
����������
�������

Citation: Navega, D.; Costa, E.;

Cunha, E. Adult Skeletal

Age-at-Death Estimation through

Deep Random Neural Networks: A

New Method and Its Computational

Analysis. Biology 2022, 11, 532.

https://doi.org/10.3390/

biology11040532

Academic Editors: Stefan Bonn and

Andrés Moya

Received: 11 February 2022

Accepted: 28 March 2022

Published: 30 March 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

biology

Article

Adult Skeletal Age-at-Death Estimation through Deep
Random Neural Networks: A New Method and Its
Computational Analysis
David Navega 1,2,* , Ernesto Costa 3 and Eugénia Cunha 1,2

1 Centre for Functional Ecology (CEF), Laboratory of Forensic Anthropology, Department of Life Sciences,
University of Coimbra, 3000-456 Coimbra, Portugal; eugenia.m.cunha@inmlcf.mj.pt

2 National Institute of Legal Medicine and Forensic Sciences, 3000-548 Coimbra, Portugal
3 Centre for Informatics and Systems of the University of Coimbra (CISUC), Evolutionary and Complex

Systems Group (ECOS), Department of Informatics Engineering, University of Coimbra, 3030-290 Coimbra,
Portugal; ernesto@dei.uc.pt

* Correspondence: dsnavega@gmail.com

Simple Summary: Age-at-death is of paramount importance in forensic analysis of skeletal remains.
In addition to sex, stature, and population affinity, it constitutes baseline information in the iden-
tification process of deceased individuals. Despite its long tradition, in anthropological research
age-at-death estimation poses many challenges and unanswered questions. It is undisputedly among
the most difficult tasks of the forensic anthropologist and its results are often subject to a lackluster
performance. In this study, we assessed computationally the efficiency of a holistic approach to
skeletal age estimation based on a new proposal for macroscopic examination and the use of machine
learning-based models for data analysis. Our results suggest that this approach is key for accurate
and efficient age-at-death estimation based on skeletal remains analysis.

Abstract: Age-at-death assessment is a crucial step in the identification process of skeletal human
remains. Nonetheless, in adult individuals this task is particularly difficult to achieve with reasonable
accuracy due to high variability in the senescence processes. To improve the accuracy of age-at-
estimation, in this work we propose a new method based on a multifactorial macroscopic analysis
and deep random neural network models. A sample of 500 identified skeletons was used to establish
a reference dataset (age-at-death: 19–101 years old, 250 males and 250 females). A total of 64 skeletal
traits are covered in the proposed macroscopic technique. Age-at-death estimation is tackled from
a function approximation perspective and a regression approach is used to infer both point and
prediction interval estimates. Based on cross-validation and computational experiments, our results
demonstrate that age estimation from skeletal remains can be accurately (~6 years mean absolute
error) inferred across the entire adult age span and informative estimates and prediction intervals
can be obtained for the elderly population. A novel software tool, DRNNAGE, was made available to
the community.

Keywords: forensic anthropology; age-at-death estimation; machine learning; neural networks

1. Introduction

Forensic anthropology (FA) has become a major component of forensic sciences. Dur-
ing recent decades, a profound change, a true paradigm change, has taken place and
forensic anthropology has transformed itself into a discipline with its own theoretical and
conceptual corpus and research agenda. It can be stated that the discipline and its attributes
have evolved significantly. In fact, this evolution has been so marked and drastic that it can
be argued that even some of the most experienced and long-term practicing anthropolo-
gists may have trouble conceptualizing and being fully proficient in the many areas now
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covered by the discipline [1,2], or in even being able to foresee all possible interdisciplinary
and technological developments. Nonetheless, biological profile estimation from human
skeletal remains constitutes a pivotal task and inferring age-at-death, sex, stature, and
population affinities is a fundamental step of the anthropological analysis in the context of
the medico-legal identification process.

In the identification process of human remains, age-at-death is a major screening
factor that helps reduce the universe of possible matches. Therefore, an estimate of this
biological parameter is a normal request from police forces and judicial entities [3]. This
process relies on a meticulous analysis of skeletal and dental structures with an association
with chronological age-at-death. Although this is a topic in which significant research has
been performed in recent decades, skeletal age estimation of adult remains continues to
present many unanswered questions and challenges, especially for the elderly. Determining
how to handle age estimation using multiple skeletal age-related traits remains among
the problems most commonly identified for which a satisfactory solution has not yet been
presented and research further is required [3–10]. Moreover, computational and statistical
methods employed in the creation of age estimation techniques have been a topic of debate
and contention [11–24].

The present work aims to lay a foundation to tackle some of the challenges of mor-
phoscopic adult skeletal age estimation, especially in terms of its holistic or multifactorial
aspect. Several authors argue in favor of multifactorial age estimation to obtain precise and
accurate age estimates [9,16,25]. Nonetheless, multifactorial age estimation poses its own
challenges and limitations, and is a topic with a clear lack of consensus [5,10]. Conceptually
multifactorial age estimation can be argued as being the most effective approach for age
estimation because morphological indicators display different age-related trajectories and
have different underlying biological processes.

The symphyseal face of the pubic bone, for instance, has been systematically studied,
ranging from the pioneering studies that established the morphological analysis of this
skeletal marker as an age estimation technique, to modern fully computational frameworks
for age estimation [26–34]. However, other skeletal markers and regions that can convey im-
portant age-related information, such as the degeneration of vertebral bodies, joint margins,
or the roughening of muscle and tendon attachment sites, have received scarce attention as
aging markers. The unimpressive accuracy and precision associated with the multiple iter-
ations of pubic symphysis aging techniques, one of the most used and favored techniques
for age estimation [5], underlines the idea that further developments and over-analysis of
specific skeletal markers in isolation is not likely to result in substantial improvements over
the state-of-art of adult age estimation, but rather a more comprehensive array of skeletal
markers and features provide a more fertile ground for further developments [35,36].

A multifactorial morphoscopic approach to skeletal analysis does not solve, in itself,
the many difficulties faced in the age-at-death assessment. In fact, if not correctly designed,
this approach can become methodologically cumbersome from a data collection and analy-
sis perspective. From an analytical and statistical perspective, collecting more data from
the skeleton increases the chance of encountering issues of redundancy, multicollinear-
ity, and a dimensionality that hinders the straightforward interpretability and pragmatic
value of morphoscopic analysis. From a practical point of view, a more comprehensive
analysis of the age-related skeletal features requires a higher level of expertise on how
to collect the skeletal features. This issue is of great relevance for approaches that rely
on morphoscopic analysis of the skeleton. Moreover, in forensic contexts it is common
that the skeletal remains are somehow fragmentary or incomplete due to a multitude of
taphonomic factors, which means that not all age-related traits will be available for every
unidentified deceased. From a practitioner’s perspective, this translates into the need for
computational and software tools that can fit or train age-at-death estimation models on a
case-by-case basis.

To cope with the difficulties and needs of multifactorial age estimation, novel methods
and techniques can be developed by resorting to statistical and machine learning, data
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science, and artificial intelligence tools and approaches. More than constantly evolving,
machine learning, artificial intelligence and data science are ubiquitous, and have various
successful applications within forensic anthropology in domains such as biological profiling
or craniofacial identification [13,15,37–41].

This work aims to provide a new method, and its computational analysis, for multifac-
torial skeletal age-at-death estimation of adult humans supported by a machine learning
approach based on a deep randomized neural network. This manuscript is in its essence
methodological, presenting both a new macroscopic technique for skeletal analysis and a
detailed explanation of a computational framework to obtain age-at-death estimates and
model their uncertainty. New age-at-death estimation software, DRNNAGE, that translates
the in silico key points of the work presented here into an actionable tool, was developed
and is a major research product.

2. Materials and Methods
2.1. Dataset
2.1.1. Sampled Identified Skeletal Collections

To implement and pursue a computational analysis of the novel age-at-death estima-
tion method proposed in this work, a reference dataset of 500 individuals was constructed.
A total of 99 features were collected covering all key traditional age-related and other
under-explored skeletal traits. Accounting for laterality, 64 unique traits can be analyzed
from the axial and appendicular skeleton using the new macroscopic scoring method,
whose rationale and details are described and explored in Section 2.2.

The 500 individuals were sampled from two identified skeletal collections hosted at the
Department of Life Sciences at the University of Coimbra, Portugal—the Coimbra Identified
Skeletal Collection (CISC) and the 21st Century Identified Skeletal Collection (XXI-ISC). The
CISC consists of 505 individuals with age-at-death ranging from 7 to 96 years representing
skeletons from the Cemitério da Conchada, that were born between 1817 and 1924 and died
from 1904 to 1938 [42]. The XXI-ISC collection is currently composed of 302 skeletons of
both sexes, mostly represented by elderly individuals. This collection represents Portuguese
nationals who died between 1982 and 2012 and were exhumed between 1999 and 2016 from
a main cemetery in Santarém. More details are found in [43,44]. Demographic parameters
of the sampled individuals in our study are detailed in Table 1. All sampled individuals
presented fully developed long bones. No individual was excluded due to pathology
or taphonomy.

Table 1. Demographic characterization of reference data sampled from the CISC and
XXI-ISC collections.

CISC XXI-ISC Pooled Collections Pooled Sex

Female Male Female Male Female Male

n 168 166 82 84 250 250 500
Age-at-Death Mean 48.482 45.331 81.841 74.881 59.424 55.260 57.34

(AGE) Std. Dev. 19.483 18.171 12.889 15.082 23.556 22.141 22.93
Min. 19 19 38 25 19 19 19
Max. 95 96 101 96 101 96 101

Year of Birth Mean 1877.286 1879.994 1923.866 1930.560 1892.564 1896.984 1894.774
(YOB) Std. Dev. 21.252 19.948 13.137 14.424 28.969 30.096 29.591

Min. 1830 1836 1904 1908 1830 1836 1830
Max. 1911 1917 1970 1982 1970 1982 1982

Year of Death Mean 1925.768 1925.325 2005.707 2005.440 1951.988 1952.244 1952.116
(YOD) Std. Dev. 6.597 7.343 3.707 3.919 38.051 38.452 38.214

Min. 1910 1910 2000 1995 1910 1910 1910
Max. 1936 1936 2012 2011 2012 2011 2012

The sampled reference dataset is composed of 250 male and 250 female individuals
who died at the age of 19 to 101 years old (mean = 57.34, SD = 22.93). Age-at-death distribu-
tion is homogenous across the age span represented, with the exception of individuals over
95 years old (Figure 1). A homogenous and uniform age-at-death distribution is a simple
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yet vital strategy to cope with the problem of age-mimicry [45] and to guarantee that the
targeted age span is fully represented.
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Sampled individuals were born between 1830 and 1982 and died between 1910 and
2012. Despite the large temporal frame represented, there is a continuum and a wide
range over the age-at-death distribution that makes this sample particularly suited for
age-related research.

2.1.2. Data Management and Processing

As previously mentioned, multifactorial age estimation poses many challenges that
are mostly related to data management and processing. Two common problems that arise
are redundancy and missing data. Redundancy is always involved when bilateral or paired
data is collected. The human body is not fully symmetric; yet it is not expected that the
left and right diverge drastically under normal conditions. Missing data in FA results
mostly from taphonomic factors. To cope with redundancy and missing values, a strategy
based on domain heuristics and imputation techniques was pursued. For bilateral traits,
the left side was selected as the main source of data. If the left score for a given bilateral
trait was missing, the right side was used as a surrogate value. Once this first heuristic
was applied, the remaining missing values were imputed using a simple nearest neighbor
(k = 1) procedure by substituting all missing value of given individual by the values of
the nearest neighbor. Jaccard similarity on one-hot encoded data was used to compute the
nearest matches. The followed procedure minimized redundancy and dimensionality by
reducing the number of skeletal features from 99 to 64. A simple nearest neighbor with
k = 1 according to Beretta and Santianello [46] is the preferred strategy to preserve the
structure of a dataset. The authors demonstrated that more advanced algorithms reduced
imputation error but introduced significant data distortion. To increase the volume and
age-related variability of the data available, sexes were pooled. Although this choice seems
arbitrary, it is important to note that, in FA, sex is usually estimated during casework.
Pooled data models balance out the potential and pitfalls of sex-specific models and their
mis-specifications.

Missing values represented 9.52% of the total entries of the data table when bilateral
data were considered, and 6.89% when the domain heuristic described was first applied as
a naïve imputation mechanism and strategy to handle bilateral data redundancy.
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2.2. A Novel Technique for Macroscopic Age-At-Death Estimation

A key contribution of the present work to the topic of macroscopic skeletal age esti-
mation in adults is the proposal of new scoring schemes for well-established and under-
explored skeletal traits that can be used as biomarkers in age-at-death assessment. The
development of a new scoring system emerged from the necessity for standardization of a
data collection, and a generation mechanism that was more aligned with a multifactorial
approach to age estimation and more suitable multivariate data analysis, while keeping in
mind practical aspects such as observation error and ease of application.

The proposed morphoscopic method strives to be comprehensive and to incorporate
features from as many skeletal elements as possible. Envisioning the whole skeleton as
a biomarker for age estimation, it is more likely that the overall skeletal patterns exhibit
a stronger and monotonic relationship with age-at-death, which is pivotal for accurate
predictions. The rate and nature of overall skeletal changes also have a greater chance
to be consistent across individuals since a holistic approach can encapsulate intra and
interpersonal variation with greater finesse [35]. Analyzing multiple traits also offsets the
intrinsic limitation to specific traits when analyzed on their own [47].

Following a component-based approach, up to 64 unique skeletal traits can be scored
using the scheme outlined in the next subsections. The covered skeletal traits encode
both developmental and degenerative aspects from different anatomical regions. Despite
the large number of features analyzed in this proposal, all skeletal features are limited to
morphological variables with no more than three classes or stages. Such specifications
were established during the several iterations of the development and refinement of the
system proposed, and by following guidelines from the literature. Shirley and Montes [48]
empirically addressed the old methodological debate of phase versus component-based
approach. Their study quantified the observation error of a phase and a component-based
method, and the results suggests that a component-based approach offers a more objective
scoring if the number of coding possibilities in each component does not exceed three levels
of expression.

The following subsections provide a brief overview of the existing scoring methods
for specific skeletal region or traits, the novel scoring schemes proposed in this work, and
the rationale and difficulties faced during method development. Due to the constraints of
space and manuscript presentation, full descriptions of the trait scoring systems developed
in this study are provided in Tables S1–S15 of the Supplementary Material. The skeletal
scoring systems are also embedded in the developed software (see Section 2.6.4).

2.2.1. Cranial and Palatine Suture Scoring

The scoring system used for the cranial and palatine sutures consists of a modification
and binarization of the proposal by Boldsen et al. [19]. This system was selected because
it incorporates much of the rationale of older methods for scoring ectocranial sutures
(neurocranium) and the palatine sutures [49–56]. The simplification to a binary scoring
system resulted from the difficulty during preliminary and training sessions to differentiate
and consistently score the adjacent stage (i.e., open to juxtaposed or partially obliterated to
punctuated). The scoring scheme described in Table S2 should be applied to nine sutural
segments from the palatine, the sagittal, coronal, and lambdoid sutures (Table S1).

2.2.2. Vertebrae Development and Degeneration Scoring

The fusion of the bodies of the first and second sacral vertebrae is also part of the
skeletal markers analyzed in the proposed protocol. This skeletal feature is one of the few
developmental traits that persist through early adulthood. Its usefulness as an indicator
to distinguish young adults was demonstrated by several researchers [57–59]. This trait
was assessed with a binary scale described in Table S3. To incorporate both metamorphic
and degenerative traits of the vertebral column, a three-stage scoring scheme was devised,
building upon previous work from Snodgrass [60], Watanabe and Terazawa [61], and Albert
et al. [62]. The first two methods focus on the degeneration and osteophyte formation on
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the margins of the vertebral bodies, whereas the last work focuses on the development
of the vertebral epiphyseal rings and body morphology. The proposed system, Table S4,
applies to superior and inferior surfaces of the third to seven cervical vertebrae, the first to
fifth lumbar vertebrae, and the superior surface of the first sacral vertebra. Table S5 lists all
features analyzed in the axial skeleton (excluding sacral auricular surfaces).

2.2.3. Joint and Musculoskeletal Degeneration Scoring

Osteoarthrosis and entheseal changes have been traditionally analyzed in physical
anthropology and bioarcheology as markers of health and biomechanical stress, and tenta-
tive indicators of physical activity patterns. According to Milner and Boldsen [35], who
advocate a more detailed analysis of this type of skeletal marker, these features collectively
contribute to an increase in accuracy and precision of age estimation. The authors base
such an assertion on empirical evidence from an experience-based procedure where these
types of skeletal traits were extensively used. Several reasons can be noted for why os-
teoarthrosis and entheseal changes have been overlooked or not systematically analyzed
in the past as age markers. Broadly speaking, due to their degenerative nature and late
onset, it is believed that they provide limited information, distinguishing only in a broad
sense young from older individuals. More specifically, osteoarthrosis increases with age
but has a complex and multifactorial etiology that hinders or masks its relationship with
age-at-death. Entheseal changes have traditionally been assessed as musculoskeletal stress
markers and as tentative clues to infer physical and occupational activity. This possible
relation to activity can interfere in the expression and variation of entheseal morphology
and affects its relationship with the aging process. However, recent and systematic studies
conducted on identified skeletal collections show that age-at-death is one of the most
relevant factors, or even the only one with statistical significance, in the expression of such
skeletal traits [63–70].

Developing a scoring procedure for these features proved to be one of the most chal-
lenging aspects of method development. The difficulties faced were mostly related to the
fact that analyzing joint and musculoskeletal degeneration involves many skeletal elements,
which translate into high dimensionality of the collected data. This high dimensionality
poses two major problems: increased chance of collinearity, which poses computational
issues, and loss of pragmatic value. To tackle the high dimensionality and subsequent
issues found when scoring joint and musculoskeletal degeneration, a new binary procedure
was developed. The system retains the analysis of the type of traits evaluated in Buikstra
and Ubelaker [71] and Henderson et al. [72] but simplifies the scoring to a simple absence
or presence of degenerative traits as a whole for any particular anatomical structure. The
generic binary scoring system both for joint and musculoskeletal degenerative changes
are presented in Tables S7 and S8. The scoring system applies to five major anatomical
complexes from the upper and lower limb: shoulder, elbow, hip, knee, and ankle (Table S6).
To enhance the analysis of these traits we provide specific scoring descriptions for Stage 1
of some traits (Table S9).

2.2.4. Clavicle Sternal and Acromial Ends Scoring

The macroscopic analysis of the clavicle has a long standing in skeletal age estimation.
Nonetheless, its focus has been mostly in the epiphyseal fusion of the sternal end [73–76].
Sternal epiphyseal fusion of the clavicle is a key trait to obtain precise age estimate in young
adult individuals due to the late total development of this structure around the 30 s. Falys
and Prangle [73] were the first to propose a method to score post-epiphyseal changes in
the clavicle for age estimation purposes. The authors suggest a scoring system focused on
surface topography, porosity, and marginal osteophyte formation, providing a regression
model for age estimation. A new scoring scheme that integrates both developmental and
degenerative changes in the sternal and acromial ends of the clavicle is proposed. A full
description of the traits analyzed is available in Table S10.
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2.2.5. First Rib Costal Face and Tubercle Scoring

The metamorphosis of the sternal end of the ribs emerged in the mid-1980s as a new
age estimation technique. İşcan, Loth and colleagues described multiple morphologic
features that characterize the metamorphosis of the sternal end of the ribs, with particular
emphasis on the fourth rib costal face [77–80]. This approach proved to be an effective
alternative to existing methods. Nonetheless, several disadvantages have been pointed
out, such as the difficulty in identifying the fourth rib in disarticulated skeletal remains
and the fact the morphology of the costal face is not the only component of the age-related
changes in rib morphology. To address these problems, Kunos et al. [81] described a
new age estimation method based on the metamorphosis of the costal face, head, and
tubercle of the first rib. The first rib has the key advantage of having a morphology
that is straightforward to individualize. DiGangi et al. [82] improved upon the work of
Kunos et al. [81] and proposed a revised method for age estimation based on the costal face
and tubercle morphology. A new scoring method is proposed in this study that build upon
previous work by Kunos et al. and DiGangi et al. [81,82]. This new system simplifies the
scoring of the costal face morphology to a three-stage coding and the morphology of the
tubercle is evaluated in a binary fashion (Table S11).

2.2.6. Pubic Symphysis Scoring

The metamorphosis of pubic symphysis is the most popular osteological marker
used in adult skeletal age estimation. The previous attention paid to this anatomical
structure is not misplaced; however, the over-reliance on this indicator can be explained
by the progressive metamorphic features that have enough expression variation to allow
an exhaustive morphological description using different scoring schemes and different
types of supporting materials such as casts. A simple component-based system was
developed focused on the metamorphic and degenerative changes in three features of this
structure: rim development, topography, and texture of the symphyseal face. These three
components are assessed with a three-stage coding system emphasizing early metamorphic
or development traits, such as the presence of billowing (a pattern of transverse ridges and
furrows) and late degenerative traits, such as the flattening and erosion of the symphyseal
face. A full description of the scoring system is given in Table S12. The proposed system is
based on previous work by Todd [30,31] and Brooks and Suchey [26].

2.2.7. Sacral and Iliac Auricular Surfaces (Sacroiliac Joint) Scoring

The description of age-related changes in the sacro-iliac joint can be traced back to
Sashin [83] and Schunke [84], but its usage as an age indicator its mostly due to the work
of Lovejoy and colleagues [85] and Buckberry and Chamberlain [86] on the chronological
metamorphosis of the iliac auricular surface, and the age estimation method by Passalac-
qua [59] based on metamorphic and degenerative changes in the sacrum.

To incorporate age-related features of the sacro-iliac joint, a two-component-based
system was developed to assess textural and marginal changes in the sacral and iliac
auricular surface. The iliac and sacral auricular surfaces undergo textural changes that are
characterized by the transition from a smooth, finely grained surface to a granular, irregular
and porotic surface. The margins that delimit the surface tend to manifest osteophytic
activity as age progresses. Both the texture and margin features refer to the entire structure
but very often the degenerative changes, in particular the margin, are more pronounced in
specific areas such as the inferior and anterior apexes. Full features descriptions are given
in Tables S13 and S14.

2.2.8. Acetabulum Scoring

Several age-related changes can be documented in the acetabulum and used for age
estimation [87–94]. One key aspect of the acetabulum is the late onset of the age-related
changes and its durability and resistance to taphonomic factors. To incorporate this skeletal
element in our protocol, a three-stage scoring system for the changes occurring on the
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rim, posterior horn, and acetabular fossa was developed. In the spirit of Calce [90], who
simplified the method developed by Rissech et al. [91,92], the foundation of the scoring
system presented in Table S15 is based on a simplification and adaptation of the method
proposed by San-Millán et al. [87,95].

2.2.9. Scoring Reliability: Intra-Observer Error

To assess the reproducibility of this new proposed scoring system, 50 individuals
were randomly selected and rescored on all possible traits (m = 99) by the first author. For
bilateral traits, only the left side was used for further intra-observer reliability analysis
(first author) to avoid issues that arise from non-independent ratings. Kendall’s W [96] was
computed as a concordance coefficient to assess consistency between scoring sessions. This
metric ranges from 0 (no agreement) to 1 (perfect agreement).

2.3. Feature Analysis Via Sphering and Marginal Correlation Analysis

To assess the relationship of the analyzed traits with age-at-death, we inspected
marginal correlation coefficients using Spearman’s correlation coefficient (ρ) and Pearson’s
eta coefficient (η2). In addition to these two coefficients, we also computed marginal
correlations adjusted for inter-trait correlation following Zuber and Strimmer [97]. This
technique aims to cope with the myopy of univariate feature selection methods by com-
puting marginal correlations of decorrelated predictors with the target class. First, the
data centered and scaled, and then transformed by applying a linear basis that enforces
orthogonality among predictors while maintaining the maximum relationship with the
original standardized predictors. After this transformation, also known as the Mahalanobis
transform or sphering, the predictors covariance matrix is the identity matrix (no correla-
tion). The authors called the adjusted marginal correlations CAR scores and proved that
ranking based on these quantities provides a fast and optimal procedure for feature ranking
and selection. We suggest [97,98] as primers on feature selection and data sphering based
on this approach.

2.4. Randomized Neural Networks: Theory and Implementation

From a computational perspective, age-at-death estimation can be viewed as a function
approximation problem, y = f ∗(x), and constitutes one of the core reasons why artificial
neural networks were chosen as the predictive technique in this work. In age-at-death
estimation, y = f ∗(x) maps the input skeletal traits (x) to an age-at-death (y). ANNs are
function approximation machines that define the mapping y = f (x; θ), where θ are the
parameters or network weights that result in the best approximation [99].

Artificial neural networks are a class of connectionist, biologically inspired computa-
tional models that enable learning from data for a multitude of tasks, such as classification,
regression, representation learning, and data compression and generation. ANNs are, in a
broad sense the result of two components: architectural design—that is how many layers
and neurons comprise the network; and an optimization algorithm—how the parameters
of the network are learnt.

In its basic implementation, an ANN is composed of three layers: an input layer,
a hidden layer, and an output layer. Two sets of weights are embedded in the network
structure: one connecting the inputs to the hidden layer and the other connecting the
hidden layer to the output layer. In a neural network, the input is transferred to the hidden
layer by means of a non-linear activation function. An activation function and the set of
weights define a node of the hidden layer. Such nodes are also known as artificial neurons.
An artificial neuron, the key component of an ANN, is a mathematical operator in the
form of:

h(x) = g(
p

∑
i=1

xiωi + b) (1)

where g() is an activation or transfer function, xi and ωi are the i-th components of the
input, and the weight vector b is the neuron bias. Artificial neurons are, in essence, non-
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linear functions with learnable parameters, which ultimately expand the ANN model
representational capacity to be able to approximate any output function.

A key aspect of ANN is their flexibility and modularity, which due to their capability
can be applied to a vast array of heterogeneous data types and domains. The explosion in
the availability and capacity to store and analyze data in the form of images, video, audio,
and unstructured text has led to the development of novel ANN training algorithms and
architectures, and a transition from shallow (single hidden layer) to deep (multi-layer)
networks. It is important to note that not all ANNs are formulated and trained in the
same manner. There are specialized architectures to tackle; for instance, data in the form
of images that make use of computational operations, such as convolutions and pooling.
However, a transversal aspect of modern ANNs is their use of gradient-based learning
algorithms, where the parameters of a network are iteratively fine-tuned. Gradient-based
learning enables end-to-end training and state-of-the-art performance in many complex
tasks, but it is costly and requires considerable amounts of technical knowledge to leverage
an ANN to its full potential.

A counterintuitive, yet highly efficient, approach to the training of ANN models is to
randomly assign and fix a subset of parameters (i.e., hidden weights) of the network and
recast the optimization component to a simpler least squares estimation problem [100,101].
In the context of ANNs, randomization as an intrinsic mechanism of model learning can
be traced back to late 1980s and early 1990s, with the proposal of randomized radial
basis functions network (RBF) and the random vector functional link network (RVFL)
models [102–106]. However, the recent interest in randomized algorithms for training
feed-forward neural networks can be attributed to the re-emergence of this approach in the
guise of the controversial extreme learning machine (ELM) algorithm [107–110]. According
to [111], there is no need to rename this strategy for training neural networks, since all
key elements have been previously proposed [102–106], and some of the minor changes
introduced by the ELM algorithm, such as the omission of direct links between the input and
output layer—present in the RVFL network—can have a deleterious effect in performance.
Nonetheless, the ELM algorithm acted as a foundation for many innovations in the field
of randomized artificial neural networks (RANNs), such as the development of highly
efficient algorithms to compute and cross-validate the output layer analytically [112,113],
and its evolution from a framework restricted to shallow networks to a set of techniques
and algorithms capable of deep, multi-layered network architectures [114–118].

2.4.1. Efficient Training and Regularization in Randomized Neural Networks

In randomized neural networks, the elements of ωi, the hidden layer weights, are
randomly generated from a suitable probability distribution and are not optimized. Only
the output weights are learned from data by solving a least squares estimation (LSE)
problem expressed as:

β = H†Y (2)

where β are the output layer weights, H† is the Moore–Penrose pseudo-inverse of the
matrix H, which defines the hidden layer, and Y is a column vector storing the network
target output, in our case, age-at-death. H† can be computed using several methods; a
common approach is through orthogonal projection using Equation (3):

H† = (HT H)
−1

HT (3)

From Equations (2) and (3), it is trivial to show that the use of this algorithm yields
an age estimate as Ŷ = Hβ, and that the output layer is in fact an ordinary least squares
linear regression built on the non-linear feature mapping induced by the hidden layer of
the neural network.

It has been noted [119] that one can keep the algorithmic simplicity of the least squares
solution, while improving its performance and generalization capability by adding a
penalty to the output weights. Such a penalty, C, stabilizes the inversion of matrix H and
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shrinks the coefficients of the output layer towards zero; smaller coefficients lead to smaller
error rates on unseen data. Imposing such a constraint on the output weights is a process
known as shrinkage or regularization, which in the neural network literature is also named
weight decay. This type of regularization is also referred as L2-norm regularization or
Tikhonov regularization.

The solution of a regularized RANN is obtained by fitting a ridge regression model [120]
as the output layer. The ridge solution, βridge, is obtained by substituting Equation (3)
as follows:

H† = (HT H +
I
C
)
−1

HT (4)

I refers to the identity matrix with dimensions matching HT H. Regularization is of
paramount importance when training a randomized neural network for age estimation.
The solution of the network is obtained by minimizing the squared error as the objective
function. LSE-based neural networks lead to unbiased solutions but with high variance if
not properly regularized due to the randomness of the initialization [112]. Regularization
shrinks the size of the output coefficients towards zero, which is consistent with the theory
that smaller weights result in better generalization of neural networks [121,122].

Since the output layer in a RANN is solved as a least squares estimation problem,
fortunately, there exist highly efficient, analytical, and closed formulations to assess the
leave-one-out (LOO) error, as shown by Shao and Er [112] using Allen’s [123] Prediction
Sum of Squares (PRESS) statistic:

ELOO =
1
n

n

∑
i=1

(
yi − ŷi
1− hii

)
2

(5)

where hii is the i-th diagonal element of the hat or projection matrix, which is the matrix
that maps the hidden layer parameters to the predicted values of the network, in our case
age-at-death. Shao and Er [112] have demonstrated that computing the projection matrix
of the network and finding the optimal regularization parameter, C, under leave-one-out
cross-validation (LOO-CV), can be achieved with computational efficiency by performing a
singular value decomposition (SVD) of the hidden layer, which, given such an operation, is
written as H = UΣVT . Using SVD, the network estimate can be written as:

Ŷ = Hβ

Ŷ = H(HT H + I
C )
−1

HTY
Ŷ = U(ΣTΣ + I

C )
−1

ΣTUTY
(6)

where U
(

ΣTΣ + I
C

)−1
ΣTUT is the projection matrix and it can be noted that only(

ΣTΣ + I
C

)−1
ΣT affects the projection matrix for different values of C. Σ is a diagonal

matrix whose element are expressed as φi =
σ2

ii
σ2

ii+
1
C

, where σii is the i-th singular value

from the decomposition of H. SVD makes the regularization of the neural network highly
efficient because the diagonal of the projection matrix, which is needed to calculate the
LOO error using Equation (6), can be obtained from the following Hadamard products
(matrix element-wise multiplication):

γ = U ◦ ΓT = U ◦ (Θ ◦UT) (7)
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where Θ =
(

ΣTΣ + I
C

)−1
ΣT . The diagonal elements of the projection matrix, hii, can be

obtained by performing a column-wise sum of the elements of γ. The LOO predictions of
the network can be obtained analytically as follows:

ŷi =
yi − f (xi)

1− hatii
(8)

In addition to this highly efficient computational strategy to train a randomized
neural network, data standardization and the addition of Gaussian noise to several of the
components of the network can also improve performance and accuracy.

2.4.2. From Shallow to Deep Randomized Neural Networks

The mathematical and network formulation presented above pertain to a randomized
weights single layer network architecture. Navega and Cunha [124] introduced this model
in skeletal age estimation in the formulation of the ELM network (no direct links in the
network) and applied it to several traits of the sacroiliac joint. However, several authors
proposed different techniques to extend the RANN to deeper architectures [114–118]. To
increase the deepness of the network, one can resort to fully randomized approaches or use
autoencoding strategies and stack multiple autoencoding RANNs to build a multi-layer
network. In this work, due to its simplicity, we follow the proposal of Shi et al. [118] to
train deep randomized network models (DRNNs). Following the authors, the first layer of
the network is defined as:

H(1) = g(XW(1)) (9)

where X is the input matrix, in our case skeletal traits. Every subsequent layer (j > 1) is
defined as:

H(j) = g(H(j−1)W(j)) (10)

where H(j−1) is the previous layer. One can also allow connections from the input to all
hidden layers and define the hidden layer as:

H(j) = g([H(j−1) X]W(j)) (11)

where W1 and W j are the weight matrices between the input-first hidden layer and the
inter-hidden layers, respectively. These matrices are randomly assigned and held fixed
during the training. The input to output layer is then defined as:

D =
[

H(1) H(2) . . . H(j−1) H(j) X
]

(12)

The design of the deep network is very similar to that of a shallow RANN, and it can
be easily seen that the input to output layer consists of non-linear features induced by the
hidden layers concatenated to the original input of the network. When the input is reused
directly in the output layer, the network is classified as a network with direct link or skip
layers. As mentioned above, this is the key difference between ELM and RFVL networks.

2.4.3. Deep Random Neural Networks as Implicit Ensemble Models

One key advantage of the randomized approach used in this study is that it can enable
implicit neural ensemble models [118]. Rather than applying Equation (2) once to solve the
output layer weights (solution), Equation (2) can be re-used along the depth of the network
for each H(j) computed from Equations (9) or (10), and obtain an intermediate age-at-death
estimate. The final age-at-death estimate can be then obtained by averaging all estimates
along the network depth. This feature stabilizes the predictions and offers a different
mechanism to train an ensemble model other than training each model independently.
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2.5. Regression Uncertainty Modeling and Prediction Intervals

The approach followed in this work relies heavily on regression. In
Sections 2.4.1 and 2.4.2, we presented the foundation for mathematical age-at-death pre-
diction using RANN models as a regression task. However, we focused only on how
point estimates can be obtained, that is, the conditional expectation of age-at-death given a
specific skeletal pattern of an individual. Mapping the uncertainty of the point estimate
is essential in forensic anthropology, which means that a predictive interval for a preset
confidence level should also be part of the analysis and the subsequent report.

In the current work, we follow a simple and generic approach based on modeling
the conditional variance associated with each point estimate (network prediction). We
recast the prediction interval construction as a regression problem and, using LOO net-
work predictions, we build a regression uncertainty model (RUM) by regressing absolute
residuals on predicted age-at-death. We then scale the predicted residual by 1.2533 to
obtain a standard deviation associated with each age estimate. The scaling factor is the
ratio of the standard deviation to the absolute deviation [125,126]. Assuming normality of
the variance around each point estimate, the prediction interval associated with an ANN
model is given by the quantiles of a Gaussian or truncated Gaussian parameterized with
the conditional mean and standard deviation inferred from the ANN and its associated
RUM. The key advantage of this approach is its simplicity compared to likelihood meth-
ods [15–17,20,23,127–129] or conformal prediction theory, as in [113,124,130]. In addition
to the numerical interval, this approach also allows visualization, as illustrated by Figure 2.
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2.6. Computational Analysis: Design, Parameterization, Metrics, and Software
2.6.1. Experimental Design

To assess the performance of DRNN and Gaussian RUM models in multifactorial
age estimation from macroscopic skeletal traits we followed a simple template for robust
metric assessment based on a resampling Monte Carlo cross-validation (MCCV) scheme.
This works as follows: for a given iteration of the scheme, split the dataset into disjoint
train and test partitions. Using the training partition, fit a DRNN and RUM models by
making use of Equations (5)–(7) to optimize the regularization parameter C and obtain
leave-one-out predictions. C is optimized as 2x with x ∈ {−6,−4, . . . , 12} . With the trained
DRNN and RUM models, we predict the age-at-death of the testing sample/partition and
compute the MCCV performance metrics. For a given set of skeletal traits, this procedure
is repeated 1000 times (B = 1000). The training partition is set as 80% of the total data
(400 of 500) and the test partition as the remaining (100 of 500). This sampling procedure
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was performed without replacement. The core of our computational analysis is organized
in two experiments, from now on referred to as experiments A and B:

(A) The first experiment we conducted was designed to provide a baseline of the accuracy
obtained by fitting DRNN models to blocks of traits that have standard or traditional
analytical framing. For instance, we fitted models to different anatomical complexes
or sets of traits that mimic existing aging standards, i.e., a model for the sutures or the
pubis symphysis.

(B) Our second computational experiment consisted of simulated different proportions
of available traits from 90% to 10%. The objective of this experiment was to assess
model performance in a more realistic scenario where the forensic anthropologist has
skeletal traits available on a case-by-case basis.

In both experiments we computed 95% predictive intervals (95% PI) by setting the
uncertainty of parameter σ = 0.05.

2.6.2. Network Parameterization

A key aspect of any ANN model is its architecture, that is, how many neurons (or
nodes) and layers comprise the network. To leverage the full potential of the DRNN,
and to maximize its training speed and efficiency, rather than search for the optimal
architecture, we developed a simple heuristic based on the work of Lappas [131]. The
author demonstrated that the size of a single layer perceptron can be estimated from the
number of samples available. Using his work as a foundation, we propose the following
heuristics for setting the architecture of a DRNN. The width, size, or number of neurons of
each layer was set as:

S = 2blog2 (8(
√

2k/k))c, k = log2(n) (13)

where n is the number of samples. The depth or number of layers was set as:

L = 2blog2(k)c, k = log2(n) (14)

Following Equations (13) and (14) as a simple heuristic allows us to have predictable,
parsimonious network architectures. In this way, the network allows many computing
units for randomized feature extraction distributed over several layers without incurring
overparameterization. This heuristic also leverages the simplicity of training a deep neural
network using the same mechanisms of a shallow one, while exploiting an implicit ensemble
framework (Section 2.4.3). For our experiments, applying the described heuristic defines
the network architecture with a rectangular topology comprising eight layers of 32 neurons
each, for a total of 256 randomized units.

DRNNs are computationally cheap nonlinear models built by combining regularized
linear regression with nonlinear features obtained by using an activation function, g(.), with
random weights. In this work, we used the rectified linear unit (ReLU) as the nonlinearity
of the networks. The ReLU is defined as g(z, w) = max(0, zw), where z and w are the
layer input and random weight matrices. Since the regularization process involved in
the training process described in this work is not scale invariant, during network training
normalization by mean centering and variance scaling, Equation (6) was performed on the
matrices X, XW, H, and Y. The output of the network was later rescaled before computation
of the performance metrics.

ANN architecture selection and design is a non-trivial task often performed through
very expensive and complex computational strategies and procedures. The heuristic used
and architecture selected in this work emerged from trial-and-error experimentation during
the development of the rwnnet software package (see Section 2.6.4). This parameterization
leverages the benefits and key features of randomized neural networks—fast training and
prediction with minimum technical knowledge, given that the model is fully described
through linear algebra and matrix operations.
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2.6.3. Performance Metrics

In our analysis, we evaluate four parameters that any model used in regression task
should have, especially one used for age estimation. An age-at-death prediction model—
regardless of its underlying mathematical algorithm—should be accurate, unbiased, valid,
and efficient. Accuracy refers to the ability of the model of the model to predict age with
minimal error. The most straightforward metric to assess this parameter is the mean
absolute error (MAE) computed as:

MAE =

n
∑

i=1
|yi − ŷi|

n
(15)

where yi and ŷi are the known and predicted values, respectively, and n is the number of
evaluated samples.

A model should be unbiased, that is, free of systematic error. A typical pattern of bias
or systematic error in age estimation models is the over-estimation of young individuals
and under-estimation of the elderly. A robust and comprehensive way to assess bias (β̂e)
is by computing the slope of the regression line of the residuals, ei = yi − ŷy, on known
values. When minimal to no bias is presented, this value should be close to zero. A positive
slope suggests a systematic bias, such as the one describe previously. Bias is computed as:

β̂e =
∑ (yi − y)(ei − e)

∑ (yi − y)2 (16)

where y and e are the means of the known and residual values.
The validity of model, in the context of our study, refers to the ability of a model to

contain the known age within the predictive interval and within a reasonable margin close
to the nominal uncertainty level allowed. For instance, for an uncertainty level (alpha) of
0.05 (or 5%) we expect that the coverage of the correct proportion of individuals within the
predictive interval is close to 0.95 (or 95%). As a validity measure, we compute:

P(α) = ∑n
i=1 δ(yi, li, ui)

n
(17)

where δ(yi, li, ui) is an indicator function with δ(yi, li, ui) = 1, if yi ≥ li ∧ yi ≤ ui and
δ(yi, li, ui) = 0, and li and ui are the values of the lower and upper ends of the predictive
interval, respectively.

Finally, a model should thrive to be efficient. Efficiency in this context refers to the
width or range of the prediction intervals associated with the regression uncertainty model.
A method or model is efficient when it outputs the narrowest predictive interval possible
while also maintaining its validity. We compute our measure of efficiency as follows:

PIW = Q(u− l, τ), with τ ∈ {0.5; 0.025; 0.975} (18)

where Q(.) is a quantile function and τ a given quantile. One can see that we compute
the median of the predictive interval width and its associated 95% confidence interval
(quantile-base).

2.6.4. Software

All computational work was performed using the R and C++ programming languages
with all key software components written by the first author. To perform this work, the
rwnnet, rumr, rmar, and lsmr packages were used. These packages are available from
the respective repositories of the GitHub profile of the first author, https://github.com/
dsnavega (accessed on 18 March 2022).

Novel software, DRNNAGE, that operationalizes age-at-death estimation following
the macroscopic and computational techniques described in this work, was also devel-

https://github.com/dsnavega
https://github.com/dsnavega
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oped and is live as a web application at https://osteomics.com/DRNNAGE (accessed
on 18 March 2022).); its source is available at https://github.com/dsnavega/DRNNAGE
(accessed on 18 March 2022).). In its current state, we strongly recommend that end users ap-
proach their analysis using only default parameters. All problems detected and suggestions
should be directed to the corresponding author.

3. Results
3.1. Intra-Observer Scoring Error

Overall, the new proposed macroscopic scoring technique presented high intra-
observer consistency based on the results on Kendall’s W concordance coefficient [96].
With the exception of RD01 and FM01, 0.751 and 0.716, respectively, all skeletal traits
presented a concordance coefficient higher than 0.800. The global average of this coefficient
was 0.907. All traits presented a statistically significant concordance between scoring ob-
tained by the first author in two different sessions. The high concordance observed can
be explained by the simplicity of the scoring systems used with the large number of traits
that were binary coded. Further inter- and intra-observer error analysis is required by an
independent third party, due to the nature of the methods employed.

3.2. Marginal Correlation Analysis

Marginal correlation analysis showed that all traits have a statistically significant
relationship with age-at-death. The cranial sutures showed the lowest marginal correla-
tion (ρ: 0.297–0.519, η2: 0.088–0.249), with palatine sutures explaining less than 10% of
the variation in observed age-at-death. The axial traits—cervical and lumbar vertebrae—
exhibited a moderate to strong monotonic relationship and explained variation with age-
at-death (ρ: 0.794–0.845, η2: 0.639–0.725). A similar correlation and explained varia-
tion pattern were observed for the clavicle traits (ρ: 0.710–0.851, η2: 0.507–0.729), first
rib traits (ρ: 0.763–0.776, η2: 0.590–0.607), iliac auricular surface traits (ρ: 0.731–0.789,
η2: 0.539–0.631), and the acetabular traits (ρ: 0.782–0.818, η2: 0.625–0.674). A slightly
lower marginal correlation was observed for the pubic symphysis traits (ρ: 0.711–0.731,
η2: 0.523–0.549) and sacral auricular surface traits (ρ: 0.632–0.704, η2: 0.398–0.499). Traits
from the upper and lower limbs presented a wider range of correlation (ρ: 0.380–0.789,
η2: 0.145–0.628). When analyzed in the context of feature ranking based on marginal corre-
lations adjusted for inter-trait correlation (CAR scores), the suture traits score was among
the worst predictors and its decorrelated components showed no statistically significant
relationship with age-at-death. The several appendicular degenerative traits—HM04, UL01,
RD01, FM01, FM02, and TB01—also showed no statistically significant correlation when
assessed on a Mahalanobis transformed space. Ranking based on CAR scores showed that
the top-ranking traits came from all anatomical regions rather than a specific indicator.

3.3. Computational Model Assessment

Results from the two in silico experiments performed to assess DRNN models in
age-at-death estimation are reported in Tables 2–5. Models based solely on the cranial
sutures exhibited the worst performance among all models produced, having a median
MAE of 15.300 (Table 2) and a median predictive interval width (PIW) of 68.144 years,
which renders the cranial sutures an inaccurate and inefficient set of traits.

https://osteomics.com/DRNNAGE
https://github.com/dsnavega/DRNNAGE
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Table 2. Monte Carlo cross-validation metrics for DRNN models built on pre-specified skeletal
traits sets.

Accuracy Bias Validity Efficiency

Traits MAE ^
βe

P(α) PIW PIW 95% CI

Sutures Median 15.300 0.656 0.950 68.144 51.699 69.759
(m = 9)

95% CI
13.586 0.590 0.900 66.054 46.361 68.312
17.206 0.732 0.990 69.741 55.776 70.963

Axial Median 8.185 0.198 0.960 38.754 33.732 40.842
(m = 16)

95% CI
7.365 0.137 0.920 37.102 32.272 39.215
9.139 0.260 0.990 40.091 35.029 42.191

Appendicular Median 7.583 0.167 0.960 37.378 29.109 39.541
(m = 23)

95% CI
6.678 0.103 0.910 35.412 27.613 38.014
8.523 0.231 0.990 39.079 30.399 41.061

Clavicle Median 8.949 0.244 0.960 49.234 17.354 51.610
(m = 2)

95% CI
7.798 0.169 0.920 39.064 15.981 49.962
10.192 0.307 0.990 52.688 18.617 53.098

First Rib Median 9.500 0.277 0.950 48.936 24.334 49.637
(m = 2)

95% CI
8.138 0.204 0.900 46.879 22.499 47.687
10.831 0.351 0.990 50.903 26.078 51.533

Pubic symphysis Median 10.897 0.370 0.940 51.210 26.905 56.954
(m = 3)

95% CI
9.371 0.280 0.870 48.688 24.520 54.799
12.542 0.459 0.980 55.558 29.058 58.802

Sacroiliac complex Median 8.523 0.223 0.950 44.668 20.378 47.969
(m = 6)

95% CI
7.380 0.145 0.890 39.350 18.596 46.017
9.742 0.288 0.990 47.547 21.915 49.720

Acetabulum Median 8.886 0.229 0.970 42.978 31.727 45.742
(m = 3)

95% CI
7.758 0.162 0.920 41.201 29.897 43.891
10.006 0.287 1.000 44.509 33.240 47.304

Degenerative traits Median 6.962 0.147 0.970 33.732 28.882 35.122
(m = 39)

95% CI
6.084 0.085 0.920 32.460 27.570 33.488
7.814 0.200 1.000 34.935 30.019 36.656

Standard traits Median 6.609 0.147 0.950 34.245 12.927 41.087
(m = 16)

95% CI
5.561 0.087 0.890 29.701 11.833 39.097
7.598 0.202 0.990 37.857 14.169 42.833

All Median 5.925 0.117 0.950 30.010 15.631 36.081
(m = 64)

95% CI
5.101 0.060 0.900 26.817 14.464 34.612
6.728 0.170 0.990 33.191 16.811 37.515

Table 3. Leave-one-out cross-validation metrics for DRNN models built on pre-specified skeletal
traits sets.

Accuracy Bias Validity Efficiency

Traits MAE ^
βe

P(α) PIW PIW 95% CI

Sutures Median 15.245 0.655 0.953 68.120 51.782 69.796
(m = 9)

95% CI
14.683 0.616 0.940 66.377 46.429 68.371
15.751 0.692 0.963 69.708 55.878 70.996

Axial Median 8.156 0.200 0.960 38.825 33.594 40.881
(m = 16)

95% CI
7.896 0.184 0.953 37.468 32.131 39.279
8.394 0.213 0.968 39.872 34.902 42.234

Appendicular Median 7.557 0.169 0.960 37.534 29.035 39.599
(m = 23)

95% CI
7.278 0.155 0.948 35.996 27.542 38.082
7.823 0.184 0.970 38.920 30.319 41.109

Clavicle Median 8.943 0.245 0.963 49.216 17.336 51.768
(m = 2)

95% CI
8.606 0.228 0.953 47.184 15.969 50.112
9.248 0.263 0.970 51.238 18.597 53.252
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Table 3. Cont.

Accuracy Bias Validity Efficiency

Traits MAE ^
βe

P(α) PIW PIW 95% CI

First Rib Median 9.409 0.275 0.950 48.897 24.356 49.811
(m = 2)

95% CI
9.067 0.255 0.938 47.036 22.502 47.862
9.751 0.296 0.960 50.829 26.102 51.724

Pubic symphysis Median 10.898 0.370 0.932 51.113 27.029 57.040
(m = 3)

95% CI
10.436 0.343 0.922 48.668 24.616 54.949
11.315 0.398 0.945 53.003 29.217 58.909

Sacroiliac complex Median 8.438 0.220 0.950 44.765 20.350 48.037
(m = 6)

95% CI
8.075 0.200 0.940 42.461 18.607 46.091
8.741 0.239 0.960 46.755 21.893 49.800

Acetabulum Median 8.833 0.229 0.965 43.051 31.541 45.832
(m = 3)

95% CI
8.490 0.210 0.955 41.302 29.726 43.995
9.116 0.247 0.975 44.535 33.054 47.395

Degenerative traits Median 6.929 0.147 0.963 33.744 28.816 35.194
(m = 39)

95% CI
6.694 0.133 0.953 32.530 27.499 33.566
7.154 0.157 0.973 34.829 29.946 36.715

Standard traits Median 6.561 0.145 0.948 34.283 12.952 41.170
(m = 16)

95% CI
6.277 0.132 0.935 32.464 11.853 39.222
6.855 0.157 0.960 36.027 14.122 42.921

All Median 5.899 0.118 0.950 30.057 15.558 36.141
(m = 64)

95% CI
5.677 0.110 0.940 28.758 14.403 34.644
6.121 0.127 0.963 31.485 16.668 37.620

Table 4. Monte Carlo cross-validation metrics for DRNN models built on different fractions of
available skeletal traits.

Accuracy Bias Validity Efficiency

Available Traits % MAE ^
βe

P(α) PIW PIW 95% CI

90% Median 5.964 0.120 0.950 30.354 15.851 36.215
(m ≈ 57)

95% CI
5.136 0.062 0.900 27.067 14.466 34.554
6.773 0.169 0.990 33.422 18.081 37.705

80% Median 6.026 0.121 0.950 30.498 16.004 36.261
(m ≈ 51)

95% CI
5.211 0.061 0.900 27.183 14.213 34.498
6.851 0.172 0.990 33.584 18.492 37.902

70% Median 6.072 0.125 0.950 30.805 16.206 36.454
(m ≈ 44)

95% CI
5.152 0.062 0.900 27.528 14.001 34.600
6.924 0.180 0.990 34.004 19.666 38.405

60% Median 6.131 0.125 0.950 30.964 16.352 36.649
(m ≈ 38)

95% CI
5.316 0.065 0.900 27.513 13.893 34.672
7.049 0.179 0.990 34.320 20.532 38.692

50% Median 6.237 0.129 0.950 31.479 16.717 36.969
(m ≈ 32)

95% CI
5.293 0.064 0.900 27.820 13.757 34.930
7.180 0.179 0.990 34.854 22.119 39.250

40% Median 6.360 0.134 0.950 32.125 17.165 37.429
(m ≈ 25)

95% CI
5.441 0.074 0.900 28.500 13.910 35.075
7.380 0.193 0.990 35.636 23.292 40.166

30% Median 6.570 0.140 0.950 33.163 17.933 38.137
(m ≈ 19)

95% CI
5.565 0.075 0.900 29.036 13.905 35.393
7.651 0.201 0.990 36.916 25.407 40.861

20% Median 6.951 0.153 0.950 35.263 19.946 39.694
(m ≈ 12)

95% CI
5.857 0.086 0.900 31.082 14.074 36.427
8.139 0.218 0.990 39.625 28.892 43.619

10% Median 8.026 0.196 0.950 39.618 26.914 43.025
(m ≈ 6)

95% CI
6.592 0.119 0.900 34.681 15.495 38.368
9.683 0.276 0.990 46.043 34.276 49.479
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Table 5. Leave-one-out cross-validation metrics for DRNN models built on different fractions of
available skeletal traits.

Accuracy Bias Validity Efficiency

Available Traits % MAE ^
βe

P(α) PIW PIW 95% CI

90% Median 5.942 0.121 0.953 30.276 15.745 36.278
(m ≈ 57)

95% CI
5.699 0.110 0.940 28.748 14.339 34.599
6.198 0.131 0.965 31.797 18.048 37.772

80% Median 5.970 0.122 0.953 30.476 15.941 36.332
(m ≈ 51)

95% CI
5.702 0.108 0.940 28.860 14.162 34.574
6.235 0.132 0.965 31.963 18.470 37.938

70% Median 6.028 0.124 0.953 30.711 16.182 36.518
(m ≈ 44)

95% CI
5.737 0.108 0.938 28.960 14.013 34.697
6.376 0.137 0.965 32.583 19.643 38.435

60% Median 6.078 0.125 0.953 30.975 16.342 36.716
(m ≈ 38)

95% CI
5.768 0.108 0.938 29.070 13.872 34.756
6.441 0.140 0.965 33.017 20.569 38.732

50% Median 6.173 0.128 0.953 31.502 16.684 37.040
(m ≈ 32)

95% CI
5.819 0.111 0.938 29.410 13.724 34.989
6.648 0.146 0.968 33.900 22.110 39.305

40% Median 6.305 0.132 0.953 32.146 17.153 37.511
(m ≈ 25)

95% CI
5.903 0.114 0.935 29.839 13.905 35.130
6.797 0.153 0.968 34.565 23.287 40.214

30% Median 6.501 0.138 0.953 33.097 17.923 38.203
(m ≈ 19)

95% CI
6.046 0.118 0.935 30.583 13.899 35.468
7.096 0.163 0.965 35.986 25.377 40.943

20% Median 6.957 0.154 0.953 35.321 19.986 39.742
(m ≈ 12)

95% CI
6.316 0.127 0.935 32.096 14.117 36.479
7.674 0.184 0.968 38.931 28.768 43.707

10% Median 7.952 0.192 0.955 39.733 26.846 43.076
(m ≈ 6)

95% CI
6.968 0.154 0.940 35.229 15.515 38.419
9.214 0.256 0.973 46.437 34.087 49.551

Modeling based on specific anatomical regions resulted in a DRNN with a median
MAE ranging from 7.583 to 10.897 years (Table 2); focusing solely on this metric, it is
reasonable to state that, on its own, different anatomical regions perform similarly in age
estimation. The same can be said for the metrics of bias, validity, and efficiency. Predictive
interval width is perhaps the most distinctive metric for practical applications. Anatomical
regions with strong developmental signs, such as the clavicle or the pubis, tend to provide
narrower predictive intervals for younger individuals.

Combining traits from different regions provided an improvement over models built
on specific anatomic regions. Using 16 traits from standard age-related traits—clavicle,
first rib, pubic symphysis, sacroiliac complex (auricular surfaces, S1 body surface, and
S1-S2 fusion), resulted in a MAE of 6.609 (5.561–7.598, 95% CI) and reduced the prediction
bias considerably when compared to any model built on the same anatomical regions
independently (Table 2), and a PIW of 34.245 (12.927–41.087, PIW 95% CI). A model based
only on degenerative traits (m = 39) resulted in a MAE of 6.962 (6.084–7.814, 95% CI) and
median PIW of 33.732 (28.882–33.122, PIW 95% CI). From our results, multifactorial age
estimation models provide improved efficiency, as reflected in narrower predictive intervals
(Figures 3–5).
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From Figures 3–5, we can also observe that multifactorial models provide accurate and
efficient estimates across the entire adult lifespan, solving the problem of open-ended and
unspecific age-at-death estimates for the elderly. Figure 4 illustrates the importance of non-
standard traits to accurately predict advanced age-at-death. Based solely on degenerative
traits of the vertebrae, limb joint, and musculoskeletal attachment sites, we can obtain
estimates for the elderly that are comparable to more classical traits (Figure 3) or full-set
models (Figure 5). The downside of relying solely on this type on indicator for age-at-death
estimation is the wider intervals for young adults with no degenerative traits (95% PI
~18 to 46 years vs. ~18 to 32 if traits with sharp developmental stages are present).

The best performing models in experiment A were those built on the full feature set
(m = 64), with a mean absolute error of 5.925 (5.110–6.728, 95% CI), and PIW of 30.010
(15.63–36.081, PIW 95% CI) years. The prediction bias for this model was 0.117 (0.060–0.170,
95% CI), which represents a two-to-six-fold reduction in the prediction bias compared
to other models built on specific anatomical regions individually (Table 2). Results from
experiment B (Tables 4 and 5) showed that similar results can be obtained using different
proportions of traits selected at random.

An important remark to make regarding our results based on the two computational
experiments is that analytical LOOCV, implicitly performed during model optimization,
showed little to no disparity with the results obtained during the repeats of the Monte
Carlo cross-validation procedure (B = 1000 repeats) where 20% of the data was used as a
proper test set.

The accuracy of our approach can be visualized in Figure 6, where a scatter plot of
known vs. predicted age-at-death is depicted. From this figure, one can infer that the
predictions obtained using our approach maintain a similar level of error—dispersion
around the identity line (dashed red line)—across the entire adult age span, and slightly
more accurate for individuals under 40 years. For individuals over 90 years old at death,
there is an observable under-estimation. It is also possible to visualize, Figure 7, that a deep
RANN model using multiple traits produces minimally biased estimates.
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Regarding the validity of the models trained in our computational experiments, results
show that the predictive intervals contained the known age-at-death without significant
deviation from the nominal level of uncertainty (median of P(α) ~ 0.95, with variation
between 0.87 and 0.99). Multifactorial models also show a systematical reduction in
prediction bias when compared to models based only on a specific anatomical structure.

4. Discussion

The main objective of this work was to investigate the fundamental issue of age-at-
death estimation in the forensic analysis of human remains, and propose a new method
and its computational analysis from a perspective of multifactorial analysis of the adult
skeleton. Several age estimation methods have been previously developed, focusing on
specific anatomical structures or regions such as the cranium, the ribs, or the pelvic joints.
Nonetheless, it is well known that no single skeletal indicator is capable of producing
accurate and efficient age estimates across the entire human age span. Determining how
to report age estimates using multiple indicators or traits remains an open issue, with
experts resorting to different heuristics that often are not standardized and lack a valid
computational or statistical grounding [5]. In the literature, there are techniques that use
multiple skeletal indicators for age estimation but are often limited to the cranial sutures
and the pelvic joints [20,23,132]. More generic procedures for multifactorial analysis have
also been proposed [133,134], but with poor adoption in forensic casework because they
require seriation or advanced mathematical knowledge to be put into action.

The current study provides strong support for multifactorial or multi-trait analysis
of the skeleton as a way of obtaining accurate and efficient age estimates across the entire
span of adulthood. Results from computational experiment A suggest that using each
skeletal indicator or anatomical region separately provides limited improvement over
existing methods. One striking remark from this experiment was the performance of
the models solely based on the axial (vertebrae) and appendicular (limbs) skeleton. In
previous studies, these traits have been considered to be only useful for providing a
general estimate or limited in value for age prediction [135,136]; nonetheless, our results
are consistent with those of more recent publications that assess their predictive utility
and urge reconsideration of these traits as valid age-related traits [64,66]. For instance, if
these traits all present a Stage 0, one can infer without any computation that the age-at-
death of the deceased is between approximately 18 and 46 years (Figure 4, considering
σ = 0.1). Our results also indicate that the inclusion of these traits is pivotal to solve the
problem of open-ended age intervals and poor age estimation for the elderly. On their
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own, degenerative axial and appendicular traits allow estimation of the age-at-death of the
elderly with an improved accuracy and efficiency compared to more standard traits such
as the pelvic joints (i.e., pubic symphysis, acetabulum, iliac auricular surface). The neural
model based on the full set of traits described in the novel macroscopic age estimation
proposed here provided the best performance results in respect to all metrics analyzed.
This can be attributed to the fact that having more features allows the deep neural models
to operate at their maximum potential regarding what they do best—extracting novel
features from existing ones using, in our case, random weights and a non-linearity (ReLU
function) as a mechanism to combine multiple traits, which ultimately allows the output
layer to operate in a non-linear regime, despite it being, in practice, a regularized linear
model. Moreover, the multitude of traits scored also permits the models to encapsulate the
intra- and inter-variability of skeletal morphology with greater finesse, which is manifested
as more efficient (narrower) predictive intervals that reflect the heteroskedastic nature
associated with the senescence process.

Although the main goal of the computational experiment A was to establish a baseline
of performance of multifactorial age-at-death estimation compared to more traditional
modeling approaches based on specific anatomical blocks or regions, experiment B aimed
to assess the performance of neural models for age-at-death estimation in a more realistic
setting, where the expert may not be able to use the pre-specified models or the full set of
traits due to the availability of skeletal elements or the multitude of factors that make it
impossible to score all traits defined in this macroscopic technique. This computational
experiment also provides, both directly and indirectly, answers to several questions that
may arise regarding the approach and technique used, and proposed in this work from a
more pragmatical and casework view: Does the skeleton need to be complete to reap the
maximum benefits of this protocol? Which combination of traits works best or is necessary?
How practical is the method?

The results demonstrated that the accuracy of the full-set model (m = 64) can be
maintained to large degree using smaller random combinations of traits, which ultimately
are dictated on a case-by-case basis in a forensic setting. Once again, this can be explained
by the capacity of the neural models to extract and combine information from the skeletal
traits in an optimal way in terms of prediction. It is important to note here that models
based on randomized proportions of traits presented performance metrics superior to
most models based on specific anatomical regions, which reinforces our thesis that the
multifactorial or multi-trait models are crucial for improving the state-of-art in forensic
skeletal age estimation.

Finding an optimal or minimum number of traits is, from a combinatorial and practical
point of view, an intractable problem, for which a solution can only be approximated with
such a large number of traits (m = 64). However, such a solution would be computational
wasteful and of little pragmatic value because, as in the situation of the full trait set, the
optimal or minimum trait set can result in a non-applicable model due to the availability of
skeletal elements during casework. This is the main reason why, in our study, we opted for
a randomized evaluation of smaller traits set. Ultimately, we developed the DRNNAGE
software to operationalize the age estimation procedure described in this manuscript, in a
manner that is flexible and practical for the expert applying it, bearing in mind that each
case will be limited by its own available skeletal traits. DRNNAGE allows the expert to
compute the optimal network and associated uncertainty model based only on the traits that
the forensic expert can score. Thus, in that regard, the usefulness of the estimates obtained
is limited by biology and taphonomy itself, rather than the technical implementation.

From a practitioner perspective, marginal correlation analysis and the performance of
the developed models clearly suggest that there is room for improvement in our approach
regarding the issue of the traits to be used. For instance, our results suggest that there is
little to be gained from including the cranial sutures, which, from a predictive modeling
standpoint, resulted in the worst model on its own using our scoring protocol. Similar con-
clusions were reached by Jooste et al. [137], who also investigated the cranial sutures in the
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context of a multifactorial approach. To maximize the potential of the framework proposed
in this work, it is important to bear in mind that domain and expert knowledge is of utmost
importance; this can also be said of any other machine learning or computationally heavy
approach. The practical aspect of this method can be improved if applied with the rationale
of the well-known Two-Step Procedure proposed by Baccino et al. [138]. This procedure
and heuristic for age-at-death estimation suggests age indicators should be combined
logically or hierarchically rather than by brute force (i.e., averaging). In the context of
our proposal, this translates into the following: if several traits with sharp metamorphic
or developmental stages exhibit Stage 0—i.e., clavicle sternal end, S1-S2 fusion, pubic
symphysis components—a neural model is trained using those traits and the other traits are
ignored. The same rationale can be applied if the traits that encode a strong degenerative
signal, such as the vertebrae and limb traits, are scored with their maximum stage (Stages 1
or 2). In this case, we have demonstrated that age estimation can be accurate and efficient
when relying solely on these traits. As a final remark and suggestion to improve age
estimation with our method, but also with any other method that employs a multifactorial
or multi-trait approach, rather than focusing on an optimal or minimal number of traits to
use, one should focus on the representational power of the traits analyzed and, whenever
possible, use traits that represent both metamorphic and degenerative aspects of the skeletal
development and senescence, as argued by Winburn [88].

The present work provides a solution to the problem of multifactorial age estimation
based on the macroscopic analysis of the skeleton. Multifactorial skeletal age estimation
is systematically noted as being the most accurate way to achieve an age estimation in
adults, but is obtained through a plethora of procedures and heuristics that are often
subjective and lack a clearly well-defined statistical or computational rationale [3,5]. As
noted by Ritz-Timme et al. [3], a comparison of different methods with regard to their
performance based on published data is an exercise that can only be undertaken with
severe limitations and caution. The existing methods have been developed on samples of
differing sizes, unbalanced age distributions, and different population backgrounds. There
is no standardized array of statistical parameters used to assess an age estimation method,
and different statistical procedures have been applied. In many cases, there is a lack of
detail regarding the procedures used, and often only an incomplete analysis performance
is pursued (i.e., focusing only on MAE and point estimate accuracy). In the context of
our research subject, these limitations are exacerbated by the fact that, to the best of our
knowledge, no other study in the literature has pursued a systematic analysis of adult
skeletal age estimation using such a vast and diverse array of morphoscopic traits based on a
single reference dataset. Nonetheless, a brief analysis of the most recent and comprehensive
validation studies clearly demonstrates that our multifactorial approach offers improved
accuracy (MAE < 8 years) in relation to other skeletal age estimation methods [137,139–141].
Independent validation of the method and software tools proposed here on samples from
different temporal and biogeographic origins are of utmost importance to ascertain the
broader impact and significance in archaeology, forensic anthropology, and medicine.

Artificial intelligence, statistical, and machine learning approaches are now ubiquitous
in forensic and biological sciences. Several cases in the literature illustrate the usefulness of
such approaches in adult macroscopic age-at-death estimation [13–15,22,24,124]. Although
these approaches usually allow for flexible and non-parametric modeling with improved
predictive performance, it also results in more opaque or black-box models from a non-
expert perspective. These approaches also require proper validation and model selection
techniques to avoid overfitting [142]. In this study, we applied a resampling approach to
cross-validation based on Monte Carlo cross-validation for fair model assessment, and
we also used a robust, analytical, computationally efficient leave-one-out cross-validation
strategy to set the regularization parameter of the networks developed in experiments A
and B. Randomization rather than optimization of the hidden layers, combined with an
efficient C++ implementation of our models, allowed the construction of software that
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enables on-the-fly computation and validation (LOOCV) of deep architecture models for
any combination of traits with minimal to no technical knowledge on the part of the user.

The problem of interpretability and explainability is a current issue in computational
systems using machine learning techniques and constitutes an active topic of research in
artificial intelligence [143]. A detailed methodological and implementation analysis will
be the focus of a future work, but we briefly describe here how we handle the issue of
explainability and interpretability in age-at-death using the neural networks with our soft-
ware. As previously stated, we can look at the neural network fitted using the techniques
described in this manuscript as a regularized linear model operating on the non-linear
features extracted by the hidden layers concatenated with the original input (skip layer).
We can exploit this property and use the intuitive and additive nature intrinsic to linear
models and build a linear surrogate model to explain or interpret any neural network and
its predictions.

In DRNNAGE, we regress the cross-validated predictions of the DRNN model on the
original input of the network. We decorrelate the input data using the previously described
sphering technique and standardize it to zero mean and unit variance. This results in a
surrogate model where the intercept or baseline is the average of network estimates, and
a new estimate can be “explained” by the sum of the contributions of individual traits to
arrive at an approximation of the network estimate (Figure 8).
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Our results suggest that a regression-based framework produces accurate age estima-
tion in adult individuals. Prediction intervals can be estimated with ease and computational
efficiency. Bayesian approaches [16,20,23] could have been used for this purpose but they
encapsulate a different philosophy to data analysis and are more restrictive in regard to as-
sumptions, parameterization, and computational efficiency compared to the ANN approach
we pursued here. Recent contributions suggest that Bayesian approaches do not radically
improve age-at-death estimation or outperform regression-based approaches [144,145].

The predictive modeling or function approximation approach pursued in this work
is, at the same time, its strongest point and its key limitation. Although neural networks
as function approximation machines allowed us to obtain individual accurate age esti-
mates, a predictive modeling strategy—regardless of the underlying algorithm—can only
demonstrate that there is an efficient mapping in the form of y = f ∗(x). Such a strategy
does not explain the underlying biology of the skeletal traits. Fully understanding the
biology of the skeletal traits used in age estimation is perhaps the greatest challenge of
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this problem, and perhaps the solution for more refined age estimation based solely on the
skeletal morphology.

Despite the promising results, the current research did not emerge in a vacuum, nor has
it any pretension to be a one-size-fits-all solution to skeletal age estimation, because it was
inspired by significant work that was previously developed on this topic, see [16,19,24,35,140].

An important technical and methodological aspect that deserves a detailed analysis in
the future is intra- and interobserver error. The results demonstrate the proposed scoring
method is highly reproducible. This can be explained by the fact that most traits are
encoded in a binary fashion; nonetheless, more data are required from an independent
third party that applies the method as described here.

One last aspect that deserves discussion is the dataset employed in this study. The
constructed dataset aimed to be uniform and homogeneous in respect to age-at-death and
sex. At the moment, it only represents Portuguese nationals over a broad time span; thus,
it would be important to expand the dataset to include individuals from other regions,
and ascertain possible population and temporal differences in the performance of the
proposed method.

5. Conclusions

The work presented here is an important and valuable contribution to the field of
age-at-death estimation. Our results clearly demonstrated that a multifactorial approach
improves accuracy and precision over single anatomic regions, as established in traditional
adult skeletal aging methods. Multifactorial neural models introduce a two-to-six-fold
reduction in the mean absolute error and prediction bias compared to standard models.
This research also demonstrated that it is possible to produce informative age estimates for
the elderly and that nonstandard skeletal traits are pivotal in the later stage of the adult age
span. As an age estimation technique developed with forensic casework as its applicational
domain, proper validation by other researchers and practitioners is most needed as we
are aware that our results, as solid as they are, reflect only in silico performance and cross-
validation. This work clearly demonstrated that neural network models offer excellent
predictive accuracy. A current issue to be further investigated in future research work is
the problem of interpretability and explainability. We briefly alluded to how this problem
can be tackled using a global surrogate modeling approach, but other techniques will
be investigated in the future so that age-at-death estimation can be approached with
computationally accurate and intelligible techniques.
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78. İşcan, M.Y.; Loth, S.R.; Wright, R.K. Age Estimation from the Rib by Phase Analysis: White Males. J. Forensic Sci. 1984, 29,

1094–1104. [CrossRef]
79. Can, M.Y.; Loth, S.R. Metamorphosis at the sternal rib end: A new method to estimate age at death in white males. Am. J. Phys.

Anthropol. 1984, 65, 147–156.
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