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Abstract: Severe Acute Respiratory Syndrome CoronaVirus-2 (SARS-CoV-2) is composed of four
structural proteins and several accessory non-structural proteins. SARS-CoV-2’s most abundant
structural protein, Membrane (M) protein, has a pivotal role both during viral infection cycle and host
interferon antagonism. This is a highly conserved viral protein, thus an interesting and suitable target
for drug discovery. In this paper, we explain the structural nature of M protein homodimer. To do
so, we developed and applied a detailed and robust in silico workflow to predict M protein dimeric
structure, membrane orientation, and interface characterization. Single Nucleotide Polymorphisms
(SNPs) in M protein were retrieved from over 1.2 M SARS-CoV-2 genomes and proteins from the
Global Initiative on Sharing All Influenza Data (GISAID) database, 91 of which were located at the
predicted dimer interface. Among those, we identified SNPs in Variants of Concern (VOC) and
Variants of Interest (VOI). Binding free energy differences were evaluated for dimer interfacial SNPs
to infer mutant protein stabilities. A few high-prevalent mutated residues were found to be especially
relevant in VOC and VOI. This realization may be a game-changer to structure-driven formulation of
new therapeutics for SARS-CoV-2.

Keywords: SARS-CoV-2; genomics; proteomics

1. Introduction

COronaVIrus Disease 2019 (COVID-19) is currently a worldwide pandemic that was
first reported in December 2019 in Wuhan, China, and, since then, led to more than
446 M infected people and over 6.00 M deaths [1] (as of 7 March 2022). COVID-19 is
caused by Severe Acute Respiratory Syndrome CoronaVirus-2 (SARS-CoV-2), which is
a Coronaviridae family, positive single-stranded RiboNucleic Acid (ssRNA) virus [2,3].
Since the beginning of this pandemic, SARS-CoV-2 has mutated over time, leading to the
identification of several variants that, based on phylogeny [4], have been organized into
clades named L, S, V, G, GH, GR, GV, GRY, and O (clade based on exclusion encompassing
sequences that do not fit into other clades) [5,6].

According to the World Health Organization (WHO), there are Variants Of Interest
(VOI), variants that have been recognized as being able to acquire community transmission
causing clusters and being further identified in several countries, or assessed as a VOI
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by WHO’s SARS-CoV-2 Virus Evolution Group. On the other hand, Variants Of Concern
(VOC) are variants that, adding to the characterization as VOI, are linked to increased
transmissibility or virulence, and/or a decrease in the effectiveness of treatment, prevention,
and diagnosis approaches currently used. VOI are distributed among clades G (lineages
B.1.525 and B.1.617.1), GH (lineages B.1.427/B.1.429 and B.1.526), and GR (lineages C.37, P.2,
and P.3). Moreover, VOC are distributed among clades G (lineage B.1.617.2), GH (lineage
B.1.351), GR (lineage P.1), and GRY (lineage B.1.1.7).

SARS-CoV-2 genes encode four major structural proteins: Spike (S) protein, Mem-
brane (M) protein, Nucleocapsid (N) protein, and Envelope (E) protein. Along with these
structural proteins, SARS-CoV-2 genes also encode sixteen non-structural proteins (nsp)
and accessory proteins [7]. One of the most conserved structural proteins in SARS-CoV-2 is
the M protein, as it has a smaller mutation rate sharing structural and functional similarities
with M proteins from another coronavirus [8]. M protein is also the most abundant struc-
tural protein playing a central role in directing virus assembly and budding via interaction
with structural proteins E, S, and N through heterotypic interactions [9–11]. In addition
to these heterotypic interactions, M protein is functionally dynamic and can also acquire
a homodimeric form [9,12,13]. Haan et al. demonstrated the existence of M-M interac-
tions, using co-immunoprecipitation and envelope incorporation assays, and determined
the M protein domains involved in this homotypic association, using a mutagenesis ap-
proach [12]. Neuman et al. demonstrated that M−M interactions may take various forms,
using cryo-Electron Microscopy (cryo-EM) in structural M protein models of SARS-CoV [9].
Yu et al. simulated M–M interactions using Coarse-Grained Molecular Dynamics simu-
lations (CGMD) [14]. Ouzounis et al. used the Orf-3a as a structural template to predict
low-resolution three-dimensional models of M proteins [15]. Interactions between M and
N proteins stabilize virion RNA genome [9–11,16], making this Protein–Protein Interaction
(PPI) a potential drug target [17]. Interactions between M protein and E proteins induce
membrane curvature, strong enough to assemble and release virus-like particles [9–11,16].
Interactions between M and S proteins are essential for S protein retention in Endoplas-
mic Reticulum–Golgi Intermediate Compartment (ERGIC) and its integration into new
virions [16]. Overall, M protein interferes with host immunological response through
interferon antagonism, is involved in host cell cycle arrest, induces Endoplasmic Reticulum
(ER) stress and unfolded protein response, has a role on coronavirus-induced autophagy,
and has a protective antigen function [18]. In addition, M protein homodimers formation
is essential for coronavirus envelope assembly [9,12,19,20]. Since M protein is essential
in the SARS-CoV-2, including for Virus-like particles (VLP) formation, a complete under-
standing of the structure–function relationship can help the development of more efficient
therapeutics [9,19,21]. However, this task has been affected by the difficulty to stabilize
and crystallize the M protein [22–24], and as such there is no experimentally resolved
structure available by either Nuclear Magnetic Resonance (NMR), X-ray crystallography,
or cryo-EM [25], thus far.

M protein is constituted by 223 amino acids and has three major domains: a short-
N-terminal ecto-domain, three TransMembrane Helices (labelled as TMH1, TMH2, and
TMH3), and a long C-terminal endo-domain located on the cytoplasmic face of viri-
ons [12,13,19,26]. There are few reports of M protein homodimers, but those that exist explain
only in part the process of homodimer formation through M–M interactions [9,12–15,27].
M protein molecules interact with each other through multiple contact sites, especially
in transmembrane domains [12]. An experiment on SARS-CoV M protein (which shares
90.5% sequence identity with SARS-CoV-2 M protein [28]) demonstrated that residues W19,
W57, P58 W91, Y94, F95, and C158 play a key role in homodimer interactions, suggesting
that homologous residues W20 (TMH1 domain), W58, P59 (TMH2 domain), W92, Y95,
and F96 (TMH3 domain) of SARS-CoV-2 may be important for M dimer interaction and
stabilization [13]. Moreover, SARS-CoV cysteine residues C63, C85, and C158 mutations
did not interfere with M dimer formation, suggesting that homologous SARS-CoV-2 M
protein residues C64, C86, and C159 may also not be involved in M dimer interface [13].
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Bioinformatic tools are well established methodologies that allow to attain a struc-
tural and functional characterization of relevant biomedical targets for viral infections
and to predict new virus-host interactions [29,30]. In this work, through an in-house de-
veloped in silico approach (Figure 1), we modelled the M protein monomer and dimer
three-dimensional (3D)-structures along with predictions for their membrane orientation
and homodimeric interface. We also predicted the impact of mutations in the predicted
homodimeric interface, and the best region for the binding of new drugs/peptides, paving
the way to structure-driven formulation of new therapeutic solutions.
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Figure 1. Project Pipeline. M protein structure was predicted by AlphaFold [31]. (1) Membrane
orientation was predicted with Orientations of Proteins in Membranes (OPM) [32], prediction of
Transmembrane Helices (TMpred) [33], TransMembrane prediction using cyclic Hidden Markov
Model (TMHMM) [34,35], Prediction of secondary structure (PSIPRED) [36,37], Consensus Con-
strained TOPology prediction (CCTOP) [38,39], and Sequence Analysis and Consulting Service
MEMbrane protein Structure And Topology (SACSMEMSAT) [40]. Protein–membrane systems
were constructed with Chemistry at HARvard Macromolecular Mechanics Graphical User Inter-
face (CHARMM-GUI) [41] and minimization and equilibration were conducted using GROningen
MAchine for Chemical Simulations (GROMACS) [42,43]. (2) M protein dimer was predicted with
High Ambiguity Driven protein–protein DOCKing (HADDOCK) [44] and results were compared
to SARS-CoV experimental data. (3) Gene and protein mutations were analyzed with Microbial
Genomics Mutation Tracker (MicroGMT) [45] and Rahman et al. [46] programs and energy variation
of mutations in dimer interaction residues were calculated with FoldX [47]. (4) Druggable residues in
SARS-CoV-2 Membrane protein dimer were predicted through FTMap [48] hotspot clusters.

2. Results

Due to the lack of an M-protein experimental structure, we have used the AlphaFold
predicted structure and subjected it to a MD simulation protocol. AlphaFold [31] algorithm
was shown to predict protein structures, attaining experimental resolution, as already
demonstrated in the challenging 14th Critical Assessment of protein Structure Prediction
(CASP14). Furthermore, Leo et al. [49] showed the potentiality of using 3D structures of
proteins attained by machine learning algorithms, and further refined them by a physics-
based protocol, as followed in our study.

2.1. M Protein Monomer Structure and Membrane Orientation

M protein is a membrane protein and the determination of its correct orientation in
the lipid bilayer membrane is needed to understand its main interactions, and, therefore,
its biological function. To this end, six different web-based resources for membrane orien-
tation prediction were used: OPM [32], TMpred [33], TMHMM [34,35], PSIPRED [36,37],
CCTOP [38,39], and SACSMEMSAT [40].
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M protein Root-Mean-Square-Deviation (RMSD) results were obtained considering
residues from the whole protein (monomer RMSD), TMH1, TMH2, C-terminal, and N-
terminal, using the AlphaFold monomer structure as reference. M protein monomer
predicted residue domains, after system equilibration by Molecular Dynamic (MD) simula-
tions, were very similar for all membrane orientation predictions. Monomer RMSD values
were 1.61 ± 0.26 Å for TMHMM, 1.38 ± 0.18 Å for CCTOP, 1.36 ± 0.22 Å for TMpred,
2.38 ± 0.59 Å for SACSMEMSAT, 1.83 ± 0.35 Å for OPM, and 2.95 ± 0.28 Å for PSIPRED
predictions (Supplementary Figures S1 and S2). For the following dimer prediction study,
PSIPRED results were not used as RMSD values were higher for both monomer and trans-
membrane helices 1 and 2 RMSDs. Despite SACSMEMSAT and CCTOP having comparable
values to the other predictors, they showed an arched TMH1 after an equilibration MD
simulation that could influence dimer stability (Supplementary Figure S2). Hence, out
of the six membrane predictors used initially, OPM, TMHMM, and TMpred M protein
monomers were chosen for further analysis.

OPM, TMpred, and TMHMM M monomers from the previous step were used to
model dimer 3D structures using a well-established protein–protein docking software:
HADDOCK [44]. From 3000 proposed docking decoys, 1000 for each membrane orientation,
20 dimer structures that respected the membrane orientation prediction were selected: 11
from OPM, 4 from TMpred, and 5 from TMHMM. From these 20 dimers, two structures
from the TMHMM membrane predictor were chosen based on their similarity with SARS-
CoV experimental detected interactions, namely in TMH2 (P59) and TMH3 (W92, L93, F96)
regions [13]. From these two TMHMM M protein dimers, the final choice was based on
PROtein binDIng enerGY (PRODIGY)’s metrics of biological probability and predicted
binding affinity. Hence, the M protein dimer structure chosen for the proceeding studies
showed 85.6% biological probability and a predicted binding affinity of −6.3 kcal/mol in
comparison to 74.8% biological probability and −5.9 kcal/mol binding affinity results from
the other chosen structure. Regarding the TMHMM monomer membrane prediction that
served as template for the final chosen dimer, M protein monomer residues 11–19 were
shown to stably belong to N-terminal domain, residues 100–203 to C-terminal domain,
residues 20–38 to TMH1, residues 46–70 to TMH2, and residues 76–100 to TMH3 (Figure 2).
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2.2. M Protein Dimer and Interface Prediction
2.2.1. Dimer Prediction

The final dimer 3D structure (Figure 3) was subjected to three independent dimer
system MD replicas of 0.5 µs. Minimum distance, radius of gyration and RMSD results in
function of MD simulation time are further described in Supplementary Figures S3–S5, re-
spectively. After equilibration, polar contacts between M protein monomer and membrane
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lipids occurred in M monomer residues K14, Y39, R42, N43, R44, F45, Y71, R72, W75, S94,
R101, R107, W110, S173, and R174. Transmembrane regions were within membrane lipids
throughout the entire equilibration and several M protein residues were able to establish
polar contacts with membrane lipids, supporting our transmembrane region assessment
(Figure 3).
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Figure 3. SARS-CoV-2 M protein dimer HADDOCK [44] prediction using TMHMM [34,35] based
monomers. (a) Interaction representation between Monomer A (teal), and Monomer B (garnet)
domains. (b) M protein dimer within the membrane: Monomer A (teal), and Monomer B (garnet).
(c) M protein dimer with TMH domains highlighted: Monomer A (teal), and Monomer B (garnet).

RMSD results (Supplementary Figure S6) showed that monomer A and monomer B
behaved differently throughout the MD simulation. In monomer A, TMH3 domain was
the most stable region. Monomer A TMH2 domain interacted with monomer B and was
a bit more unstable when compared with TMH1 domain (Supplementary Figure S6a). In
monomer B, TMH domains were also very stable, presenting however a much higher
deviation and lower stability of the N- and C-terminus compared with other domains
(Supplementary Figure S6b). Root-Mean-Square-Fluctuation (RMSF) results (Supplemen-
tary Figure S7) for monomer A and monomer B were very similar. As expected, TMH
residues, in large majority α-helices, showed low fluctuation, whilst C-terminus residues,
present in a random coil, presented higher fluctuation. Cross-Correlation Analysis (CCA)
results (Supplementary Figure S8) showed that within both monomers, TMH2 is highly
positively correlated (moves in the same direction) with TMH1 and TMH3 within the
same protein. On the contrary, between monomers, TMH1 and TMH2 showed a negative
correlation (moving in opposite directions) with remaining helices of the opposite monomer.
Average ∆Solvent accessible surface area (SASA) for the interfacial residues only showed
small variations, further strengthening the stability of the established homodimer interface
(Supplementary Figure S9).

2.2.2. Interface Analysis

After dimer equilibration in an ER membrane used to mimic the expected biological
environment, we showed that the dimer interface was composed of 38 residues, 17 from
monomer A (W55, P59, L62, V66, A69, V70, W75, I82, A85, W92, L93, F96, F100, F103, R107,
M109, and F112) and 21 residues from monomer B (P59, L62, V66, A69, V70, Y71, I82, A85,
W92, L93, F96, I97, F100, F103, A104, R107, S108, M109, S111, and F112). These residues
established 34 pairwise interactions, showing high proximity and high prevalence time
(90% cut-off) (Table 1). Carbon Alpha (Cα) distances of interacting residues varied between
5.25 Å (V70–V70 residues interaction) and 12.58 Å (W92–W92 residues interaction), with
a mean Cα distance of 9.57 ± 0.60 Å. From these residues, 12 (P59, V66, A69, V70, I82,
L93, F96, F100, F103, R107, M109, and F112) interacted in both monomers. From these
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38 residues, 23 were unique residues, seven from TMH2 (W55, P59, L62, L67, V66, A69,
and V70), two from TMH2-TMH3 extracellular loop (Y71, and W75), seven from TMH3
(I82, W92, L93, I97, A85, F96, and F100) and seven from C-terminal (F103, A104, R107, S108,
M109, S111, and F112) (Table 1). From these, 8 were aromatic (Y71, W55, W75, W92, F96,
F100, F103, and F112), 20 non-polar (W55, P59, L62, V66, L67, A69, V70, Y71, W75, I82,
A85, W92, L93, F96, I97, A104, F100, F103, M109, and F112), 3 polar (S108, S111, and R107)
and 1 was a positively charged residue (R107). Figure 4 provides the contact map of this
dimer interface.
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Table 1. SARS-CoV-2 M protein dimer interacting residues, using a prevalence time cut-off of 90%
(all results were listed as mean values ± standard deviation).

Monomer A
∆SASA A

(Å2) relSASA A Monomer B
∆SASA B

relSASA B Percentage
(%)

Cα Distance
(Å2) (Å)

W55 69.00 ± 23.91 0.62 ± 0.16 L93 70.51 ± 16.96 0.67 ± 0.14 100.00 10.93 ± 0.65

V66 57.26 ± 11.49 0.80 ± 0.13 V66 58.18 ± 11.81 0.80 ± 0.10 100.00 7.11 ± 0.32

A69 15.96 ± 6.92 0.93 ± 0.15 V70 87.47 ± 11.74 0.88 ± 0.08 100.00 6.31 ± 0.41

V70 83.79 ± 16.05 0.81 ± 0.16 A69 14.78 ± 9.16 0.78 ± 0.43 100.00 6.70 ± 0.50

V70 83.79 ± 16.05 0.81 ± 0.16 V70 87.47 ± 11.74 0.88 ± 0.08 100.00 5.25 ± 0.51

W75 66.06 ± 38.00 0.33 ± 0.18 Y71 8.53 ± 40.92 0.09 ± 0.57 100.00 11.42 ± 0.74

I82 63.02 ± 18.62 0.65 ± 0.14 V70 87.47 ± 11.74 0.88 ± 0.08 100.00 8.62 ± 0.65

W92 64.08 ± 12.99 0.87 ± 0.10 W92 48.02 ± 16.01 0.76 ± 0.17 100.00 12.58 ± 0.49

L93 67.87 ± 23.73 0.62 ± 0.20 P59 11.83 ± 23.49 0.20 ± 0.53 100.00 8.62 ± 0.61

F96 67.33 ± 16.53 0.90 ± 0.09 F96 52.22 ± 15.81 0.89 ± 0.12 100.00 9.67 ± 0.65

F103 66.38 ± 15.37 0.88 ± 0.10 F103 78.66 ± 15.91 0.95 ± 0.07 100.00 10.79 ± 0.58

M109 89.25 ± 27.84 0.54 ± 0.14 F103 78.66 ± 15.91 0.95 ± 0.07 100.00 8.31 ± 0.44

P59 32.47 ± 25.51 0.50 ± 0.27 L93 70.51 ± 16.96 0.67 ± 0.14 99.67 09.01 ± 0.62

F112 76.09 ± 25.84 0.84 ± 0.08 F100 64.39 ± 26.02 0.50 ± 0.19 99.67 9.13 ± 0.49

V70 83.79 ± 16.05 0.81 ± 0.16 I82 45.82 ± 20.01 0.50 ± 0.20 99.34 9.08 ± 0.66

F100 83.51 ± 28.35 0.62 ± 0.14 F112 38.18 ± 31.03 0.52 ± 0.41 99.34 9.16 ± 0.55

W55 69.00 ± 23.91 0.62 ± 0.16 I97 22.90 ± 22.99 0.23 ± 0.24 99.01 11.45 ± 0.68

W92 64.08 ± 12.99 0.87 ± 0.10 L93 70.51 ± 16.96 0.67 ± 0.14 99.01 11.78 ± 0.60

R107 71.92 ± 29.68 0.36 ± 0.13 M109 86.63 ± 28.09 0.49 ± 0.14 99.01 7.72 ± 0.77

L62 24.35 ± 18.78 0.44 ± 0.30 L62 17.37 ± 14.70 0.34 ± 0.30 98.35 11.78 ± 0.44

M109 89.25 ± 27.84 0.54 ± 0.14 F100 64.39 ± 26.02 0.50 ± 0.19 97.36 8.9 ± 0.57

M109 89.25 ± 27.84 0.54 ± 0.14 A104 17.84 ± 14.34 0.26 ± 0.21 97.36 7.78 ± 0.50

I82 63.02 ± 18.62 0.65 ± 0.14 L67 14.01 ± 19.51 0.17 ± 0.24 96.37 8.69 ± 0.55

F103 66.38 ± 15.37 0.88 ± 0.10 S108 9.79 ± 12.38 0.28 ± 0.76 95.05 10.8 ± 0.67

F112 76.09 ± 25.84 0.84 ± 0.08 F103 78.66 ± 15.91 0.95 ± 0.07 94.72 11.13 ± 0.55

W75 66.06 ± 38.00 0.33 ± 0.18 V70 87.47 ± 11.74 0.88 ± 0.08 94.39 10.58 ± 0.65

F103 66.38 ± 15.37 0.88 ± 0.10 F112 38.18 ± 31.03 0.52 ± 0.41 94.39 10.28 ± 0.69

I82 63.02 ± 18.62 0.65 ± 0.14 V66 58.18 ± 11.81 0.80 ± 0.10 93.07 9.02 ± 0.49

W55 69.00 ± 23.91 0.62 ± 0.16 F96 52.22 ± 15.81 0.89 ± 0.12 93.07 11.66 ± 0.63

V66 57.26 ± 11.49 0.80 ± 0.13 A85 0.92 ± 6.38 0.00 ± 0.00 92.08 9.78 ± 0.44

F103 66.38 ± 15.37 0.88 ± 0.10 S111 −3.07 ± 3.85 0.00 ± 0.00 92.08 11.02 ± 0.76

A85 1.49 ± 6.45 0.00 ± 0.00 V66 58.18 ± 11.81 0.80 ± 0.10 91.42 9.62 ± 0.45

F100 83.51 ± 28.35 0.62 ± 0.14 F96 52.22 ± 15.81 0.89 ± 0.12 91.42 11.66 ± 0.72

M109 89.25 ± 27.84 0.54 ± 0.14 R107 53.28 ± 38.80 0.26 ± 0.18 91.42 8.96 ± 0.68

Interactions between monomer A and monomer B residues W59-L93, V66-V66, A69-
V70, V70-A69, V70-V70, W75-Y71, I82-V70, W92-W92, L93-P59, F96-F96, F103-F103, and
M109-F103 were prevalent interactions throughout 100% of MDs simulation time, with side
chain distances lower than 5 Å (Table 1, Figures 4 and 5). These regions also showed a low
fluctuation (e.g., low RMSF values). Hydrophilic interactions occurred between monomer
A residues L62-V66, V66-V69, W92-F96, F96-F100, and F103-R107 and between monomer B
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residues L62-V66, V66-V69, L92-I97, F100-A104, A104-R107, S106-M107, and M107-F112.
π-π stack interactions occurred between monomer A residues W92-F96 and F100-F112
and between monomer A and monomer B residues W55-F100, W92-W92, F100-F112, and
F103-F103, respectively.
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interfacial residues identified with the color code of teal for Monomer A and garnet for Monomer B.

2.3. M Protein Mutation Analysis

We retrieved 1271550 M protein sequences, submitted between 10 January 2020 and
3 May 2021 from 180 countries, from the Global Initiative on Sharing All Influenza Data
(GISAID) [50,51] database. Genomic sequences were obtained from human hosts, with
more than 29,000 bases per sequence, and less than 5% missing values. The sequence
distribution retrieved across GISAID clades and across the world can be observed in
Supplementary Figure S9. Clades S, G, GH, and GR encompass sequences that are most
prevalent in North America. The latter clade is also well represented in the Oceania region.
Clades GV and GRY are most prevalent in Europe and clades O and L are sparse across
the world (Supplementary Figure S10). Within the M protein interfacial residues from
analyzed sequences, 91 Single Nucleotide Polymorphisms (SNPs) were retrieved from
21868 sequences. FoldX was used to assess the binding free energy differences between
mutated and Wild-Type (WT) proteins ∆∆Gbinding) and the respective values by physico–
chemical character of the analyzed mutation are illustrated in Figure 6 and with higher
detail in Supplementary Figure S11.
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2.3.1. Single Mutation Analysis

To assess the mutation effect at the dimer complex, we have focused on the reported
mutations at the predicted interface. In these considered regions the vast majority of
the mutations did not impact protein stability in a significant manner (Supplementary
Figure S11, Table 2). Most mutations were found in non-polar residues and did not signifi-
cantly impact protein stability. As expected, changes in polarity, which could have higher
consequences in the microenvironment around them, led to more significant alterations
of dimer stability. This was particularly true when changing from a polar to a non-polar
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residue (Supplementary Figure S11, Table 3). Aromaticity changes also seem key in this
dimer interface as mutations from non-aromatic residues towards aromatic represent the
predominant change. None of the possible aromatic changes led to a significant change in
protein stability. (Supplementary Figure S11, Table 4).

Table 2. Mutation distribution in relation to ∆∆Gbinding.

∆∆Gbinding > 0.5 kcal/mol ∆∆Gbinding < −0.5 kcal/mol −0.5 kcal/mol < ∆∆Gbinding
<0.5 kcal/mol

606 (2.77%) 2683 (12.27%) 18,579 (84.96%)

Table 3. ∆∆Gbinding average values for four different sets of residues according to polarity change.

Polar Residue to
Non-Polar Residue

Remained a
Polar Residue

Non-Polar to
a Polar Residue

Remained a
Non-Polar Residue

Frequency 0.11% 2.68% 41.68% 55.53%
∆∆Gbinding
(kcal/mol) 1.14 ± 0.48 0.65 ± 1.07 −0.42 ± 0.36 0.14 ± 0.49

Table 4. ∆∆Gbinding average values for four different sets of residues according to aromaticity change.

Remained an
Aromatic Residue

Aromatic to a
Non-Aromatic

Residue

Non-Aromatic
to an Aromatic

Residue

Remained a
Non-Aromatic

Residue

Frequency 0.03% 2.69% 7.27% 90.01%
∆∆Gbinding
(kcal/mol) −0.20 ± 0.15 −0.11 ± 0.30 0.09 ± 0.29 0.04 ± 0.77

SNP I82T, located at the TMH3 domain, was the most common SNP detected. This
mutation led to the residue’s polarity modification from a non-polar residue into a polar
one and occurred in 6316 (28.88%) sequences from our dataset. The second most frequent
SNP was V70L, at the end of the TMH2 domain. This mutation did not change the type
of polarity at that specific position and was detected in 6303 (28.82%) sequences. Physico–
chemical properties of valine and leucine are similar, and V70L mutation was shown to be
inconsequential for dimer stability. However, this is not true for isoleucine and threonine,
two amino acids with different polarity, and I82T leads to a stability gain. Interestingly, these
two residues, I82 and V70, are interacting strongly throughout the entire MDs simulation
(Table 1, Figure 5). These were by far the most common SNPs, with the third most common
one occurring in only 1455 sequences (more details in Supplementary Table S1).

2.3.2. Mutation Distribution in Variants

We also analyzed the type of mutation found in each known clade (Supplemen-
tary Figure S11, Supplementary Table S1—single mutations and Table S2—co-occurring
mutations). The most common mutated clade was GRY, and the most frequent muta-
tion found in this clade was V70L (Table 5). This mutation co-occurred in GRY with
M109L (8 cases), A104V (2 cases), and A69F (1 case) without any major identifiable en-
ergetic advantage (∆∆Gbinding around 0 kcal/mol) (Supplementary Table S2). The sec-
ond most frequent mutated clade, where VOCs are also located, was GH and the most
frequent mutation in this clade was I82T (Table 5). A few mutations also co-occurred
with I82T but in low frequency. From these, A85S induced a higher stabilization of the
dimer interface (∆∆Gbinding value of −1.47 ± 0.47 kcal/mol) (Supplementary Table S2). G
clade was the third most mutated clade, and the most frequent one was I82T (Table 5). A
few double mutations of interfacial residues were also found, in particular I82T-R107L
(4 cases), I82T-V70F (2 cases), I82T-M109I (2 cases), I82T-V66M (2 cases), I82T-A85S (2
cases), and I82T-R107H (2 cases) but none led to higher changes in the binding free
energy (Supplementary Table S2). GR clade was the following most mutated and the
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most common mutation in this clade was V70F (Table 5). A few mutations were found
in association, such as A85S (3 cases, ∆∆Gbinding = −0.72 ± 0.64 kcal/mol) and A104V
(1 case, ∆∆Gbinding = 0.10 ± 0.54 kcal/mol) (Supplementary Table S2). The remaining clades
were much less populated with mutated sequences.

Table 5. ∆∆Gbinding average values for the most frequent mutation found in each clade.

GRY GH G GR GV S O L V

Frequency 36.69% 21.25% 19.06% 17.27% 4.36% 0.90% 0.38% 0.05% 0.05%
Most frequent mutation in

clade (percentage) V70L (73.30%) I82T (47.23%) I82T (71.26%) V70F (26.32%) - - - - -

∆∆Gbinding for most frequent
mutation (kcal/mol) −0.02 ± 0.22 −0.49 ± 0.38 −0.49 ± 0.38 0.17 ± 0.47 - - - - -

In total, there were 8951 (40.93%) mutated sequences that were found in VOC and
2757 (12.61%) that were found in VOI. Out of VOC identified sequences, 8474 (94.67%)
were contained in pango lineage B.1.1.7 and the most common mutation in this variant
was V70L, represented in 6136 sequences (72.41%). In sequences identified as VOI, the
most represented pango lineage was B.1.525 (72.59%) and the most frequent mutation for
this variant was I82T, present in 2139 sequences (72.48%) (Figure 7 and Supplementary
Figure S12).
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2.3.3. Druggable Hot Spots

Solvent occlusion has already been demonstrated as a key aspect of PPIs, as main
interfacial residues SASA values are considerably more diminished upon complex forma-
tion compared to other interfacial residues [52–57]. Two metrics are particularly relevant,
∆SASA and relSASA, as the first one allows us to quantify occlusion upon complex for-
mation and the second, which represents the quotient between ∆SASA and SASAmonomer,
allows us to distinguish between residues with the same ∆SASA but with different solvent
accessibility in the monomer. The most mutated residues such as I82, V70, and A69 showed
higher ∆SASA and relSASA values, which indicates occlusion of these residues upon
complex formation, with SASAcomplex values tending to zero (higher ∆SASA and relSASA
closer to 1) (Table 6, Supplementary Table S1). Other frequently mutated residues lose
accessibility to the solvent but remain attainable in the complex form: e.g., M109, A104,
R107, and W75. By preventing bulk water to approximate these interfacial residues, the
number and force of interaction established increases and the PPI is strengthened. Residues
V70, M109, and I82 established a high number of dimer interactions: 6, 5, and 4, respectively.
On the other hand, residues A69, R107, and W75 established two interactions each and
residue A104 established only one interaction (Table 6, Supplementary Table S1).

Table 6. ∆SASA and relSASA for highlighted residues.

Residue ∆SASA (Å2) relSASA

I82 54.42 ± 13.27 0.58 ± 0.12
V70 85.63 ± 11.01 0.84 ± 0.10
A69 15.37 ± 4.26 0.90 ± 0.12

M109 87.94 ± 14.46 0.52 ± 0.07
A104 13.69 ± 8.89 0.21 ± 0.13
R107 62.60 ± 21.03 0.32 ± 0.10
W75 49.28 ± 20.33 0.27 ± 0.11

As some of these mutations may impact protein’s stability, we also investigate the
identification of their presence in VOI and VOC key strains since it can lead to future
drug discovery concerning the M protein. The mutations leading to ∆∆Gbinding below
−0.50 kcal/mol or over 0.50 kcal/mol are indicative of such cases. Mutations A69P, R107C,
R107H, R107L, and R107S, all have ∆∆Gbinding values over 0.50 kcal/mol. Despite the
R107H relatively low mutation frequency, it appears in several VOCs as B1.1.7, B.1.351,
P.1, and VOI B.1.617.1. On the other hand, mutations I82T, I82S, A69S, A104S, A69T, and
A104T have ∆∆Gbinding values below −0.50 kcal/mol meaning that they have a favorable
impact on the mutated protein stability. Mutation I82T has been detected in several VOCs
as B.1.617.2 and B.1.1.7, in higher frequency, but also in P.1.1 and B.1.351, and in VOI B.1.525.
Mutation I82S has been detected in VOCs B1.1.7 and B.1.351 sparingly and in VOI B.1.617.1
more frequently. Mutation A69S has been detected in VOC B.1.1.7 more frequently than in
VOC B.1.351 and in VOI B.1.526 much more infrequently, and in VOI P.2 just once. Mutation
A69T is much less frequent than A69S but has also been detected in VOC B.1.1.7. Finally,
mutations A104S and A104T have both been identified in VOC B.1.1.7 twice and three
times, respectively.

In order to understand if any of the previously mentioned mutation points were drug-
gable residues, the production MD phase was clustered and subjected to FTMap [48,58–60],
to further characterize potential ligand hotspot positions for new drugs. FTMap [48,58–60]
probes were shown to cluster into two different positions: one on the transmembrane zone
near to C-terminal (teal) and another between TMH2 and TMH3 (garnet), deeper into the
membrane (Figure 8). The teal cluster displayed the highest FTMap [48,58–60] score and the
attained probes interacted with M protein dimer predicted interface residues F96, I97, F100,
and F103 in Monomer A and with residues W55, S108, M109, S111, and F112 in Monomer
B. The bulk of mutations for the residues that interact with this probe are mutations that
don’t impact protein stability or have a positive effect on stability (Table 7). Probes from
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this cluster also interacted with Monomer B residues Y47, L51, I52, Y95, W110, N113, P114,
and G115, but these are not predicted homodimer interacting residues.
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Table 7. Summary for predicted interfacial residues that interact with the first probe.

Residue Number of
Mutations

∆∆Gbinding
< −0.5 kcal/mol

−0.5 kcal/mol
< ∆∆Gbinding
< 0.5 kcal/mol

∆∆Gbinding
> 0.5 kcal/mol

F96 1 0% 100% 0%
S111 1 0% 0% 100%
S108 2 0% 0% 100%
F103 7 0% 100% 0%
F112 14 0% 100% 0%
W55 32 0% 100% 0%
F100 98 30% 70% 0%
I97 228 50% 50% 0%

M109 1088 0% 100% 0%

In the second cluster (garnet), probes interacted with predicted M protein dimer
interface residues P59, V66, W92, L62, L67, A85, and L93 from Monomer A and B and I82
from Monomer B. Similarly, to the highest scoring cluster, the mutations on residues that
interact with the second cluster are also mainly not impactful on protein stability or impact
it in a positive manner. Even though some mutations are more frequent in these residues,
all in all they are still very conserved (Table 8). Probes from this cluster also interacted with
residues V60, A63, A81, A83, C86, G89, L90, M91, and S94 from Monomer A and V60, A63,
C86, G89, and L90 from Monomer B, but these are not predicted homodimer interacting
residues. Other clusters from FTMap [43,53–55] were not considered as their probes were
not interacting in the predicted interface region.
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Table 8. Summary for predicted interfacial residues that interact with the second probe.

Residue Number of
Mutations

∆∆Gbinding
< −0.5 kcal/mol

−0.5 kcal/mol
< ∆∆Gbinding
< 0.5 kcal/mol

∆∆Gbinding
> 0.5 kcal/mol

P59 4 25% 75% 0%
W92 4 25% 75% 0%
L62 6 50% 50% 0%
L67 40 17% 66% 17%
L93 61 1% 98% 1%
V66 502 0% 100% 0%
A85 1604 75% 25% 0%
I82 7094 10% 90% 0%

Overall, the highest score cluster interacted with very conserved interfacial residues
whereas the second highest cluster was in a region constituted by residues more prone to
stabilizing mutations (especially mutations that alter the chemical character of the interface).

3. Discussion
3.1. M Protein Monomer Structure and Membrane Orientation

At the moment, a few predictions for the M protein monomer were made as is the case
for Heo and Feig [49], Zhang et al. [61], and AlphaFold [62]. In this work our starting point
3D model was the one developed by a state-of-the-art methodology, AlphaFold’s, which
was also determined as adequate and in consensus with other predictions [49]. We pre-
dicted its membrane orientation using six different membrane orientation softwares. After
minimization and MD equilibration, we chose TMHMM M protein monomer membrane
orientation prediction for the following studies since it showed a higher stability, with low
RMSD values upon comparison with the initial AlphaFold’s structure, and without any
major conformational change. SARS-CoV M protein monomer domains were previously
predicted in experimental research that elucidated M protein dimer interactions [13]. In
that experiment, residues 15-37 were shown to belong to TMH1, residues 50–72 to TMH2
and residues 77–99 to TMH3 [13]. Herein, for the first time, a detailed SARS-CoV-2 M
protein membrane orientation was proposed, showing that residues 20–38 belong to TMH1,
residues 46–70 to TMH2, and residues 76–100 to TMH3, results in agreement to the above-
mentioned SARS-CoV experimental results. We also show a comparison between our
equilibrated model structure against two other relevant predicted structures (Supplemen-
tary Figure S13). The overall conformation is similar, and the highest differences were
found at TMH2 and TMH1, in particular in the length and linearity of TMH1. Supple-
mentary Figures S2 and S6 clearly show that these regions are very stable through the MD
simulation, further strengthening our chosen model 3D structure.

3.2. M Protein Dimer and Interface Prediction

Despite the M protein dimer being crucial for various biological functions such as
SARS-CoV-2 virion assembly and shape formation [63], the type of interactions established
in its homodimer form are still poorly understood [9,12]. Experimental SARS-CoV M
protein dimer data demonstrated that residues W19, W57, P58, W91, L92, Y94, F95, and
C158 were relevant, suggesting that homologous residues W20 (TMH1 domain), W58, and
P59 (TMH2 domain), and W92, L93 Y95, and F96 (TMH3 domain) of SARS-CoV-2 may also
be important for M dimer interaction and stabilization [13]. Authors also hypothesized
that SARS-CoV residues C63, C85, and C158 mutations did not interfere with M dimer
formation, suggesting that homologous SARS-CoV-2 M protein residues C64, C86, and C159
may also not be involved in M dimer interface [13]. A previous in silico approach proposed
a M protein dimer structure based on four different templates (PDB IDs: 3A7K_A [64],
5UTT_A [65], 6SPB_V [66], and 6XDC [67]), and authors hypothesized the interaction was
established between TMH1 and TMH2 [68]. These results differ from the experimental
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results on SARS-CoV that showed dimer interactions between monomers TMH2 and
TMH3, as well as from other in silico studies suggesting that these regions interact [69].
However, other authors also attained agreement with experimental results with SARS-CoV
dimer interactions [69]. Herein, SARS-CoV experimental information was used as cue for
various docking experiments as already detailed in the Results section. A high confidence
docking decoy based on the TMHMM monomer was subjected to further studies due to
its proper membrane orientation regarding previous analysis. It was subjected to 1.5 µs
MD, which showed that overall conformational stability for monomer A and monomer B
was slightly different (e.g., dissimilar RMSDs), whereas RMSF results were alike, especially
in TMH domains. TMHs showed low fluctuations, which allowed the establishment of
highly prevalent and meaningful interactions between the two monomers. We identified
34 main interactions responsible for the M protein dimer 3D structure stabilization, between
17 residues from monomer A and 21 residues from monomer B. From these interactions,
73.53% occurred between transmembrane residues, which was expected as the M protein is
a transmembrane dimeric system. From these interactions, 12 were conserved throughout
the entire MD simulation time, including interactions between W92-W92, L93-P59, and
F96-F96, homologous residues from the ones detected to SARS-CoV [13]. This suggests that
these three interactions are pivotal towards M protein dimer stabilization. Other interacting
residues were present in lasting interactions throughout the MDs simulations, and thus
important residues to further study and validate were W55, V66, A69, V70, Y71, W75, I82,
L93, F103, and M109.

Feig’s laboratory has also proposed two possible configuration arrangements for the
M protein homodimer [70], which were named by Monje-Galvan et al. as “open” and
“closed” conformations [69]. The dimer structure configuration obtained in our study is
similar to the “open” one (Supplementary Figure S14), and it is also supported by other
authors, such as Cao et al. [27]. Monje-Galvan et al. [69] also described the interface region
of the homodimer in the TMH2 and TMH3 regions [69], which also comes into agreement
with our study.

3.3. M Protein Mutation Analysis

Regarding mutation analysis, from the 127,1550 genomes analyzed, 21,868 sequences
carried SNPs at M protein dimer predicted interaction residues. This represents only
1.7% of all retrieved genomes suggesting that the predicted interfacial region is extremely
conserved [71]. We identified 91 unique SNPs in this predicted interface. From these, 2.77%
had a ∆∆Gbinding higher than 0.50 kcal/mol, which means that these mutations can have a
negative impact in the M protein dimer stability and 12.27% had a ∆∆Gbinding lower than
−0.50 kcal/mol, and, hence, could have a favorable impact in M protein dimer stability.
Most mutations did not appear to influence M protein dimer interfacial stabilization, since
about 85% showed ∆∆Gbinding values between −0.50 kcal/mol and 0.50 kcal/mol. The
ones that seem to lead to a gain of stabilization are presented in Table 9. We included here
I82T as it is very close to our established threshold and is the most prevalent detected
mutation. Most SNPs remained as non-polar residues (55.53%) or transitioned from non-
polar to polar residues (41.68%) and most continued as non-aromatic residues. Since the M
protein is a membrane protein, many non-polar residues were found within the membrane
region, and, as such, most predicted interactions involved non-polar residues. However,
mutations from non-polar to polar residues may confer a gain in conformation stability
as they may establish hydrogen bonds. In our work, 9057 (99.36%) of non-polar to polar
SNPs had ∆∆Gbinding negative values, which endorses the maintenance or increase in
stability as proposed. Mutations in homologous SARS-CoV experimentally interacting
residues P59, W92, L93, and F96 were sparse and showed ∆∆Gbinding values close to
zero. Three exceptions were exposed: L93S and W92Q with ∆∆Gbinding values lower
than −0.5 kcal/mol, suggesting that these residues were also extremely important for M
protein dimer interaction; and L93P ∆∆Gbinding = 2.29 kcal/mol) value, the second highest,
probably due to the destabilization caused by Proline in the TMH3 α-helix.
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Table 9. M protein mutations that resulted in a stabilization gain of the homodimer structure.

Mutation ∆∆Gbinding (kcal/mol)

I82T −0.49
I97T −0.5
I82S −0.55

W92Q −0.59
L62S −0.62

A104T −0.63
I97S −0.74
L93S −0.76
F100S −0.78
P59Q −0.83
Y71H −0.9
A104S −0.91
A69T −0.92
A85S −0.93
L67H −1.07
A69S −1.2

The most common mutations were I82T (28.88%) and V70L (28.82%), key residues for
M monomers interaction as I82 and V70 interaction was conserved throughout the entire
MDs simulation with a mean distance of 8.62 ± 0.65 Å for I82-V70 and 9.08 ± 0.66 Å for V70-
I82 interactions (monomer A–monomer B). Both these residues (V70 and I82) had low RMSF
values and were occluded from solvent upon complex formation (∆SASA values between
45–88 Å2), which protects the established interactions. I82T and V70L, showed ∆∆Gbinding
values of −0.49 ± 0.38 kcal/mol and −0.02 ± 0.22 kcal/mol, suggesting that I82T is the
most favorable, high-prevalent mutation and should be further studied. A previous work
that established structure changes caused by M protein mutations, suggested that I82T
and V70L mutations will not lead to a significant impact in M protein monomer secondary
structure [72].

Overall, most represented clades in our mutation study were GRY (36.69%), containing
VOC and GH (21.25%), G (19.06%), and GR (17.27%), containing VOC and VOI. This could
mean that SNPs in the interface region may impact SARS-CoV-2 life cycle, specifically
regarding the M protein functions. Furthermore, these mutations are intrinsically related to
known VOC and VOIs. For instance, V70L and I82T mutations appeared in 99.5 and 97.64%
of clades sequences that contain VOC and VOI. The most common mutation in VOC was
V70L, detected in 6137 VOC genomes, and 97.35% of the time this mutation was detected,
it appeared in pango lineage B.1.1.7, a VOC in clade GRY.

There were 25 co-occurring mutations on the GISAID data, 12 of which on interfacial
residues involved in PPIs present throughout the entire MDs simulation. Even though SNP
V70L only co-occurred with other mutations in nine cases, these sequences were from clade
GRY, which contains several VOC. Overall, clades G (27.45%), GRY (23.53%), GH (23.53%),
and GR (19.61%) were the most represented in our co-occurrence results, all containing
VOC. V70L does not seem to be by itself relevant for homodimer formation but seems to
be a catalyzer if co-occurring with other interfacial mutations as found in various VOCs.
Clades GV (3.92%) and S (1.96%) also contained sequences with co-occurring mutations,
and the remaining ones did not show any co-occurring mutations. It is possible to conclude
that most co-occurring mutations were indeed in VOC and VOI containing clades.

One of the new strategies in drug development has been to develop peptides to
interrupt transmembrane interactions in dimers [73]. As such, to predict druggability,
regions of interest to the design of new drugs/peptides capable of inhibiting the formation
of the M protein homodimer, we subjected 16 structures representative of the 16 clusters of
the MD production phase to the well establish tool, FTMap [48,58–60]. The highest-ranking
cluster from FTMap showed key interactions with predicted interfacial residues. Probes on
this cluster interacted with residues F96, F103, S108, S111, and F112, all highly conserved
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residues. In fact, this cluster only established interaction with three residues with a higher
number of mutations: F100 (98), M109 (1088), and I97 (228). I97 and F100 were the only ones
for which 50 to 30% of the known mutations led to a stabilization of the homodimer. Our
results point to some crucial interactions established by these residues: F96-F96, F100-F96,
F100-F112, F103-F103, F103-S108, F103-S111, and F103-F112 (Table 1, Figure 4). As such,
this region seems to be the best candidate area for the development of a new drug/peptide
to inhibit SARS-CoV-2 M protein dimer formation. This zone was also a promising target
in another approach that searched for druggable targets in the homodimeric structure [63].

A computational docking approach recently proposed the M protein heterodimer
interactions with E and S protein [16]. In this study, residues W55, F96, and F103 were
predicted as interacting residues in M-E PPI and Y71, and Y75 as interacting residues
in M-S PPI [16]. In our work, these residues were also shown as interacting residues in
the M protein homodimer, F96 as well as F103 are also present in the best drug target
candidate region. This promiscuous region serves as a good candidate for experimental
drug/peptide validation not only for the M protein homodimer, but also for M-E and
M-S protein heterodimers, which further promotes its importance for the SARS-CoV-2
virus formation.

4. Materials and Methods

This work can be split into three main steps: M protein monomer membrane orienta-
tion prediction, M protein dimer 3D structure prediction, and mutation effect assessment
in the homodimer interface. The overall workflow to accomplish these goals is illustrated
in Figure 1.

4.1. M Protein Monomer Structure and Membrane Orientation

As there are no experimentally resolved structures for SARS-CoV-2 M protein dimer
or monomer, and protein homology to other known 3D structures is reduced, we used
AlphaFold’s [31] team proposed monomeric structure from YP_009724393.1 sequence.
AlphaFold is a state-of-the-art Neural Network (NN)-based algorithm that predicts pro-
tein 3D structures from their sequence with a mean accuracy of 2.1 Å [74]. From all the
223 amino acids in the M protein, AlphaFold was able to confidently predict a structure
encompassing residues 11 to 203, which were the ones studied and the results presented
henceforth. M proteins can suffer glycosylation in order to regulate protein function [75,76],
but this process has not yet been studied in detail [77]. To the best of our knowledge there
is only one available in silico prediction of N5, N21, N41, N43, N117, N212, N203, and
N216 as the N-glycosylation sites of the M protein [77]. However, other studies open the
possibility that the M protein is not N- but instead O-glycosylated [78]. Due to the lack
of confident experimental data and considering that the predicted residues are far away
from the binding homodimeric interface for which we aimed to analyze potential gain/loss
of stability, we decided to reduce the modeling uncertainty and neglect glycosylation at
this stage. Six different web-based resources for membrane orientation prediction were
used: OPM [32], TMpred [33], TMHM [34,35], PSIPRED [36,37], CCTOP [38,39], and SAC-
SMEMSAT [40]. OPM database can predict protein structure within the lipid bilayer, and
it optimizes position considering protein-membrane interactions [32]. TMpred predicts
membrane-spanning regions and orientations from naturally occurring membrane pro-
teins [33]. TMHMM correctly predicts membrane proteins’ α-helices positions with an
accuracy of 77%, differentiating between soluble and membrane proteins [34,35]. PSIPRED
predicts membrane protein secondary structure based on position-specific scoring ma-
trices [36,37]. CCTOP predicts transmembrane topology using known experimental and
computational membrane topologies [38,39]. SACSMEMSAT can predict protein secondary
structure and membrane protein topology from well-defined membrane protein data [40].

We used MD simulations for the M monomer initial minimization considering each
membrane orientation obtained via OPM, TMpred and TMHMM, PSIPRED, CCTOP, and
SACSMEMSAT. MDs were performed using GROMACS [42,43] and the CHARMM36 force
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field [79]. Each system was built with CHARMM-GUI [41] membrane builder with TIP3 waters,
0.9 M Na+ and Cl− ions and a bilayer membrane with POPC:POPE:PI:POPS:PSM:Cholesterol,
in order to replicate human ER membrane [80], as M protein is translated and virus
is assembled in this organelle. System size, water molecules, ion numbers, and lipid
composition are described in Supplementary Table S3. Systems initial minimization was
performed to remove bad contacts using the steepest descent algorithm. In this step,
systems were heated with a Berendsen thermostat at 310 K in the canonical ensemble (NVT)
over 7 ns, an adequate temperature to use in SARS-CoV-2 M protein MD simulations [81].
Pressure was kept constant at one bar with an isothermal–isobaric ensemble (NPT) for
20 ns with a semi-isotropic pressure coupling algorithm [82]. Long-range electrostatic
interactions were treated by the fast smooth Particle-Mesh Ewald (PME) method [83].
RMSD analysis was conducted in Pymol, version 1.2r3pre with protein and transmembrane
Cα residues to establish structural differences between initial MD structure (AlphaFold M
protein prediction) and membrane orientation equilibrated results.

4.2. M Protein Dimer and Interface Prediction

OPM, TMpred, and TMHMM protein monomers were selected from system equili-
bration results and subjected to M protein dimer prediction. To guide the protein–protein
docking we used known information on SARS-CoV M protein that has a 90.5% sequence
identity and 90% homology with SARS-CoV-2 M protein [28]. Two equilibrated M protein
monomers from each membrane orientation were used for dimer prediction using the
docking tool HADDOCK [44], version 2.4, a protein quaternary structure predictor based
on experimental data. Since M protein is a membrane protein and most homodimers
are symmetric [84], water docking results were not considered and docking results with
TMH2 and TMH3 non-crystallographic symmetry restraints were generated. To determine
M protein monomer’s active residues, CPORT [85], a protein–protein residue interaction
predictor at an atomic level, was used and only transmembrane residues predicted by this
tool were considered for downstream steps. For each membrane predictor, 5000 dimer
structures were generated in rigid body docking phase (it0) and 1000 structures for the
semi-flexible refinement phase (it1). Monomer structures at the dimer docking decoys were
superimposed with initial monomer membrane orientation prediction, and the 3D struc-
tures for which the angle between both superimposed monomer membranes was inferior to
1◦, overlaid membranes, were selected for further analysis. Upon the selection of the most
20 promising HADDOCK dimers 3D structures, we extended our work towards interface
interacting residues prediction. Protein Interfaces, Surfaces and Assemblies (PISA) [86], a
web-based tool that resorts to chemical–physical principles for analyzing and modeling
of macromolecular interactions, was used as a first predictor for dimer interface residues
on all 20 dimer structures. Two dimers were chosen based on PISA results and their com-
parison with SARS-CoV’s M protein dimer experimental results, highlighted homologous
SARS-CoV-2 residues W20, W58, P59, W92, Y95, F96, and C159 as important residues
for dimer stabilization. Selected structures were further subjected to PRODIGY [87,88].
PRODIGY not only predicts dimer interacting residues, but also helps to determine if a
protein interface is crystallographic or biological, the latter meaning that the predicted
dimer is biologically relevant.

The final dimer system was built in a similar way as above-mentioned for M protein
monomer MD simulations [80] (Supplementary Table S3). Three independent dimer system
replicas of 0.5 µs MD simulations were produced with GROMACS (production phase).
M protein dimer equilibration was performed as described in the previous section. MD
simulations were performed with an isothermal–isobaric ensemble. Temperature coupling
was done using a Nose–Hoover thermostat with a time constant of 1 ps. To maintain
a constant pressure, a semi-isotropic Parrinello–Rahman barostat was used with a time
constant of 5 ps and compressibility of 4.5 × 10–5 bar−1. Electrostatic interactions were
performed with fast smooth Particle-Mesh Ewald, with a cutoff of 1.2 nm and Hydrogen
bonds were constrained using the linear constraint solver.
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Dimer system RMSD (between initial MD structure from HADDOCK TMHMM model
and membrane orientation equilibrated results) and RMSF calculations were performed
using Cα atoms with GROMACS package. CCA, which tracks the movements of two
or more sets of time series data relative to one another, was performed using the Bio3D
R package [89] based on the Cα atoms. SASA analysis for each residue was performed
with the GROMACS package SASA analyses were performed for the dimer complex
(SASAcomplex) and each monomer separately (SASAmonomerA and SASAmonomerB), and
∆SASA was calculated for each residue as SASAcomplex − (SASAmonomerA + SASAmonomerB).
∆SASA values provide another quantitative measure of conformational change upon
protein coupling. To further understand the behavior upon complex formation, we also
calculated relSASA for each residue that comes from the quotient between ∆SASA and
SASAmonomer. To detect possible interacting residues, a structure was retrieved every 2 ns,
totaling 100 structures from 300 ns until 500 ns, for each replica as further explored in
Supplementary Figures S2–S4. These structures were then submitted to an in-house script
that detected residues for which side chains were within 5 Å of each other, using a 90%
prevalence time as a cut-off.

4.3. M protein Mutation Analysis

Genome and protein sequences for this study were obtained from the GISAID [51]
database (Accession Numbers are listed at Supplementary Information) and are available
upon request at https://www.gisaid.org. MicroGMT [45], a python package, was devel-
oped, optimized, and used for SARS-CoV-2 M gene mutation analysis, to track indels and
SNPs. This software requires raw or assembled genome sequences and works through
database comparison to detect genomic mutations. Only non-synonymous SNPs at the
M gene region for predicted interacting residues were considered for further studies. For
M protein sequence mutation analysis, we used the Rahman et al. approach that works
through pairwise analysis and comparison [46]. This method uses Multiple Sequence Align-
ment (MSA) and pairwise alignments to detect mutations in large datasets in a fast and
accurate manner and has also been used in other studies regarding different SARS-CoV-2
proteins. Both tools were used with default parameters and all available sequences were
compared against a reference, the first SARS-CoV-2 genome sequenced (NC_045512.2).

To determine the impact of mutations in M protein dimer stability, Gibbs energy difference
was calculated using FoldX [47], an empirical force field. This approach evaluates the impact of
mutations in protein stability through free energy variation )(∆∆Gbinding = ∆Gmutant − ∆GWT)
between mutant protein and reference protein, considering contributions from hydropho-
bic, polar, Van der Waals, hydrogen bonds, and electrostatic interactions [47]. To avoid
considering mean ∆∆Gbinding values close to zero as relevant for protein stability, we estab-
lished a low (below −0.5 kcal/mol) and high cut-off off (above 0.5 kcal/mol). Results for
this step were analyzed considering residue polarities, both for the WT (protein sequence
YP_009724393.1) and mutated proteins, as well as splitting residues by aromaticity, as
both these characteristics have a major impact on protein–protein interactions. Residues
considered as polar were R, N, D, C, E, N, H, K, S, T, Q, and Y; residues considered as
non-polar were A, G, I, L, M, F, P, W, and V. Residues F, W, and Y were considered as
aromatic.

To further identify ligand binding hotspots on SARS-CoV-2 M protein homodimer,
an ensemble of representative structures was attained by clustering the production phase
of the MD simulation. This clustering was performed by concatenating the trajectories
and clustering with GROMACS using the gromos method with a cutoff of 0.25 nm. The
16 clusters were subjected to the FTMap [48,58–60] tool using the default parameters.
FTMap [48,58–60] uses 16 small organic molecules as probes and samples/scores billions
of positions to identify positions of interest to the development of new drugs.

All presented structure images were produced with Protein Imager [90], ggplot2 R
package [91], and Bio3D R package [89].

https://www.gisaid.org
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5. Conclusions

As M protein dimer has several important functions during SARS-CoV-2 life cycle, it
was fundamental to understand its structure–function relationship. Herein, upon estab-
lishing a comprehensive and well detailed computational pipeline, we were able not only
to assess mutation effects at this interface but also to understand the specificities of the
behavior of this region and establish the consequences for dimer stability. This was the first
time that SARS-CoV-2 M protein dimer structure, interactions and mutational effects were
proposed and thoroughly studied either computationally or experimentally. M protein
is overall well conserved, showing that key-residues F96, F103, S108, S111, and F112 are
preserved and able to form important interactions in the dimer. These residues can now be
assessed as regions of interest for new therapeutic solutions regarding SARS-CoV-2.
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