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Unscented Kalman Filtering of a Simulated pH System
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Recently, the unscented Kalman filter (UKF') algorithm, which is a new generalization of the
Kalman filter for nonlinear systems, was proposed in the literature. It has significant advantages
over its widely used predecessor, the extended Kalman filter (EKF). These include better accuracy
and simpler implementation and the dispensability of system and measurement model
differentiability. In this work, we compare the performance of the two approaches in a simulated
pH process with three situations considered. The first one evaluates the performance differences
between the unscented transform and the EKF linearization, as applied to the nonlinear pH
output equation. In the second simulation, the complete filter algorithms are compared in a
state estimation framework. The third case concerns parameter estimation. In all three cases,

the UKF produced more-accurate results.

1. Introduction

State and parameter estimation has been used widely
for the purpose of control and monitoring.! One of the
most-utilized linear estimation methods is the Kalman
filter,2 whereas nonlinear problems may be tackled with
the extended Kalman filter (EKF).?

The EKF contains several flaws that may seriously
affect its performance. For instance, although the a
priori state mean may be estimated propagating the
nonlinear system directly, the corresponding covariance
estimate calls for the calculation of the state transition
matrix, which, in turn, requires linearization of the
system model. This may introduce significant errors if
the error in the state estimate is not sufficiently small.
Indeed,

Pjpsr = CI)Pk|kq)T +DQ,D"

where ® is the state transition matrix. For time-
invariant systems, it is

b = eFAt

where F is the Jacobian of the continuous system and
At is the time interval. There are continuous time
versions of the Kalman filter where the state and its
covariance matrix are integrated directly. However, this
results in a large system of ordinary differential equa-
tions (ODEs) to be integrated. Besides, discrete time
formulation is a natural form for implementation in
modern digital control and measurement systems. More-
over, the matrix exponential evaluation is a potentially
ill-conditioned operation.* Furthermore, differentiability
of the system and measurement models is required.
Generally, various cases of nondifferentiable systems
have required special treatment from a control stand-
point, such as friction compensation in control valves,?
piece-wise switching of parameters in process models,®
and physical configuration.” Many control and optimiza-
tion algorithms make an assumption of smoothness or
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“well behavior” of functions they involve and approxi-
mate them as such.

An enhanced filtering technique that effectively ad-
dresses the aforementioned issues was proposed in the
literature;8 this technique is called the unscented Kal-
man filter (UKF) method. Theoretical treatment of the
UKF formalism may be found elsewhere.”~12 Many
applications utilizing the UKF have been reported since
that time. Note that most of them are in the area of
aerospace navigation and tracking, where one fre-
quently encounters severe nonlinearity and fast dynam-
ics and where the UKF was developed. For example,
faster convergence is achieved by the UKF in a space-
craft attitude estimation framework.!? A comparison of
nonlinear filters for tracking a ballistic object!* also
favors this new technique. The ability of the UKF to
address discontinuous systems resulted in a successful
application of the UKF to models with freeplay and
hysteresis.'® Superior performance of the UKF, as
compared to the EKF, has been observed in communica-
tion systems.!® This technique has also been integrated
with an interactive multiple model algorithm in a
maneuvering target tracking framework.l” Other ap-
plication areas include on-line training of neural net-
works.18:19 The latter work also addresses the use of the
UKEF for system identification and simultaneous state
and parameter estimation.

Despite the apparent advantages of the UKF over the
EKF, the former has not been used widely in chemical
process engineering and most relevant applications
reported in the literature are the state estimation of a
biological process and partitioned filtering, as a means
of system identification from simulated chaotic data.?!
As with the EKF in the 1980s,22 this may be due to the
unfamiliarity of researchers and practitioners with this
tool.

In a previous work, the performance of the UKF and
the EKF were compared in the state estimation of a
simulated continuously stirred tank reactor (CSTR)
system exhibiting strong nonlinearity.?® Although the
focus of that study was the nonlinearity of the system
equations, the measurements were linear, with respect
to the states. However, some chemical engineering
systems feature highly nonlinear measurements, and,
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thus, they may also benefit from the use of the UKF.
In the present work, we apply both the UKF and the
EKF to a simulated pH system to assess their perfor-
mance. While its state equations are still nonlinear, this
nonlinearity is rather weak, compared to that of the
output equation. Besides, its output Jacobian is an
expression of significant size and complexity.

The paper is organized as follows: the UKF algorithm
is described in Section 2, and the system under study
and the simulation setup are outlined in Section 3.
Section 4 presents obtained results and a comparison
of the filter performance by simulation. Finally, conclu-
sions are drawn in Section 5.

2. The UKF Algorithm

Consider a dynamic system approximated in discrete
time as

X%, =%, U1, Ve, k= 1) 1)
with a measurement vector
yk = h(xk’ uk7 wk, k) (2)

In egs 1 and 2, x is the state vector, u# the control input
vector, v the system noise vector, ® the measurement
noise vector, f{--*) the process model, and A(:-+) the
measurement model.

A Kalman-type filter consists of two major steps:
prediction, in which a new a priori estimate of the state
vector is computed using the system model; and correc-
tion, in which this predicted estimated is improved
using available measurements. This structure also is
maintained in the UKF. However, instead of system and
measurement model truncation, the probability densi-
ties are truncated.?*

The unscented transformation®2> makes use of de-
terministically chosen sigma points that are propagated
through the original nonlinear system equations. Using
an appropriate weighing scheme, it is then possible to
calculate the statistical properties of the propagated
point set with the same performance as the truncated
second-order Gaussian filter but without the need to
calculate the system’s Jacobians or Hessians.? Related
approaches may be found elsewhere.”10

In the UKF formulation, the system state vector is
augmented,

X1 = Er-1le-1 Vi1 Pp-1) (3)

and the covariance of the augmented state vector is
given by

P, 1 o o
Py 1= [0 Q1 P2y 4)
o P;:Zl kal

where n is the dimension of the original state vector,
and g and r are the sizes of the covariance matrixes of
the system and measurement noise, respectively. P,”;
and P;”, are the correlation matrixes between the
system and measurement noises. The dimension of the
resulting augmented state vector is

n=n+q-+r (5)

Consequently, a set of 2n? + 1 symmetric sigma points
is computed:

G :—1|k—1 =
[0, \/(na + K)PZ—Mk—l’ - \/(na + K)PZ—uk—ﬂ (6)

where « is a parameter for “fine-tuning” the higher-order
moments of the approximation. For any symmetric prior
distribution with kurtosis k&, if « is chosen such that 0
< n® + k¢ < k, then the predictions of means and
covariances are more accurate than those of the EKF.
Note that the unscented transformation properties hold
for any choice of the matrix square root in eq 6.
However, for numerical robustness and computational
efficiency reasons, the Cholesky decomposition should
be preferred.®

Because the sigma point set .2* is zero mean, the
estimate &;_,,_, is added to each sigma point in vector
A -14—1 and the resulting vector of sigma points is

Q- —
A1 =
o * aa oy ax aa
LV 1k-11 T %110 Lo tp-1,2n41 T &gl (1)

The prediction step consists of (i) the mapping of the
sigma point set through the nonlinear system

Bpr = A a1 U1, B = 1) (8)
and (ii) the calculation of the predicted mean as
2n3+1

Kpp1= Wi*%g,k\k—l 9)

f=
where W is a weight vector of size 2n® + 1 with elements

K
n®+«

(ifi=1)
W4:

12

(10)

—— (otherwise (ifi = 1
202 + 1) (otherwise (if ¢ )

The predicted covariance is computed as

2n2+1
— o s
Py = Wil g1 = il x
=

L 1 — -"A‘k|le—1]T (1D

The statistics of the innovation is determined in a
similar manner. The predicted observation is computed
as

U= h(fIlf,k‘k,l, Uy, k) (12)
2n2+1
.= Z Wi((//?,k (13)
and its covariance is determined as
2n2+1
P, = Z W. % = 9l — 7" (14)

The cross-correlation between the state estimate and
the measurement sequence is



2n2+1
P, = Wil -1 = Bp-1] [ — 5’k]T (15)

1=

The following equations are typical Kalman filter ex-
pressions for the measurement update. The Kalman
gain is

K,=P. P! (16)
the updated mean of the state vector is
ﬁ'k|k = "A‘k\k—l + K,(y, — %) a7
and the corresponding covariance matrix is given by
Py =Py — KkuKE (18)

The aforementioned algorithm describes the “standard”
unscented Kalman filter. However, some enhancements
have been reported recently in the literature, such as
the use of additional points?® and a higher-order for-
mulation2? for improving the accuracy of the filter, the
reduction of the sigma point number in real-time
applications,?® the scaling of the sigma point set to
decrease the effect of sampling of nonlocal effects in high
dimension state space,2? and a square-root formulation
improving the numerical stability of the algorithm and
decreasing its computational burden.?? Nevertheless,
these advances address either implementation issues
or particular systems and, therefore, are out of scope of
this work. Instead, our goal is to illustrate that, even
with the standard formulation of the UKF, it is possible
to achieve performance improvements in a chemical
process with output nonlinearity.

3. System Description

To compare the performance of each of the filters, we
apply them to a simulated system reported by Biagiola
and Figueroa that consists of a continuous stirred tank
reactor (CSTR) in which a neutralization reaction
between a strong acid (HA) and a strong base (BOH)
occurs in the presence of a buffer agent (BX) (see Figure
1). The motivation behind the choice of the present
benchmark system is, on one hand, the simplicity of the
system equations and, on the other hand, the complexity
and nonlinearity of the output equation, especially of
its Jacobian.

ga +qB

qa, T1i pH
— (ar)
Taj, T3i qB

Figure 1. Neutralization process.
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The state vector is defined as

x, =[A"]
Xy = [BY]
and
x5 = [X] (19)

where [A7], [B'], and [X~] are the concentrations of the
acid, base, and the buffer agent, respectively. The
process model has the following form:

1 1

X = 5(x1,i —xy) — V1498 (20)

1 1
Ty = = gre F %25 ~ %2)qp 2D

1 1
=~ gxs + %35 — x3)qp (22)

Fx,8) =
Kw X3

Etuwgtug—xy — =0 (23)

& 1+ ((KEK,)

where & = 107PH and 0 = V/ga. The terms ga and g¢p
represent the inlet flow rates, x14, x2;, and x3; are the
inlet concentrations of the species, and Ky and K, are
the dissociation constants of the buffer and water,
respectively. The system parameters used in this work
are summarized in Table 1.

Expression 23 was rewritten as a third-order poly-
nomial,3!

£+ &4- + x, — |8+
K X3 Xy xlg
2

KW KW
(=2~ KJgE — =0 (24

X

from which the value of the output may be derived by
introducing the following auxiliary variables:

a=1

b=fw+x3+xz—x1

X

KW
c=(xg—x, — Kx)f

X

K2
TR,
:—i
p 3a
3  bc — 3ad
= +
1 6a’
r=2<
3a

Solving for pH,
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pH = — log{lg + vq* + (r — p*’I'* +
lg — Vg + (r — p*12 + p} (25)

The output equation (eq 25) clearly exhibits a very
strong nonlinear behavior. To illustrate this phenom-
enon, the titration curve of the process is given in Figure
2 for ¢p from 0 L/min to 5 L/min, which is the region of
very pronounced nonlinearity. The reader is referred
elsewhere?! for the titration curve for a wider range of
the inlet flow rates.

4. Simulation Results

To compare the filters, three simulation situations are
considered. The first simulation evaluates the perfor-
mance differences of the unscented transform and the
EKF linearization as applied to the output (eq 25). In
the second simulation, the complete filter algorithms are
compared in a state estimation framework of the above
system. A parameter estimation application is ad-
dressed in the third case.

4.1. Unscented Transform versus Linearization.
This simulation consists of propagating a Gaussian
random variable through a nonlinear function using the
unscented transform and the linearization utilized in
the Kalman filter. Namely, we map the state vector x
through eq 25. To focus on a nonlinear region, the
sample mean is chosen to be

9.3 x 107
=|54x10" (26)
43x107*
which results in pH = 6.13, where the nonlinear

behavior of the titration curve is evident (see Figure 2).
The sample covariance is a diagonal matrix

P, =diag{ ¢* ¢* 0%} (27)

with ¢2 ranging from 2 x 1071 to 2 x 1079,
The linearization algorithm consists of calculating the
propagated mean as

y=h&x) (28)
and the propagated covariance as
_ T
P,=HPH (29)
where
H= oh (30)
OX |x=%

Such an approach works well for linear systems. How-
ever, in nonlinear cases, the propagation of a Gaussian
random variable produces a non-Gaussian variable.
Note that the Jacobian H of eq 25 is an expression of

Table 1: Model Parameters

symbol parameter value
X1 acid inlet concentration 1.2 x 1073 mol/LL
X2 base inlet concentration 2.0 x 1073 mol/L
X34 buffer inlet concentration 2.5 x 1073 mol/L,
K, buffer dissociation constant 10~7 mol/L
K, water dissociation constant 1014 mol%/1.2
14 reactor volume 25L

8.0
7.5
_——

7.0

6.5 7

6.0 //
2 55 /
T 50 /

4.5

4.0 //

3.5

L
3.0
2.5
0 005 01 0145 02 025 03 035 04 045 05
¢p /L/min

Figure 2. Titration curve.
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Figure 3. Transformation approaches.

significant complexity and size. Therefore, it is omitted
from the article, for the sake of space.

On the contrary, the unscented transform does not
make use of the Jacobian. Now that the dimension of
the state vector is 3, the sigma set is comprised of seven
elements. In addition, for the reason of Gaussianity of
x, the parameter « is set to 0, and the statistical
properties of y are calculated with eqs 12—14 and eq
10.

To enable a graphical interpretation of the differences
between the two approaches, we analyze a simplified
version of eq 25 in which x¢ and x3 are kept constant at
5.4 x 1074 mol/L and 4.3 x 10~* mol/L, respectively. In
addition, x; is assumed to be a random variable with a
mean of X; = 9.3 x 107* mol/L and variance of 62 =5 x
10710 mol?/L2. Such simplification is motivated solely
by the fact that univariate functions are easier to
analyze graphically. The solid line in Figure 3 corre-
sponds to the resulting function for x; €[8.5 x 1074, 10.5
x 1074 mol/L, whereas the dashed straight line corre-
sponds to the linearization of the function at x; = x; =
9.3 x 107 The slope of this line is equal to the value of
the first element of Jacobian H. Consequently, we form
a set of points [(X; — 30), X1, (X1 + 30)] and map them
using eq 25.

In the unscented transform, these points are mapped
using the actual nonlinear function (see the left vertical
axis of Figure 3), and the resulting points are weighed
to calculate the statistical properties of the result. In
the (extended) linearization approach, only the prior



Table 2: Univariate Transformation Results

Monte Carlo, linearization, unscented transform,

parameter MC LIN UT
mean 6.0765 6.1252 6.0748
variance 0.070755 0.045471 0.070087

mean is propagated through the original function but
the covariance is propagated through a linearized
system (Jacobian). In this example, it is equivalent to
the mapping of the other two points using the straight
line (see the right vertical axis of Figure 3). This proves
the fact that, in the (extended) linearization, the mean
of the result is independent of the prior variance.
Moreover, the variance of the result is not sensitive to
the nonlinearity of the function in question. In this
example, such linearization assumptions worsen the
results. On the other hand, the unscented transform is
able to predict the statistical properties quite well (see
Table 2).

As in the univariate case previously mentioned, a
similar performance difference is observed when all
elements of x are considered random. The top plot of
Figure 4 illustrates the residuals

y=y—¥r (31)

where y is the true mean and yt is the mean calculated
by the transformations. The evolution of the true and
predicted variance of y is depicted in the bottom plot of
Figure 4. The true statistical properties of the propa-
gated variable were determined in a series of Monte
Carlo runs, each consisting of 10® samples.

Note that an increase in the input covariance (o) leads
to higher prediction errors of both filters. However, one
may observe two distinct regions of the residual plot:
for 0 < 4 x 10719 mol%/L2, the unscented transformation
is substantially more accurate than its linearization
counterpart, whereas, at higher values of the input
covariance, the errors of both transformations are
comparable. However, the variance predicted by the
linearization approach is clearly underestimated.

The aforementioned test is repeated with the sample
mean,

9.484 x 1074
x=4.194 x 107* (32)
5.242 x 104

corresponding to pH = 5, which is the point of the
highest sensitivity and nonlinearity of the output equa-
tion. The sample covariance is given by eq 27. Figure 5
illustrates the residual and variance of the transformed
random variable as a function of the sample covariance.
It is evident that the mean prediction error of both
approximations is lower than in the previous case,
although the unscented transform remains more ac-
curate. This may be explained by the fact that, in this
region, the nonlinearity is almost symmetrical and,
therefore, the linearization is able to achieve a satisfac-
tory level of accuracy. This notwithstanding, the vari-
ance of the mapped variable is significantly overesti-
mated, because the linearization does not take into
account the nonlinear change in the derivative of the
function in the vicinity of the nominal operating point.
Such behavior in the calculation of the predicted output
covariance of a Kalman-type filter may lead to a lower
value of the Kalman gain and, thereby, the effect of the
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Figure 4. Transformation results in the vicinity of pH = 6.13:
mean (top) and covariance (bottom).
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Figure 5. Transformation results in the vicinity of pH = 5: mean
(top) and covariance (bottom).

measurement update step of the observer may be
undermined.

It is remarkable that the unscented transformation
manifests smaller estimation errors over the entire
range of the input covariance in both sets of nominal
operating conditions.

4.2, State Estimation. Previously, it was shown how
estimation results of a nonlinear map might be im-
proved with the use of the unscented transform. In this
subsection, we compare the accuracy of EKF and UKF,
based on linearization and the unscented transforma-
tion, respectively. The system defined by eqs 20—22 is
approximated in discrete time as

X, =Xy, Upy) T Vg (33)

where v is the zero-mean Gaussian system noise with
covariance
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2 x 101!
Q = diag{ 2 x 10!} mol*/L”
2x 101

In addition, the measurement model has the form
¥y, = hix,) + o, (34)

where oy, is the zero-mean Gaussian measurement noise
with a variance of R = 107% In addition, the system
and measurement noise processes are not correlated.
Although such system is, in fact, simpler than eqs 1 and
2, these assumptions are fairly common in practice.32

The only measurement available is pH; therefore, the
system is not observable. However, because of the
nature of the process, its dynamics is stable and the
states are detectable. Therefore, it is possible to use a
state estimator without the assumption of observabil-
ity.33

At the beginning of the run, the true value of the state
vector and the respective estimates are set according
to

88 x 1074
6.8 x 1074

and the respective covariance matrixes,

0
Pl (0) = PT,(0) = diag{ 0 } mol¥L?  (35)
0

Although such a choice is obviously impossible in real
systems, the motivation behind it in the present work
is 2-fold. On one hand, we expose both filters to the same
consistent initial conditions and exclude from consid-
eration the ad hoc solution of performance improvement
by artificially increasing the initial covariance estimate.
On the other hand, by choosing exact initial estimates,
we avoid the transient behavior at the beginning of the
simulation run, so that the associated errors do not
mask the results of the remaining run. In fact, provided
that an estimator is stable, in cases of continuous
processes, the estimation errors during operation are
of bigger importance than those that are caused by a
wrong initial estimate. Nevertheless, the issue of con-
vergence speed is addressed in the parameter estima-
tion run described in Section 4.3.

Because of the system structure, the dimension of the
augmented state vector is 7 and the additional param-
eter of the UKF, «, is set to —4.

The system is excited by a periodic changes in inlet
flow (qa), according to

g =1+ 0.06 sin(0.04¢) (36)

where ¢ is time (given in minutes). The flow rate gz is
maintained at 0.265 L/min. Such operating conditions
result in output pH between 6 and 4, which is the region
of severe nonlinearity (Figure 6).

Two cases are considered: in Experiment I, the filters
have access to the perfect model of the process, whereas
in Experiment II, the model underestimates the system
parameter 6 by 1%. To enable a fair comparison of the
two filters, each experiment was repeated 450 times and
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Figure 6. Open loop simulation results.

Table 3: Open-Loop Mean Square Estimation Errors
over 450 Runs

method? x1(x 1079 x2(x 1079 x3(x 1079) y
Experiment I: Perfect Model
EKF 2.7106 2.7089 2.7901 1.2448 x 1071

UKF 2.6999 2.6974 2.7789 8.4324 x 1072

Experiment II: Model—Plant Mismatch
EKF 8.8688 5.3505 6.9480 1.0466 x 10
UKF 8.4134 5.0173 6.6868 0.9279 x 10

¢« EKF = extended Kalman filter; UKF = unscented Kalman
filter.

the estimation errors were averaged and presented in
Figures 7 and 8, and in Table 3.

Although, in Experiment I, the process model is
perfect, the states are corrupted by the system noise and
the filters must address this by decreasing the incurred
uncertainty by effective incorporation of the measure-
ments into the state estimate. The relative weight in
the final estimate of the a priori estimate, obtained from
the model prediction, and the measurement is deter-
mined by the Kalman gain that, in turn, is dependent
on the predicted output covariance and the innovation
covariance. Because the output equation is nonlinear,
even in this perfect case, the unscented Kalman filter
produces better results (see Table 3), although the
difference in state estimate error is not significant.
However, because of the high nonlinearity of eq 25,
these insignificantly higher state estimation errors of
the EKF, as compared with the ones of the UKF, incur
tangible differences in the output variable prediction
errors (see bottom plot of Figure 7).

Experiment II poses a more challenging task, as the
model predictions have a bias, because of the error in
the parameter 6. A possible way of taking into account
unmodeled features or model—plant mismatch is to
increase the system noise covariance artificially. In this
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Figure 7. Results of experiment I: perfect parameters.

respect, this matrix is treated as a measure of confi-
dence in the process model and not as the reflection of
a system noise characteristic. Nevertheless, the focus
in this work is to expose the filter to the same consistent
information about the stochastic disturbances, and,
therefore, the system noise covariance matrix is main-
tained, as in the previous case. Because model predic-
tions contain an additional error caused by the mis-
modeling, the measurement is of greater importance to
reduce the overall estimation error. Now that the UKF
is able to predict better the respective covariances, the
resulting state estimates are visibly better than those
of the EKF (Figure 8).

4.3. Parameter Estimation. In the simulation given
previously, the actual states of the system were esti-
mated. However, a Kalman-type framework may be
used to estimate model parameters. To test the two
filters in this role, the estimation of parameter K is
considered. Its dynamics is assumed to be of random
walk nature. Moreover, it is subject to zero-mean white
noise disturbance with a variance of 10717 mol%1.2. Such
variation may be caused by a random variation in the
inlet temperatures that affects the tank temperature.
The measurement is corrupted with zero-mean white
noise with a variance of 1073,

The aim of this simulation is to compare the speed of
convergence of the two filters in a more-realistic situ-
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Figure 8. Results of experiment II: plant-model mismatch.

ation when the correct initial estimate is not available.
Furthermore, the initial concentrations are chosen to
be those resulting in pH = 7, whereas the flow rate ¢p
is set to 0.265 L/min, causing a nonlinear transition with
a new steady-state pH of ~5. Although both filters have
access to the perfect system model, the parameter
dynamics is not stable, and, therefore, the present case
is more challenging than that described previously.

The initial estimate of the parameter is K(0) = 7 x
1077 mol/L, and its true value is K(0) = 106 mol/L.

The simulation is performed 5000 times, to provide a
fair comparison. The mean-squared estimation errors
(the difference between the true parameter value and
its estimate) are represented in Figure 9. The speed of
convergence of the UKF is higher than that of the EKF,
and the steady-state error is lower. As in the state
estimation case, the UKF did not need to evaluate the
output function Jacobian.

5. Conclusions

In this work, we compared the performance of the
extended Kalman filter (EKF) and unscented Kalman
filter (UKF) in a simulated pH process. The more-
advanced approximation of the mean and covariance of
a random variable undergoing a nonlinear transforma-
tion enabled the UKF to yield more-accurate estimation
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Figure 9. Mean-squared parameter estimation errors.

results than the EKF. It is also noteworthy that the
Jacobian of the output equation is a complex expression
that requires considerable computational burden. How-
ever, the UKF formulation needed neither its derivation
nor its online evaluation.

Because of its easy implementation and superior
performance, the UKF may be used as a drop-in
replacement for the EKF, benefiting typical chemical
process applications.
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