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Background: In recent years, classification frameworks using imaging data have shown
that multimodal classification methods perform favorably over the use of a single
imaging modality for the diagnosis of Alzheimer’s Disease. The currently used clinical
approach often emphasizes the use of qualitative MRI and/or PET data for clinical
diagnosis. Based on the hypothesis that classification of isolated imaging modalities is
not predictive of their respective value in combined approaches, we investigate whether
the combination of T1 Weighted MRI and diffusion tensor imaging (DTI) can yield an
equivalent performance as the combination of quantitative structural MRI (sMRI) with
amyloid-PET.

Methods: We parcellated the brain into regions of interest (ROI) following different
anatomical labeling atlases. For each region of interest different metrics were extracted
from the different imaging modalities (sMRI, PiB-PET, and DTI) to be used as features.
Thereafter, the feature sets were reduced using an embedded-based feature selection
method. The final reduced sets were then used as input in support vector machine
(SVM) classifiers. Three different base classifiers were created, one for each imaging
modality, and validated using internal (n = 41) and external data from the ADNI initiative
(n = 330 for sMRI, n = 148 for DTI and n = 55 for PiB-PET) sources. Finally, the classifiers
were ensembled using a weighted method in order to evaluate the performance of
different combinations.
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Results: For the base classifiers the following performance levels were found: sMRI-
based classifier (accuracy, 92%; specificity, 97% and sensitivity, 87%), PiB-PET
(accuracy, 91%; specificity, 89%; and sensitivity, 92%) and the lowest performance
was attained with DTI (accuracy, 80%; specificity, 76%; and sensitivity, 82%). From
the multimodal approaches, when integrating two modalities, the following results
were observed: sMRI+PiB-PET (accuracy, 98%; specificity, 98%; and sensitivity,
99%), sMRI+DTI (accuracy, 97%; specificity, 99%; and sensitivity, 94%) and PiB-
PET+DTI (accuracy, 91%; specificity, 90%; and sensitivity, 93%). Finally, the combination
of all imaging modalities yielded an accuracy of 98%, specificity of 97% and
sensitivity of 99%.

Conclusion: Although DTI in isolation shows relatively poor performance, when
combined with structural MR, it showed a surprising classification performance which
was comparable to MR combined with amyloid PET. These results are consistent with
the notion that white matter changes are also important in Alzheimer’s Disease.

Keywords: Alzheimer’s disease (AD), multimodal classification, machine learning, ensemble learning, positron—
emission tomography, MRI, DTI

INTRODUCTION

Alzheimer’s disease (AD), the most common form of dementia,
is expected to affect 1 out of 85 people in the world in a near
future, largely due to the increasing life expectancy (Brookmeyer
et al., 2007; Dwyer, 2011). New therapeutic approaches are critical
to mitigate its progression, as well as the implementation of
biomarkers for early diagnosis (Paquerault, 2012; Wachinger
and Reuter, 2016). Accordingly, the revised diagnostic criteria
for Alzheimer’s disease (AD) emphasize the incorporation of
neuroimaging biomarkers to support the diagnosis of AD
(McKhann et al., 2011; Dubois et al., 2014). However, it remains
unclear how the combination of imaging methods from a
quantitative point of view can further contribute to imaging-
based classification.

The use of neuroimaging biomarkers potentially provides
sensitive and reliable measurement of AD progression than can
help improve cognitive and clinical assessments (Ye et al., 2008;
Green et al., 2012). Techniques such as magnetic resonance
imaging (MRI) and positron emission tomography (PET) are
routinely used in clinical cases for evaluating characteristic brain
changes associated with AD (Bateman et al., 2012). However,
in the clinical environment these biomarkers are generally used
for subjective assessment using visual scales and sometimes
complemented with isolated quantitative measurements
extracted from the images, such as the hippocampal volume
when accessing MRI (Scheltens et al., 2016).

Structural MRI (sMRI) can provide a non-invasive method
that allows for the visualization, quantification and detection
in vivo of structural alterations caused by AD. Volumetric
measurements, from both the gray matter (GM) and white
matter (WM), as well as cortical thickness estimations can be
extracted and used reliably for the classification of AD (Frisoni
et al., 2010; Beheshti and Demirel, 2015; Liu M. et al., 2015;
Salvatore et al., 2015). Besides structural alterations, PET allows

the visualization of functional and metabolic alterations in vivo
through the use of different radiotracers. In AD studies, [18F]-
Fluorodeoxyglucose (FDG) and [11C]-Pittsburgh Compound B
(PiB) are used to extract measurements of glucose metabolism
rates and the burden caused by the accumulation of abnormal
Aβ protein, respectively (Nordberg et al., 2010; Leuzy et al., 2016;
Oliveira et al., 2018).

Furthermore, the recent dissemination of the use of machine
learning tools propelled the development of sophisticated,
automatic, and objective classification frameworks capable of
learning complex and subtle patterns of change across various
imaging modalities without human subjectivity (Sajda, 2006).
Using quantitative measurements extracted from neuroimaging
modalities, it should be theoretically possible to construct
a robust quantitative tool that offers a fast, systematic and
standardized approach to aid the diagnosis of AD.

AD classification frameworks can be constructed using only a
single imaging modality or through the combination of different
modalities. The impact of the combination of modalities may be
an important asset in the future, thus it deserves to be studied.
Multimodal approaches have recently shown greater advantages
over single image modalities, since different modalities can
capture disease information from different perspectives, thereby
improving the understanding of disease patterns over that
presented by one modality (Zhang et al., 2011).

In Zhang et al. (2011), Liu L. et al. (2015) and Youssofzadeh
et al. (2017), the combination of imaging data from the routinely
used sMRI and PET achieved a higher classification accuracy.
These results indicate that there is complementarity between
the two imaging modalities. However, there are other imaging
approaches that can be combined to improve the overall
classification abilities.

Diffusion tensor imaging (DTI), an imaging modality of MRI,
can be used to assess the integrity of cerebral WM fiber tracts
and, hence, can potentially support the diagnosis of AD. DTI
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scalar measurements of anisotropic diffusion, such as fractional
anisotropy (FA) and mean diffusivity (MD), can be extracted
and used for classification (Dyrba et al., 2013, 2015; Maggipinto
et al., 2017). Also in Dyrba et al. (2012) and Li et al. (2013), data
from structural MRI and DTI were combined and, as seen before,
DTI provided complementary information increasing the overall
classification performance.

As seen in previous works (Zhang et al., 2011; Dyrba
et al., 2012; Youssofzadeh et al., 2017), both PET and DTI
provide complementary information to sMRI increasing the
overall classification performance. However, there is no study
where all these modalities are combined and all the possible
effects analyzed.

In this paper, we explore this novel idea based on the
unique combination of three imaging modalities, currently used
in AD classification, and aim to explore the effects of all
possible combinations between them. Furthermore, we want to
evaluate if the combination of sMRI with DTI can achieve a
comparable performance as sMRI combined with PET. These
evaluations were performed by creating support vector machine
(SVM) models for each modality (sMRI, DTI, PET) which were
subsequently combined using a special ensemble technique.

MATERIALS AND METHODS

Data Characteristics
In this paper, two different datasets were used. The internal
dataset was obtained locally and divided into four different
groups. Each group was constructed in the most balanced way
possible and used for different objectives. The internal data were
used to construct and initially validate the individual classifiers
and is summarized in Table 1. All participants in the study
generating the internal data gave their written informed consent,
approved by the Ethics Committee of the University of Coimbra.
The clinical group comprised individuals with early AD diagnosis
(less than 2 years) recruited and prospectively evaluated by a
neurologist (Head: IS), at the Memory Clinic of the Neurology
Department of the Centro Hospitalar e Universitário de Coimbra
(CHUC). The standard criteria for the diagnosis of AD were
the Diagnostic and Statistical Manual of Mental Disorders—
fourth edition (DSM-IV-TR) and the National Institute on
Aging and the Alzheimer’s Association Workgroup (McKhann
et al., 2011). They were in mild stages, according to the global
staging scale Clinical Dementia Rating (CDR = 1). The control
group was composed of age- and gender-matched individuals
from the community, with no history of cognitive deterioration,
neurological or acquired CNS disorders, traumatic brain injury,
or psychiatric disorders. The control group was also submitted to
a brief cognitive assessment to exclude the presence of cognitive
impairment. Therefore, the individuals in the control group
had no significant memory complaints (assessed by an SMC
scale), a normal general cognitive function (assessed by MOCA),
preserved daily living activities (assessed by Lawton and Brody
scale) and no evidence of depressive symptoms (measured by
Geriatric Depression Scale).

Furthermore, the external data obtained from ADNI database
were organized into three groups of data that were constructed
aiming to externally validate the classifiers constructed using the
internal data and is summarized in Table 2.

Imaging Data Acquisition
[11C]-Pittsburgh Compound B (PiB) PET (PiB-PET)
A Philips Gemini GXL PET/CT scanner (Philips Medical
Systems, Best, The Netherlands) was used to perform a dynamic
3-dimensional PET [11C]-PiB scan of the entire brain (90
slices, 2-mm slice sampling) and a low-dose brain CT scan,
for attenuation correction. PET scan started immediately after
the intravenous bolus injection of approximately 555 MBq of
[11C]-PiB and was acquired over a period of 90 min (37 frames:
4 × 15 s + 8 × 30 s + 9 × 60 s + 2 × 180 s + 14 × 300 s).
To minimize head movement, the patients’ head was restrained
with a soft elastic tape. PET data were reconstructed using a
LOR-RAMLA algorithm (Sato et al., 2008), with attenuation and
scatter correction.

Structural Magnetic Resonance Imaging
T1 MPRAGE anatomic acquisitions were performed
with the following imaging parameters: repetition
time (TR)/echo time (TE)/inversion time (TI)/flip
angle = 2,530 ms/3.42 ms/1,100 ms/7◦; a FOV (field of
view) of 256×256 mm with a matrix size of 256×256; 176 sagittal
slices were performed with voxel resolution 1.0×1.0×3.0 mm3;
total time of acquisition (TA) = 6 min and 3 s.

Diffusion Tensor Imaging
Diffusion-tensor imaging (DTI) had TR/TE/number of
excitations (NEX) = 7,800 ms/90 ms/1; matrix, 96 × 96 ×
63 contiguous axial slices; isotropic voxel resolution of 2× 2× 2
mm3; bandwidth of 1,628 Hz/pixel and echo spacing of 0.72 ms.
The diffusion tensor was acquired along 63 non-collinear
directions (b = 1,000s/mm2), with one scan without diffusion
weighting (b = 0 s/mm2, b0). Generalized Autocalibrating
Partially Parallel Acquisitions (GRAPPA) was used to reduce the
scanning time to around 9 min.

Data for External Validation
An external dataset was acquired in order to perform external
validation. This external dataset was obtained from the three
phases of the Alzheimer’s Disease Neuroimaging Initiative
(ADNI) database (ADNI1, ADNI2 and ADNI3)1 (see sample size
in Table 1). The primary goal of ADNI has been to test whether
serial magnetic resonance imaging (MRI), positron emission
tomography (PET), other biological markers, and clinical and
neuropsychological assessment can be combined to measure
the progression of mild cognitive impairment (MCI) and early
Alzheimer’s disease (AD). For more information regarding the
used external data (see Weiner et al., 2013, 2017).

Data Processing
The first common step between all the image modalities was
converting all of the images from DICOM format to NIFTI

1adni.loni.usc.edu
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TABLE 1 | Demographics and neuropsychologic characteristics for the study population.

MRI PiB-PET DTI Ensemble

Condition CN (n = 21) AD (n = 20) CN (n = 21) AD (n = 17) CN (n = 20) AD (n = 17) CN (n = 20) AD (n = 15)

Age (years) 65.9 ± 6.8 66.3 ± 6.9 65.9 ± 6.8 66.4 ± 7.3 66.4 ± 6.5 65.8 ± 7.3 66.4 ± 6.5 65.6 ± 7.4

Gender (male/female) 10/11 10/10 10/11 8/9 10/10 9/8 10/10 8/7

MOCA 24.62 ± 4.44 14.35 ± 4.21 24.62 ± 4.44 14.18 ± 4.54 24.35 ± 4.38 14.41 ± 4.53 24.35 ± 4.38 14.41 ± 4.53

CDR 0.00 ± 0.00 1.00 ± 0.00 0.00 ± 0.00 1.00 ± 0.00 0.00 ± 0.00 1.00 ± 0.00 0.00 ± 0.00 1.00 ± 0.00

CN, Cognitively Normal; AD, Alzheimer’s Disease; Age, MOCA, and CDR values are defined as mean ± standard deviation.

TABLE 2 | Demographics and neuropsychologic characteristics for the ADNI external data.

External MRI External PiB-PET External DTI

Condition CN (n = 164) AD (n = 166) CN (n = 31) AD (n = 24) CN (n = 71) AD (n = 77)

Age (years) 76.5 ± 5.9 75.1 ± 7.9 79.5 ± 5.8 74.4 ± 8.0 72.7 ± 7.2 73.7 ± 8.4

Gender (male/female) 77/87 83/83 19/12 18/6 28/43 40/37

MMSE 29.17 ± 1.09 22.93 ± 2.23 29.00 ± 1.46 24.17 ± 1.83 29.13 ± 1.13 23.32 ± 1.88

CDR 0.01 ± 0.08 0.83 ± 0.36 0.00 ± 0.00 0.85 ± 0.35 0.00 ± 0.00 1.07 ± 0.39

CN, Cognitively Normal; AD, Alzheimer’s Disease; Age, MMSE, and CDR values are defined as mean ± standard deviation.

format. Afterward, standard preprocessing was applied, before
further data processing.

Before any processing was done, T1 Weighted MR brain
images were manually aligned, so that origin of the image was
the anterior commissure (AC). This step is important since the
used processing tools assume that the origin of the image is there.

After the alignment, T1 Weighted MR brain images were
processed using the Computational Anatomy Toolbox version
12 (CAT12),2 for Statistical Parametric Mapping 12 (SPM12),3 in
the MatLab environment.4 The images were processed using the
segment data option of the toolbox, and features were generated
using region- or label-based morphometry (RBM), given by the
CAT12 toolbox. RBM is a predefined atlas-based analysis that
allows the estimation of regional tissue volumes, as well as cortical
thickness values from different volumes or surface-based atlas
maps (Magnin et al., 2009; Rathore et al., 2017).

PiB-PET images were preprocessed using SPM12. Firstly, the
sum image that reflects the total accumulation was calculated
and then coregistered to the corresponded T1 Weighted image.
This allows the application of the same spatial normalization
transformation from the T1 Weighted image to the PiB-PET
image, providing a more accurate spatial normalization. The
sum image was spatially normalized to the T1 MRI template
ICBM152, given by SPM12. The normalized images were then
visually inspected in order to verify the existence of obvious
imperfections. Lastly, the normalized images were smoothed,
using SPM12 smoothing and a Gaussian smoothing kernel, with
full width at half maximum (FWHM) of 8 mm. The preprocessed
PET-PIB images were then analyzed using a similar approach
to the T1 Weighted images through regions of interest. The
Standard Uptake Value (SUV) for nineteen regions of interest,
plus three reference regions were extracted considering the mean

2www.neuro.uni-jena.de/cat/index.html
3www.fil.ion.ucl.ac.uk/spm/software/spm12/
4www.mathworks.com

value of intensity for each region extracted. The SUV of each
region was then normalized to the dose injected and the body
mass index (BMI). Three different sets of features, containing
the same nineteen regions of interest, were then considered and
constructed using the Standard Uptake Value Ratio (SUVR). The
SUVR was computed for all the nineteen regions of interest, using
three different reference regions: Cerebellum, WM and GM,
resulting in three different datasets (SUVRCerebellum, SURVWM
and SUVRGM), each one containing the nineteen regions of
interest that were normalized for a different reference region. All
of the regions were defined on the T1 MRI template ICBM152
(Oliveira et al., 2018).

From Diffusion Weighted images (DWIs), the Diffusion
Tensor Images (DTI) were constructed using ExploreDTI.5 DTI
were then corrected for head motion, eddy currents and EPI
distortions, with deformation axes set to [1 0 0] and image
type set to FA. After the correction, the DTI data were spatially
normalized to FA atlas template SRI24,6 or to FA atlas template
IIT Human Brain Atlas,7 or to FA atlas template ICBM.8 The use
of different atlases for normalization to a common space for the
DTI data was necessary in order to be able to perform region-
label analysis since the label atlases used for this analysis were
constructed in these different spaces. DTI features were generated
following a similar structure to T1 Weighted MR images, but
instead of generating volumetric or surface values, in this case,
diffusion metrics were extracted from different label atlas: lpba40
(see text footnote 6), Desikan, Destrieux (see text footnote 6),
Hammers and JHU (see text footnote 8). Using the ExploreDTI
software,9 the diffusion metrics were generated from the different
atlases (Dyrba et al., 2015).

5www.exploredti.com
6www.nitrc.org/frs/?group_id=214
7www.nitrc.org/frs/?group_id=432
8identifiers.org/neurovault.collection:264
9www.exploredti.com/
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Only the mean fractional anisotropy (FA) and mean diffusivity
(MD) of the various atlas regions were considered as features.

Feature Selection
Due to the relatively small sample size (n = 40) of the internal
data set and the vast number of features generated, feature
selection methods were applied in order to select the best
feature subset for each imaging modality. The subset was limited
to 8 features, 1 feature for each 5 cases to be selected. The
total amount of features for each model can be consulted in
Supplementary Table S1.

There are a great variety of methods that can be used for
supervised feature selection. These can be broadly organized
into three categories known as filter, wrapper, and embedded
methods (Kumar, 2014; Tang et al., 2014; Jović et al., 2015).
Taking this in consideration, we decided to apply an embedded-
based method (EBM) and a filter-based method (FBM) to reduce
the number of features. This was done in order to achieve a
final set of features that could be considered unbiased of the
feature selection method utilized. Both feature selection methods
were implemented in R environment (R Core Team, 2020). In
the EBM, we started by randomly dividing the data into two
groups, assuring that both groups were balanced in order to
simulate the final environment that will be used to train the
classifiers. Following this, subsets of 8 features were randomly
created from all the features and used to construct a random
forest model (Liaw and Wiener, 2002). Using random forest
allowed us to extract the relative importance given by the learning
algorithm to each feature. The previous process was performed
2,000 times in each run and the importance of each feature was
stored. The final importance value for each individual feature was
established as the mean importance value of each feature. For
the FBM, the data was divided into two groups, one containing
the AD positive cases and the other containing the cognitively
normal. Posteriorly, student t-test was performed for each feature
comparing the two groups and the respective t- and p-values for
each feature were extracted.

After extracting the final importance value in the EBM, the
features were sorted from the biggest to the smallest importance
values and a filter was applied to remove all of the features
that exhibited an importance value lesser than 0.55 times the
most important feature. This was done to prevent the use of
possible irrelevant features. For FBM, the features were sorted
in the same way but this time in relation to their t-value and
those that showed a p-value greater than 0.05 were removed
(Supplementary Data Sheet S1). Furthermore, a refined filter
was applied, using the Pearson correlation (r). This step was
common to both methods.

We used Pearson correlation to construct a n-by-n
matrix that represented the correlation values between all
features. In this matrix, each row represents a feature, and
the columns represent the Pearson correlation between the
feature and all the other features. Using this correlation
matrix, we removed all the features that had an absolute
correlation value greater than 0.55 (|r|>0.55) in relation to
the most important feature, placed at the first row of the
correlation matrix. Furthermore, the resultant features set

were evaluated from the second row until the n-1 row. The
cut-off criteria, in this case, were an absolute correlation
value greater than 0.70 (|r| > 0.70), which means that
those that exceeded that value were excluded (Figure 1 and
Supplementary Data Sheet S1).

In the end, the remaining feature vectors from both methods
were reduced to contain only the best 8 features as delimited in
advance by the relatively small size of the data.

Classification, External Validation and
Ensemble
The construction and evaluation of the classifiers was performed
in a Python environment (Van Rossum and Drake, 2009). Before
any learning algorithm was applied, all feature vectors were
standardized to zero mean and variance one. This was achieved
by subtracting the mean to each feature vector, and then dividing
it by the standard deviation (Equation 1). This was meant to
improve the performance of the learning algorithm.

x
′

=
x−x

s
(1)

The now standardized data were split into two groups, 80%
used for training and 20% for testing. The splitting was performed
in such way that both groups were as balanced as possible.

The training group was evaluated, using random permutation
of the data, and at each cycle the data was shuffled and
divided into training and testing data, assuring that the
division created was balanced in training and testing
groups. At the end of each cycle, the values of accuracy,
sensitivity, specificity and the ROC curve and AUC were
stored. This process was repeated 2,000 times, and the
classifiers overall performance was primarily evaluated
using the mean ROC curve and the mean AUC (Figure 2)
(Supplementary Data Sheet S1).

Furthermore, parameters such as mean accuracy, sensitivity
and specificity were used in order to distinguish the classifiers that
have similar performance measurements, as well as to select those
that will be used in the ensemble phase.

The learning algorithm used was support vector machine
(SVM) which was constructed using the radial basis function
(RBF) kernel, with gamma value set to “scale” and C value
set to the default of 0.1, using the scikit-learning package
(Pedregosa et al., 2011).

For the construction of the individual classifiers, different
feature sets were extracted from different label atlases. For each
feature set, a model was constructed using the aforementioned
method. The most promising models, for each imaging modality,
were then evaluated using the external data (thus preventing
overfitting) and the ones with the best performance selected to
be used in the ensemble phase.

The final selected classifiers were used to evaluate the internal
ensemble data (Table 1) and the potential of combining all image
modalities was assessed.

To ensemble the classifiers, a non-generative weighted fusion
technique was used, and the previously constructed and validated
classifiers were combined in order to generate a final decision.
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FIGURE 1 | Illustration of the feature selection method used.

FIGURE 2 | Overall scheme of all processes used for the construction and validation of the individual models and ensemble.

The base classifiers were combined using a weight value between
0 and 1, that was applied to the predicted probability, given from
each of the base learning algorithm.

Yi = c1y1i + c2y2i + c3y3i (2)

In Equation 2, Yi stands for the final ensemble prediction
probability, y1i for the predicted probability, given by the
classifier trained using a MRI-based model, y2i for the predicted
probability, given by the classifier trained using a PiB-based
model and y3i for the predicted probability, given by the classifier
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TABLE 3 | Summary of the feature selection methods for the selected models.

Model Feature
selection
method

Number of
total features

Number of
surviving
features

Number of the
final set of
features

MRI-based EBM 142 41 8

FBM 10 8

PiB-PET-based EBM 19 2 2

FBM 3 3

DTI-based EBM 84 58 8

FBM 6 6

trained using a DTI-based model. Lastly, c1, c2, and c3 are weights
applied to the different modalities, so that c1 + c2 + c3 = 1.

In order to evaluate the overall performance of the ensemble
method, the individual classifiers, one for each modality, were
first used alone to evaluate the ensemble data and to establish
a base line performance. Afterward, the prediction of each
classifier was combined using Equation (2) and the performance
parameters of accuracy, sensitivity and specificity for the
ensemble technique were stored (Figure 2 and Supplementary
Data Sheet S1). Furthermore, the mean ROC curves from
the individual classifiers and the ensemble classifier were
also calculated.

The ensemble technique was further validated using the
external data, but unfortunately, only the validation through the
combination of MRI and DTI models was possible from the
external data collected.

RESULTS

Feature Selection
The results of the feature selection methods for all the models
evaluated can be found in Supplementary Tabel S1. In Table 3,
we summarize the initial number of features, as well as the final
number of features that survived the different feature selection
methods. Furthermore, in Table 4, we present the final set of
regions that are used for extracting the features used for the
construction of the selected individual classifiers (Table 5) for
each of the evaluated imaging modalities.

Furthermore, the correlation between the selected features
(Table 4) and the age and cognitive scores (MOCA) of
the participants was also evaluated and can be found in
Supplementary Figrue S1.

Individual Classifiers
For each imaging modality, different sets of features were initially
evaluated. The features were extracted from different label atlases
and their performance evaluated on the internal data. In Table 5,
we summarize the results from the classifier’s performance using
a single modality and using the EBM feature selection method
for the RBF kernel. Each model from the Table 5 was only
constructed using features from only one label atlases and is
named after the used label atlas and the used feature selection
method. Furthermore, Supplementary Table S2 shows the results

TABLE 4 | List of the regions used for extracting features that will be used in the
construction of the individual classifiers.

MRI-based PiB-PET-based DTI-based

Left amygdala Prefrontal cortex Left inferior temporal gyrus

Right inferior temporal gyrus Right anterior putamen Left pericalcarine

Left thalamus proper Left entorhinal

Left middle occipital gyrus Right thalamus

Left putamen Right insula

Left central operculum Left amygdala

Right posterior cingulate gyrus Left pars triangularis

Right superior frontal gyrus Right temporal pole

for the models found in Table 5 using of a SVM model built using
a linear kernel and Supplementary Table S3 shows the results for
the same models using the FBM feature selection method.

Furthermore, by testing the most promising models in the
internal data with the external data (Table 2), we were able to
select the most promising model, i.e., the one that showed the
best performance in both internal and external data, in order to
represent each imaging modality in the ensemble phase. After
the individual evaluation of all the models, those which were
selected were the Neuromorphometrics-GM EBM model, for
sMRI, the SUVR-WM EBM model, for PiB-PET and the Desikan-
FA EBM model for DTI.

In Table 6, we summarize the performance of the selected
models on both the internal and external data.

Ensemble Classification
Four different combinations of data integration were tested.
Three multimodal approaches combining two different imaging
modalities, using a weight value of 1/2 for each modality involved,
and one novel approach combining three imaging modalities
using a weight of 1/3 for all modalities. Using the models
from Table 6 to evaluate the ensemble data group (Table 1),
we obtained the following performances for the base classifiers,
MRI-based (AUC, 0.99 ± 0.01; Accuracy, 95.04%; Sensitivity,
90.04%; Specificity, 99.04%; Balanced Accuracy, 95.04%), PiB-
PET-based (AUC, 0.92 ± 0.02; Accuracy, 88.75%; Sensitivity,
88.23%; Specificity, 89.17%; Balanced Accuracy, 88.75%) and
DTI-based (AUC, 0.97 ± 0.01; Accuracy, 92.55%; Sensitivity,
90.58%; Specificity, 94.13%; Balanced Accuracy, 92.55%).

For the ensemble classifiers performances, we obtained for
the different combinations MRI+PiB-PET (AUC, 0.99 ± 0.00;
Accuracy, 98.05%; Sensitivity, 98.59%; Specificity, 97.62%;
Balanced Accuracy, 98.05%), MRI+DTI (AUC, 0.99 ± 0.00;
Accuracy, 97.30%; Sensitivity, 94.62%; Specificity, 99.43%;
Balanced Accuracy, 97.30%), PiB-PET+DTI (AUC, 0.98 ± 0.01;
Accuracy, 91.28%; Sensitivity, 92.61%; Specificity, 90.02%;
Balanced Accuracy, 91.28%) and for all (AUC, 0.99 ± 0.00;
Accuracy, 98.11%; Sensitivity, 99.14%; Specificity, 97.27%;
Balanced Accuracy, 98.11%) (Figure 3).

Furthermore, we were able to test our ensemble method on
the external data combining the sMRI and DTI-based classifiers.
This combination yields an accuracy of 78.59%, sensitivity
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TABLE 5 | Classifier’s performance using embedded-based feature selection for all atlases.

Imaging modality Atlas ACC SEN SPEC AUC

MRI structural Cobra GM 76.13% 76.06% 76.19% 0.87 ± 0.13

Cobra WM 78.43% 79.04% 77.04% 0.88 ± 0.12

Hammers GM 74.79% 66.14% 83.44% 0.85 ± 0.15

Hammers WM 58.36% 58.24% 58.49% 0.51 ± 0.24

Hammers CSF 75.37% 77.01% 73.73% 0.85 ± 0.14

Lpba40 GM 70.28% 61.16% 79.40% 0.76 ± 0.20

Neuromorphometrics GM 92.05% 86.78% 97.32% 0.96 ± 0.04

Neuromorphometrics CSF 76.13% 80.34% 71.91% 0.84 ± 0.15

MRI surface a2009 Gyrification 83.01% 86.98% 79.04% 0.91 ± 0.10

a2009 Thickness 81.89% 81.93% 81.87% 0.90 ± 0.11

Dk40 Gyrification 69.13% 73.14% 65.11% 0.75 ± 0.19

Dk40 Thickness 72.19% 71.01% 73.36% 0.79 ± 0.17

HCP Gyrification 83.11% 73.65% 92.56% 0.94 ± 0.08

HCP Thickness 84.27% 83.05% 85.49% 0.93 ± 0.09

DTI Lpba40 FA 71.34% 65.37% 75.81% 0.72 ± 0.24

Lpba40 MD 75.29% 67.32% 81.04% 0.86 ± 0.15

Desikan FA 79.84% 76.67% 82.23% 0.86 ± 0.15

Desikan MD 62.00% 52.70% 68.98% 0.66 ± 0.24

Destrieux FA 65.66% 63.23% 67.49% 0.66 ± 0.25

Destrieux MD 77.60% 72.15% 81.69% 0.84 ± 0.15

Hammers FA 76.77% 63.80% 86.50% 0.79 ± 0.19

Hammers MD 69.52% 55.63% 79.94% 0.72 ± 0.22

JHU FA 77.24% 67.15% 84.81% 0.80 ± 0.19

JHU MD 63.86% 47.47% 76.16% 0.61 ± 0.26

PiB-PET SUVR Cerebellum 87.71% 95.92% 81.26% 0.94 ± 0.09

SUVR GM 91.98% 98.66% 87.01% 0.97 ± 0.06

SUVR WM 90.68% 92.78% 89.10% 0.93 ± 0.10

ACC, Accuracy; SEN, Sensitivity; SPEC, Specificity. Bold values indicates the base models that were selected to use in the ensemble phase.

TABLE 6 | Best performing models validated on both the internal and external data.

Internal data External data

Imaging
modality

Model name AUC ACC SEN SPEC BACC AUC ACC SEN SPEC BACC

MRI Neuromorphometrics
GM EBM

0.96 ± 0.07 92.05% 86.78% 86.78% 92.05% 0.81 ± 0.02 78.02% 74.12% 82.29% 78.20%

PiB-PET SUVR WM EBM 0.93 ± 0.10 90.53% 92.00% 89.43% 90.53% 0.81 ± 0.04 76.87% 87.90% 68.33% 78.12%

DTI Desikan FA EBM 0.86 ± 0.14 76.84% 76.17% 82.09% 79.84% 0.69 ± 0.04 62.79% 54.31% 71.98% 63.15%

ACC, Accuracy; SEN, Sensitivity; SPEC, Specificity; BACC, Balanced Accuracy.

of 77.15% specificity of 80.16% and a balanced accuracy of
78.66% (Figure 4).

DISCUSSION

In this paper, we have proposed to evaluate the different effects
regarding all the possible combinations of different imaging
modalities used for AD classification.

The results obtained for the base, single modality classifiers’
performance (Table 5) were in accordance with the literature
(Dyrba et al., 2012, 2013; Beheshti and Demirel, 2015; Möller
et al., 2016; Rathore et al., 2017; Oliveira et al., 2018). In

particular, it is possible to observe that the individual classifiers
constructed using sMRI or PiB-PET data can achieve a relatively
high-performance values by themselves, in contrast with those
using DTI data, which alone do not yield the same performance.
Furthermore, from the Table 4 and Supplementary Table S3 is
possible to see that the selection of the label atlas used for feature
extraction can have a significant impact in the performance of
the models. This finding was also observed in other AD related
studies (Ota et al., 2015) suggesting that different label atlas
allow the capture of different information within the same image
modality and between imaging modalities.

Regarding the selected classifiers (Table 6), it is also important
to point out that the final anatomical features, that remained
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FIGURE 3 | Comparison of the ROC curves of the individual models and the ensemble models. (A) Combination of MRI with PiB-PET, (B) Combination of MRI with
DTI, (C) Combination of PiB-PET with DTI, (D) Combination of all.

after feature selection (Table 4), generally showed a significant
correlation with cognitive scores as measured with MOCA and
they also correspond to regions where biologically significance
has been ascribed in the context of Alzheimer’s Disease, thereby
providing clinical meaning to our results (Frisoni et al., 2010;
Nordberg et al., 2010).

The apparent discrepancy between the performance values
from the base classifiers (Table 5 and Supplementary Table S3)
and the individual performances in the ensemble phase (Table 6)
can be attributed to the lower number of cases being evaluated
(Table 1) and the training-test procedure. However, we did not
expect that the DTI-base classifier would outperform the PiB-
PET-based classifier.

Also, there is the concern that our data normalization
approach may cause data leakage which is a limitation in
this study and may be inflating the performance of our
single modality classifiers. However, in our classification
approach (Figure 2) we took measures to mitigate this issue,
mainly using random permutation and cross validation.
Furthermore, we went beyond this and search for an

external dataset, containing data very different from our
internal dataset and used it to validate our model, which
showed that in fact our models were not overfitted to
the internal data.

Regarding the multi-model approaches, there are several
studies that evaluate the effects of combining information from
different imaging modalities or other physiological data on
the classification of AD. The results that we obtained from
the combination of sMRI with PiB-PET (accuracy = 98.05%)
and sMRI with DTI (accuracy = 97.30%) are consistent with
other studies that evaluated the same combination. Regarding
the sMRI combination with PiB-PET, Youssofzadeh et al.
(2017) obtained an accuracy value of 95.70% and Liu L. et al.
(2015) achieved an accuracy value around 90%. Regarding the
sMRI combination with DTI, Dyrba et al. (2012), obtained
an accuracy of 89.2% and Dyrba et al. (2015) achieved an
accuracy of 85.00%.

As expected from the previous studies found in the literature,
these combinations showed a performance improvement when
compared to single modality models. These findings bolster

Frontiers in Neuroscience | www.frontiersin.org 9 January 2022 | Volume 15 | Article 638175

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org/
https://www.frontiersin.org/journals/neuroscience#articles


fnins-15-638175 December 29, 2021 Time: 13:45 # 10

Agostinho et al. Ensemble Classifiers in Alzheimer’s Disease

FIGURE 4 | Ensemble results of combining MRI and DTI data. Comparison of the ROC curve of the classifiers using the external data.

the idea that both PiB-PET and DTI convey independent
information that complements that of the sMRI data.

Also, we were surprised to see that the combination of sMRI
with DTI shows an improvement in the overall classification
performance that can be comparable to the improvement
caused by the combination of sMRI with PiB-PET. This
surprising finding can be further emphasized by the fact
that, in spite of the isolated low performance of DTI, the
combination of MRI with DTI when using only external
data also provides a significant improvement in performance
(Figure 4). Furthermore, the analysis of Figure 4 showed that
the combination of the sMRI and the DTI model, built using
the internal data, shows the same behavior when analyzing the
samples from the external data. Unfortunately, the nature of
external data renders unfeasible to perform this same analysis for
other combinations.

Furthermore, we evaluated two novel combinations
combining PiB-PET with DTI and also combining all three
modalities. The results of combining PiB-PET with DTI showed
that this combination does not yield an improvement of
performance for the overall classifier. This new information
leads to the suggestion that both PiB-PET and DTI are
not complementary because they may be reflecting non-
independent biological processes. This finding suggests
that, although in practice multi-modality approaches show
better results than single modality approaches (Cabral and
Silveira, 2013; Gupta et al., 2019), one should carefully select
the type of data as a function of its biological significance
and the corresponding acquisition protocols in order to
achieve a synergic effect on the classification. In particular
our results suggests that even if a single modality is not
very useful in isolation it can provide strong added value

in combination, in particular if it provides independent
biological information.

Finally, the results of combining all the modalities do not yield
an improvement in relation to the combination of MRI with
PiB-PET or DTI, emphasizing the fact that perhaps DTI and PiB-
PET contribute with the same (redundant) information for the
classification problem. Such redundancy might be explained by
the notion that changes in white matter might be present in PIB
images (Oliveira et al., 2018) which are probably correlated with
the changes detected using DTI.

These last two findings may suggest some underlying
unknown biological factor involving the WM in the
pathophysiology of the disease, which is related to
amyloid pathology.

CONCLUSION

The goal of this work was to evaluate the effects of combining
three imaging modalities that are vastly used in AD classification
problems. The results of our ensemble models reached the
surprising conclusion that, in fact, the addition of DTI data to
the sMRI can provide a classification performance that can be as
good as the addition of PiB-PET data.

Furthermore, by analyzing the results from the combination of
PiB-PET with DTI, we can see that there is no complementarity
between the two data sources, suggesting redundancy. This can
indicate that both imaging modalities are communicating non-
independent information in the case of AD classification.

This last finding should be further explored, since it also
indicates that there is some implicit unknown alteration on
the WM, related to amyloid pathology, that can be further
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investigated and used not only for the development of new AD
classification frameworks but to improve our understanding of
disease pathophysiology at the level of the WM.

Also, these results suggest that, in the future, it could be
possible to base the diagnosis of AD in only sMRI and DTI
imaging data, potentially without the need of using PiB-PET
images. This could bring some benefits for the patient, who will
not be submitted to radiation and subjected to a lower discomfort
from lengthy acquisition protocols of PiB-PET (∼90 min) in
comparison to those of MRI (∼6 min) and DTI (∼9 min),
which is relevant in old participants with cognitive impairment.
Furthermore, the use of DTI presents a less expensive approach
since it does not require the acquisition or production, as well as
maintenance of radioactive isotopes.

Finally, the use of MRI and DTI images only requires the
use of one machine. Nevertheless, and in spite of these practical
advantages, the use of PiB-PET images is still a powerful and
useful tool for the study of the disease’s pathology.
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