participant (EPI-Spin echo, b = 1000 s/mm2, 60 diffusion directions,
10 b = 0 images, slice thickness 2 mm, isotropic voxels).

2.3. Data Pre-Processing

Structural: Structural T1w MRI data were pre-processed using SPM8 software (Well-
come Trust Centre for Neuroimaging, Institute of Neurology, UCL, London, UK, http:
//www.fil.ion.ucl.ac.uk/spm; accessed on 23 April 2022) and part of the VBM8 toolbox
(http://dbm.neuro.uni-jena.de/vbm8/; accessed on 23 April 2022) in the Matlab comput-
ing environment (MATLAB R2013a, The MathWorks, Inc., Natick, MA, USA). Each T1w
native image volume was manually aligned onto the axis of the anterior and posterior
commissures. The two T1w images of each participant were co-registered and averaged,
resulting in one image per subject. The VBM8 pipeline was used to automatically correct
for magnetic field inhomogeneities and segment the brain into GM (grey matter), WM
(white matter), and cerebrospinal fluid, with the value at each voxel representing the
proportion of the corresponding tissue type [40]. The toolbox uses the high-dimensional
registration DARTEL algorithm from SPM8 [41] to spatially align each subject’s image
with the corresponding template, with embedded functionalities to ensure that the overall
amount of each tissue class remains constant after spatial normalization. We used the stan-
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dard MNI template for spatial normalization and segmentation, with the default 1.5 mm3

voxel resolution. After these steps, the value of a voxel in a GM image reflects the local
GM volume.

DWI: Fractional anisotropy was calculated with the FSL 5.0.7 package [42]. Raw
DWI images were first corrected for motion and eddy current effects. FA values were
then calculated with the DTIFIT-FSL program, for whole brain volumes. The resulting
FA images were put through part of the TBSS–FSL pipeline [43] to obtain normalized FA
images. TBSS performs a non-linear registration that aligns each FA image to every other
one and calculates the amount of warping needed for the images to be aligned. We chose to
align all FA images to a 1 mm isotropic FA target image (FMRIB58_FA) in the MNI standard
space, as provided in the FSL library. Spatial smoothing was not directly applied to the
data, and, if not explicitly mentioned, default settings and parameters were used.

Subcortical Volumes: Structural T1w images were pre-processed using the software
package FreeSurfer 5.1 (https://surfer.nmr.mgh.harvard.edu/; accessed on 23 April 2022),
using methods that are fully automated and extensively described (https://www.zotero.
org/freesurfer/collections/3FFHFN7P; accessed on 23 April 2022). The two T1w images
of each participant were co-registered, averaged, and normalized for intensity inhomo-
geneities, resulting in a single image. For each participant the non-neocortical structures,
such as the hippocampus, were defined on the basis of automated procedures. Volume
estimates for the caudate, putamen, and pallidum, from both the left and the right hemi-
spheres, were extracted. Volume measures were normalized for differences in estimated
total intracranial volumes through a ratio procedure, and a composite measure was ob-
tained by summing the volumes from the left and right hemispheres for each subcortical
region, respectively.

The software IBM SPSS Statistics (version 26, SPSS Inc., Chicago, IL, USA) was used
to compare the extracted and normalized subcortical volumes across the three groups
of participants. A level of significance of α = 0.05 was used. ANCOVA Analysis was
performed using age as the covariate of interest, and the group main effect was assessed
pairwise with Bonferroni adjustments for multiple comparisons. The procedure was
performed twice, first with the group of participants who had T1w structural images, and
then contemplating the sub-group of participants who had acquired both T1w and DWI
scans (see the Participants sub-section).

2.4. Feature Selection

The features fed to the classifier included whole-brain voxel-based measures, a selec-
tion of voxel-based measures on the basis of anatomy and neuropathology, and automated
pre-selection of features through application of the Relief-F algorithm [44].

Whole-brain measures and masks: The whole-brain features included segmented GM
images (voxel-based values representing local GM volume), FA images, and FA images with
a threshold at the value 0.2 (to minimize inclusion of non-WM brain regions). First-order
masks were applied to each participant’s dataset to ensure the same number of voxel-based
measures were fed to the classifier: (i) the average of the BET-extracted brains of all HC, for
whole-brain GM images; (ii) a binary mask from the FMRIB58_FA template for whole-brain
FA images (thresholded at 0.2, when using thresholded FA images), and when combining
both imaging modalities.

Anatomical regions of interest: Specific subcortical structures were identified as
ROIs [24,33]—bilateral caudate, putamen, and globus pallidus, respectively. We aimed to
study each ROI separately, since first neurodegenerative HD-specific processes are known
to begin in the caudate, and then progress to other basal ganglia structures [1–4] and brain
regions. Hence, we considered this distinction might be relevant when studying gene
carriers in the earliest disease stages. The subcortical ROIs, corresponding to second-order
masks, were determined with the Harvard–Oxford subcortical probabilistic atlas (FSL
library; threshold 50%), to ensure the same number of voxels/features per participant

https://surfer.nmr.mgh.harvard.edu/
https://www.zotero.org/freesurfer/collections/3FFHFN7P
https://www.zotero.org/freesurfer/collections/3FFHFN7P
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and per ROI. This was applied to each participant’s dataset, already normalized into the
MNI152 space; all the steps were visually checked.

Relief-F automated selection: We used the matlab-implemented recursive feature selec-
tion Relief-F algorithm to select the most relevant voxels for the classification step [44]. This
heuristic algorithm is known for working well with noisy data, correlated or independent
features, incomplete datasets, and multiclass datasets, having already shown promising
results with features derived from DWI data [45]. The Relief-F algorithm was applied to
both whole-brain segmented GM and FA images, with the input defined as all available
participants from each group, for each imaging modality and binary classification. The
parameter nearest-neighbors K per class was defined as five, and the outputs were defined
to be 100, 500, 1000, 10,000 and 100,000 voxels/features—the outputs were used as masks
for each binary classification.

2.5. Support Vector Machines

The application of machine learning methods to the extracted and selected features
was performed using the PRoNTo toolbox [46,47]. The classifications for segmented GM
and FA-derived features, separately, were performed with the binary SVM algorithm,
with a linear kernel. For the combination of segmented GM and FA-derived features, we
explored two approaches: (i) concatenation of features prior to building the kernel for the
binary SVM machine; (ii) multiple-kernel learning (MKL) algorithm based on SVM—the
L1-norm MKL machine [48], which takes into account each of the modality-specific kernels
to build the classifier model.

The hyper-parameter was fixed to the value C = 1, and the leave-one-subject-per-
group-out cross-validation scheme was utilized. When using both imaging modalities
simultaneously, we applied the leave-one-subject-out-per-modality scheme. For the L1-
norm MKL algorithm, features were mean-centered and the sample normalization option
was applied.

Each binary classification was repeated multiples times using different combination
sets of participants (see Supplementary Materials, Table S1, for details). Finally, for each
classification, we calculated the mean balanced (average) accuracy, sensitivity, specificity,
and weight maps. The p-values for each classification model (i.e., per binary classifi-
cation and combination of participants) were estimated using a permutation test with
500 repetitions—we reported balanced values.

Permutation testing identifies predictive functions that are statistically significant, and
each voxel feature of the image/region is associated to a weight coefficient that relates
to how much each particular feature (voxel-based value) contributed to the classification.
Even though higher weighting values, in absolute, might be assigned to features in specific
brain regions, as defined in brain atlases such as the Anatomical Automatic Labelling
atlas, the significance of the model predictions are based on the whole pattern [47]. In
addition, due to the multivariate nature of the decision boundary with SVM classification,
the sign of the weighting coefficient cannot be associated with specific alterations derived
from the condition or disease, such as, for instance, negative values corresponding to less
voxel-based GM volume for a specific group, which can only be directly studied with
univariate methods. For SVM models that reached statistical significance, the regions that
have simultaneously higher weighting contributions on average and a higher number of
contributing features are qualitatively described, without explicitly computing a ranking, a
decision that took into account the small sample size for each group.

3. Results
3.1. Subcortical Volumes

ANCOVA analysis for the volumes of the subcortical ROIs, including age as covariate
of interest, showed the effect of group (F > 19, p < 0.001). Pairwise comparisons, Bonferroni
corrected, showed statistically significant differences between the HD and HC or Pre-HD
groups (p < 0.001) for all subcortical ROIs.
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No statistically significant differences were found between the HC and Pre-HD groups.
These results are valid for participants with only T1w and with both T1w and DWI scans
(see Table 1 for group details).

3.2. GM Classification

Table 2 (top) summarizes the values of accuracy, sensitivity, and specificity for each
of the binary classifications with GM images. The highest performances were achieved
when classifying individuals between Early-HD vs. HC groups, with accuracies gener-
ally higher than 88% independently of the selected feature. The subcortical ROIs and
features selected via the Relief-F algorithm resulted in higher accuracies, with best perfor-
mances for the putamen, the caudate, and a final selection of 10,000 voxels via the Relief-F
algorithm, respectively.

Table 2. Results using GM and FA features separately. Average accuracy, sensitivity, and specificity
values (%), and standard deviations, from each binary classification using support vector machines.

GM Features

Early-HD vs. HC Early-HD vs. Pre-HD Pre-HD vs. HC

ROIs Acc. Sen. Spe. Acc. Sen. Spe. Acc. Sen. Spe.

Whole-brain 88.6 ± 3.8 ** 84.4 ± 4.4 92.9 ± 4.9 78.2 ± 6.8 * 72.9 ± 8.7 83.5 ± 7.0 40.5 ± 6.6 30.7 ± 7.4 50.3 ± 8.7
Caudate 91.6 ± 2.6 ** 91.3 ± 1.7 92.0 ± 4.4 83.0 ± 3.7 ** 83.8 ± 3.8 82.1 ± 5.6 59.5 ± 6.6 57.8 ± 7.4 61.2 ± 7.6
Putamen 94.8 ± 2.8 ** 98.3 ± 3.6 91.3 ± 6.8 86.3 ± 4.2 ** 84.7 ± 4.3 87.8 ± 5.5 56.7 ± 6.0 60.1 ± 6.1 53.4 ± 9.0
Pallidum 77.5 ± 8.1 ** 75.9 ± 14.9 79.2 ± 9.6 68.1 ± 3.2 ** 38.3 ± 6.9 98.0 ± 4.2 51.9 ± 2.6 91.9 ± 21.8 11.9 ± 18.6

Relief-F 100 94.8 ± 2.5 ** 100.0 ± 0.0 89.5 ± 5.1 83.1 ± 5.4 ** 85.2 ± 4.4 81.0 ± 7.4 45.9 ± 9.6 47.3 ± 12.3 44.4 ± 9.7
Relief-F 500 93.3 ± 4.3 ** 96.5 ± 4.4 90.1 ± 6.4 80.7 ± 5.3 * 82.5 ± 2.5 78.8 ± 8.9 48.2 ± 7.6 43.6 ± 6.9 52.9 ± 11.4
Relief-F 1000 93.1 ± 4.8 ** 94.9 ± 4.5 91.3 ± 6.0 83.5 ± 3.6 ** 82.0 ± 1.8 84.9 ± 6.6 51.6 ± 7.0 46.7 ± 7.7 56.5 ± 9.3

Relief-F 10,000 95.0 ± 3.8 ** 96.3 ± 4.5 93.7 ± 4.2 89.8 ± 2.2 ** 81.8 ± 0.0 97.8 ± 4.3 57.7 ± 6.4 48.7 ± 7.3 66.7 ± 7.7
Relief-F 100,000 92.3 ± 2.2 ** 90.8 ± 0.9 93.8 ± 4.2 87.1 ± 1.8 ** 82.0 ± 1.3 92.2 ± 3.2 51.3 ± 6.3 44.1 ± 6.2 58.5 ± 8.6

FA Features

Early-HD vs. HC Early-HD vs. Pre-HD Pre-HD vs. HC

ROIs Acc. Sen. Spe. Acc. Sen. Spe. Acc. Sen. Spe.

Whole-brain 92.7 ± 4.6 ** 92.4 ± 6.6 93.0 ± 4.8 86.9 ± 2.8 ** 80.7 ± 3.1 93.1 ± 4.6 40.4 ±7.3 34.0 ± 7.8 46.7 ± 9.7
Thr. 0.2 86.4 ± 5.7 ** 80.4 ± 8.9 92.4 ± 4.4 87.2 ± 2.7 ** 78.0 ± 4.1 96.4 ± 5.2 40.1 ± 8.0 35.1 ± 8.0 45.0 ± 11.0
Caudate 85.9 ± 4.5 ** 89.3 ± 2.6 82.5 ± 8.0 86.4 ± 3.5 ** 89.2 ± 2.8 83.6 ± 7.1 74.0 ± 6.4 * 73.5 ± 7.3 74.4 ± 8.8
Putamen 88.2 ± 5.0 ** 82.6 ± 7.9 93.8 ± 7.0 87.5 ± 3.4 ** 89.8 ± 1.3 85.1 ± 6.8 61.1 ± 8.0 69.4 ± 9.9 52.8 ± 10.6
Pallidum 88.3 ± 5.7 ** 83.1 ± 5.4 93.5 ± 8.1 84.1 ± 4.4 ** 75.8 ± 5.0 92.4 ± 5.7 46.9 ± 8.9 46.7 ± 11.0 47.2 ± 11.3

Relief-F 100 90.4 ± 1.5 ** 80.9 ± 2.9 100.0 ± 0.6 73.6 ± 6.5 * 66.3 ± 9.1 80.8 ± 12.2 46.7 ± 9.9 45.7 ± 12.0 47.6 ± 13.2
Relief-F 500 91.2 ± 4.4 ** 87.9 ± 5.0 94.6 ± 5.0 93.2 ± 2.4 ** 90.0 ± 0.0 96.4 ± 4.8 61.7 ± 8.6 60.6 ± 8.7 62.8 ± 12.1
Relief-F 1000 99.0 ± 2.0 ** 100.0 ± 0.4 98.0 ± 4.0 94.4 ± 1.6 ** 90.0 ± 0.0 98.8 ± 3.3 56.3 ± 8.8 55.9 ± 9.2 56.7 ± 11.9

Relief-F 10,000 99.6 ± 1.4 ** 100.0 ± 0.0 99.2 ± 2.8 98.3 ± 2.4 ** 96.6 ± 4.8 100.0 ± 0.0 64.4 ± 7.2 59.5 ± 8.4 69.2 ± 9.5
Relief-F 100,000 95.6 ± 3.1 ** 99.4 ± 2.3 91.7 ± 6.3 94.5 ± 2.0 ** 89.0 ± 4.0 100.0 ± 0.0 60.3 ± 9.1 51.7 ± 11.4 68.8 ± 9.8

Acc. = accuracy; Sen. = sensitivity; Spe. = specificity. Significance: * for p < 0.05 and ** for p < 0.01.

For the classification between the Early-HD vs. Pre-HD groups the putamen and the
caudate ROIs returned models with higher accuracies than the whole-brain segmented GM
feature, whilst the Relief-F algorithm features returned highest classifier’s performance
when using a selection of 10,000 voxels.

The classification between the Pre-HD (20.3 ± 10.5 YTO) and HC groups did not return
statistically significant results, with the highest balanced accuracy occurring for the caudate
ROI (59.9 ± 6.6%, p > 0.05).

The weight map for the whole-brain segmented GM image classification between
Early-HD vs. Pre-HD is displayed in Figure 1, with hot/cold colors showing the voxels with
positive/negative weight contributions to the classification model, respectively, and values
closer to/further away from zero weight-contribution represented in darker/brighter
colors, respectively. The weight map can be interpreted as spatially distributed patterns of
local differences in GM volume, and in our case, for binary classification using linear kernel
SVM, regions with higher absolute weights as contributing more to the discrimination
between groups. For the Early-HD vs. Pre-HD classification, the caudate and the putamen
were identified as contributing significantly to discriminating between the groups, together
with a distributed pattern throughout the cortical mantle, with most contributions from the
middle temporal, middle frontal, middle occipital, parietal, supramarginal, and angular
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regions. Interestingly, a similar pattern was found for the Early-HD vs. HC classification
(see Supplementary Materials, Figure S1) and using the Relief-F algorithm with a total
number of 10,000 features.
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respectively. For visualization purposes, weight values at the lowest 10% range (closer to zero,
positive, and negative) are not displayed. The ‘Low’ (closer to zero) and ‘High’ (further away from
zero) descriptions refer to absolute weight values. The map is overlaid on a mean GM image, in
grey scale, that was calculated using the participants from our study. L = left; R = right; A = anterior;
P = posterior.

The weight map corresponding to the classification model for each subcortical ROI
(bilateral caudate, putamen, and pallidum, respectively) is depicted separately in Figure 2
(Top for GM). Axial, coronal, and sagittal views that maximize visualization of each ROI
display the respective weight maps. Voxels with higher absolute weights contribute more
to the discrimination between groups, as from local differences in GM volume.



J. Pers. Med. 2022, 12, 704 8 of 15J. Pers. Med. 2022, 12, x FOR PEER REVIEW 9 of 16 
 

 

 
Figure 2. Voxels’ weight maps for binary classifications using subcortical ROIs. Weight maps are 
depicted for each binary classification (Early-HD vs. Pre-HD, Early-HD vs. HC, and Pre-HD vs. HC) 
and subcortical ROI (bilateral caudate, putamen, and pallidum, respectively). Axial, coronal, and 
sagittal views that maximize visualization of each ROI per one slice, respectively, are identified. 
Top: Classification with GM features. The weight maps are overlaid on a mean GM image, in grey 
scale, calculated using all study participants; Bottom: Classification with FA features. For visualiza-
tion, the weights are overlaid on a standard FA image (FMRIB58_FA) to which each participant’s 
data were co-registered. The hot (red-yellow) and cold (blue-green) color maps show the positive 
and negative weights, respectively. For visualization purposes, weight values at the lowest 10% 
range (closer to zero, positive, and negative) are not displayed. The ‘Low’ (closer to zero) and ‘High’ 
(further away from zero) descriptions refer to absolute weight values. 

3.3. FA Classification 
FA-based classifications returned similar or higher accuracies than those obtained 

using segmented GM features, displaying a similar performance trend with the type of 
feature (see Table 2, bottom). The highest accuracy for the Early-HD vs. HC classification 
was achieved with the whole-brain FA image feature. The classifier’s performance was 
also higher with Relief-F selected features above or equal to 10,000 voxels. The classifica-
tion between the Early-HD vs. Pre-HD groups achieved high accuracies, and as for the 
GM features, the Relief-F algorithm enabled the highest classifier’s performance when us-
ing a selection of 10,000 voxels. Accuracies for the different subcortical ROIs ranged 84–
87% (p < 0.01). 

Most interestingly, significant results were obtained for the Pre-HD (21.7 ± 9.4 YTO) 
vs. HC classification when using the caudate ROI (accuracy 74.0 ± 6.4%, p < 0.05). 

The inspection of the whole-brain (FA) weighting map for the Early-HD vs. Pre-HD 
classification (see Figure 3) revealed significant contributions from FA values within the 

Figure 2. Voxels’ weight maps for binary classifications using subcortical ROIs. Weight maps are
depicted for each binary classification (Early-HD vs. Pre-HD, Early-HD vs. HC, and Pre-HD vs. HC)
and subcortical ROI (bilateral caudate, putamen, and pallidum, respectively). Axial, coronal, and
sagittal views that maximize visualization of each ROI per one slice, respectively, are identified. Top:
Classification with GM features. The weight maps are overlaid on a mean GM image, in grey scale,
calculated using all study participants; Bottom: Classification with FA features. For visualization, the
weights are overlaid on a standard FA image (FMRIB58_FA) to which each participant’s data were
co-registered. The hot (red-yellow) and cold (blue-green) color maps show the positive and negative
weights, respectively. For visualization purposes, weight values at the lowest 10% range (closer to
zero, positive, and negative) are not displayed. The ‘Low’ (closer to zero) and ‘High’ (further away
from zero) descriptions refer to absolute weight values.

3.3. FA Classification

FA-based classifications returned similar or higher accuracies than those obtained
using segmented GM features, displaying a similar performance trend with the type of
feature (see Table 2, bottom). The highest accuracy for the Early-HD vs. HC classification
was achieved with the whole-brain FA image feature. The classifier’s performance was
also higher with Relief-F selected features above or equal to 10,000 voxels. The classifica-
tion between the Early-HD vs. Pre-HD groups achieved high accuracies, and as for the
GM features, the Relief-F algorithm enabled the highest classifier’s performance when
using a selection of 10,000 voxels. Accuracies for the different subcortical ROIs ranged
84–87% (p < 0.01).
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Most interestingly, significant results were obtained for the Pre-HD (21.7 ± 9.4 YTO)
vs. HC classification when using the caudate ROI (accuracy 74.0 ± 6.4%, p < 0.05).

The inspection of the whole-brain (FA) weighting map for the Early-HD vs. Pre-HD
classification (see Figure 3) revealed significant contributions from FA values within the
distributed regions, including angular, middle frontal, middle temporal, and parietal un-
derlying areas, and, if considering the John Hopkins University white-matter tractography
atlas (JHU-atlas), voxels with significant contributing weights were located in the cere-
bellar peduncle, fornix, cerebral peduncle, and external capsule, between others. Similar
contributing patterns were observed for the whole-brain (FA) weight map from the Early-
HD vs. HC classification (see Supplementary Materials, Figure S2). When considering
weight map of the Relief-F 10,000 features classification model, significant contributions
spanned from striatal structures, thalamus, or cerebellum, besides the middle and superior
frontal and temporal regions, and when considering the JHU-atlas, significant contributions
included features from the corpus callosum, cerebellar peduncle, and external capsule,
among others.
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Figure 3. Voxels’ weights for the Early-HD vs. Pre-HD classification using whole-brain FA features.
The hot (red-yellow) and cold (blue-green) color maps show the positive and negative weights,
respectively. For visualization purposes, weight values at the lowest 10% range (closer to zero,
positive, and negative) are not displayed. The ‘Low’ (closer to zero) and ‘High’ (further away from
zero) descriptions refer to absolute weight values. The weight values are overlaid on a standard FSL
target FA image, FMRIB58_FA. L: left; R: right; P: posterior; A: anterior.
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For each subcortical ROI, the weight maps corresponding to each classification model
obtained using FA values are displayed in Figure 2 (bottom for FA), respectively.

3.4. Multimodal Neuroimaging Classification

In general, the multimodal neuroimaging approach resulted in accuracy, sensitiv-
ity and specificity values in-between those obtained for the unimodal neuroimaging ap-
proaches (see Supplementary Materials, Table S2). A slightly better classifier performance
was observed for the multi-kernel learning in comparison with the single-kernel learning.

In the multi-kernel approach, higher accuracies were attained with the putamen
ROI for both the Early-HD vs. HC (92.0 ± 2.9%, p < 0.01) and Early-HD vs. Pre-HD
(90.0 ± 3.5%, p < 0.01) classifications, while in the single-kernel approach the whole-brain
features returned the highest accuracies. The Pre-HD vs. HC classifications returned the
highest accuracies with the caudate ROI (71.8 ± 5.5%, p > 0.05) for the multi-kernel learning,
although not statistically significant.

4. Discussion

This study sought to classify HD stage with information extracted from structural
T1w images and DWI scans. We utilized segmented GM information, with each voxel
value representing the local GM volume, and values of FA, which enable the assessment
of the WM microstructural changes in the brain, but have also been used to assess fiber
architecture within GM tissue. We achieved significant results in binary classifications
between the Early-HD and Pre-HD or HC groups, with high performances for both seg-
mented GM and FA values, irrespective of the feature selection approach. For the binary
classifications between the Pre-HD and HC groups, statistically significant results were
achieved when using FA values from the caudate ROI. Importantly, since the Pre-HD group
with FA data is on average far from estimated-clinical-symptoms-onset (21.7 ± 9.4 YTO;
range: 10.2–43.1 YTO), our results add to evidence on the high sensitivity from diffusion
imaging features for successful discrimination of the earliest Pre-HD stages.

In accordance with our results, DWI measures such as FA have previously been sug-
gested to be highly sensitive to earliest signs of neurodegeneration in HD [17,21,36,49,50].
For instance, studies that use standard univariate data analysis approaches to investigate
alterations in Pre-HD individuals closer to symptom onset have consistently reported
changes in diffusivity parameters in sensorimotor-striatal WM tracts [30,51,52], cortical
WM clusters [11,13,52], internal capsule [13], and increased FA values in basal ganglia
structures [13,27,50]; these alterations progress further into the early stages of symptomatic
HD [28,51–55]. Whilst a consensus on the best DWI measure to characterize Pre-HD evolu-
tion has not yet been reached, it is generally accepted that the earliest changes in FA values
in the basal ganglia may result from loss of striatal-pallidal projections [49,50], while paral-
leled by structural neuronal volume loss. Interestingly, even though significant atrophy
of both the caudate and the putamen are already reported at about one decade prior to
estimated clinical onset [2,6,8,20], changes in the volume of striatal structures have not
been reported in Pre-HD cohorts far from estimated clinical onset [2,6,8,20], whereas vol-
ume reduction rates appear to be more sensitive to earliest changes in Pre-HD cohorts [8].
On the other hand, and despite being less explored, WM microstructure correlates of
early neurodegeneration in Pre-HD seem to occur close in time to identifiable neuronal
volume losses [13,27,49,50], whilst in studies that use multivariate analysis methods, the
evidence points to the higher sensitivity of diffusion parameters such as FA to the earli-
est HD-related alterations [17,21,36,49,50]. Accordingly, on the basis of segmented GM,
Klöppel and colleagues [18] could only achieve higher discrimination accuracy for Pre-HD
individuals (n = 32) close to estimated diagnostic onset when pre-defining ROIs, whereas
higher accuracies could be achieved for Pre-HD individuals (82%) far from estimated
diagnostic onset (n = 25; 19 YTO; range: 6–35 YTO) using whole-brain FA values [17]. On
the other hand, Rizk-Jackson et al. [21] achieved similar results for whole-brain GM and
WM classifications of Pre-HD individuals on average 14.9 YTO (n = 39), but only reaching
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statistical significance and higher accuracies (73–76%) when using basal ganglia volumes,
which also differed significantly between the Pre-HD and control groups. The study
by Georgiou-Karistianis et al. [36] also found significant differences between the Pre-HD
(n = 35; 15.6 YTO) and control participants, in basal ganglia volumes and average diffusivity
measures such as FA and mean diffusivity, which resulted in classification models that
reached statistical significance. Hence, existing evidence suggests that the selection of the
disease-informed brain areas and measures of diffusivity might enable early distinction of
Pre-HD stages, as further supported by our results.

On the other hand, the use of ROIs or whole-brain feature maps has led to differing
results in HD research [17,18,21,36]. These topics, more thoroughly explored in the context
of neurodegenerative diseases with higher prevalence and incidence rates [35,56], such
as Alzheimer’s disease, have shown that disease-informed selection of anatomical ROIs
will result in higher classifiers’ performance for small sample sizes, irrespective of disease
stage, whilst accuracies for ROI-based or whole-brain features increase and converge with
increasing the training sample size. Again, these results seem to support our findings as
well as former reports in HD. It is also important to point out that integration of information
from neuroimaging modalities has been suggested to improve discrimination between
groups [21,36,57,58]. This was not the case for our data, most possibly as a consequence of
the small sample size, although the L1-norm MKL machine enabled consistently higher
levels of accuracy [57].

The models built to discriminate between Early-HD and HC, or far from YTO Pre-HD
individuals, revealed statistical significance irrespective of the imaging modality (GM vs.
FA) or selected feature (whole-brain, ROI, Relief-F). Interestingly, when assessing quali-
tatively the major contributing regions in discriminating between groups on the basis of
the whole-brain weight maps, key areas known to be affected by HD neurodegenerative
processes were consistently identified, such as the caudate and the putamen [1–4], while dis-
tributed patterns of contributing features in the cortical regions and WM tracts also included
areas formerly reported in HD studies that used univariate methods [5,13,16–29,32].

Finally, even though an association exists between CAG repeat length and brain-
related measures, or measures that capture the motor-cognitive phenotype [59], genetic
information cannot be used as a surrogate biomarker nor as a direct measure of disease
progression. Hence, neuroimaging methods are one of the optimal candidates for the search
of surrogate biomarkers in the earliest stages of HD.

Limitations

The major limitation of this study was the small training sample size, which makes
generalization of the models to other sites, scanners, and datasets less likely. This effect
was more pronounced for the Relief-F algorithm, where very high accuracies are usually
attained; the definition of the K-parameters might have also contributed to over-fitting.
Despite the careful use of multiple combinations of sets of participants per classification
type (e.g., Early-HD vs. HC) and the application of permutation tests to each binary
classification, thus to every combination, we could not rule out over-fitting, which seemed
particularly present for the Relief-F algorithm.

It is also necessary to consider that if we had defined a global subcortical ROI including
together the bilateral caudate, putamen, and pallidum, statistically significant models might
no longer be achieved for the Pre-HD vs. HC classification model, as can be observed from
the accuracies reported in Table 2. The choice of building separate models for each ROI
was based on well-known HD neuropathology patterns, whilst the reproducibility of our
results needs detailed evaluation with larger datasets of Pre-HD individuals far from YTO.
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5. Conclusions

We provide evidence on the high sensitivity of fractional anisotropy values in basal
ganglia structures to discriminate for earliest Pre-HD changes in individuals who are far
from the estimated clinical onset (>21 YTO). Longitudinal studies can further investigate
the applicability of these properties as surrogate biomarkers.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/jpm12050704/s1, Table S1: Number of valid combinations used
in the SVM classification; Table S2: Results using multimodal imaging approach. Average accuracy,
sensitivity, and specificity values (%), and standard deviations, from the classification using support
vector machines with one-kernel and also a multi-kernel approach; Figure S1: Voxels’ weight for the
Early-HD vs. HC classification using whole-brain GM features; Figure S2: Voxels’ weight for the
Early-HD vs. HC classification using whole-brain FA features.
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