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Abstract: The building sector continues to play an essential role in reducing worldwide energy con-
sumption. The reduced consumption is accompanied by stricter regulation for the thermotechnical
design of the building envelope. The redefined nearly Zero Energy Building levels that will come
into force for each member state will pressure designers to rethink the constructive details so that
mandatory levels can be reached, without increasing the construction costs over an optimum level
but at the same time reducing greenhouse gas emissions. The paper aims to illustrate the main conclu-
sions obtained in assessing the thermo-energy performance of a steel-framed building representing
a holistically designed modular laboratory located in a moderate continental temperate climate,
characteristic of the south-eastern part of the Pannonian Depression with some sub-Mediterranean
influences. An extensive numerical simulation of the main junctions was performed. The thermal
performance was established in terms of the main parameters, the adjusted thermal resistances and
global thermal insulation coefficient. Further on, the energy consumption for heating was established,
and the associated energy rating was in compliance with the Romanian regulations. A parametric
study was done to illustrate the energy performance of the investigated case in the five representative
climatic zones from Romania. An important conclusion of the research indicates that an emphasis
must be placed on the thermotechnical design of Light Steel Framed solutions against increased
thermal bridge areas caused by the steel’s high thermal conductivity for all building components
to reach nZEB levels. Nevertheless, the results indicate an exemplary behaviour compared to clas-
sical solutions, but at the same time, the need for an iterative redesign so that all thermo-energy
performance indicators are achieved.

Keywords: LSF constructions; thermal bridging; thermal resistance; thermal transmittance; numerical
simulation; thermal performance; energy performance; parametric study; nZEB; energy rating

1. Introduction

The building sector is still one of the largest energy consumers worldwide, responsible
for around 40% of the European Union’s (EU) energy consumption and 36% of greenhouse
gas emissions coming from construction, usage, renovation and demolition phases [1].
Through the help of The Green Deal program, a very ambitious target was set of going
carbon-neutral by 2050 [2]. Besides the already mandatory actions imposed by the 2018/844
Energy Performance of Buildings Directive (EPBD) [3] (e.g., reaching nearly Zero Energy
Buildings (nZEB) for both new and existing buildings, thus providing healthier buildings,
more robust implementation of the Energy Performance Certificate (EPC)), each member
state has to present a strategy through the National Energy and Climate Plans (NECP)
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for tackling energy consumptions in buildings in the period 2021–2030. The aim consists
in reaching the goal of reducing energy consumption by 32.5% by 2030 [4]. Considering
that the NECP objectives need to be consolidated for reaching the 2030 targets, a review
and revision of the Energy Efficiency Directive (EED) [5] took place hand in hand with
several targeted provisions of the EPBD. A proposal for the recast on the EU Directive on
energy efficiency was published in 2021 [6], which includes reducing the net greenhouse
gas emission by at least 55% by 2030 [7] to become climate-neutral by 2050. At the same
time, it proposes higher reductions for primary energy consumption -39%, and final energy
consumption −36% by 2030. Therefore, the Green Deal initiatives, the Renovation Wave
and the Strategy for Energy Sector Integration represent essential programs in promoting
energy efficiency [8].

As it was mentioned by the International Energy Agency (IEA) [9], during 2019,
the building sector has deviated from the path towards the Paris agreement objectives.
A slowing rate of energy efficiency improvement has been observed since 2015 by the
IEA [9]. The final energy consumption grew by 2.2% in 2018, and by 2019 the global energy
consumption in the building sector remained at the same level compared to previous
years [10], as shown in Figure 1. However, the CO2 emissions from building operations
increased around 38% of the global energy-related CO2 emissions (see Figure 2), including
indirect and direct emissions from non-residential buildings and residential buildings as
well as the construction industry [10]. Similar conclusions were highlighted back in 2015 by
Ürge-Vorsatz in [11], mentioning that commercial heating and cooling was expected to grow
until 2050 with an 84% percentile compared to 2010, while residential heating and cooling
with a 79%. It was also concluded that the role of electricity is continuously growing,
considering that by 2015 it represented around over half for commercial building energy
use. At the same time, in the global electricity consumption, the quantity associated with
buildings’ operation represents around 55%. Therefore, the building sector should decrease
emissions by 6% each year until 2030 to remain on track towards the 2050 objectives [10].
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intensity. As mentioned by IEA [9], an estimation was made regarding a decrease in the
global energy demand by 5% to 7% due to the global COVID-19 pandemic.

Although the energy efficiency indicators have slowed down on their path, buildings
are still the leading sector where investments will be available to keep the direction towards
2050 objectives. Research is done to identify more innovative and feasible approaches to
provide sustainable and energy-efficient technical solutions and construction technology.

Considering all the above mentioned, the project CIA_CLIM “Smart buildings adapt-
able to the climate change effects” [12], aimed to define a prototype solution described
by a lightweight steel-framed (LSF) construction that can tackle in the same time energy
efficiency and sustainability issues. The achievement of energy-efficient buildings requires
an integrated design concerning various factors such as climate, occupant behaviour, tech-
nology, operation, and maintenance.

In the energy design of buildings, an important role is defined by how the building
envelope can provide the internal comfort conditions resulting from a compliant ther-
motechnical design. In the case of LSF constructions placed in cold-dominated climates,
the need for an accurate design becomes even more critical. Although the number of
LSF buildings is increasing around the globe [13,14] due to their advantages compared
to heavyweight constructions, the high thermal conductivity of steel elements may lead
to significant thermal bridges, which must be well tackled at the design stage to decrease
their negative impact on the energy demand for space heating and cooling [15]. Compared
to conventional constructive details, the poor thermal performance of the steel elements
can be offset by employing adequate thermal insulation solutions. Nevertheless, a signifi-
cantly increased thickness is needed when conventional thermal insulating materials are
used. Thus, an alternative can be the use of nano-insulation materials, also called super
insulation materials (SIM), that are defined by a remarkable reduced thermal conductivity
(e.g., a thermal conductivity around 15 mW/(m·K) or even lower). As it was demonstrated
by Rajanayagam et al. in [15], when using SIMs the same thermal performance will be
reached at lower thicknesses compared to conventional thermal insulation materials thick-
nesses. The paper also demonstrated that the implemented SIM solution was able to reach
the imposed building requirements and help address solutions that can be defined by
constructive constraints.

Kempton et al. [16] present various solutions for mitigating thermal bridges, starting
from slotting the steel frame members to placing sheets of insulation materials or thermal
break strips between the steel frame. In this regard, it was proved by Santos et al. in
Reference [17] that for steel frames that do not have exterior thermal insulation, the thermal
performance can be increased by 16% for one strip of recycled rubber/cork and by 42% in
case of two strips placed at opposite sides of the frame. It is worth mentioning that two
strips of aerogel were able to mitigate the thermal bridge effect of the steel frame fully.
At the same time, in Reference [18], Santos et al. demonstrated the positive impact of the
placement of exterior continuous thermal insulation on an LSF wall’s overall performance.

Thereby, the objective of our research focused on four directions that aim to provide
answers for both designers and builders. First, the paper highlights the thermo-energy
performance of the LSF construction, identified as an experimental module. An extensive
bidimensional numerical study is presented to evaluate the proposed solutions’ thermal
bridges and implicitly thermal behaviour. Second, it provides an overview of to what extent
this design approach can reach the nZEB levels defined by the Romanian legislation and
simultaneously fulfil the European 2030 targets [4]. Thus, the overall energy performance
is assessed against the Romanian national regulations [19]. Third, the parametric study
results are highlighted to identify the building performance in all representative climatic
zones from Romania and their associated energy class for heating. The study includes
parametrisation in terms of climatic zone placement, curtain wall orientation, ventilation
rate, type of heating system. Fourth, a parametrisation is done to identify to which level the
thermal performance of a building envelope component can impact the energy consump-
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tion level. Several preliminary conclusions are drawn as a starting point for continuing
the research.

2. The Case Study
2.1. Site and Climate

Five climatic zones define the exterior climate of Romania (see Figure 3), starting from
the 1st zone with an exterior temperature θe = −12 ◦C, up to the 5th zone characterised by a
θe = −24 ◦C [20]. The city of Timis, oara is located in the second climatic zone defined by an
exterior temperature in the winter period θe = −15 ◦C. The annual average temperature in
Timis, oara is 11.4 ◦C, with an average exterior relative humidity of 72.1% [21]. The coldest
winter day is defined by a daily average minimum exterior temperature of −12.6 ◦C. For
the summer period, the average maximum daily exterior temperature is 29 ◦C.
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Buzatu et al. [21] have conducted an analysis with the aim of identifying the impact
of Timisoara’s climate in terms of internal comfort conditions and energy consumption.
The author concluded that according to IWEC weather data and ASHRAE 55 prescriptions
in the case of a residential building located in Timişoara at which no design strategies
(i.e., heating cooling, natural ventilation or fan-forced ventilation cooling, humidification,
dehumidification, shading device, and others) are considered, only 14% (i.e., 1226 h) of
the yearly hours are indoor comfortable. Therefore, in order to ensure indoor comfort for
a larger period (i.e., over 90% of the annual 8760 h), one must consider several design
strategies to provide 7047 h of heating and humidification, along with 387 h cooling and
dehumidification (if needed). This leads to a significant increase in the energy demand
for the entire year and the building’s lifespan. Therefore, integrating several passives and
active design strategies for the examined case leads to an annual heating and humidification
demand of 4424 h, along with an annual of 31 h for cooling and dehumidification (if needed).
That is translated into a reduction of 38% for the annual heating hours and 92% for the
annual cooling hours.

One of the passive approaches on which the paper focuses consists of how well the
building envelope design can provide proper thermal insulation levels with respect to the
thermal performance levels stipulated by design norms [19].

2.2. The Experimental Module

The experimental module, presented in Figures 4 and 5, was designed following sus-
tainability design criteria: material and resources procurement and efficiency, health and
well-being, energy and cost-efficiency. Some of the sustainability aspects of LSF construc-
tions include the speed of construction, possibility of prefabrication, architectural flexibility
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in building retrofit, small weight with increased mechanical strength, significant potential
for recycling and reuse, transportation and handling cost savings, and others [13,22–24].
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The LSF structure is a two-story modular construction, with a 5 m long span, a 5 m
long bay, 3.80 m eave height (on the southern side), and 6.10 m eave height (on the northern
side) 6.95 m ridge height (see Figure 4). The eastern façade has two 0.76 m× 0.96 m window
openings, the southern façade integrates a 3.56 m × 2.73 m glass curtain opening, while the
western façade has a 0.76 m× 0.96 m window opening and a 0.97 m× 2.73 m door opening.
There are no openings on the northern side of the building. The access to the second floor
is ensured by a 1 m × 1 m attic scuttle door. External photo-voltaic shading lamellae will
protect the curtain wall from the sun. The southern side of the roof was designed with a
roof pitch of 42◦ to gain an optimal performance of a roof-mounted solar energy system.

A precast wedge foundation system was adopted, designed as a quick foundation
system, easy to handle and install, fully recoverable at the end-of-life of the building and
suitable for reuse [25].

Several studies were made to identify the proper materials for the building envelope
elements from a holistic design perspective and ease for deconstruction and future reuse of
components [26,27]. The chosen thermal insulation is the recycled-PET thermal wadding,
fabricated using polyester fibres recycled from post-consumer polyethylene terephthalate
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(PET) bottles. This material has a low environmental impact [22,26], high mechanical resis-
tance, and good physical properties [28]. Another reason for this choice was to stimulate
the local economy and the recycling and reuse of materials.

Table 1 presents the thermophysical characteristics of the materials used in the LSF
experimental module.

Table 1. Thermal properties of the building envelope materials.

Material Thermal Conductivity
[W/(m·K)]

Specific Heat
[J/kg·◦C]

Density
[kg/m3]

Steel profiles (C150/3, C200/3) 50.00 420 7800
OSB 1 0.130 1700 620

Recycled-PET 2 thermal wadding 0.054 1350 20
Wood fibreboard 0.050 2100 270

Vapor barrier 0.220 1700 130
Aluminium sheet 160.00 880 2800

XPS 3 0.035 1450 35
PIR 4 sandwich panel 0.023 1400 30

1 OSB: oriented strand board; 2 PET: polyethylene terephthalate; 3 XPS: extruded polystyrene; 4 PIR: polyisocyanurate.

The structure is proper for various building envelope configurations. The unidi-
rectional thermal resistances Rtot and unidirectional thermal transmittances Utot were
calculated based on the constructive details for the envelope components presented in
Figure 6. The solutions were chosen with respect to local sourcing and production of
building materials, thus reducing transport emissions and associated costs.
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An extended presentation of the details from Figure 6 is provided in the next paragraph.
Oriented strand board (OSB) panels (24 mm thick) were used as an inner sheeting layer
for walls, ceilings and floors. As a thermal insulation material, the recycled-PET thermal
wadding was placed between the steel frame, with a thickness of 150 mm, except for the
north exterior wall, with 200 mm thick. The exterior wall constructive detail includes a layer
of wood fibreboards of 22 mm thick next to the recycled PET thermal wadding, finished by
a layer of fiber cement plate of 5 mm thick. The ground floor was elevated 400 mm from the
terrain, avoiding moisture retention from the ground. The constructive detail is designed
with 200 mm thick recycled PET thermal wadding. A trapezoidal steel sheet of 4 mm
thick is placed underneath, and another continuous exterior layer of 40 mm of extruded
polystyrene (XPS) closes the element at the exterior bottom side. Polyvinyl chloride (PVC)
membranes waterproofed both the floor and roof. The thermal insulation system was
completed on the roof in the exterior with PIR sandwich panels of 120 mm thick.

The experimental module was designed following a holistic approach to significantly
reduce the energy demand of the building in its operation phase. Therefore, the building
envelope design is crucial to meet this objective. At the same time, the design considered
the natural light intake and the additional artificial lighting covered by the available LED
light sources. The employed renewable energy solutions are based on harvesting solar
and wind energy. Therefore, there were installed twelve 250 W polycrystalline cell panels
that intake solar energy, with an estimated amount of solar energy produced on-site of
1269 kWh/year (the potential production of the installed polycrystalline cell panels under
ideal conditions is 3427.29 kWh/year [26]), and a 1 kW vertical wind turbine.

The LSF experimental module includes a monitoring energy management system
that offers a solid overview of the building’s performance during the operational phase.
The module’s functioning is based on the energy provided by the on-site generation
technologies, the construction being a non-grid connected building. The data acquisition
infrastructure consists of 3 CO2 sensors, 14 humidity sensors and 53 temperature sensors
distributed, as previously presented in reference [22]. Sensors were placed on the inner and
outer face of the exterior wall and between the layers.

3. Materials and Methods
3.1. Numerical Approach

It is well known that heat transmission increases significantly through the steel com-
ponents areas; therefore, even in a thermal insulation layer, the steel element acts as a
strong thermal bridge. This phenomenon leads to significant reductions in the global
thermal resistance of the building element. Ignoring the negative effect that steel has on
the thermal performance of the building envelope can lead to an overestimation of the
thermal resistance by up to 50%, as mentioned by Gorgolewski [23]. Simultaneously, the
improper temperature profile in the mass of the element can lead to adverse effects, such as
condensations and wall staining that occurs on cold spots.

The EN ISO 6946 standard [29] offers the combined method for calculating such con-
structive details, also known as the simplified method. An upper and lower limit for the
thermal resistance is established, also defined as the parallel path and isothermal path
method [30]. Based on these two values, their average gives the final thermal resistance.
This method is considered to be a simplified one. Other calculation methods were devel-
oped based on the presented approach. Nevertheless, an essential prescription of ISO 6946,
does not allow the calculation of the thermal performance of a wall with an insulation
layer crossed by metal studs due to the increased difference between the upper and lower
resistance values which define the combined method.
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However, before obtaining the adjusted thermal resistance value R′ as defined by the
Romanian norms [31], the unidirectional total thermal resistance Rtot must be calculated
using Equation (1), as prescribed by EN ISO 6946 [26]:

Rtot = Rsi +
n

∑
j=1

dj

λj
+ Rse (1)

where Rsi and Rse are the interior and exterior surface resistances [(m2·K)/W], d is the
thickness of a homogenous layer [m] and λ is the thermal conductivity of the material
[W/(m·K)].

The Rtot provides an image of the constructive details’ thermal performance that
describes the building envelope element without considering the weak thermal areas, i.e.,
assuming homogeneous layers.

As previously mentioned, each building envelope component is also defined by areas
where the heat flow increases due to the significant differences between materials’ thermal
conductivities. Therefore, the calculations for establishing the adjusted thermal resistance
value need to be done at least following a 2D modelling and simulation approach [32], also
known as the detailed calculation method. A 3D approach is sometimes mandatory for
complex steel junctions to accurately identify the thermal performance [33,34]. Therefore,
in order to get an accurate understanding of the thermal performance of the assessed con-
structive details, extensive numerical modelling and simulation approach was employed,
following the prescriptions of the EN ISO 10211 standard [35].

The numerical computation tool used for the analysis is the 2D software called PSI-
PLAN [36], which is based on solving the plane heat transfer differential equation in
steady-state thermal regime:

∂

∂x
·
[

λ(x, y)·∂θ(x, y)
∂x

]
+

∂

∂y
·
[

λ(x, y)·∂θ(x, y)
∂y

]
= 0 (2)

where θ is the temperature in the node (x,y), and λ(x,y) has constant values for the materials
describing the detail.

Based on a 2D assessment approach, one can establish the value of the linear heat
transfer coefficient defined by ψ [W/(m·K)] in order to identify how well from the thermal
point of view, the constructive details and implicitly the junction was designed. The
coefficient is calculated as described next [35]:

ψ = L2D −
N

∑
j=1

Uj·lj (3)

where L2D is the two-dimensional thermal coupling coefficient [W/m·K], Uj is the unidi-
rectional thermal transmittance [W/(m2·K)] (i.e., the opposite of Rtot) of the component j
separating the two environments defined by the internal and external temperature, lj is the
length [m] of the two-dimensional geometrical model over which the Uj value is applied.
The ψ value was calculated considering the overall internal dimensions [31].

For the intended research, the ψ value was calculated for each junction as a total value
for the assessed junction and also divided in two values, i.e., ψ1 and ψ2, each being allocated
to one of the modelled wings of the junctions. The need to calculate the two ψ values
is following the next calculation steps when the thermal performance of each building
envelope element is calculated. This approach is defined in Annex G and Annex J of the
Romanian design norm C107/3 [31], which describes the proper approach in reaching the
two values. An example of this approach is given in Figure 7.
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The thermal coupling coefficient L2D is a significant parameter because it shows the
heat losses through a building component caused by the temperature difference between
the two environments in direct contact with the element. The L2D was obtained based on
the heat flow rate φl [W/m] resulted from the bi-dimensional calculation divided to the
temperature difference. The next formula was applied:

L2D =
φl

(θi − θe)
(4)

where θi is the internal temperature and θe the external temperature.
Knowing the ψ value, the adjusted thermal transmittance U′ [W/(m2·K)] of the com-

ponent is calculated [31]. The adjusted value considers all the weak thermal areas of the
defined constructive detail by introducing in the calculation formula the ψ values. The
Romanian design norms define a minimum imposed value for the adjusted thermal trans-
mittance and the adjusted thermal resistance for each constructive element that defines
the building envelope [19]. The minimum imposed values represent one of the design
indicators that must be met in designing new buildings and the energy retrofit of the
existing ones. The formula for the U′ calculations is given next:

U′ =
1
R′

=
1

Rtot
+

∑(ψ·l)
A

+
∑ χ

A
(5)

where A is the area of the assessed element of the building envelope [m2], l is the length
[m] over which the linear heat transfer coefficient ψ is applied, χ is the point thermal
transmittance [W/K] obtained through a 3D simulation, and Rtot and ψ were previously
defined. The included ψ and χ values are only for the linear and point thermal bridges
identified over the A surface of the element. Considering that the approach for the assessed
case is 2D, the point thermal transmittance was not considered in calculations. Based on
the U′ obtained value, the adjusted thermal resistance R′ is calculated as an opposite of U′.

The boundary conditions were set for the internal and external environment according
to EN ISO 6946 [29]. The surface thermal resistances considered in calculations were
Rsi = 0.13 (m2·K)/W, and Rse = 0.04 (m2·K)/W. The interior temperature considered in
calculations was θi = +20 ◦C, while for the exterior temperature θe the studied junctions
were modelled in four of the representative climatic zones in Romania starting with a
temperature of θe = −12 ◦C for the 1st climatic zone up to θe = −21 ◦C for the 4th climatic
zone [20,21]. The aim was to identify the temperature distribution variation of the assessed
junctions in each of the four climatic zones. Nevertheless, for the calculation of the ψ, R′

and U′ values in the bi-dimensional numerical simulations, the temperature difference had
a unitary value according to ISO 10211 prescription [35].

The data input in the PSIPLAN software is done graphically by using a graphical mod-
ule. The spatial geometrical and thermotechnical characteristics, the boundary conditions
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defined by the superficial thermal resistances, the interior and exterior temperature and rel-
ative humidity represent the input data in the program. The meshing of the thermal bridge
junction is performed, and with the help of the finite difference method, the temperature
values in each node of the discretization network are obtained. The modelling stipulations
mentioned in EN ISO 10211 [35] are used.

The program performs the meshing automatically, with respect to the numerical
validation as mentioned in Annex C of the Reference [35], point C.2. l that describes
the approach for the number of subdivisions and C.2. m that discusses the mandatory
convergence value.

As it was previously mentioned in our papers [37–39], the modelling software follows
code prescription regarding the calculation of the linear thermal transmittance ψ [W/(m·K)]
as well as the design temperature factor at the internal surface fRsi, also known as the
condensation resistance factor [35]:

fRsi =
θsi,min − θe

θi − θe
(6)

where: θsi,min is the minimum superficial interior temperature, θi is the interior air tempera-
ture, and θe is the exterior air temperature.

The need to establish the fRsi value is connected to the aim of identifying the thermal
bridge performance. A smaller ψ value indicates a decrease in heat losses and a reduced risk
for mold growth, resulting in a higher fRsi value. Nevertheless, compliance with the mould
growth criteria does not necessarily mean a minimized heat flow. Situations are often met
in practice when a thermal bridge indicated increased transmission losses, although the
values were compliant in terms of mould control.

Based on the obtained results, the global thermal insulation coefficient denoted by
G [W/(m3·K)] can be calculated, according to design norm C107 [31]. The G parameter is
the first index that provides an overall image of the thermal performance of the building
envelope. Therefore, for residential buildings, the following formula is applied:

G =
∑
(

Lj·τj
)

V
+ 0.34·n (7)

where L is the thermal coupling coefficient [W/K], τj is the temperature correction coef-
ficient [-], V is the volume of the building envelope [m3], 0.34 is the ratio between the
air density and the specific heat of the air at θi = 20 ◦C [Wh/(m3·K)], n is the number of
air changes per hour due to natural ventilation [h−1] [31]. Its value is compared to the
normed value denoted by GN given in reference [19], a value accepted as a maximum for
a given case. The reference value for residential buildings is considered in calculations
n = 0.5 [h−1].

The L thermal coupling coefficient value is calculated for each element of the building
envelope component by using the following formula:

L =
A
R′

(8)

where A is the area of the element of the building envelope [m2], R′ is the adjusted thermal
resistance of the building envelope element [(m2·K)/W] calculated as a reversed U′ value
based on Expression (4). The L value is similar to the transmission heat transfer coefficient
Htr coefficient [W/K] that is calculated with the following formula [40],

Htr = HD + Hg + Hu + Ha (9)

where Htr is the transmission heat transfer coefficient [W/K], HD is the direct heat transfer
coefficient between the heated or cooled space and the exterior through the building
envelope [W/K], Hg transfer coefficient through the ground [W/K], Hu is the transmission
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heat transfer coefficient through unconditioned spaces [W/K], Ha is the transmission heat
transfer coefficient to adjacent buildings, [W/K].

In the assessed case L = Htr = HD, where HD is defined by:

HD = ∑
i

Ai·Ui + ∑
k

lk·ψk + ∑
j

χj (10)

where all the parameters are the ones previously defined. The only difference between HD.
and L is that the summations are done over all the building components separating the
internal and the external environments for HD. In the case of L calculation, the value is
calculated per building envelope component, and at the end, all L values are added up for
the entire building envelope

The temperature correction coefficient τj is calculated by [31]:

τj =
θi − θj

θi − θe
(11)

where θi is the conventional interior temperature for calculation for each space of the
assessed building, while θj can either be the exterior temperature or the temperature of
the unconditioned interior space. θe is the exterior temperature according to the climatic
zone, for Timişoara being equal to −15 ◦C. The aim of τ is to bring a correction for each
temperature difference identified for the assessed building by dividing it to the predominant
temperature difference described by (θi − θe). Thus, the total coupling coefficient Htr
can be multiplied with the predominant temperature difference to obtain the total heat
transmission as described in Equation (12). The τ coefficient is similar to the b coefficient as
described by ISO 52010-1 [41].

Further on, one can calculate QH;tr [kWh] as given in ISO 52010-1 [41], describing the
total heat transfer by transmission through the building envelope, as described below:

QH;tr = HH;tr·(θint,calc,H − θe)·t (12)

where θint;calc;H is the calculation temperature of the zone for heating [◦C], t is the duration
for the entire heating period, in [h].

The total heat transfer by ventilation QH;ve [kWh] and the total heat gains QH,gn
described by the solar and internal gains are calculated following reference [42]. The energy
need for heating is calculated using Equation (13), as it follows:

QH;nd = QH;ht − ηH;gn·QH;gn (13)

where QH;nd is the energy need for heating defined by the sum of QH;tr and QH;ve [kWh],
ηH;gn is the dimensionless gain utilization factor [-].

The energy consumption for heating from heat delivery to heat production as well the
energy rating is established based on Equation (14) and the energy scale for heating (i.e., as
defined by the Romanian norm) [43]:

qheat =
QH;nd

η·Au
(14)

where η is the efficiency of the heating systems [-], Au is the useful heated area of the
building [m2]. The heating system’s efficiency takes into account losses from heat delivery,
regulation, temperature layers, and heat distribution.

3.2. Modelled Cases

To evaluate the thermal performance of the building envelope elements, the represen-
tative junctions in the layouts and vertical sections of the building needed to be identified.
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Figure 8 provides a detailed image of the building envelope components in layout and
cross-sectional view.
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Figure 8. Detailed view of the building envelope: (a) ground floor layout; (b) vertical cross-section.

Based on them, the more thermally permeable junctions were identified, as illustrated
in Figure 9. The main constructive details were defined, and the geometrical models were
created following each layer and component, their dimensions and thermal conductivities.
At the same time, the modelling lengths, as well as the boundary conditions, were set.
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4. Results and Discussion
4.1. Thermal Performance per Element

Table 2 displays the LSF building envelope elements, such as materials, thicknesses,
number of layers. The thermal conductivities for each material layer are given in Table 1.
The adjusted thermal resistance and adjusted thermal transmittance were calculated at
an intermediate stage of development of the CIA_CLIM project [12] using simplified
preliminary calculations as provided by the Ubakus tool [42]. The considered constructive
details are presented in Figure 6.

Table 2. Materials, thicknesses (d), adjusted thermal resistance (R′) and adjusted thermal transmit-
tances (U′).

Element Material Layers
(from Inside to Outside)

d
[mm] R′-Value [(m2·K)/W] U′-Value [W/(m2·K)]

Ground floor above the
crawl space

OSB 24

3.677 0.272

Recycled-PET thermal wadding TIZ
SOFTEX 200

Steel sheet 4
XPS 40

Total thickness 268.5
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Table 2. Cont.

Element Material Layers
(from Inside to Outside)

d
[mm] R′-Value [(m2·K)/W] U′-Value [W/(m2·K)]

Exterior walls (north)

OSB 24

3.185 0.314

Recycled-PET thermal wadding-TIZ
SOFTEX 200

Wood fibreboard 22
Stationary air 5
Wind barrier

Rear ventilated level (outside air) 30
Fiber cement plate 5

Total thickness 286.1

Exterior walls
(east and west)

OSB 24

2.817 0.355

Recycled-PET thermal wadding TIZ
SOFTEX 150

Wood fibreboard 22
Stationary air 5
Wind barrier

Rear ventilated level (outside air) 30
Fiber cement plate 5

Total thickness 230.5

Roof

OSB 24

5.208 0.192

Recycled-PET thermal wadding TIZ
SOFTEX 200

Stationary air 50
PIR sandwich panel 120

Total thickness 394.25

Door and
windows

Glass with argon filling 24
1.136 0.880PVC casement 92

Glass Curtain
Glass with argon filling 44

1.351 0.740PVC casement 92

A second analysis included the 2D comprehensive numerical approach. The results
are the unidirectional thermal resistance Rtot, adjusted thermal resistance R′, adjusted
thermal transmittance U′, the linear thermal transmittance ψ, and the temperature factor
fRsi. The results for the 2D approach using PSIPLAN software are listed in Table 3 for all the
analysed junctions. The modelled and simulated results are presented in Figures A1–A8 in
the Appendix A.

As mentioned in Section 3.1, the adjusted thermal resistance R′, adjusted thermal
transmittance U′, the linear thermal transmittance ψ and the temperature factor fRsi were
also calculated for each wing, especially for the junction defined by two different building
envelope components. The results per modelled wing are presented in Table 4.

As one can see in Tables 3 and 4, the adjusted values per element vary according
to the length of the modelled case and modelled wing, constructive detail and position
in the building envelope. Starting from 2022, a design requirement that will come into
force is that the average ψ value for the building envelope must meet the design criteria
ψm ≤ 0.15 W/(m·K) as described in Reference [44]. In this regard, all assessed junctions
meet the design criteria with one exception for the Roof eaves—exterior wall intersection.
Nevertheless, the average result for ψm is met for the building envelope. However, although
the reference value was met, it does not implicitly ensure the recommended adjusted
thermal resistance.



Buildings 2022, 12, 321 15 of 29

Table 3. Modelled and simulated junctions-results for the entire length of the modelled cases.

Modelled Cases Rtot-Value
[(m2·K)/W]

R′-Value
[(m2·K)/W]

U′-Value
[W/(m2·K)]

ψ-Value
[W/(m·K)]

fRsi-Value
[-]

Exterior wall current field (east and west) 3.660 2.637 0.379 0.066 0.802

Exterior walls current field (north) 4.586 2.981 0.335 0.073 0.823

Exterior corner 4.071 2.059 0.486 0.120 0.690

South Exterior wall-curtain wall left margin 4.586 1.748 0.572 0.136 0.827

South Exterior wall-curtain wall right margin 4.586 1.6542 0.218 0.148 0.826

Exterior wall-window 3.660 1.841 0.543 0.104 0.796

Curtain glass—Ground floor above the crawl space 2.053 1.714 0.583 0.072 0.748

Exterior wall (E,W)—Ground floor above the crawl space 4.584 2.817 0.355 0.082 0.807

Exterior wall (N)—Ground floor above the crawl space 5.247 3.140 0.319 0.077 0.822

Ground floor above the crawl space—current field 6.453 3.951 0.253 0.034 0.918

Exterior wall (E,W)—intermediate floor 3.660 2.476 0.404 0.101 0.922

Exterior wall (N)—intermediate floor 4.586 3.454 0.290 0.055 0.945

Roof—current field 7.987 5.924 0.169 0.0216 0.953

Roof ridge 7.987 3.981 0.251 0.086 0.943

Roof eaves—exterior wall 5.621 2.845 0.351 0.170 0.938

Table 4. Modelled and simulated junctions-results obtained separately per wing of the modelled junctions.

Modelled Cases Subdivisions Rtot-Value
[(m2·K)/W]

R′-Value
[(m2·K)/W]

U′-Value
[W/(m2·K)]

ψ-Value
[W/(m·K)]

fRsi-Value
[-]

Curtain glass—Ground floor
above the crawl space

Curtain glass wall 1.351 1.384 0.723 −0.007 0.748

Ground floor above the
crawl space 6.132 2.467 0.405 0.079 0.636

Exterior wall (E,W)—Ground floor
above the crawl space

Exterior wall (E,W) 3.660 2.510 0.398 0.038 0.807

Ground floor above the
crawl space 6.132 3.211 0.311 0.045 0.777

Exterior wall (N)—Ground floor
above the crawl space

Exterior wall (N) 4.586 2.897 0.345 0.038 0.794

Ground floor above the
crawl space 6.132 3.426 0.292 0.039 0.822

Roof eaves—exterior wall
Roof eaves 7.987 2.510 0.398 0.116 0.895

Exterior wall 4.586 3.167 0.316 0.054 0.938

Therefore, using the ψ values for each element, Equation (5) and the unidirectional
thermal resistances, the final overall adjusted thermal resistances R′ for each building
envelope element was calculated.

Figure 10 offers an overview of the obtained results, the final R′ per building envelope
element and the range of R′ for the modelled cases, plotted against the normed values for
residential buildings according to reference [19]; i.e., exterior walls R′min = 1.80 (m2·K)/W,
roof R′min = 5.00 (m2·K)/W, the ground floor above the crawl space R′min = 4.50 (m2·K)/W.
As it can be observed, although the range of R′modelled obtained values has a greater domain
for each element, the final R′ results are achieved just for the exterior wall. In the case of
glazing surfaces, the R′min = 0.77 (m2·K)/W is satisfied by the curtain wall, the windows
and the door. Regardless of each element’s significantly high thermal resistance in its
current field, due to the complexity of the details that include steel joining components
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and the thermal interaction between different elements, a reduction effect of the thermal
performance is obtained.
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In the light of reaching the new nZEB criteria that will come into force in Romania
starting with 2022 [44], and the increase in the proposed R′ values, the design approach must
be focused on reaching a unidirectional thermal resistance of at least a R = 10 (m2·K)/W
for horizontal or inclined elements and a R = 7 (m2·K)/W for the exterior walls. In
this way, after applying the linear and point heat transfer coefficients, the imposed R′

values, respectively U′ values, are met. A significant increase in the unidirectional thermal
resistance value can be reached by thicker thermal insulation or by using super insulating
materials, i.e., vacuum insulation panels and aerogel insulation [45–47], preponderantly
recommended for LSF buildings.

Regarding the fRsi factor, the value is considered respected when the one obtained
from calculations is greater or equal to a set value [48].

fRsi ≥ fRsi,limit (15)

Design criteria may vary from country to country but, in general, a lower limiting value
of 0.7 is accepted for the temperature factor to reduce the risk of mould and condensation
growth in buildings. Thus, for Romania, a fRsi,limit = 0.7 is considered as the limit value. For
the analysed building, values smaller than 0.7 are identified for the floor in contact with the
exterior—curtain wall joining and for the case of the exterior corner. Therefore, a thermal
redesign of the two junctions could lead to a value greater than 0.7.

4.2. Thermal Performance of the Building Envelope

The thermal coupling coefficient value per element, computed as previously described
in Equation (8), is presented in Table 5. The final results per building envelope are indicated
in Table 6. Considering the primary function of the building, the interior temperature value
at θi = 20 ◦C and the fact that all elements are in contact with the exterior environment, the
calculation hypothesis was τ = 1. The geometric characteristic for each building envelope
component was calculated considering the overall internal dimensions.

The R′m and U′m, respectively, indicate the average adjusted thermal resistances and
average thermal transmittance per building envelope.
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Table 5. The thermal coupling coefficient value (L) per element j.

Type Building Envelope Element
ATotal R′ Lj·τj

[m2] [m2 K/W] [W/K]

1 Exterior Wall 76.57 2.36 32.49
2 Roof 27.61 3.86 7.15
3 Ground floor above the crawl space 23.04 3.30 6.99
4 Curtain wall 9.53 1.35 7.06
5 Glazing surfaces 4.92 1.14 4.33

Table 6. The thermal coupling coefficient value per building envelope.

Building Envelope
ATotal R′m Lj·τj U′m

[m2] [m2 K/W] [W/K] [W/m2 K]

Total B. Env. 141.67 2.69 58.02 0.37

Figure 11 provides a comparison between the heat losses and the surface areas relative
to the entire building envelope results. As one can see, the exterior wall is predominant
from both Surface (S) and Heat Losses (HL). In the case of the curtain wall, although its area
is smaller than the one of the roof and the floor in contact with the exterior environment,
the quantity of heat losses is in the same range as the two mentioned elements. The glazing
surfaces exhibit the smallest quantity of HL and a smaller surface.
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In terms of the global thermal insulation coefficient, the resulting value is G = 0.661 W/(m3·K),
where n = 0.5 h−1 and the volume of building envelope V = 118.11 m3. The resulted value is higher
compared to the maximum admissible value GN = 0.540 W/(m3·K) as extracted from [19]. The result
follows previous results (i.e., thermal resistance), indicating the necessity of increasing the adjusted
thermal resistance for the roof and floor in contact with the exterior at least equal to the normed value.
Simultaneously, the results are consistent with the findings from the literature [49,50], mentioning
that residential buildings’ performance can be highly variable, and even similar houses could have
dramatically different performance levels. Nevertheless, as it was mentioned in Reference [22], the
building’s envelope plays a pivotal role in reducing the energy demand for heating or cooling.

4.3. Energy Performance for Heating of the Building

In terms of energy performance, the energy consumption for heating denoted by qheat
is calculated, and an energy rating for heating is established following Equation (14) [43].
After evaluating the heat losses through transmission and the heat losses through venti-
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lation, the internal heat gains and the solar gains were established. The heating system’s
efficiency was considered η = 85% thus resulting in a B energy class for heating (Figure 12)
characterized by a qheat = 110.33 kWh/(m2·yr). It should be mentioned that the calculations
do not consider the overall embodied energy of the building. Therefore, it is highlighted
the need to provide energy-efficient solutions [22] described by alternative energy sources
to reduce the overall energy consumption.
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4.4. Parametric Study for the Energy Performance for Heating of the Building

In order to offer an image of the energy consumption for heating of the experimental
module placed in all five climatic zones from Romania, a parametric study was performed,
resulting in 360 case scenarios. The data considered in the study is briefly presented in
Table 7.

Table 7. The parametric data for the considered case scenarios.

Parameters Examined Range

Climatic zone 1st, 2nd, 3rd, 4th and 5th zone
Curtain wall orientation S, SW, W
Ventilation rate, n [h−1] 0.5, 0.4, 0.3

Heating system efficiency, η [%]

75—Hot-water floor heating system 40◦/30 ◦C
80—Water radiator 70◦/40 ◦C with manifold

82—Electric floor heating
83—Water radiator 45◦/35 ◦C with manifold

86—Roof heating (i.e., electric)
87—Water radiator 70◦/40 ◦C
89—Water radiator 45◦/35 ◦C

95—Electric heater

Due to its larger surface, the curtain wall orientation was considered the main façade
from the solar gains perspective. Thus, the other two positions for the main orientation
were considered (i.e., SW and W) in order to have a significant solar gain still.

For the ventilation rate n, the chosen reference value was 0.5 as prescribed by the
thermotechnical design norm [31] The two other values provided in Table 7 indicate other
cases with better control of the ventilation rate and implicitly of the heat losses

For the heating system efficiency, several case scenarios were considered, starting from
a η = 75% specific for hot-water floor heating system 40◦/30 ◦C up to a η = 95% that defines
the case of an electric heater, as provided by the methodology Mc001 [43].
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In terms of G value, the smallest result obtained for the studied cases was
G = 0.593 W/(m3·K), which is still higher compared to the reference value of
GN = 0.540 W/(m3·K).

In terms of energy performance for heating, one can observe in Figure 13 that qheat for
all examined cases ranges from a value greater than qheat = 70 kWh/(m2·yr), to one smaller
than qheat = 190 kWh/(m2·yr). The extreme values (i.e., smallest and highest) are identified
for the 1st climatic zone qheat = 71.09 kWh/(m2·yr), n = 0.3 h−1, S orientation, η = 95% and
for the 5th climatic zone qheat = 211.99 kWh/(m2·yr), n = 0.5 h−1, W orientation, η = 75%.
Therefore, the energy class for heating ranges from B up to a D class for the experimental
module, as illustrated in Table 8. An overview of the assessed case scenarios is also provided
in Figure 14.
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Table 8. Obtained minimum and maximum values for the heating energy consumption, qheat, and
corresponding energy class for heating per climatic zone.

Values
qheat [kWh/(m2·yr)]—Energy Class per Climatic Zone

1st 2nd 3rd 4th 5th

Minimum 71.09—B 85.46—B 100.17—B 119.21—C 142.77—C
Maximum 109.38—B 128.62—B 150.37—C 178.40—C 211.99—D

As illustrated in Table 8, the 1st and 2nd climatic zone are the most favourable locations
for the investigated building in terms of reduced energy consumption for heating. However,
the A energy class is still not met.

In terms of the ventilation rate (n), the value equal n = 0.3 h−1 and a heating sys-
tem efficiency η = 95% which define a best-case scenario for the building, results fall
within B and C energy class, respectively qheat = 71.09 kWh/(m2·yr), 1st climatic zone, and
qheat = 142.77 kWh/(m2·yr), 5th climatic zone.
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up to η = 95%.
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The South orientation is the most favourable for the considered location and façade
design when looking at solar gains. Nevertheless, even for a maximum solar gain for the
5th climatic zone, in the case of a n = 0.5 h−1 and η = 95%, the qheat = 163.99 kWh/(m2·yr)
corresponds to a C energy class for heating. In contrast, for a poorer heating system
efficiency of η = 75%, the qheat = 207.72 kWh/(m2·yr) describes a D energy class for heating.

In terms of energy consumptions values for the same orientation for all assessed cases
per climatic zone, the difference between the worst and the best results is around 21%.
When comparing energy consumption in one climatic zone, the results vary between the
considered orientations from 1% to 5%. Instead, when considering the results for the 1st
climatic zone as the reference values, the increase in the energy consumptions for the same
orientation starts from 16% for the 2nd climatic zone to 50% for the 5th climatic zone.
Between two consecutive climatic zones for the same orientation, the values vary between
14–16%, while the values vary around 28–29% between every second climatic zone.

Thus, from the obtained results, it is clear that strategy of heat recovery for the assessed
building as well as the use of alternative energy sources for energy production will help
the building in meeting the existing A class defined range, as well as the upcoming values
for A and A+ energy classes for heating as mentioned in Reference [44]. At the same time,
the heating energy demand can be significantly reduced by an optimum orientation, in
terms of optimising the passive solar gain, of the façade defined by a large glazing area (i.e.,
windows), a reduced ventilation rate according to the code requirements, and by selecting
a heating system having a higher energy efficiency.

4.5. Parametric Study for the Building Envelope Thermal Performance Impact on the Energy
Consumption for Heating

As it is previously shown in Table 5, the roof, as well as the ground floor above the
crawl space, are underperforming with a direct negative impact on the energy performance
consumption and energy rating. A parametrisation was done to assess the impact of
each building envelope component on the energy performance in terms of heating. The
parametrisation was done for the case described by a South orientation of the curtain-wall,
a ventilation rate n = 0.5 h−1 and a heating system defined by a water radiator 70◦/40 ◦C
with a η = 87%. The considered case scenarios and the associated results are presented in
Table 9.

Table 9. Results in the parametrisation of R′ value for each building envelope component–correlation
with the energy consumption for heating qheat.

Type Building Envelope Element
R′ [m2 K/W]

Ref. (1) (2) (3) (4)

1 Exterior Wall 2.36 2.36 2.36 2.36 4.00
2 Roof 3.86 5.00 3.86 5.00 6.67
3 Ground floor above the crawl space 3.30 3.30 4.50 4.50 5.00
4 Curtain wall 1.35 1.35 1.35 1.35 1.35
5 Glazing surfaces 1.14 1.14 1.14 1.14 1.14

qheat [kWh/(m2·yr)] 107.79 104.70 104.25 101.14 72.12
Reduction 3% 3% 6% 33%

The reference case scenario provides the resulting values presented in Table 5 for the
as-designed and as-built building. The parametrisation does not include variations for the
curtain wall and glazing surface due to already met code values. Case scenarios (1), (2) and
(3) highlight the change in respect to reaching the code adjusted thermal resistances values.
As demonstrated before, the roof and the ground floor above the crawl space illustrate
the same thermal performance. Consequently, they display the same reduction when the
code value is met, i.e., case 1 and case 2. For case scenario (3), both construction elements
meet the code requirements. However, the decrease is still small compared to the reference
case and the 4th case scenario, where it was considered that the proposed reference values
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R′ [44] are met for the opaque construction elements. All four case scenarios provide a B
energy class for heating in terms of energy rating. Nevertheless, for some of the assessed
case scenarios defined at 4.4, an A energy class for heating could be met for climatic zones
1 and 2 if the proposed code requirements are met.

5. Conclusions

The path toward the decarbonization of the building stock started with the recast
of the Energy Performance of Buildings Directive back in 2010 and when the policies for
climate and energy for 2020 were defined. This path was defined by short, medium and
long-term strategies that should lead us to have an entire building stock up to nearly Zero
Energy Buildings levels and even lower. Reaching nZEB levels will generate a reduction
in energy consumption that will contribute to the reduction of GHG emissions resulting
from the same sector. Positive results are expected from residential and non-residential
buildings (i.e., governmental buildings, public buildings, office buildings).

However, achieving buildings with a notable reduced impact on the environment dur-
ing the operational phase depends on the proper use of the holistic approach from the initial
design stages. For the investigated case, in terms of mandatory adjusted thermal resistances
(i.e., adjusted thermal transmittances), it can be concluded that the values can be met for
typical vertical opaque elements (i.e., exterior walls). In contrast, a thermomechanical
redesign is necessary for horizontal or inclined elements.

At the same time, the choice in thermal insulation material must be redirected towards
nano-insulation materials. Thus, instead of using 20–30 or even more centimetres of typical
thermal insulation, one can use a thinner layer to obtain the same thermal effect. Another
aspect that must be considered is preserving the thermal properties of these materials,
which might be negatively affected when penetrated by fixing components. The position
of the thermal insulation in the constructive detail and the negative impact of the point
thermal bridges that shape such structures must also be addressed. Although those LSF
buildings indicate a proper thermal performance compared to other existing solutions,
more research can be done on the passive measures by which the energy consumption
can be reduced in direct correlation with the building envelope design criteria, i.e., shape,
orientation, compactness, window to wall ratio, constructive details, ψ and χmagnitude,
reduced negative impact caused by the area of the thermal bridge, and others.

Regarding the energy performance for heating, the results are somehow favourable
only for 2 of the 5 climatic zones from Romania. However, the experimental module should
be redesigned for an A and A+ energy class. Simultaneously, considering the new nZEB
criteria that will come into force starting with 2022, iterative calculations will be emphasized
so that both the mandatory thermal performance per building envelope element and global
energy performance per type of building are achieved.

The novelty of the study lies in the fact that an extensive bidimensional numerical
study was carried out to assess the building envelope’s junctions. In current design practise,
steel structures are assessed by employing unidirectional calculations. The resulting Rtot
values for each building component are later adjusted by using a predefined reduction
coefficient “r” that often does not comply with the assessed performance. In comparison,
the bidimensional modelling and simulation of the junction can also provide the thermal
interaction between various building components. Also, a comparison is made for the
experimental module placed in various climatic zones from Romania. Thus, an image of
the energy consumption profile can be illustrated, based on which design conclusions can
be highlighted regarding the thermal design of building envelope components, orientation,
ventilation rate and heating system efficiency. However, the study’s limitations are the lack
of experimental validation for the building envelope thermal performance at this stage and
the impossibility of assessing all considered case scenarios for the heating system in real
operation of the building.

Furthermore, for the examined experimental module, a monitoring phase will provide
answers regarding the extent to which the employed alternative systems will impact the
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improvement of the total energy performance of the building. The results interpretation will
indicate if the LSF prototype solution can comply with the new nZEB energy consumptions
levels and the new incoming definition that will set out the nearly Zero Emissions Building.
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