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Stress exposure has been shown to induce a variety of molecular and functional
alterations associated with anxiety and depression. Some studies suggest that
microglia, the immune cells of the brain, play a significant role in determining neuronal
and behavioral responses to chronic stress and also contribute to the development
of stress-related psychopathologies. However, little is known about the impact of
the duration of stress exposure upon microglia and neurons morphology, particularly
considering sex differences. This issue deserves particular investigation, considering that
the process of morphologic remodeling of neurons and microglia is usually accompanied
by functional changes with behavioral expression. Here, we examine the effects of short
and long unpredictable chronic mild stress (uCMS) protocols on behavior, evaluating in
parallel microglia and neurons morphology in the dorsal hippocampus (dHIP) and in the
nucleus accumbens (NAc), two brain regions involved in the etiology of depression. We
report that long-term uCMS induced more behavioral alterations in males, which present
anxiety and depression-like phenotypes (anhedonia and helplessness behavior), while
females only display anxiety-like behavior. After short-term uCMS, both sexes presented
anxiety-like behavior. Microglia cells undergo a process of morphologic adaptation
to short-term uCMS, dependent on sex, in the NAc: we observed a hypertrophy
in males and an atrophy in females, transient effects that do not persist after long-
term uCMS. In the dHIP, the morphologic adaptation of microglia is only observed in
females (hypertrophy) and after the protocol of long uCMS. Interestingly, males are more
vulnerable to neuronal morphological alterations in a region-specific manner: dendritic
atrophy in granule neurons of the dHIP and hypertrophy in the medium spiny neurons of
the NAc, both after short- or long-term uCMS. The morphology of neurons in these
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brain regions were not affected in females. These findings raise the possibility that,
by differentially affecting neurons and microglia in dHIP and NAc, chronic stress may
contribute for differences in the clinical presentation of stress-related disorders under
the control of sex-specific mechanisms.

Keywords: chronic stress, microglia morphology, sex differences, dorsal hippocampus, nucleus accumbens,
neurons morphology

INTRODUCTION

Exposure to stress has a detrimental impact on certain brain
functions, depending on the duration, type, and severity of
stress. Uncontrollable stress is a contributing factor for major
depressive disorder (Iwata et al., 2013), a severe and debilitating
psychiatric illness characterized by a significant change in mood
and accompanied by symptoms such as anhedonia and disrupted
sleeping, eating, and cognitive deficits (Kessler, 2012).

A wide variety of animal models have been used to mimic
human depression, but, as a heterogeneous disorder, many of
its symptoms (depressed mood, feelings of worthlessness, and
suicidal ideation) are hard to be mimicked in laboratory animals
and, for an animal model to be valid, it is not necessary to exhibit
all the traits of depression, since patients do not manifest every
symptoms of the disease (Belzung and Lemoine, 2011).

Unpredictable chronic mild stress (uCMS) protocol is widely
used and involves a permanent exposure to a variety of mild
stressors in an unpredictable manner. In adult rodents, uCMS is
a valid model of depression (Willner, 2005) and induce a variety
of behavioral alterations, including anxiety, anhedonia, decreased
exploratory behavior, and increased immobility/despair behavior
when exposed to stressful environments, as well as impaired
spatial cognition (Henningsen et al., 2009; Hill et al., 2012; Bessa
et al., 2013; Morais et al., 2014; Patricio et al., 2015).

Stress impact various aspects of immunity that in turn
promote stress susceptibility. As innate immune cells of the
brain, microglia play an integrative role in maintaining neuronal
homeostasis (Salter and Stevens, 2017). These cells are distributed
throughout the brain and function as a critical line of defense
against injury and pathogenic insults (Hanisch and Kettenmann,
2007). It has been reported that stress induces morphologic
changes of microglia (Sugama et al., 2007), namely promoting
microglial hyper-ramification in the prefrontal cortex (PFC)
(Tynan et al., 2013), which supports the theory that these
cells play an important role in modulating stress responses
(Reus et al., 2015). In the healthy adult central nervous system
(CNS), microglia have a ramified morphology characterized by
long and thin processes that support the ability for searching
potential threats for local homeostasis (Nimmerjahn et al., 2005;
Kettenmann et al., 2011; Xavier et al., 2014; Wu et al., 2015). Some
studies have described that when microglia respond to insults,
they change their morphology, the processes retract and the cell
body enlarges, giving microglia an amoeboid shape (Davalos
et al., 2005; Cho et al., 2006). However, in our recent studies we
report a diversity of morphologic changes that globally depend
on the time of stress exposure (prenatal versus adult stress),
on the sex of the animal and on the brain region under study

(Caetano et al., 2017; Duarte et al., 2019; Gaspar et al., 2021).
Our observations suggest that microglia remodeling upon stress
are not limited to the acquisition of an amoeboid phenotype,
as previously described (Sugama et al., 2007; Tynan et al., 2010;
Kreisel et al., 2014), but instead may vary from different degrees
of atrophy to hypertrophy.

In addition to microglial changes, several studies also point
toward stress-induced sex differences in neurons morphology
(Galea et al., 1997; Garrett and Wellman, 2009; Bock et al.,
2011; Breach et al., 2019), although the majority of studies were
performed exclusively in males (Magarinos and McEwen, 1995;
Lambert et al., 1998; Radley et al., 2006; Bessa et al., 2009a,
2013; Morais et al., 2014; Melo et al., 2015; Patricio et al., 2015).
In fact, stress-induced morphologic changes in microglia and
neurons are associated with behavioral alterations in rodent
models, including anhedonia, anxiety-like behavior and despair-
like behavior (Fonken et al., 2018; Liu et al., 2019).

Sexual dimorphism at multiple levels, including cellular,
molecular, and immune system in stress response suggest that
stress-elicited neuroinflammatory priming may vary between
sexes (Couch et al., 2013; Kreisel et al., 2014; Bekhbat and
Neigh, 2018; Wohleb et al., 2018). However, little is known
about the morphologic adaptation of brain cells in its relation
with depression vulnerability between sexes when subjected to
stress protocols of different duration. Therefore, in this study, we
examined the effects of the exposure to short and long uCMS in
both sexes upon behavior and plastic changes of microglia and
neurons. We used a set of different behavioral tests to evaluate
anxiety- and depression-like profiles of adult rats exposed
to uCMS. Using an automated methodology, we quantified
how uCMS alters several morphologic properties of microglia
and neurons in the dorsal hippocampus (dHIP) and nucleus
accumbens (NAc), two key brain regions in stress responses.

MATERIALS AND METHODS

The timeline of all procedures is shown in Figure 1A.

Animals
Adult male and female rats (Wistar Han), 3-months old
(Charles River Laboratories, L’Arbresle, France) were housed and
kept under standard laboratory conditions: 22◦C, 55% relative
humidity, and 12 h light/dark cycle with free access to food and
water. A complete timeline of all manipulations and behavioral
tests is provided in Figure 1A. The handling and health
monitoring were performed according to federation of european
laboratory animal science associations (FELASA) guidelines. All
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FIGURE 1 | Unpredictable chronic mild stress (uCMS) induces a dysregulation of body weight in males and in the circadian corticosterone secretion pattern in both
sexes. (A) Schematic drawing of the uCMS protocol. (B,C) Corticosterone serum levels measured at 8:00 a.m. in female and male rats exposed to stress in
adulthood. (D,E) Body weight of female rats exposed to short- or a long-term protocol of chronic mild stress for 2 and 6 weeks, respectively. (F,G) Body weight of
male rats exposed to short- or a long-term protocol of chronic mild stress for 2 and 6 weeks, respectively. Results are presented as the mean ± SEM of 10–20
animals (body weight) 6–10 animals (corticosterone); comparing with control, calculated using a two-way Analysis of Variance (ANOVA) followed by a Bonferroni
post-hoc test. ∗p < 0.05 and ∗∗p < 0.01.
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experimental procedures were approved by european union
(EU) – Directive 2010/63/EU and the Portuguese National
Authority for animal experimentation, Direção-Geral de Animal
e Veterinária (DGAV). All protocols were approved by the Ethics
Committee of the Life and Health Sciences Research Institute and
by DGAV (#19074).

Unpredictable Chronic Mild Stress
At posnatal day (PND)90, animals were randomly divided into
four experimental groups and placed in separate rooms: a group
of animals exposed to uCMS for 2 weeks (Short-term uCMS –
Stress); a group not exposed to uCMS for 2 weeks (Short-term
uCMS – Control); a group of animals exposed to uCMS for
6 weeks (Long-term uCMS – Stress); a group not exposed to
uCMS for 6 weeks (Long-term uCMS – Control). An adapted
version of the previously described and validated uCMS protocol
(Willner, 2005; Alves et al., 2017), was applied for two periods
of different duration (2 and 6 weeks). The uCMS protocol
consisted of a variety of unpredictable mild stressors, including
confinement to a restricted space for 1 h, placement in a tilted
cage (30◦) for 3 h, housing on damp bedding, 15 h of food
deprivation followed by exposure to inaccessible food for 1 h,
water deprivation for 15 h followed by exposure to an empty
bottle for 1 h, exposure to stroboscopic lights during 4 h and
reversed light/dark cycle for 48 h, every 7 days. Rats subjected
to stress were randomly exposed to 2–4 stressors every day for
2 or 6 weeks (Supplementary Figure 1). The controls were
left undisturbed under the previously described maintenance
conditions. Body weight was monitored weekly to monitor the
overall effects of the stress paradigms.

Behavioral Analysis
At the end of the uCMS protocol, a series of behavioral tests were
performed in sequence to evaluate anxiety and depressive-like
behavior. The Elevated Plus Maze (EPM) and Forced Swimming
Tests (FST) were conducted during the light period of animals
(9:00 a.m.–5:00 p.m.); the Sucrose Preference Test (SPT) test was
performed during the dark period, from 9:00 p.m. to 10:00 p.m.

Elevated Plus Maze
To assess anxiety-like behavior, the EPM test was performed at
PND105 (short-term) and at PND133 (long-term). The maze
(ENV-560; Med Associates Inc., St. Albans, VT, United States)
has two closed (50.8 cm × 10.2 cm × 40.6 cm) and two open
arms (50.8 cm × 10.2 cm), raised 72.4 cm above the floor
and illuminated by a dim light. Each animal was positioned
in the center of this elevated plus-shaped platform for 5 min.
The performance of rats in EPM was video-recorded and
subsequently analyzed. The ratio of time spent in the open arms
per total time spent in the open and in close arms was calculated
as an index of anxiety-like behavior.

Sucrose Preference Test
This test was performed at PND106 (short-term) and PND134
(long-term). Briefly, after 12 h of food and water deprivation,
rats were presented with two pre-weighted bottles containing

tap water or a solution of sucrose 2% for 1 h. The liquid
intake from each bottle was calculated by comparing the
differences in bottle weights before and after the test. The
sucrose preference was determined as the percentage of sucrose
solution intake that was calculated according to the formula:
SP = [sucrose intake/(sucrose intake + water intake)] × 100, as
previously described (Bekris et al., 2005). Low sucrose preference
represented anhedonia, a core symptom of depression. When
the preference test ended, rats were given free access to water
and food.

Forced Swimming Test
The test was performed at PND107-108 (short-term) and
PND135-136 (long-term) after SPT. On the 1st day, rats were
placed individually in a glass cylinder with water (62 cm
height; 25.4 cm diameter; depth no less than 50 cm, 23◦C)
for 5 min. Then, the rats were dried and transported back to
their home cages. In the 2nd day, the rats were subjected to
one 5-min session of swimming. The test session was video-
recorded, and the immobility time of each rat was measured using
the EthoVision XT 11.5 tracking system (Noldus Information
Tecnhology, Wageningen, The Netherlands). Immobility was
defined as floating state in the water, without struggling and
making only those movements to keep the head above water.
Depressive-like behavior was defined as an increase in the
immobility time.

Immunohistochemistry and 3D
Morphometric Analysis of Microglia
After completion of stress protocols and behavioral tests,
all groups of rats were deeply anesthetized with sodium
pentobarbital (20%; Eutasil R©, Sanofi, Gentilly, France) and
transcardially perfused with 0.9% saline. The brains were
removed and one hemisphere from each brain was used for Golgi
staining technique and the other for immunohistochemistry
for ionized calcium-binding adaptor protein-1 (Iba-1) followed
by the 3D reconstruction of microglia cells. The right
hemispheres, used for Iba-1 immunohistochemistry, were post-
fixed in 4% paraformaldehyde (PFA), cryoprotected in 30%
sucrose overnight, and then embedded in Optimal Cutting
Temperature compound (OCT, ThermoScientific, Waltham,
MA, United States), snap-frozen and stored at −80◦C. Coronal
sections (50 µm) of the hippocampal dentate gyrus (DG)
(stereotaxic coordinates of interaural 5.20 mm and bregma
−3.80 mm) and NAc (stereotaxic coordinates of interaural
10.20 mm and bregma 1.2 mm) were further stained to
visualize microglia cells. Microglia were visualized using the
following protocol: free-floating sections were blocked 2 h with
5% bovine serum albumin (BSA) in phosphate-buffered saline
(PBS) + 0.1% Triton X at room temperature (RT) and incubated
for 48 h at 4◦C with an antibody specific to Iba-1 (1:1,000;
Wako Chemicals Inc., Richmond, VA, United States) in 5%
BSA/0.1% Triton X/PBS. Iba-1 is constitutively expressed in
microglia, being involved in cytoskeletal reorganization, and is
up-regulated in response to microglial cell activation. Sections
were then rinsed and incubated for 2 h at RT with the
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appropriate secondary antibody (donkey anti-rabbit, 1:1,000,
Invitrogen, Waltham, MA, United States) and 4’,6-diamidino-
2-phenylindole (DAPI, 1:5,000). Sections were rinsed and
mounted on gelatinized slices, using glycergel (DAKO mounting
medium, Santa Clara, CA, United States). Images of 10 random
microglial cells from each animal were acquired with a laser
scanning confocal microscope LSM 710 META connected to
ZEN Black software (Zeiss Microscopy, Oberkochen, Germany)
using a 63x objective lens (oil immersed, Plan-Apochromat
63x/1.40 Oil DIC M27). Microglia cells were reconstructed
using the Neurolucida software (MBF Bioscience, Williston,
VT, United States). Morphometric data related to branch
analysis were extracted by the Neurolucida Explorer software
(MBF Bioscience, Williston, VT, United States). The parameters
analyzed were the total number and the length of cellular
processes and their measures per branch order, considering
processes of order 1 those emerging directly from the cell body,
processes of order 2 those arising from processes of order 1, and
so forth (Caetano et al., 2017).

Neuronal Morphology
To assess the dendritic morphology of granule neurons of
DG and spiny medium neurons of NAc, three-dimensional
morphological analysis was performed on Golgi-Cox stained
material. The left hemispheres were immersed in a Golgi-
Cox solution (1:1 solution of 5% potassium dichromate
and 5% mercuric chloride diluted 4:10 with 5% potassium
chromate) for 14 days, cryoprotected with 30% sucrose solution
for 72 h, and sectioned at 200 µm in a vibratome in a 6%
sucrose solution. Brain sections were mounted on gelatin-
coated slides, lightly pressed and kept in moist container
until developed, clarified, and then cover slipped. For each
selected neuron, dendritic branches were reconstructed at
1,000× (oil) magnification, using a motorized microscope
(Axioplan 2; Carl Zeiss, Oberkochen, Germany) and
Neurolucida Neuron Tracing Software (MBF Bioscience,
Williston, VT, United States). For each animal, approximately
10 neurons were analyzed in the dHIP and in the NAc.
Data for process length was obtained using Neurolucida
explorer (MBF Bioscience, Williston, VT, United States).
Measurements from individual neurons from each animal were
averaged. Total dendritic length was compared among the
experimental groups. Branching of the neurons was evaluated
using 3D Sholl analysis; for this, the number of dendritic
intersections with concentric circles positioned at radial intervals
of 20 µm was determined.

Corticosterone Levels Measurement
For all animals, serum corticosterone levels were measured
using a commercially available ELISA kit (Abcam, Cambridge,
United Kingdom), according to the manufacturer’s instructions.
Blood sampling (tail venipuncture) was performed during the
diurnal nadir (N, 8:00–9:00 a.m.) at the end of the stress protocol.
Results are expressed as ng of corticosterone per ml of serum.
Absorbance at 450 nm was determined using a microplate reader
and corticosterone concentration (ng/ml) was extrapolated from

a standard curve. The coefficient of variation for intra- assay was
5.7% and for inter-assay was 10.2%.

Estrous Cycle Analysis
In the day of sacrifice, vaginal cytology was performed. Exfoliate
cytology was examined under light microscope (Leica DM
4000B, Leica, Wetzlar, Germany) with a 10x objective lens (Plan
63x/0.25PH1) and estrous cycle was determined based on the
morphology of the cells present in the smear as previously
described (Westwood, 2008).

Data Analysis
All data are presented as mean ± standard error of the mean
(mean ± SEM). GraphPad Prism 6 Software was employed
for statistical analysis. Outliers were identified using GraphPad
Prism 6. Two-way Analysis of Variance (ANOVA) followed by
a Bonferroni post-hoc test was used to assess the effects of stress
(Control vs. Stress) and duration of stress (Short- vs. Long-term
uCMS). The level of significance for all analysis was a set at
p < 0.05.

RESULTS

Unpredictable Chronic Mild Stress
Induces a Dysregulation of the Circadian
Corticosterone Secretion Pattern in Both
Sexes and in the Body Weight of Males
It is known that stress impairs the activity of the hypothalamus-
pituitary-adrenal (HPA) axis and results in disrupted secretion
of corticosteroids (Pariante and Lightman, 2008; Willner et al.,
2013). In this work, we exposed animals of both sexes to a well-
established uCMS protocol (Willner, 2005; Bessa et al., 2009a;
Mateus-Pinheiro et al., 2013) for either 2 or 6 weeks. To validate
the uCMS protocol, we measured corticosterone levels as an
indicator of HPA axis function. In basal conditions, control
females exhibited higher corticosterone levels than males. At
the end of short- and long-term uCMS protocol, basal serum
corticosterone levels were higher in both sexes exposed to stress
[females: Figure 1B; F(1,24) = 10.94, p = 0.003; males: Figure 1C;
F(1,30) = 15.28; p = 0.0005], although only statistically significant
in the case of the short-term protocol. We also monitored weekly
the body weight until the end of the uCMS protocol. In the case
of females, short and long uCMS protocols did not significantly
affect total body weight [F(1,55) = 1.79, p = 0.19; Figures 1D,E].
Male rats exposed to uCMS displayed a reduction of body weight
[F(1,56) = 12.02, p = 0.001] after completion of short- (post-hoc
analysis, p = 0.0277) or long- term (post-hoc analysis, p = 0.0388)
uCMS protocols (Figures 1F,G).

Unpredictable Chronic Mild Stress
Induces Anxiety- and Depressive-Like
Behavior That Is More Pronounced in
Males
Unpredictable chronic mild stress induced anxiety-like behavior
in females [F(1,54) = 19.97, p < 0.0001], as demonstrated
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FIGURE 2 | Unpredictable chronic mild stress induces anxiety and depressive-like behavior, an effect more pronounced in males. (A,B) Time spent in open arms per
total time of the elevated plus maze (EPM) test performed to evaluate anxiety-related behavior of females and males. (C,D) Anhedonic-like behavior assessed by the
preference for sucrose in the sucrose preference test (SPT) in females and males. (E,F) Depressive-like behavior assessed by the total time of immobility in the
forced swimming test (FST) for females and males. Results are presented as the mean ± SEM of 10–20 animals comparing with control, calculated using a two-way
Analysis of Variance (ANOVA) followed by a Bonferroni post-hoc test. ∗p < 0.05, ∗∗p < 0.01, and ∗∗∗p < 0.001. #p < 0.05 (stress effect).

by the reduced time spent in open arms, after 2 (post-hoc
analysis, p = 0.001) or 6 weeks of uCMS (post-hoc analysis,
p = 0.029; Figure 2A). Like females, we also found a significant
effect of stress in males [F(1,50) = 23.40, p < 0.0001]. Males
exposed to a short- or long-term uCMS presented anxiety-like
behavior (post-hoc analysis, p = 0.002; p = 0.003, respectively;
Figure 2B).

In the SPT, that evaluates anhedonia, no main effect of
stress [F(1,58) = 0.4701, p = 0.4957] or duration of exposure
to uCMS [F(1,58) = 0.138, p = 0.712] was found in females
when assessing the percentage of sucrose solution consumed
(Figure 2C). In males, we observed a significant stress effect

[F(1,55) = 14.24, p = 0.0004], although only males exposed to
a long-term protocol of uCMS showed a decrease in sucrose
consumption when compared with controls (post-hoc analysis,
p = 0.004; Figure 2D) with an increase in water consumption
(Supplementary Figure 2).

In the FST, behavioral despair was calculated as time of
immobility. In females, no differences in immobility were
observed (Figure 2E). In males, a main effect of duration of
exposure to stress [F(1,61) = 12.41, p = 0.0008] was found since
males exposed to a long-term uCMS showed significantly higher
levels of despair behavior, when compared to controls (post-hoc
analysis, p = 0.0019; Figure 2F).
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The estrous cycle analysis was performed in females and
demonstrated that females were distributed by all phases of the
estrous cycle (Supplementary Table 1).

Unpredictable Chronic Mild Stress
Induces Sex-Dependent Morphologic
Adaptation of Microglia
Our group described that prenatal stress induces changes
in the morphology of microglia (Caetano et al., 2017;
Duarte et al., 2019; Gaspar et al., 2021), but the effect of

uCMS with different duration and potential sex differences
have not been explored. In order to better understand the role
of stress in the morphology of microglia, we performed the
morphometric analysis of microglia in adult female and male rats
in two different brain regions, the dHIP and the NAc. A detailed
analysis of microglia, including the number of processes per
branch order, the total number of branches and the total length
of branches was performed.

In the dHIP, short-term uCMS did not induce alterations
in microglia morphology in females (Figures 3A–D and
Supplementary Table 2). Conversely, long-term exposure to

FIGURE 3 | Unpredictable chronic mild stress induces remodeling of microglia, an effect more pronounced in females. Microglial morphometric structure was
manually reconstructed in the Neurolucida software based on 3D images of Iba-1 stained microglia. (A) Representative microglia cells of the dorsal hippocampus
(dHIP) in females. (B) Number of processes per branch of microglia of the dHIP in females. (C,D) Total number and length of microglia cells of the dHIP in females.
(E) Representative microglia cells of the dHIP in males. (F) Number of processes per branch of microglia of the dHIP in males. (G,H) Total number and length of
microglia cells of the dHIP in males. (I) Representative microglia cells from of the nucleus accumbens (NAc) in females. (J) Number of processes per branch of
microglia of the NAc in females. (K,L) Total number and length of microglia cells of the NAc in females. (M) Representative microglia cells of the NAc in males of the
NAc. (N) Number of processes per branch of microglia of the NAc in males. (O,P) Total number and length of microglia cells of the NAc in females. Results are
presented as the mean ± SEM of 40–50 cells from 4 to 5 animals; comparing with control, calculated using a two-way ANOVA followed by a Bonferroni post-hoc
test. ∗p < 0.05, ∗∗p < 0.01, ***p < 0.001, and ****p < 0.0001. ##p < 0.01 and ###p < 0.001 (stress effect).
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uCMS induced a hypertrophy of microglia in the dHIP in females,
when compared to control animals, either in the total number
of processes (post-hoc analysis, p = 0.002) and in total length
[F(1,140) = 3.08, p = 0.005; Figures 3C,D]. In males, we did
not observe any effect of stress (both short or long) in the
morphology of microglia either in terms of total number or
length (Figures 3E–H and Supplementary Table 2).

In the NAc, we observed opposite differences between sexes.
Short-term uCMS in females induced a general decrease in
the total number of processes [F(1,126) = 19.47, p < 0.0001;
Figures 3I,K] and in the length [F(1,126) = 14.23, p = 0.0002;
Figures 3I,L] (atrophy). Long-term uCMS induced also a
decrease of microglia morphology, but only in the number
of processes per branch order (Figure 3J and Supplementary
Table 3). On the other hand, males exposed to short-term
uCMS presented an increase in the total number of processes
[F(1,123) = 0.69; p = 0.0088] and in the length (hypertrophy)
[F(1,123) = 3.49, p = 0.0069] of NAc microglia, but long-term
uCMS did not induce alterations in microglia morphology in
males (Figures 3M–P and Supplementary Table 3).

When we compared microglia morphology under
physiological conditions in both regions, we observed that
microglia cells of females in the NAc exhibited a more complex
morphology compared with dHIP. No differences between dHIP
and NAc were observed in males microglia (Supplementary
Figures 3A,B and Supplementary Table 4).

Unpredictable Chronic Stress Induces
Contrasting Patterns of Neuronal
Dendritic Remodeling in the Dorsal
Hippocampus and Nucleus Accumbens
in Males
Neuronal morphology was assessed by three-dimensional
morphometric analysis of Golgi impregnated granule neurons in
the DG of dHIP and spiny medium neurons in NAc.

Unpredictable chronic mild stress revealed no significant
effect in the morphology or in the Sholl analysis of neurons
of the dHIP in females (Figures 4A–C). In males, exposure to
stress induced an atrophy of granule neurons of the dHIP, with a
significant decrease in their total dendritic length [F(1,10) = 59.75,
p < 0.00001] as compared with neurons of control animals
(Figures 4D–F). Both short- (post-hoc analysis, p = 0.0003) and
long-term of CMS (post-hoc analysis, p = 0.0008) significantly
decreased total dendritic length in granule neurons of the dHIP
(Figure 4E). In Sholl analysis we also observed an effect of stress:
males presented a less complex morphology when compared with
controls [F(3,120) = 53.39, p < 0.00001; Figure 4F].

We next analyzed the morphological effects of stress in NAc
neurons. In females we did not observe any effect of stress in the
morphology or in the Sholl analysis of spiny medium neurons
(Figures 4G–I). Contrarily to what we observed in the dHIP,
uCMS induced a hypertrophy in the NAc medium spiny neurons
of males, which displayed a significant increase in dendritic
length [F(1,10) = 79.65, p < 0.00001; Figures 4J,K]. Both short-
(post-hoc analysis, p = 0.0003) and long-term CMS (post-hoc
analysis, p = 0.0001) significantly increased total dendritic length

of medium spiny neurons (Figure 4K). Sholl analysis revealed
more complex medium spiny neurons in males exposed to long-
term uCMS compared to controls [F(3,112) = 3.122, p = 0.028;
Figure 4L].

DISCUSSION

The present study explored how short- and long-term uCMS at
adulthood alters behavior in males and females and identified
changes in the morphology of microglia and neurons of the dHIP
and NAc. This issue deserves particular investigation, considering
that the process of morphologic remodeling of neurons and
microglia is usually accompanied by functional changes with
behavioral expression.

The uCMS model is one of the most widely used rodent
models to produce behavioral deficits and neuroplastic changes
with strong face validity to human depression, that include not
only anhedonia, but also anxiety and cognitive impairments
in spatial memory and object recognition tasks (Willner et al.,
1987; Willner, 1997, 2005; Bessa et al., 2013). However, the
differential risk for anxiety and depressive-like behavior between
sexes considering a short- (2 weeks) and long-term (6 weeks)
uCMS protocol is still not fully elucidated, in particular in
what concerns to the characterization of cellular (neurons
and microglia) plasticity in an attempt to find a correlation
pattern. Considering the marked differences in the prevalence
of depression in men and women (Marcus et al., 2005),
there has been a considerable interest in sex specificities in
anxiety- and depression-like symptoms expressed in animals
exposed to stress. Nevertheless, sex differences in the risk and
resilience to stress are complex and vary according to the
characteristics of the stressor, such as timing, type and severity
(Hodes and Epperson, 2019). The basis for these differences
is unknown, in part because much of the work in the field
is performed mostly in male rodents (Klein et al., 2015),
perhaps due to the challenges associated with carrying out
experiments influenced by fluctuating gonadal hormones in
females (O’Connor and Barrett, 2014).

First, our results showed that body weight is affected (reduced)
in males, but not in female rats after short- or long-term uCMS
protocols. Although consistent with several studies, showing that
chronic stress has a higher impact in reducing male weight gain
(Konkle et al., 2003; Mateus-Pinheiro et al., 2013; Patricio et al.,
2015), it is important to consider the influence of conditions,
such as the type and the intensity of stressor, as well as the age of
stress onset. For instance, chronic stress in late adolescent female
animals reduces body weight gain (Wulsin et al., 2016).

Assessment of corticosterone levels as an index of the
stress response revealed higher levels in both sexes exposed to
uCMS comparing to control animals. It is important to note
that females have higher basal concentrations of corticosterone
and secrete higher levels after stress exposure, as previously
described by other authors (Kitay, 1961; Goel et al., 2014;
Oyola and Handa, 2017).

In behavioral tests, we showed that male rats are more
affected than females by these protocols of stress. Both sexes
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FIGURE 4 | Unpredictable chronic mild stress induces remodeling of neurons only in males. (A) Representative manual reconstruction of Golgi-impregned granule
neurons of the dorsal hippocampus (dHIP) in females. (B,C) Total dendritic length and sholl analysis of dendritic distribution of neurons in the dentate gyrus of the
dHIP in females. (D) Representative manual reconstruction of Golgi-impregned granule neurons of the dHIP in males. (E,F) Total dendritic length and sholl analysis of
dendritic distribution of neurons in the dentate gyrus of the dHIP in males. (G) Representative manual reconstruction of Golgi-impregned medium spiny neurons of
the nucleus accumbens (NAc) in females. (H,I) Total dendritic length and sholl analysis of dendritic distribution of neurons in the NAc in females. (J) Representative
manual reconstruction of Golgi-impregned medium spiny neurons of the NAc in males. (K,L) Total dendritic length and sholl analysis of dendritic distribution of
neurons of the NAc in males. Results are presented as the mean ± SEM of 30–40 cells from 3 to 4 animals; comparing with control, calculated using a two-way
Analysis of Variance (ANOVA) followed by a Bonferroni post-hoc test. ∗p < 0.05, ∗∗p < 0.01, and ∗∗∗p < 0.001.

exhibited anxiety-like behavior in response to stress, but only
male rats presented anhedonia and despair-like behavior, cardinal
symptoms of depression.

Unpredictable chronic mild stress-induced anxiety-like
behavior in both sexes is consistent with other studies showing
that animals exposed to chronic stress spent less time in the open
arms in the EPM test (Kompagne et al., 2008; Yue et al., 2017;
Wang et al., 2018).

Furthermore, 6 weeks of uCMS lead to anhedonia and
helplessness/despair behaviors in male animals, core symptoms
of depression that have been also described as characteristics
of stress-related conditions (D’Aquila et al., 1994; Willner
et al., 1996; Bekris et al., 2005; Bessa et al., 2009a; Patricio
et al., 2015). Stress-induced differences in sucrose consumption

between males and females were somehow expected due to
sex differences in taste and/or ingestion responses (Clarke and
Ossenkopp, 1998; Curtis et al., 2004) or in reactivity to reward
(Michaels and Holtzman, 2007). Indeed, other studies support
the present observation that stress-induced alterations in sucrose
consumption are differently expressed between male and female
animals (Dalla et al., 2005, 2008; Pitychoutis et al., 2009).
Regarding despair behavior (here assessed by the FST), our data,
although in line with other studies [showing that females exposed
to CMS cope better and present increased active behavior in the
FST, whereas males are more vulnerable (Bielajew et al., 2003;
Dalla et al., 2005)] are particularly intriguing because in humans,
depression is more prominent in females (Frank et al., 1988;
Marcus et al., 2005; Wittchen et al., 2011).
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In this study we explored the effect of stress on microglia
morphology in the dHIP and NAc, two key brain regions in
the control of depressive-like behavior (Di Chiara et al., 1999;
Nestler, 2001; Nestler and Carlezon, 2006; Bessa et al., 2013;
Alves et al., 2018). Microglia are diverse in shape and function
and may present phenotypic differences according to the brain
region analyzed (Caetano et al., 2017; De Biase et al., 2017; De
Biase and Bonci, 2019; Duarte et al., 2019; Gaspar et al., 2021)
and determined by sex (Lenz et al., 2013; Caetano et al., 2017;
Villapol et al., 2017; Gaspar et al., 2021). All these variables may
contribute to adapted functional responses to different insults
(Schwarz et al., 2012; Villapol et al., 2017; Guneykaya et al.,
2018; Perkins et al., 2018; Villa et al., 2018). Thus, it is not
surprising that chronic stress elicits brain region- and sex-specific
alterations in microglial phenotypes that likely contribute to
divergent neurobiological and behavioral responses (Hinwood
et al., 2013; Kreisel et al., 2014; Milior et al., 2016; Franklin
et al., 2018). In the dHIP, microglia from males are not affected
by chronic stress (shorter or longer periods of exposure), while
females, although requiring a longer period of exposure to
stress, present hypertrophied microglia (more and longer cellular
processes). In line with these results, our group described that
prenatal stress exposure induces a hypertrophy of microglia in
females with no differences in males (Gaspar et al., 2021). These
findings are consistent with other study reporting the absence
of changes in the morphology of microglia in males in the HIP
following chronic stress (Lehmann et al., 2016). In the case of
NAc, microglia from both sexes is affected by stress, but changes
observed after 2 weeks of stress are apparently transient and
no longer observed after 6 weeks of stress exposure. To our
knowledge, our group described for the first time alterations
in microglia morphology in the NAc after stress exposure.
Recently we showed that prenatal exposure to stress induced

also sex-specific alterations in microglia (atrophy in females
and hypertrophy in males) (Gaspar et al., 2021). It is becoming
evident that microglia morphology is robustly and differently
affected by stress in different brain regions. For example, 21 days
of restraint stress increased the complexity of microglia in
males, enhancing ramifications in the PFC (Hinwood et al.,
2013). Studies from our team have shown that prenatal stress
triggers long-lasting sex differences in microglia morphology in
the mPFC, dHIP, and NAc (Caetano et al., 2017; Duarte et al.,
2019; Gaspar et al., 2021). Given that microglia present sexual
dimorphic features, namely density, function, and morphology
in several brain regions (Bilbo et al., 2012; Schwarz and Bilbo,
2012; Schwarz et al., 2012; Caetano et al., 2017; Duarte et al.,
2019; Gaspar et al., 2021), some of which conserved among
species (Simoes-Henriques et al., 2019), sex differences after stress
are not surprising.

The morphologic adaptation of neurons to stress has been
also studied by several authors. In general, it is accepted that
stress induces an atrophy of neurons in the HIP (Watanabe et al.,
1992; Magarinos and McEwen, 1995; McLaughlin et al., 2007;
Bessa et al., 2009a; Morais et al., 2014; Patricio et al., 2015) and
a hypertrophy in the NAc (Bessa et al., 2013; Melo et al., 2015).
One of the main goals of this work was to analyze behavior and,
in parallel, microglia and neurons morphology. Interestingly, the
morphometric analysis of neurons in the dHIP revealed that these
cells are morphologically not responsive to stress in the case
of females, but males present an atrophic pattern after 2 weeks
of stress, an effect that persists until 6 weeks of stress. In the
NAc, only males present changes (conversely to the dHIP, a
hypertrophy was observed), which are observable after a short
protocol of stress and persist after longer periods of exposure.

In summary, neuronal changes in this brain region seem to
be exclusive to males and opposite between dHIP and NAc. In

FIGURE 5 | Unpredictable chronic mild stress alters the behavior and the morphology of microglia and neurons in a brain region- and sex-specific manner.
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line with our results, some studies (only performed in males)
demonstrated that chronic stress caused an atrophy of neurons
in the DG of HIP (Bessa et al., 2009b; Morais et al., 2014; Patricio
et al., 2015) and in the mPFC (Radley et al., 2005; Shansky
et al., 2009; Melo et al., 2015). Interestingly, chronic adult stress
triggered a hypertrophy of medium spiny neurons in the NAc,
that was associated with a depressive-like phenotype (Bessa et al.,
2013; Melo et al., 2015). Thus, the NAc neuronal hypertrophy
that we observed in this study can contribute for the depressive-
like phenotype that is observed in males. In this framework, the
lack of changes in females is in agreement with the absence of a
phenotype in the SPT and FST.

CONCLUSION

The present results show that chronic stress significantly alters
the behavior and the morphology of microglia and neurons in a
brain region- and sex-specific manner: males are more affected
by stress, presenting anxiety- and depression-like behaviors,
hypertrophy of microglia, and dendritic hypertrophy in the NAc.
Females present anxiety-like behavior, but no depression-like
behavior, with remodeling of microglia in dHIP (hypertrophy)
and NAc (atrophy) (Figure 5). Globally, our results show that the
morphology of neurons is not affected by chronic stress in females
and this morphologic stability is accompanied by a process of
microglia remodeling. In the case of males, neurons are affected
in both regions, but microglia seem to be only and transiently
affected in the NAc. This study led us to question if microglia
plasticity is related with the morphologic stability of neurons
observed in females, eventually underlying stress resilience, a
hypothesis that deserves further investigation.
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