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RESUMO 

 

A monitorização de erro é um processo automático e altamente importante no nosso quotidiano, 

especialmente em situações que envolvam informação afetiva. As expressões faciais constituem 

um dos mecanismos de comunicação mais poderosos, informando-nos das intenções e emoções 

de quem as transmite. Em perturbações como o espetro do autismo, pensa-se que os processos de 

reconhecimento de expressões, e, consequentemente de emoções estejam afetados, o que dificulta 

a adaptação destes indivíduos em contextos sociais. Apesar destes dois processos já terem sido 

estudados separadamente, pouco se sabe sobre como eles interagem entre si.   

O principal objetivo deste trabalho foi o de avaliar a viabilidade de uma interface cérebro-

computador (BCI do inglês brain-computer interface) que permitisse modular os sinais de 

monitorização de erro no reconhecimento de emoções. Pretendia-se que pudesse ser utilizado 

como abordagem de treino cognitivo com feedback neuronal – neurofeedback – e em 

perturbações como o espetro do autismo. Para tal, desenvolveu-se uma aplicação BCI baseada no 

efeito de Stroop emocional, em que os participantes têm de reconhecer expressões faciais com 

etiquetas congruentes ou incongruentes. De forma a validar esta tarefa, adquiriram-se sinais 

eletroencefalográficos (EEG) de 10 participantes saudáveis, que realizaram sessões de calibração 

seguidas de sessões de teste. Posteriormente, avaliaram-se as respostas eletrofisiológicas assim 

como os resultados de classificação automática. As características dos potenciais EEG observados 

são similares às de potenciais evocados em tarefas de monitorização de erro presentes na 

literatura. Foi a primeira vez que uma tarefa de Stroop facial emocional obteve resultados 

classificáveis com base no efeito de congruência. Os resultados de classificação atingiram uma 

média de 67,8 ± 9,6%. Fizeram-se análises com base em diferentes condições, como a experiência 

em utilização de BCI, género e nacionalidade e mostrou-se que os sinais eletrofisiológicos não 

são significativamente afetados por nenhum destes fatores, no entanto os resultados de 

classificação foram superiores para participantes com experiência em BCI. Apesar de não serem 

muito elevados, os resultados de classificação obtidos são bastante promissores, permitindo 

validar a tarefa e deixando em aberto a possibilidade de utilizar o paradigma aqui desenvolvido 

numa abordagem de treino social e cognitivo em populações como o espetro de autismo. 
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ABSTRACT 

 

Error monitoring is an automatic and highly important process in our daily life, especially in 

situations where affective information is involved. Facial expressions constitute one of the most 

powerful mechanisms of communication, displaying to us the intentions and emotions of those 

who convey them. It is believed that facial expressions, and consequently emotion recognition 

processes are altered in Autism Spectrum Disorder (ASD) individuals, which makes their 

adaptation in social contexts harder. Even though these processes have been studied separately, 

little is known about how they interact with each other.  

The main goal of the present work was to evaluate the viability of a BCI that could modulate error 

monitoring signals in emotion recognition.  The intention was that it could be used as a cognitive 

training approach with neurofeedback and in perturbations like ASD. For that purpose, we 

developed a BCI application based on the Emotional Stroop Effect, in which participants must 

recognize facial expressions with congruent or incongruent labels. To validate the task, we 

acquired electroencephalographic (EEG) signals from 10 healthy participants, who performed 

calibration sessions followed by test sessions. Subsequently, we evaluated the 

electrophysiological responses as well as the automatic classification results. The characteristics 

of the observed EEG potentials are similar to potentials evoked in other error monitoring tasks 

found in the literature.  The classification results achieved an average result of 67.8 ± 9.6%. The 

waveforms were shown to be unaffected by conditions such as BCI experience, gender, and 

nationality, however, classification results were higher in participants with BCI experience. 

Although the classification results achieved are not very high, they are still quite promising, 

allowing the validation of the task and leaving open the possibility of using the paradigm as an 

approach to social and cognitive training in the population with ASD. 

 

Keywords: BCI, Error Potentials, Emotional Stroop Effect, EEG.  
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1. Introduction 
 

 

In this chapter the motivation, hypothesis, main objectives and scientifical contributions of this 

work are made clear. 

1.1 Motivation 
 

Errors are part of human nature. We make them, most of the time without realizing so, and hope 

they can teach us how to better evaluate future situations. In decisions that might involve affective 

information, error monitoring – the process responsible for error awareness – is particularly 

critical. For example, the wrong identification of the expression of the person we are talking to 

might be detrimental to the outcome of the conversation. Therefore, being able to detect errors 

committed by ourselves or others and react accordingly is of utmost importance for social 

cognition.  

The generation of facial expression is one of the most powerful means of communicating 

intentions and emotions, and it is intrinsically related, through action perception cycles, to 

emotion recognition – the process by which we can add meaning to facial expressions. It is an 

ability acquired early in age, with 6-months children already being capable of discerning between 

happy and sad emotional states (Walker-Andrews, 1998), which plays a key role when adapting 

to our surroundings. Such processes of decoding and understanding other people’s emotions are 

thus key to creating and developing social connections. 

Social interaction deficits are one of the hallmarks in autism spectrum disorders (ASD), along 

with difficulties in verbal and non-verbal communication (American Psychiatric Association, 

2013). It is believed that altered emotion recognition processes are one of the reasons for such 

difficulties (García-Villamisar et al., 2010). Numerous studies aiming to understand the 

neurophysiological mechanisms behind emotion recognition have been conducted, pointing to the 

extended face processing system, which includes the amygdala, inferior frontal gyrus (IFG), 

precuneus, and superior temporal sulcus (STS) (Carr et al., 2003; van de Riet et al., 2009) as the 

core areas involved. However, the way these processes are integrated with error monitoring 

remains unclear (Hajcak et al., 2008). A potential approach to study the relationship between 

these two concepts/processes is the use of an emotional Stroop task to map the neural mechanisms 

underlying such integration through electroencephalography (EEG). The Stroop Effect, 

originated from the Stroop Task, is described as the increase in reaction time or error generation 

between congruent and incongruent stimuli. In the original form, which involves words and 

colors, congruent stimuli reflect words written in the correct color (e.g: ‘green’ in green), while 

incongruent stimuli reflect words written in an incompatible color (e.g: ‘green’ in blue)(Scarpina 

& Tagini, 2017).  

A brain-computer interface (BCI) is a system that translates the user’s brain signals, evoked by 

an internal or external factor, into action commands for a device or an interface (Schalk et al., 

2008). Considered one of the most emerging technologies of the last decades, BCIs rely on 

machine learning algorithms and pattern recognition to achieve their goal (further information on 

this topic can be found in section 2.4). Initially developed to replace lost communication or motor 

abilities, BCI systems have expanded to passive BCIs (e.g., mental state monitorization) and 
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advanced neurorehabilitation approaches (BCI-based brain training approaches usually known as 

neurofeedback).  

The emotional Stroop effect has been used to study how the brain manages and reacts to emotional 

conflict, and many neuroimaging like functional magnetic resonance imaging (fMRI) (Feng et 

al., 2018) and EEG (Song et al., 2017) studies have been performed. However, to the best of our 

knowledge, there has not been an attempt to incorporate the responses evoked by this task in a 

BCI-based brain training approach. The positive response to previous EEG-based neurofeedback 

strategies for the autistic population (Friedrich et al., 2014) leads us to believe that the BCI 

approach developed here can be a great way of training the social and cognitive competences of 

these individuals.  

 

1.2 Objectives 
 

The principal goals of this work were: 

• Design and validate a Facial Emotional Stroop Task that can be used to investigate cognitive 

processes related to facial emotion recognition and error detection. 

• Analyze brain responses that occur in the light of the presence incongruence and compare 

them to error potentials. 

• Characterize the neuronal responses evoked by the Emotional Stroop task and test if they are 

‘classifiable’ enough to be used as targets in BCI. 

• Design a neurofeedback-BCI system that could be used for cognitive training. 

This masters’ project was part of the interdisciplinary projects B-RELIABLE and BCI-

CONNECT, which aimed at designing more natural forms of human-machine interaction and 

paradigms for neurofeedback intervention, by using automatic detection of error. 

1.3 Developments and contributions  
 

This work comprehended the following developments:  

1 Design of a Facial Emotional Stroop Effect Paradigm (EFP) based on cue images (faces) 

expressing emotional expressions and stimuli (labels) congruent/incongruent with cue 

images. 

2 Realtime implementation of the EFP in a Highspeed Simulink framework, based on 

previous implementations in (G. Pires et al., 2022)  and  (G. Pires, 2012), and respective 

methodological and technical validation.  

3 Offline classification of recorded EEG data at a single trial level. 

4  Integration of neurofeedback to the EFP, by adding online detection of error signals.  

5 Neurophysiological analysis of error signals. 

6 BCI validation of the overall system through systematic tests on healthy individuals.   

On the scientific level, we have created a Facial Emotional Stroop task which allows for the study 

of error monitoring processes involved in the recognition of facial expressions. This task was 

inspired by the Facial Emotional Stroop tasks performed by authors such as Chen et al., 2016; 

Schreiter et al., 2018a; Shen et al., 2013), but modified to best serve our purpose. The study of 
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Error monitoring processes is of great importance in social cognition, consequently,  this approach 

can be an interesting one. In addition, we have developed a novel BCI approach which uses a 

Facial Emotional Stroop paradigm to activate error monitoring mechanisms and that provides 

neurofeedback based on the users interaction.  

At the technical level, we were able to produce a BCI approach based on error monitoring, 

perform the optimization of BCI systems applied to neurofeedback and provide a novel 

application of error potentials in BCI. 

1.4 Dissertation organization  
 

This dissertation is organized in seven chapters. Following this chapter, where an introduction of 

the work developed is made, we have chapter 2 which comprehends the theoretical concepts 

needed to understand the present work. The third chapter presents the state of the art of Emotional 

Stroop Studies and Electroencephalogram-Error related Potential based Brain Computer 

Interfaces. The fourth chapter describes the experimental task used to acquire the EEG data, the 

methods used to process and analyze the data as well as the techniques used to assess the viability 

of the BCI approach. Chapter five presents the results obtained. Chapter six comprehends the 

discussion and chapter seven the conclusions from the developed work. 
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2. Theoretical Background 
 

 

This chapter describes the theoretical concepts needed to comprehend the work developed in this 

project. 

2.1 Electroencephalography (EEG) 
 

EEG is a widely used functional neuroimaging modality that measures the electrical activity of 

neurons through electrodes placed on the scalp. It can monitor the state of the brain in a continuous 

and non-harmful manner, and it allows for the realization of long-duration experiments. Although 

EEG has poor spatial resolution (up to 10 cm), it has a good temporal resolution in the order of 

the millisecond, and it is a portable and easy to set up equipment. 

In the medical field, one of its most known applications has been in the identification and 

prediction of epileptic seizures (Slimen et al., 2020), but is also used in the diagnostic of several 

other pathologies such as the sleep-related ones. It has been also widely used in the neuroscience 

field to study the dynamics of various brain processes such as the ones underlying attention, 

learning, and memory (Gerě & Jaušcvec, 1999). The oscillatory activity measured by EEG comes 

from postsynaptic potentials generated by a group of neurons and reflects the summed activity of 

neurons oriented perpendicular to the surface of the scalp, aligned in such a way as to produce a 

dipole field (Coles & Rugg, 1996).  

We can analyze EEG signals in two main domains: time and frequency. In the time domain, the 

signal is analyzed by considering amplitude and latency, usually locked to specific events in time. 

In the frequency domain, brain signals are known to be organized into several frequency bands. 

From the lower to the higher end of the spectrum we have delta (1-3Hz), theta (4-7Hz), alpha (8-

13), beta (13-30,) and gamma (30-100Hz) (Schomer & Lopes da Silva, 2017). Each of these 

spectra is usually related to distinct mental states. For example, bands with a higher frequency are 

commonly related to activities that demand more focus and alert stage of consciousness while 

lower frequency waves such as delta are associated with sleep and relaxation (Doma & Pirouz, 

2020; Marzbani et al., 2016; Nazari et al., 2012).  

The EEG data is obtained by electrodes placed on the scalp according to a well-defined 

organization (Schomer & Lopes da Silva, 2017), with current EEG systems functioning with as 

few as 4 electrodes and up to 256, as detailed in the next subsection. EEG amplitude from the 

electrodes is measured in relation to a reference electrode, usually placed on the subject’s earlobe. 

Besides the reference electrode, there is also a ground electrode that is used for common mode 

rejection. 

 

2.1.1 EEG Electrodes Positioning  
 

There are diverse ways that electrodes can be distributed through the scalp, and the decision on 

which method to use depends on the requirements of the experiment being performed. In every 

system, each electrode is given a name and a position, forming a letter/site pair. The letter refers 
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to the region of the lobe below the electrode. Fp, C, O, T and F, correspond to Pre-frontal, Central, 

Occipital, Temporal, and Frontal locations. While the “site” refers to which hemisphere the 

electrode is on. Sites are represented by the letter “Z,” even, or an odd number. “Z” sites 

correspond to electrodes placed in the middle of the skull, right above the corpus callosum, and 

do not represent any of the hemispheres, whilst even and odd numbers correspond to electrodes 

placed on the right and left side of the head, respectively. 

In the 10-20 international system, the distance between electrodes is either 10 or 20% of the total 

distance (front back or right-left) of the skull. This electrode organization system was initially 

developed to use up to 21 electrodes, however, the need for an increasing number of electrodes 

led to the development of new systems. The 10-10 (Schomer & Lopes da Silva, 2017) system is 

an adaptation of the original 10-20 and adds electrodes to the already existing electrode positions. 

In recent years, a new system, which can use up to 345 locations, has been proposed. It is called 

the 10-5 International System. 

 

 

 

 

2.2 Event-Related Potentials (ERPs) 
 

The EEG response that occurs in the presence of an event or stimulus in the time domain is called 

and Event Related Potential (ERP). It contains the overall voltage changes throughout time, from 

the moment the stimulus appears. There are several well-studied ERP components varying in 

magnitude and topographical distribution (Vallabhaneni et al., n.d.). They are represented by a 

Figure 2.1: A Representation of a 10-10 electrode system extended with anterior and posterior 

electrodes in the inferior chain respectively (Figure from (Seeck et al., 2017)). 
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letter P (positive) or N (negative), according to the voltage difference in relation to reference, and 

a number, indicating the order of the peak as a function of the temporal distance from the stimulus 

onset (increasing numbers represent a bigger distance). 

Several ERP components have been described in the literature, and most of them are evident in 

specific EEG locations, during certain periods, and in the context of well-established paradigms such 

as oddball, Flanker task (L. Pires et al., 2014) Go/No go task (Kiefer et al., 1998), and Stroop 

Effect (Sahinoglu & Dogan, 2016).  

In Bradley & Keil, 2012, a brief explanation about the origin of ERPs and their different 

components is made. For illustrational purposes, we decided to use Figure 2.2, adapted from 

Bradley & Keil, 2012, to showcase some ERP components. The ERP presented in Bradley & 

Keil, 2012 has no direct correlation with any task. 

Following a temporal sequence, first, we have P1, a positive waveform appearing after 80-120 

ms post-stimulus in occipital sites and one of the earliest components regarding basic visual 

processing. Next, we have P3, which is one of the most well-known ERP components. It 

commonly occurs in the context of an oddball paradigm and is seen as a positive wave occurring 

300 ms after the event onset. One common P3 application is the BCI Speller, in which the P3 

signal is used to communicate with a spelling interface (Cuntai Guan et al., 2004). After, we have 

the N1, a large negative deflection usually associated with any unpredictable auditory stimulus in 

the absence of task demands (Rollnik, 2019). It is thought to measure early perceptual processing 

and is commonly examined in relation to schizophrenia. The LPP is a positive going-component 

beginning at around 500 ms after the onset of a stimulus and usually provides a measure of 

emotional processing (Hajcak et al., 2011). 

 

 

 

 

 

 

 

 

For many years, ERPs resultant from error trials in experiments were discarded, as they did not 

provide any useful information about the task being analyzed. However, when scientists 

compared the responses given in correct trials with the ones where subjects committed a mistake, 

they noticed a negative-going deflection at frontal and central electrodes site. These would be 

coined as Error Related Potentials (Falkenstein et al., 1991). 

 

2.2.2 Error-Related Potentials (ErrPs) 
 

Error Related Potentials were found in the 90’s in the context of cognitive psychology, where 

subjects committed errors when performing a response task (Falkenstein et al., 1991). They are 

characterized by a negative deflection, Error related Negativity (ERN) or Ne, occurring between 

Figure 2.2:Representation of several ERP components (P1, N1, P300 and LPP). The component 

is presented by the pair letter/number (Figure adapted from Bradley & Keil, 2012). 
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50-100 ms after the perception of an erroneous response and, in most cases, a subsequent 

centroparietal positive deflection (Pe), which usually appears between 200-500 ms. 

These two components are thought to represent different components of the error monitoring 

system. It has been proposed that the Ne is associated with unconscious reflection and error 

processing (Krigolson et al., 2008), while the Pe most likely reflects conscious error perception 

since it is increased in cases where the subject is aware of the error made (Nieuwenhuis et al., 

2001). Depending on the task the subject is performing, different types of ErrPs can be elicited, 

namely: 

• Response ErrP: Happens when the subject is forced to respond as quickly as possible and 

commits an error in that process. It’s mostly studied in reaction time tasks where the subjects must 

press a button (Falkenstein et al., 1991).   In this type of task, the Ne occurs at 80 ms and the Pe 

between 200-500 ms after the press of the button.  

• Feedback ErrP: Occurs when the subject is aware that there is an error based on the 

feedback provided by the task. The Ne appears around 250 ms after feedback during a task 

(Holroyd & Coles, 2002). 

• Observation ErrP: Is elicited when the subject recognizes an error performed by a 

machine or an external device by which he has no control and exhibits a medial frontal negative 

peak around 260 ms. (Chavarriaga & Millan, 2010). 

• Interaction ErrP: Proposed by Ferrez & del R. Millan, 2008 the interaction ErrP occurs 

when the subject is interacting with a machine that does not respond expectedly. Its waveform has 

differences from the above ErrPs, having a small positive peak around 200 ms, a negative peak at 

250 ms, another positive peak at about 320 ms, and lastly another negative peak at 450 ms. These 

latencies and peaks can all exist or not, depending on the paradigm being used to elicit the ErrP 

(Iturrate et al., 2013). 

ErrPs have gathered considerable interest in the last few decades for their use in BCI and 

neurofeedback applications. 

2.3 Brain-Computer Interfaces 
 

“A BCI system is a system that measures Central Nervous System (CNS) activity and converts 

into an artificial output that replaces, restores, enhances, and supplements the natural CNS 

output” (Wolpaw, 2013). The BCI realizes the user’s intent by decoding the brain signals and 

converting them into command to control a machine or an interface. 

In situations where people lose their motor communication abilities, a BCI can help these people 

recover their functions. In patients with amyotrophic lateral sclerosis, the use of invasive and non-

invasive BCIs has allowed patients to control robotic hands, wheelchairs, and spelling systems 

(Kübler & Neumann, 2005; Sellers et al., 2010). More recently, the use of a BCI has enabled a 

patient in Completely Locked-In State (CLIS) to communicate (Chaudhary et al., 2022). BCI 

systems have started being used on patients with mental conditions, such as attention deficit 

hyperactivity disorder (ADHD) and ASD, as a way of assessing and training cognitive 

impairments. In ADHD, BCIs have been shown to increase the attention span of the population, 

by recurring to strategies like training games (Lim et al., 2012), while in ASD attempts at 

improving joint attention of these individuals have been (Amaral et al., 2018). Given their 

portability and temporal resolution, most BCI approaches obtain their information through EEG.  
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2.3.1 BCI Components 
 

A BCI system is usually comprised of the following components: signal acquisition, pre-processing 

or signal enhancement, feature extraction, classification, and interface control. 

• Signal Acquisition:  In this phase, the activity of the user is captured through several sensors 

(for example, EEG electrodes). 

• Pre-Processing: The Pre-Processing stage aims to erase unwanted signals or artifacts from 

the raw EEG data. The most common pre-processing techniques include high-, low- and band-pass 

filters and other techniques such as Common Average Reference (CAR) (Ilyas et al., 2015) or EOG 

Correction (Croft et al., 2005), which are commonly used when there is an overlapping of signals 

(Sweeney et al., 2012). 

• Feature Extraction: This stage aims at finding relevant discriminative information 

(features) from the recorded brain signals. It usually assumes a transformation of the signal. Time, 

Frequency, and Spatial domain are popular techniques for feature extraction (Nicolas-Alonso & 

Gomez-Gil, 2012). Not all information is usually relevant to the problem being solved, so there are 

different methods that intend to reduce the dimensionality of data to improve classification. The rule 

of thumb in machine learning should be followed which says that the amount of training data 

should be much larger than the number of features being used for classification. Feature selection, 

as explained below, is also a form of reducing the dimension of feature vectors. 

• Feature Selection:  Comprehends methods that automatically select the best N features (N is 

usually decided by the BCI designer by trial-and-error or tuned automatically checking the 

classification accuracy). There are two main categories of methods (Lotte, 2014): 

 

1. Univariate Methods: Evaluate the discriminatory power of each feature and select 

the best N features. R-square and t-student tests are included in this category. Although these methods 

require low computational power and are extremely fast, they are sub-optimal.  

2. Multivariate Methods: Evaluate a subset of features and then pick the subset that 

possesses the best N features. These techniques consider complementarity between features and 

redundancy impact, but they are computationally heavier.  

 

• Classification: This step intends to assign the data into a class. Classification algorithms 

can be used in offline or online contexts. Even though offline classification can be especially useful 

for testing methods, the BCI goal is to use a classifier that works in real time. The classifier is 

usually evaluated on its accuracy, although other methods are used (greater accuracy means that the 

classifier will predict the user’s intent with higher confidence). Numerous classifiers have been 

proposed in the literature, such as support vector machines (SVM), Neural Networks, Linear 

Discriminant analysis (LDA), Bayesian Classifiers, and Deep Learning methods like 

Convolutional Neural Networks (CNN). Usually, to obtain a good BCI performance, a calibration 

process must be done before the online operation to fit the classification model to the current 

session and participant. This is due to a big EEG variability between subjects and between sessions.  

 

Figure 2.3: Schematic representation of a BCI pipeline 
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2.3.2 ErrPs in BCI Applications 
 

The perception of an erroneous action by the user can elicit an ErrP. If the BCI system can decode 

this ErrP, it can use it to alter the BCI detection and replace it with another likely user intention. 

This approach was shown effective by Cruz et al., 2018 and Artusi et al., 2011. In other situations, 

the ErrP can be used to update the system, so it becomes more accurate at detecting future errors, 

for example adapting the classification models. These strategies may follow approaches based on 

reinforcement learning (Luo et al., 2018).  

Still, the use of the ErrP has limitations. Their low signal-to-noise ratio (SNR), decay in the 

classification throughout sessions, and difficulty in generalization of classification across subjects 

call for recalibration sessions every time the user utilizes the BCI, limiting the BCI usability 

(Kübler & Neumann, 2005). Even though there are findings that classification remains stable in 

recordings separated by weeks or even months (Chavarriaga & Millan, 2010), in most cases 

classification rates tend to decrease throughout time (Iwane et al., 2016). To counterbalance these 

issues, several approaches that intend on increasing the generalization of the use of these 

potentials, such as transfer learning techniques, (Cruz et al., 2022) have been proposed.  

ErrPs have been observed in younger (Torpey et al., 2009) and older subjects (Reuter et al., 2018) 

and have also been shown to be modeled by the patient’s fatigue (Boksem et al., 2006), motivation 

(Pailing & Segalowitz, 2004) and anxiety (Takács et al., 2015). Due to the effect these 

characteristics have on the ErrP, they have been used to study several mental disorders such as 

ADHD, obsessive-compulsive disorder (OCD) (Gehring et al., 2000), Depression (Chiu & 

Deldin, 2007), and other anxiety traits (Carrasco et al., 2013). 

2.4 Emotional Stroop Effect 
 

When assessing what things are important during a given activity or task in our everyday life, we 

need to account for and repress errors that might occur due to the ambivalence of our surroundings. 

An accurate representation of the above description is the Stroop Task. First developed by John 

Stroop (Stroop, 1935), the task consisted of participants naming the colors of words written on a 

table (Figure 2.4). 

 

In words where the color would enter in conflict with the word itself, there was a delay and 

sometimes a mistake in saying the correct color, which might indicate allocation of attention to the 

irrelevant attribute of the stimuli. This is because reading is a highly automatic process (Ivnik et 

al., 1996) making it hard to inhibit. The delay and mistake that occurred in the light of the 

incongruence between the color and word was therefore coined the Stroop Effect. The Stroop task 

assesses the ability to inhibit cognitive interference, which occurs when the processing of one of 

the stimulus attributes impedes the simultaneous processing of a second stimulus attribute 

Figure 2.4: Schematic Representation of the original Stroop Task. Words that match their color are 

congruent stimulus whereas words who don’t have their matching color are an incongruent 

stimulus. 
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(Scarpina & Tagini, 2017) and forces the human brain to develop coordination and decision-

making strategies to perform successfully. Besides measuring the capacity to inhibit cognitive 

interference, it allows to study processes like attention, processing capacity, cognitive flexibility, 

and working memory.  

The Emotional Stroop Task, a variance of the original Stroop Task, started being employed in the 

late 1980’s. Emotional Stroop Tasks have been used to investigate the effect of the emotional 

content when participants must answer to the non-emotional content of the task. The first and 

most common variation uses emotional and neutral words. Emotional words are usually related 

to specific emotional states or disorders. For example, for a participant with arachnophobia, 

emotional words could be spider, web, and tarantula. 

Emotional Stroop Effect (ESE) tasks have been employed in a series of mental conditions, including 

Post-Traumatic Stress Disorder (PTSD), Body Dysmorphic Disorder, Schizophrenia, ASD, 

Depression, and other anxiety disorders (see section 3.1).  

Particularly in the case of Autism, the Stroop Effect has been used to understand if these 

individuals possess intact inhibitory capacities. In opposition to neurotypical individuals, Autistic 

individuals show dysfunctions in several elements of the executive function (Hill et al., 2004). 

Even though much research has been conducted in this field, there is still some uncertainty as to 

whether these individuals possess inhibition deficits. Since the beginning of its use, the Emotional 

Stroop Effect has undergone different variations, and studies with emotional words, auditory 

stimuli (Wurm et al., 2004), pictures, and facial expressions (Ovaysikia et al., 2011) have been 

employed (see section 3.1 for more details on the conducted studies).  

 

2.4.1 ERPs in Stroop Effect  
 

In its earliest days, the Stroop Effect was only measured in terms of reaction time (RT). In Stroop 

Tasks, incongruent trials show longer RT in comparison to the congruent trials, due to the 

interference caused by the incongruence. However, RT is only a performance measure, not 

providing information about the underlying neural processes. More recently, neuroimaging 

studies started to provide a deeper understanding of what brain processes underlie this effect  
(MacDonald et al., 2000). 

The original Stroop task requires participants to say aloud the colors of words printed on a table 

(Stroop, 1935). However, because facial movements can produce artifacts in EEG recordings, 

most EEG Stroop Tasks require participants to press a button corresponding to the color of the 

word presented on a screen. As previously explained, the two attributes of the stimuli (color and 

meaning of the word) can be congruent or not. The neuronal responses are recorded from the 

moment the stimulus appears.  

Different ERP components can be elicited by Stroop tasks, and their appearance and modulation 

can vary from task to task. Here we will present the components more frequently identified 

throughout the studies.  

First we have the N2 (Figure 2.5), described as a negativity component appearing 180-280 ms 

after stimulus appearance. There are various theories surrounding the mechanisms behind the 

modulation of this component. Some argue that the N2 is modulated by top-down attention; others 

speculate that is regulated by the emotional content in Emotional Stroop Tasks (that emotional 

content might elicit a stronger response); while others refer to it as a conflict monitoring 

component and even claim that it can be the same as the Ne/ERN component elicited in error 

monitoring, due to their similar distribution (Folstein & van Petten, 2007). This component is 

often elicited in Eriksen Flanker Tasks (Gehring et al., 2000; KOPP et al., 1996).  



 

11 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Secondly, we have the N450, which is described as a negativity around 450 ms and is shown to 

be more negative on incongruent trials in comparison to congruent and neutral trials as has been 

described in most Stroop Tasks (Liotti et al., 2000; Markela-Lerenc et al., 2004; McNeely et al., 

2003; West, 2004; West & Alain, 2000). This component is thought to represent an index of 

conflict elicited by this task, which represents the activity of neural generators located in the ACC. 

(Figure 2.6)  

Besides the N450, researchers have found another component, the sustained potential (SP). This 

component is also often called the conflict slow potential (CSP). The SP is a sustained centro-

parietal positivity that follows the N450, starting at around 500 ms (Larson et al., 2009; West & 

Alain, 1999, 2000) or later, peaking between 600-800 ms after the stimulus onset, and is increased 

in incongruent trials. The increased positivity in incongruent trials is thought to reflect the 

increased recruitment of cognitive control resources needed to resolve conflict and subsequent 

compensatory adjustments for accurate task completion. This component is not found in all 

studies (Qiu et al., 2006). (Figure 2.6) 

 

N2 

Figure 2.5: N2 (shown in bold) modulated by the congruency of a numerical Stroop Task at 

channel Fz. Adapted from Huang et al., 2021. 
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2.4.2 Emotional Stroop Signals as Error Potential  
 

Considerable experimental evidence suggests the ACC is the neural locus for detecting conflict, 

both at level of stimulus processing and at the level of response (Etkin et al., 2011). This is 

compatible with results of the Stroop task, in which incongruent trials show stronger activation 

in the ACC when compared to congruent trials (Bush et al., 1998; MacLeod & MacDonald, 2000; 

Pardo et al., 1990). However, the ACC has also been implicated in detecting the occurrence of 

errors. Studies using ERPs have established that the ERN is originated at this region (Orr & 

Hester, 2012). The apparently different conflict detecting, and error-detecting activities of the 

ACC can be reconciled if we consider the following example: labelling a happy face as a sad face 

will be considered an incorrect association between the expression “happy” and its label. The 

conflict monitoring loop in the brain will therefore produce an ErrP when it tries to do the 

association between the face and its label (Parashiva & Vinod, 2022). 

 

 

 

 

 

 

 

SP 

N450 

Figure 2.6: Example of the neural time course of a Facial Word Stroop Effect 

Paradigm. In this task only the N450 and SP (identified by the arrows) were shown 

to be modulated by congruency. Adapted from Shen et al., 2013. 
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3. STATE OF THE ART 
 

 

3.1 Event Related Potentials in Stroop 

Tasks 
 

3.1.1 EEG Facial Emotional Stroop Studies 
 

In recent years, Facial Emotional Stroop Tasks have been employed to try and understand the 

impact of emotional conflict. In EEG Facial Emotional Stroop Tasks, faces with superimposed 

words (congruent or incongruent with the facial expression) are presented and participants are 

asked to indicate the facial emotion of the picture presented as fast and precisely as possible, by 

pressing a button that is correspondent to that facial expression, while ignoring the superimposed 

label. The Stroop Effect comes from the difficulty in indicating the facial expression (attribute 

‘one’ of the stimulus) while ignoring the superimposed label (‘second’ attribute of the stimulus). 

This kind of task was researched by Shen et al., 2013. The authors conducted an EEG study to 

find the electrophysiological correlates of emotional conflict control by performing a Facial 

Emotional Stroop task. In this study, red labels (Chinese characters), were superimposed across 

the happy and fearful facial expressions. The labels could be congruent or incongruent with the 

facial expression. The study revealed a negative ERP component between 300-550 ms (N450), 

which was more negative in incongruent trials than in congruent trials, and a positive deflection 

in the 700–800 ms time window (P700–800) over the posterior parietal scalp.  (Figure 3.2) 

 

Figure 3.1 : Schematic Representation of the Task used by Shen et al., 2013. First, the participant 

has 500 ms of staring into a cross. After, a blank screen appeared for a variable time of 300-500 

ms. Next, the stimulus (face with congruent/incongruent label on top) appeared for 1000 ms, and 

participants had 1500 ms to answer. The last blank screen was used as a break between trials. 
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Equivalent results were obtained by Fan et al., 2016 and Xue et al., 2016. Xue et al., 2016 utilized 

the same type of task as Shen et al., 2013. Besides evaluating the responses between congruent 

and incongruent trials, it also analyzed how previous trial congruency affected the ERP, for 

example, if having an incongruent trial followed by a congruent trial or vice versa had any impact 

on the neurophysiological responses. The results showed that N450 is affected by previous trial 

congruency, with the amplitude of the N450 more attenuated in the incongruent-incongruent trials 

than in the congruent-incongruent trials.  

 

 

 

 

 

 

 

 

 

 

Figure 3.2: Grand Average ERPs for the difference wave, congruent and incongruent trials of the 

Facial Emotional Word Stroop Task performed by Shen et al., 2013.  N450 and SP are identified 

by the arrows. 

 

SP 

N450 
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Fan et al., 2016 utilized the same task and besides evaluating the neurophysiological responses in 

congruent and incongruent trials, also did a second version of the task where the words were 

presented in the participant's second language (English) (Figure 3.4). 

 

 

Figure 3.4: Schematic representation of the task performed in Fan et al., 2016. The pictures on 

the third screen reflect the type of task. The picture with words in chines reflects the task in native 

language while the pictures with words in English were utilized for the task with the nonnative 

language. 

ERPs showed there was not a significant Stroop Effect when the labels were in the participant’s 

second language, leading to the conclusion that words in a second language are less automatic to 

emotional content (Figure 3.5). 

 

N450 

Figure 3.3: Grand average ERPs for channel Cz representing the waveforms for the pairs 

congruent-congruent, Incongruent-Incongruent, Congruent -Incongruent, Incongruent-

Congruent trials. Adapted from Xue et al., 2016. 
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A study performed in 2016 (Maier et al., 2016) interpreted the signal elicited in the incorrect 

responses of the Facial Emotional Stroop Task as an ErrP. They did so because conflict 

monitoring processes and emotional processes both have an origin in the anterior midcingulate 

cortex (aMCC). In this way, they consider that the aMCC integrates information about affect, 

pain, and the need for cognitive control to implement behavioral adjustments that intend to 

optimize performance. The Facial Emotional Stroop Task was like the ones described above, 

where participants had to press the button corresponding to the emotions presented. In this task, 

the superimposed words were presented in Italian, the participants native language. Besides the 

Facial Emotional Stroop task, participants were confronted with another variation of the task, 

where the labels superimposed on the pictures were related to the gender of the pictures, and they 

had to identify the gender of the face presented with superimposed (congruent/incongruent) 

gender labels.  

They compared the Ne/ERN and Pe of correct (trials where the participant guessed the correct 

facial expression) and error (trials in which the participant incorrectly identified the 

facialexpression) trials, and separately, they evaluated N450 of Incongruent and Congruent trials, 

for individuals with high and low Alexithymia, a condition where individuals are not capable of 

feeling or detecting emotions. The results showed clear Ne/ERN, starting at 50 ms and lasting 

until 100 ms, maximal at channel FCz, with more negative peaks for error trials than for correct 

trials, with the biggest difference between error and correct trials appearing in channel FCz. They 

also found the Ne/ERN to be larger in the Facial Emotional Stroop task set (labeling emotions) 

than in the neutral task (labeling faces regarding their gender), which means that error monitoring 

activity was increased by presenting task-irrelevant (Congruent/Incongruent labels) affective 

(emotions) information. (Figure 3.6) 

Figure 3.5: Grand Average ERPs for the Incongruent(red) and Congruent (black) trials and 

difference waveform (blue) at channel Cz, for native language (L1) and for the second 

language(L2). We can see there is no difference regarding the N450 in the participants second 

language between congruent and incongruent trials. (Fan et al., 2016) 
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Participants with high Alexithymia did not show significant differences between the Facial 

Emotional Stroop Task and neutral task. This indicates that individuals who show problems 

regarding emotion perception are less likely to show enhanced error monitoring activity in 

emotional contexts.  

The Pe - defined as the 200-400 ms time window after the given answers - was more positive for 

errors than correct answers, and the difference was maximum for channel Pz. (Figure 3.7) 

 

 

 

 

Figure 3.6 : Grand average of all Correct and Error trials, divided by the emotional neutral task 

set for participants at channel FCz with a) Low Alexithymia and b) High Alexithymia. (Maier et 

al., 2016) 

Figure 3.7: Grand average of all Correct and Error trials, divided by the emotional 

neutral task set for participants at electrode Pz with a) Low Alexithymia and b) High 

Alexithymia (Maier et al., 2016). 
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Regarding the N450 (Figure 3.8), waveforms were more positive for congruent than incongruent 

stimuli, and participants with High Alexithymia. The authors also concluded that congruency of 

the task did not modulate the N2 component. 

 

 

Schreiter et al., 2018b employed a Facial Emotional Stroop Task much like the ones described 

above, however, this time the labels were in German. They used 3 facial expressions (happy, 

disgust, and anger) and evaluated the impacts of emotional conflict on these emotions. 

They found that the N2, a conflict-related component that can be modulated in other Stroop and 

conflict tasks (section 3.2) was not modulated by congruency in this task (Figure 3.9), claiming 

that the task might be too complex to allow that. Results also showed modulation of CSP (conflict 

SP or just SP as it is usually referred to in other tasks) regarding emotion, with negative emotions 

showing stronger amplitude when compared to positive emotions, and stronger amplitudes for 

incongruent trials, but only for the faces displaying a happy 

 

 

 

 

 

 

 

Figure 3.8 : Grand average of all Congruent and Incongruent trials at electrode Pz for 

participants with a) Low Alexithymia b) High Alexithymia (Maier et al., 2016). 

Figure 3.9 Grand average of Congruent and Incongruent trials of the Facial Emotional Stroop 

task divided by the three emotions displayed (happy, angry, and disgust), at channel Cz. N2 

component is showed in bold (Schreiter et al., 2018b). 
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One thing to be noted, for all the studies reviewed, is that both attributes of the stimuli (face and 

word) are presented at the exact same time to the participant. 

3.1.2 Clinical Stroop Studies 
 

The original Stroop Task has been performed on people with different clinical conditions and has 

allowed for interesting conclusions. Studies comparing young with older adults (Agustí et al., 

2017) have shown a decrease in the interference effect of older adults, as well as a delayed 

response to the stimulus, which can be accounted for the diminishing capacity in monitoring 

interference as we age (Kray et al., 2005). A Stroop Task performed with schizophrenia patients 

(McNeely et al., 2003) showed a reduction in their Stroop effect, as their N450 was reduced when 

compared to controls and their SP was nonexistent. These findings agree with studies that reveal 

that patients with schizophrenia have functional disruption of the ACC and prefrontal cortex, 

areas associated with conflict processing (Cui et al., 2015). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.10: Grand average of Congruent and Incongruent trials of the Facial Emotional Stroop 

task divided by the three emotions displayed (happy, angry, disgust), at channel P3.CSP waves 

are shown in bold (Schreiter et al., 2018b). 
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3.2 Application of Error-related 

Potentials in BCI  
 

Error Potentials have been applied in BCI throughout the last two decades in different fields. A 

review of the use of ErrPs in BCIs was made by Chavarriaga et al., 2014, so only some studies 

will be presented. As explained in section 2.3, a BCI can transform the user’s intention into action 

commands, by decoding the user’s brain signals. Different techniques can be used to measure 

brain activity, however, EEG is the most widely used technique. Still, EEG-based BCIs have 

limitations, due to their low SNR and fallibility in detecting the user’s intent.  

They can be used to automatically detect, and correct errors committed by the BCI. This is the 

case of Cruz et al., 2018; Iturrate et al., 2013; Salazar-Gomez et al., 2017; Yousefi et al., 2019, 

where the error potentials elicited by the tasks were used to correct the system, allowing it to 

perform the pre-established operation in case a correct response was given or revert the outcome 

if an ErrP was detected. Cruz et al., 2018 went as further as using a double ErrP to improve the 

performance of a BCI speller. In this approach, featuring 9 able-bodied subjects and a patient with 

Multiple Sclerosis (MS) with slight hand movements, the proposed letter would be shown to the 

user, who would provide error or correct feedback. If a correct potential was detected, the 

verification process would stop. Otherwise, the second most likely character would be delivered 

to the subject. If this decision elicited positive feedback, the second letter would be chosen, 

however, if the second letter elicited another error potential, then the previous letter would be 

chosen. The results showed a 5% increase in classification rates. 

ErrPs can also be used to help the system learn and adapt until it reaches optimal behavior using 

Reinforcement Learning (RL) algorithms. Such approaches have been described by Artusi et al., 

2011; Iturrate et al., 2015; Kim et al., 2017. In Iturrate et al., 2015, 12 subjects monitored the 

actions of 3 different external agents (1D cursor, stimulated robot, real robot arm) while these 

tried to reach a target defined by the user. If an ErrP was evoked, (the robot performed an action 

the user considers wrong to obtain his goal) then the signal was delivered to a RL algorithm that 

improved the behavior of the neuroprosthesis. After a short training period, all subjects were able 

to operate the neuroprosthesis and reach the desired target. Online error detection reached an 

accuracy of 70%. 

 

3.2.2 Signal processing and classification  
 

The first step of a BCI system involves acquiring the EEG signal. Even though there is no guide 

for how many electrodes should be used, most studies use a low number of electrodes ( 2-12 ) 

(Artusi et al., 2011; Cruz et al., 2018; Ferrez & del R. Millan, 2008; Iturrate et al., 2010, 2015; 

Salazar-Gomez et al., 2017; Spüler et al., 2012), mainly focused on the frontal and fronto-central 

area of the brain (eg: FCz, Cz, FC1, FC2), which have shown to be more activated in error 

detection, with some parietal electrode locations (e.g.: P3, P4, POz, Oz). However, some authors 

decided on 32, or even 64 electrodes (Kim et al., 2017; Kim & Kirchner, 2013) to record the 

signal.  
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One of the most important parts of ERPs detection is the division of the entire signal into smaller 

time frames (epochs). These windows must be big enough to capture the full error potential but 

not too great to capture irrelevant signal. ErrPs, in specific, tend to occur between 100-800 ms 

after stimulus onset, so the period used to analyze the ErrP usually lies between those values. 

There are some studies where authors choose wider time frames for ErrP detection (Yousefi et 

al., 2019). Yet, most of them tend to choose a period of 1 second or less  (Cruz et al., 2018; Ferrez 

& del R. Millan, 2008; Iturrate et al., 2010, 2015; Spüler et al., 2012). There are also studies where 

the temporal window starts before the stimulus onset (Kim et al., 2017).  

The pre-processing stage intends to highlight the components of interest for feature extraction. It 

includes filtering the signal and using techniques to remove any artifacts that might affect the 

data. In many of the cases, the studies conducted only apply filtering methods. The range used 

for filtering differs between authors, but many decide to low pass the data at 10 Hz, since it has 

been found that the ErrP lies between the 1-10 Hz range. After filtering, artifact removal 

algorithms such as ICA are sometimes applied (Yousefi et al., 2019) or CAR (Iturrate et al., 2010; 

Iwane et al., 2016; Spüler et al., 2012). There is no rule as to how extensively the signal should 

be processed, but there should be some caution not to over-filter or remove important components 

of the ErrP. 

Feature extraction is probably the most important part in processing of EEG signals. If chosen 

correctly, the selected method can maximize the potential of the classification stage. Here, the 

goal is to reduce the dimensionality of the data without losing any key information, and, if 

possible, improve the SNR of the signal. This is the most heterogeneous step as numerous 

techniques can form the feature vector. Even though no specific technique has been considered 

ideal, the studies presented relied on spatial filters like xDAWN (Kim et al., 2017; Kim & 

Kirchner, 2013; Salazar-Gomez et al., 2017) or FCB (Cruz et al., 2018), downsampling (Ferrez 

& del R. Millan, 2008; Iturrate et al., 2010, 2013, 2015) and spectral features (Artusi et al., 2011; 

Yousefi et al., 2019). 

If the vector from feature extraction already has a small size, it can be used for classification. 

However, in most cases, a dimensionality reduction must be made to improve classification 

performance and reduce computational time. Feature selection methods are varied and can be 

computationally demanding, but their rationale is similar, aiming to remove redundancy between 

features while retaining the ones with the most discriminative power. R-square is one of the 

preferred methods to obtain the most discriminating features (Cruz et al., 2018; Iturrate et al., 

2010, 2015). There are, however, many cases in which the feature vector is obtained directly from 

feature extraction without requiring the feature selection step (Ferrez & del R. Millan, 2008; Kim 

et al., 2017; Kim & Kirchner, 2013; Spüler et al., 2012).  

After all the stages above, it is expected that the feature vector allows for the distinction between 

correct and error signals. The data collected during calibration are used to train a classification 

model and then applied in real-time to decode the error signal. Regression (Salazar-Gomez et al., 

2017) but mostly classification models are typically used. The most common methods are 

surveyed in Bashashati et al., 2007; Lotte et al., 2007. One of the most used classification methods 

is the SVM (Artusi et al., 2011; Iturrate et al., 2010; Kim et al., 2017; Kim & Kirchner, 2013; 

Spüler et al., 2012). Another popular classification method is LDA (Iturrate et al., 2013, 2015; 

Yousefi et al., 2019), which has extremely low computational requirements, making it optimal 

for an online BCI system. Both algorithms usually present good and equivalent results, so what 

appears to matter the most is the features chosen to describe the EEG signal. 
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4. METHODS  
 

4.1 Facial Emotional Stroop Task 
 

In this chapter, we describe in detail the proposed Facial Emotional Stroop Paradigm task. Six 

different images of actors performing a happy or sad expression are shown, and each image has 

a label on the "T" Zone of the forehead, with the letter "T" (Triste in Portuguese, sad in English) 

or "F" (Feliz in Portuguese, happy in English). The superimposed letter can be congruent (sad 

face with a “T” label / happy face with an “F” label) or incongruent (happy face with a “T” label/ 

sad face with an “F” label) with the facial expression. Participants must acknowledge facial 

expressions presented with a superimposed label detecting whether they are congruent or 

incongruent. 

4.2 Experimental Protocol 
 

The experiment based on the Facial Emotional Stroop task was divided into two parts: a 

calibration session and an online session. The EEG recorded during calibration is labeled 

according to events (cue image and congruent/incongruent labels) and used to create a 

classification model for the online session. The length of the experiment, including preparation, 

was around 120 minutes. Between each block of the session, there was a 1-minute break, and 

between the two sessions a 10-minute break, both to reduce eye fatigue and to ensure that 

participants focused as much as possible. 

 

4.2.1 Calibration 
 

The calibration session consisted of ten blocks, and every block was comprised of thirty trials (9 

incongruent and 21 congruent trials) randomly distributed. In each trial, participants were asked 

to evaluate the facial expression presented with the superimposed label, which can be congruent 

or incongruent with the facial expression (Figure 4.1). The main goal is to mentally acknowledge 

if the facial expression presented matches the label. Each trial begins with 500 ms of staring into 

a red cross, followed by the presentation of the facial expression, which lasts for 800 ms, and 

lastly the facial expression with the label on top, which is presented for 1500 ms. We used the red 

cross as a focal point for the participant, to minimize eye movements and artifacts when the 

stimulus appears. Each session block lasted for 94 seconds (30 trials + a 10-second waiting period 

at the beginning of the session). The acquired calibration dataset for each participant (if all data 

were used) is composed of 90 target epochs (incongruent) and 210 non-target (congruent) epochs, 

which were used to train the classifier for the online task. 
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4.2.2 Online Task 

 

The Online session consisted of 5 blocks, and every block was comprised of thirty trials (9 

incongruent and 21 congruent trials) randomly distributed. Figure 4.2 shows the scheme of the 

online task. Each trial can be “divided” into 3 parts. The first part of the trial is the same as in the 

calibration task, starting with the red cross, for 500 ms, then, the facial expression for 800 ms, 

and lastly 1.5 seconds of the facial expression with the label on top. In the second part of the task, 

the system presented feedback on the facial expression based on the automatic detection. The 

words “SYSTEM DETECTED: FELIZ/TRISTE” were presented to the participant depending on 

the identification. Here it was expected to obtain Interaction-ErrPs when the detection of the BCI 

was wrong. Figure 4.3 represents the labeling process regarding the interaction potential. If the 

detection corresponds to the actual facial expression, then we label the trial as correct, otherwise, 

we will label it as an error. This is inferred from the congruence/incongruence detection of the 

algorithm which is prone to failure if classification accuracy is low. In the last part, the BCI 

presents the question “Ok?”  to the participant, regarding its detection, asking for ‘agreement.’ If 

the detection is correct, the user must press the left mouse button, otherwise, he/she does nothing. 

This served to disambiguate whether the participant correctly detected the 

congruence/incongruence. Every trial had a duration of 5.8 seconds. The number of incongruent 

and congruent trials (including the three parts) per block was the same as for the calibration 

session, however, the number of blocks was only 5 to reduce the duration of the experiment. 

Figure 4.1: Schematic representation of the trials of the calibration task. The blue arrows 

determine the duration of each stimulus. Each trial begins with a red cross, followed by the facial 

expression and lastly the presentation of the label on top of the face, which is expected to elicit 

the participant’s error/correct potential  
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The online session therefore involves the three following parts. The first one is correctly 

identifying the facial expression so that the interface can make an accurate guess, the second is 

receiving feedback from the detection of the interface and mentally acknowledging whether this 

feedback is correct or not, and finally, providing mechanical feedback by clicking on the left 

button of the mouse cursor. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.2: Schematic Representation of the trials in Online Task. The blue arrows indicate the 

duration of each section of the trials. Part 1 includes the recognition of facial expression and 

acknowledgement of a congruency/incongruency between the face and the label. Part2 represents 

the feedback given to the participant regarding the detection of the facial expression. Part 3 

represents the feedback. 
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Figure 4.3: Schematic Representation of the labelling scheme for the Interaction Error Potential. 

If the emotion detected by the classifier matches the emotion displayed, then we label a trial as 

correct, otherwise, we will label it as an erroneous trial. 

 

4.3 PARTICIPANTS 
 

Ten subjects, six women and four men, between the age of 20 and 32, mean age (25±3)  

,participated in this study. All participants had normal to corrected-to-normal vision and had 

university education. All participants gave informed consent after we explained the study. Ten 

participants performed the calibration session (S1-S10), and six participants performed the online 

session (S2, S5, S6, S7, S8, S10). After acquiring data for participant S1, we realized a 

malfunction with the synchronization block had happened, so it meant that the results obtained 

were not reliable. Participants S3 and S4 had to leave the laboratory and hence they did not 

perform the online session. Participant S9’s data had many artifacts and so this subject did not 

perform the online session. 
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4.4 FACIAL EXPRESSIONS 
 

The facial images used in the experiments were obtained from the Radboud Faces Database 

(RaFD) (Langner et al., 2010). We chose six actors, three females and three males, all Caucasian 

adults, and with distinct prominent facial expressions. Two images were used per actor, 

representing the emotions “Happy” (Figure 4.4), and “Sad” (Figure 4.5), with a frontal gaze. We 

edited the pictures to have a black background using Adobe Photoshop 2022. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The pictures observed had 9.86 cm in height and 6.56 cm in width, and were observed at 70 cm, 

which corresponds to a visual angle of 8.01° (height) x 5.4° (width). The pictures were all at eye 

level, so that no movements had to be made to fully acknowledge the whole face. An example of 

the stimulus is presented in Figure 4.6. The labels ’F’ and ‘T’ were superimposed on the forehead 

of the image, consequently creating a new image. This was done using MATLAB’s Computer 

Vision Toolbox (insertText function).Figure 4.6 shows the new image formed. 

 

 

 

 

Figure 4.4: Happy facial expressions used in the visual paradigm. 

Figure 4.5: Sad facial expressions used in the visual paradigm. 
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4.4 Experimental Setup 
 

All the experiments were conducted at the laboratory of Robotics and Mechatronics at the Institute 

of Systems and Robotic (ISR). We used a 22,9” LCD BENQ Monitor to perform the experiments, 

with a 60 Hz refresh rate and, 1920 x 1080 resolution (Figure 4.7). The participant sat at 70 cm 

from the screen (distance measured at eye level). Participants were asked to avoid talking, 

blinking or performing facial movements during the blocks, to reduce bioelectrical artifacts that 

could compromise the acquired data. Early pilot studies revealed a delay of approximately 160 

ms and jitter of ≈ 20 ms, in the presentation of the stimulus to participants. This delay and jitter 

meant that the data analyzed did not correspond to the exact moment the participant saw the 

stimulus. To overcome this issue, a photodiode (light sensor Thorlabs SM1PD1A) was used to 

obtain the precise timestamp of the stimulus onset on the screen. The photodiode was placed in 

the left bottom corner of the computer and captured the appearance of a white square, which 

appeared at the same time as the stimulus (face with label) ( Figure 4.7). The photodiode covered 

the square in a way that it was not a distraction for the participant.  

Figure 4.6: Stimulus presented in the Facial Emotional Stroop Paradigm (face with label on top). 

This is the representation of a congruent stimulus (happy face with “F” label). 
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4.5 EEG Recordings  
 

EEG was recorded with a g.USBamp bio amplifier, from electrodes Fz, FCz, FC1, FC2, CZ, C3, 

C4, CPZ, PZ, P3, P4, and POZ using the extended 10–20 standard system. We placed the 

reference electrode in the right earlobe and the ground electrode at the AFz position. For 

acquisitions, we used active Ag/AgCl electrodes. Firstly, we placed the EEG Cap, making sure 

that the Cz electrode was at the center of the skull. After placing the cap, we scrubbed the head 

through the holes of the cap, as well as the chosen ear for reference electrode with an abrasive 

gel, to remove all dead skin. Next, we applied the gel to the previously scrubbed electrode 

locations. This gel allows for a low impedance and good conductivity during the experimental 

period. After that, we assured that the electrodes were well connected. The EEG signal was 

sampled at 256 Hz and pre-processed using a notch filter at 50 Hz in gUSBamp bioamplifier. 

Throughout the experiment, we plotted the recordings of the sessions, to track how well the 

experiments were going and to check the stability of the signal. 

Figure 4.7: Photograph of the setup used to perform the experiments. The table and box placed 

next to the computer are used to hold the photodiode in place, with tape. 

Photodiode 

Amplifier 

EEG cap and electrodes 

Stimulus 

White Square 
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4.6 BCI Framework 
 

All the code used to perform the experiments was done using MATLAB and Highspeed Simulink 

(Mathworks 2021a ; G.HIsys-g.USBamp), based on implementations in G. Pires, 2012; G. Pires 

et al., 2022. The main Simulink blocks are represented in the Simulink model (Figure 4.8) and 

described below.  

“Acquisition driver” block: Provides a graphical interface to the g.USBamp hardware, and 

allows the tuning of parameters such as filtering, notch, channels used, sampling rate, etc. The 

EEG signal enters the computer through a USB connection. the g.USBamp driver provides a hard 

real-time clock through a hardware interrupt that drives the whole Simulink model. 

“Preprocessing” block performs the 256 Hz sampling and applies a 50 Hz notch filter. In the 

Online Session 

“Synchronization” Block: The Synchronization block was created to resolve the 

synchronization issues described in section 4.4. This block transforms the analog signal provided 

by the photodiode into digital. This signal is sent to the Event block as a trigger and is used to 

extract the epochs related to the observed stimulus and provide the trigger classification. 

“Event Generation and Classification” Block: Implements the event generation, data buffering, 

and implements the algorithms for EEG signal processing and classification (detailed below). 

“Key Press” Block: Saves the time points in which the user pressed the mouse. 
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“Visual paradigm” Block implements the visual Emotional Stroop Effect paradigms (calibration 

and online). The timestamps and duration of the events required for the “Event Generation and 

Classification” block were fully parametrized. The online classification was embedded in the 

’Event Generation and Classification’ block, which was implemented with minor changes of the 

offline classification models obtained from calibration data. The event and classification 

information controlled the items shown in the “Visual Paradigm” block. 

 

 

 

4.7 Online Task: pre-processing and 

model creation 
 

In the online part of the task, a classifier performs real-time detection of Correct/Error Potentials. 

Before the online task, a model, based on the training data is generated. Due to the variability 

between subjects, each subject has its model. Before the creation of the classification model, a 

brief analysis of the sessions is performed to check whether they contain artifacts. If artifacts are 

presented some blocks may be discarded, meaning that the calibration models can be trained from 

a different number of trials. This changes from participant to participant. The scheme for data 

pre-processing for model creation can be seen in Figure 4.9. 

Figure 4.8: Schematic Representation of the Software Framework and user in the BCI loop. 
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The Pipeline for Model Creation begins with segmentation, i.e., dividing the signal into the epochs 

of interest (congruent and incongruent trials). Segmentation produces epochs of 1000 ms, from 

the stimulus onset, for both congruent and incongruent trials. All stimuli for correct and wrong 

events are appended into a single structure. Next, a band-pass filter is applied to the Raw EEG 

Data, to remove all frequency components above 1 Hz and below 10 Hz. After filtering, feature 

extraction is performed, transforming our twelve channels into twelve new ‘pseudo’ channels 

with 256 samples each. Out of the twelve new ‘pseudo’ channels, the first two channels are 

selected for feature selection. We then select the best 150 features. The model based on these 150 

features is then applied to the real-time EEG data from the online task and classification is 

performed. 

4.7.1 General assumptions and notation  
 

An EEG epoch representing an ERP is a series of temporal samples, 𝑿 =

[𝒙(𝒕), 𝒙(𝒕𝟏), 𝒙(𝒕𝟐), … … … 𝒙(𝑻) … ] , where 𝑇 is the number of time samples and 𝒙(𝒕) is a column 

vector with dimension 𝑵, in which 𝑵 is the number of EEG channels. In our case, we have a 12 

x 256 matrix, corresponding to 12 channels and 256 time-samples per channel.  

4.7.2 Feature Extraction 
 

To extract relevant features, we used a statistical spatial filter proposed in our lab termed Fisher 

criterion beamformer (FCB) (G. Pires et al., 2011). A spatial filter is a weighing vector that 

combines data from channels at each time instant. It transforms the original channels, into a new 

feature space of “pseudo” channels. The spatially filtered signal 𝑦𝑗(𝑡)  (𝑗 = 1. . 𝑁) is generically 

Figure 4.9: General Pipeline for classification model creation and Classification.  
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obtained from the input signal 𝑥𝑖 (𝑖 = 1. . 𝑁) multiplied by the coefficients of the spatial filter 𝑤𝑖𝑗 

, according to:  

 

𝒚𝒋(𝒕) = ∑ 𝒘𝒊𝒋𝒙𝒊(𝒕), 𝒋 = 𝟏, … , 𝑵                        𝑵
𝒊=𝟏 ( 1 ) 

 

In matrix notation, the spatial filter output is given by: 

 

𝒀 = 𝑾′𝑿                                                     ( 2 ) 

 

where W represents the spatial filters (with a dimension NxN), Y is the spatially filtered output 

with a dimension NxT and X represents the EEG signals with a dimension NxT. The “ ‘ ” symbol 

stands for transpose operator.  

 

4.7.2.1 Fisher Criterion Beamformer  
 

In particular, we used the Fisher Criterion Beamformer (G. Pires et al., 2011), which relies on 

Fisher's criterion and provides one projection that optimizes discrimination between two classes. 

The Fisher criterion is applied in the spatial domain increasing the separation between classes 

while minimizing the variance within a class. The following Rayleigh equation translates this 

criterion: 

 

𝑱(𝑾) =
𝑾′𝑺𝒃𝑾

𝑾′𝑺𝒘𝑾
                                                ( 3 ) 

 

in which 𝑆𝑏 is the spatial between class matrix, and 𝑆𝑤  is the in spatial within class matrix. The 

filter that solves this problem is given by: 

 

𝑺𝒃𝑾 = 𝑺𝒘𝑾⋀                                       ( 4 ) 

 

where Λ is the eigenvalue matrix and which is computed as an eigenvalue problem. The spatial 

filter chosen is the eigenvector with the higher associated eigenvalue. For a 2-class problem such 

as ours, the within-class matrix is defined as: 

 

𝑺𝒘 =  ∑ ∑ (𝒙𝒊 − 𝒎𝒊)(𝒙𝒊 − 𝒎𝒊)
𝑻

𝒙𝒊∈𝑪𝒋

𝟐
𝒊=𝟏                  ( 5 ) 
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The between class matrix is defined as:     

 

𝑺𝒃 =
𝟏

𝑲
∑ 𝑲𝒄(𝒎𝒊 − 𝒎)(𝒎𝒊 − 𝒎)𝑻                                   𝒊 ( 6 ) 

 

where 𝐾  is the number of total trials, 𝐾𝑐 is the number of total trials in class c, 𝑚𝑖 is the mean of 

epochs in class c and 𝑚 is the mean of all epochs. They are computed from: 

 

𝒎𝒊 =
𝟏

𝑲
∑ 𝑿𝒊,𝒌

𝑲𝒄
𝒌=𝟏  𝒂𝒏𝒅 𝒎𝒊 =

𝟏

𝑲
∑ 𝑿𝒊,𝒌

𝑲𝒄
𝒌=𝟏                         ( 7 ) 

 

The solution to the eigenvector problem can be regularized: 

 

𝑺𝒃𝑾 = [(𝑰 − 𝜽)𝑺𝒘 +  𝜽𝑰]𝑾                                               ( 8 ) 

 

where 𝐼  is the identity matrix, and 𝜃 is a parameter obtained from training data. 

 

4.7.3 Feature Selection  
 

To select the most discriminating features between the spatial projections of the two classes, the 

r-square method was used, which returns values between 0-1 (the higher the r-square value the 

better). The r-square value can be obtained by the following equation: 

 

 

 

𝒓(𝑿, 𝒀) =
𝝈𝑿,𝒀

𝝈𝑿.  𝝈𝒀
=

∑ (𝑿𝒌−𝑿̅)(𝒀𝒌−𝒀̅)𝑲
𝒌=𝟏

√∑ (𝑿𝒌−𝑿̅)𝟐𝑲
𝒌=𝟏    √∑ (𝒀𝒌−𝒀̅)𝟐𝑲

𝒌=𝟏

                                   ( 9 ) 

 

 

The r-square is applied to all the features previously extracted and used to rank the features from 

the highest to lowest relevance. As stated above (section 4.7) we defined 150 as the number of 

features being utilized for the models created.  
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4.7.4 Classification 
 

The previous steps allow for the BCI to create a model that is user and session specific. The 

classifier used in our experiments was the 𝑁𝑎𝑖𝑣̈𝑒 𝐵𝑎𝑦𝑒𝑠  classifier, which is a usual and successful 

method used in our lab in this context, with offline and online implementations already available. 

 

4.7.3.1 𝑵𝒂𝒊̈𝒗𝒆 𝑩𝒂𝒚𝒆𝒔 
 

The naïve Bayes uses a probabilistic model to assign an instance to a class. It assumes that all 

features are independent from each other, which is a strong assumption and not always true, hence 

the name naïve. Given an independent set of features 𝑿 = (x1, 𝑥2,….,xn) and a class variable 𝒚, 

the Bayes Theorem claims that:  

 

                                                                         𝑷(𝒚|𝑿) =
𝑷(𝑿|𝒚)∗𝑷(𝒚)

𝑷(𝑿)
                                             ( 10 ) 

Where 𝑃(𝑦|𝑋) is the posterior probability of class 𝑦 , 𝑃(𝑋|𝑦) is the conditional probability of 

class 𝑦 given 𝑋 and  𝑃(𝑦) is the prior probability of 𝑦. 𝑃(𝑋|𝑦) can be further decomposed into:  

 

                                                𝑷(𝑿|𝒚) = 𝑷(𝒙𝟏, 𝒙𝟐, … … 𝒙𝒏|𝒚)                                                       (11) 

Because we assume independency of components, this can be simplified into: 

 

                                          𝑷(𝑿|𝒚) = 𝑷(𝒙𝟏|𝒚) ∗ 𝑷(𝒙𝟐|𝒚) ∗ 𝑷(𝒙𝟑|𝒚) … … 𝑷(𝒙𝒏|𝒚)               (12) 

 

If we substitute equation 12 into equation 10, we are left with: 

 

                                                  𝑷(𝒚|𝑿) =
𝑷(𝒙𝟏|𝒚)∗𝑷(𝒙𝟐|𝒚)∗𝑷(𝒙𝟑|𝒚)……𝑷(𝒙𝒏|𝒚)∗𝑷(𝒚)

𝑷(𝒙𝟏)∗𝑷(𝒙𝟐)…….∗𝑷(𝒙𝒏)
                    (13) 

 

The denominator is constant, therefore the posterior probability can be written as: 

                                                     𝑃(𝑦|𝑥1, 𝑥2, … … . 𝑥𝑛) ∝ 𝑃(𝑦) ∏ 𝑃(𝑥𝑘|𝑦)𝑃(𝑦)𝑝
𝑘=1                    (14) 

 

The class is detected following the maximum a posteriori decision rule: 

 

                                                       𝒚̂ = 𝒂𝒓𝒈𝒎𝒂𝒙𝒚 𝑷(𝒚) ∏ 𝑷(𝒙𝒌|𝒚𝒏
𝒌=𝟏 )                  (15) 
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4.8 Neurophysiological Analysis  
 

EEG data were analyzed using EEGLAB, v2022.0 (Delorme & Makeig, 2004), and routines were 

written in MATLAB R2021B (The MathWorks, Natick, MA).  

EEG signals related to the Facial Emotional Stroop Task were analyzed from data collected during 

the calibration session. Signals were preprocessed as follows: first, a bandpass filter 1-10 Hz was 

applied to the data. After, 1-second epochs were extracted using the photodiode stimulus-based 

trigger. Then, components related to artifacts were removed by using ICA. Finally, we plotted 

each session as well as the r-square. By visual inspection, sessions with too many artifacts (blinks 

when stimulus appears, channels having exaggerated amplitudes when compared to others) were 

discarded from the analysis. 

EEG signals related to the feedback of the detection algorithm (where Interaction ErrPs were 

expected in wrong detections) were analyzed using the same preprocessing of the Facial 

Emotional Stroop Task. 
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5. Results  
  

 

In this chapter, we present the results of the developed work. Both neurophysiological and 

classification results obtained from data recorded in calibration and online sessions are presented. 

Reported results to congruent/incongruent ERPs and interaction ErrPs, showing group and individual 

analyses are made. The classifier’s ability to detect such signals is also evaluated. 

5.1 Neurophysiological analysis 
 

5.1.1 Emotional Stroop Task – Group 
 

In this section, we analyze the waveforms resulting from the incongruent and congruent event responses 

obtained during the Facial Emotional Stroop task. Considering the literature review carried out in 

chapter 3, we intend to analyze whether it is possible to identify the following ERPs: Ne/ERN, Pe of 

Error Potentials, N2, N450, and SP. The plots presented below were obtained using MATLAB after data 

was processed with band-pass filter of 1-10 Hz and inspection of Artifacts by visual analysis and ICA 

was performed using MATLAB and EEGLAB. The grand averages presented in Figure 5.1a) 

comprehend the 1-second responses after the onset of the stimulus (Face with an overlaid label, see 

section 4.1) and were obtained from the trials of all participants, excluding S9, at channel FCz. 

Participant S9 was excluded from all analyses due to the many artifacts present in EEG recordings. 

 

 

 

 

 

 

 

 

Grand Average for all trials 
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Figure 5.1b) shows the respective topographical maps for the peaks in the Incongruent minus 

Congruent (Incongruent-Congruent) condition. FCz channel was chosen based on its known 

association with processes involving error monitoring. In the time window of 220 to 320 ms 

following the stimulus onset, the waveforms were more negative for incongruent ( -2.6948 μV 

SE= 0.8830 μV) than congruent ( -0.39 μV SE=0,492 μV) trials, with a peak in Incongruent-

Congruent trials at 260 ms, possibly being the Ne/ERN/N2. In the 380-430 ms time window 

following the stimulus, there is another clear difference between incongruent and congruent trials, 

with incongruent trials (1,62 μV SE= 0.25 μV) more positive than congruent trials (-0,43 μV SE= 

0,26 μV) and a peak in the difference waveform at around 400 ms, which could be a Pe. In the 

450–500 ms window, usually named the N450, we found a negative deflection, at around 480 ms, 

with incongruent trials (-1.49 μV SE= 0.40 μV) more negative than congruent trials (-1.28 μV 

SE= 0.08 μV). In the window of 550-750 ms, incongruent trials (0.15 μV SE= 0.4752 μV) were 

slightly more positive than congruent trials (-0.41μV SE=0.33μV). This time window is usually 

where SP occurs.  

The topographical maps were obtained for the peaks 100, 150, 260, 380, and 500 ms. These maps 

were obtained with EEGLAB, after processing the signal with a 1-10 Hz passband filter and 

removing artifacts with ICA. There is a fronto-central distribution of activity in the analyzed 

peaks, except for the 500 ms peak, which presents a more parietal distribution. A fronto-central 

distribution is typical for processes involving error monitoring. 
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Figure 5.1: a) Average of all trials in all conditions, Incongruent (blue line), Congruent (red line), 

Incongruent-Congruent (black), at channel FCz. The components produced in the Incongruent-

Congruent condition are due to the differences in processing Congruent and Incongruent trials b) 

Topographical maps of the average of all trials in the latencies (100, 150 ms, 260 ms, 380 ms, 500 

ms) for the Incongruent-Congruent condition. 
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Figure 5.2 presents all the average waveforms that comprehend the grand average waveform and 

the individual averages. Even though there is variability between subjects, it is possible to see 

that most follow the pattern of the grand average waveform. We computed the r-square (Figure 

5.3) for Incongruent and Congruent trials and performed point-wise paired t-tests Figure 5.4) with 

an alpha of 0.01 between the two conditions. The r-square points to the 220-320 ms and 340-450 

ms time windows as the ones presenting discrimination between Incongruent and Congruent 

trials. Those same time windows show an effect of congruency in the point-wise paired t-test and 

show a significant effect of congruency in the time window of 220-320 ms and the time window 

of 340-450 ms, which correspond to the time windows of the first and second peaks, respectively. 

The visual differences in the 450-500 ms and 550-750 ms time windows were not deemed 

statistically significant. 

 

 

 

 

 

 

 

 

Grand Average of Every Participant and 
Grand Average of all trials with standard 

deviation 

Figure 5.2 Grand average and individual averages of Incongruent-Congruent Trials at channel 

FCz. Black line represents the grand average of all participants, and the colored lines represent 

the individual grand averages. Shaded blue area represents the standard deviation.  
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Figure 5.3: r square between Incongruent and Congruent trials for all twelve channels. 

Figure 5.4: Color map of point-wise t-tests comparing Congruent and Incongruent potentials for 

the twelve channels. Significant differences appear in color for an alpha criterion ≤ 0.01. 
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5.1.2 Emotional Stroop Task – Individual Plots 
 

Figure 5.5 presents the individual grand averages for all trials in the Incongruent, Congruent, and 

Incongruent-Congruent conditions, for channels Cz, FCz, and Pz. The averages were obtained 

using the same pre-processing of the group analysis. 
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Since we are more interested in the globality of the results thorough individual analyses were not 

conducted, and as consequence, we will only highlight some relevant aspects of the above plots. 

From the visual analysis of the above plots, we observe that most of the participants depict a 

similar waveform, with a first accentuated negative peak in the 200-300 ms time window, except 

for participant S10, in which it occurs in the 400 ms range. This peak is caused by Incongruent 

trials being more negative than congruent trials, most likely representing the Ne/Ern/N2. This 

peak is variable in amplitude, oscillating from -2 to -9 μV. This negative peak is followed by a 

positive peak, occurring at around 400 ms, except for participant S7 and S10, in which the peak 

occurs at around 600 ms. This peak might represent the Pe. After this positive peak, the 

waveforms greatly differ across participants. The windows in which there is bigger discrimination 

between Incongruent and Congruent trials are presented in Annex A. R-squares for participants 

S7 and S10 show different discriminatory time windows in comparison to the other participants.  

 

 

 

 

5.1.3 Emotional Stroop Task – Individual Topographical 

Maps   
 

Figure 5.6 presents the individual topographical maps for each participant, in the same latencies 

as those of Figure 5.1. 

              FCz                                      Cz                                         Pz 

Figure 5.5 Potentials elicited by the Emotional Word Face Stroop Paradigm of 1 second post 

stimulus presentations, for Incongruent (red line), Congruent (blue line) and Incongruent-

Congruent (black line) trials for participants S1, S2, S3, S4, S5, S6, S7, S8, and S10 at channels 

FCz,, Cz and Pz, respectively. 
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Figure 5.6: Topographical Maps of the Difference (Incongruent-Congruent) trials at 100, 150, 

260, 380 and 500 ms, for participants S1, S2, S4, S5, S6, S7, S8 and S10. The bar next to the plots 

corresponds to the spatial EEG activity (μV). 

The topographical maps show the distribution of the EEG spatial activity for the same latencies 

as those of Figure 5.1. Generically, it is possible to see that most participants present a frontal to 

fronto-central distribution of EEG activity, characteristic of Error Potentials. 

 

5.1.4 Effects of Condition 
 

Besides the main analysis, we wanted to understand if some factors regarding the participants and 

their experience had any influence on the potentials. We decided to take the following factors into 

account: BCI experience, Gender, and native language, in a preliminary approach. We also decide 

to evaluate if experimental conditions had any impact on the results achieved. We performed an 

exploratory analysis on the influence of the facial emotion in the responses, as well as the gender 

of the faces being presented. Figure 5.7, Figure 5.8, and Figure 5.9 represent the grand average 

ERPs regarding BCI experience, gender, and nationality, respectively. We analyzed amplitude 

differences regarding the first negative (220-320 ms) and second positive (340-450 ms) peaks. 

 

BCI experienced users vs BCI naïve users 

One of the main aspects to consider when creating a BCI application is its usability for first-time 

users. We assume that users with BCI experience have a bigger “ease” at modulating potentials, 

however, our goal is to make the experience work for all users. This analysis intends to evaluate 

if there is any group bias, i.e., if users who have no experience have the capacity of recruiting 

other selective attention mechanisms beside error monitoring mechanisms. Out of the 9 

participants used to conduct this analysis, 3 had previous BCI experience and 6 had no previous 

BCI experience (naïve). The plots below were obtained through MATLAB. 
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The difference waveforms of BCI experienced users vs BCI naïve users have visible differences 

in the amplitudes and latencies of the first negative peak and second positive peak. BCI 

experienced users have smaller latency for the first peak and, as for the Pe, the latency is similar, 

however, BCI experienced users exhibit a bigger amplitude. A 2 (Group: BCI experienced x BCI 

naïve) × 2 (Congruency: Incongruent, Congruent) repeated measures ANOVA was conducted. 

There was no main Effect of Group (p >0.05) for the time windows analyzed. 

 

Gender Effects 

Even though there are several studies and paradigms that involve the use of error potentials, 

studies that aim to find differences between cognitive processes based on gender have not 

produced any conclusive results. This analysis intends to compare differences, in case they exist, 

on the potentials evoked by men and women. Of the nine participants used to perform this 

analysis, 4 were men and 5 were women. 

 

Figure 5.7: Grand Average of all trials for the Emotional Stroop Task, for BCI experienced (n 

= 3) and BCI naïve group (n = 6), at channel FCz. Blue Lines represent congruent trials, red lines 

represent incongruent trials and black lines represent the difference waveform (Incongruent-

Congruent). 
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Comparing the difference waveforms of women vs men, we can see differences in the amplitude 

of the first negative peak and second positive peak and amplitude differences in the second 

positive peak. Women have smaller latencies for both peaks and bigger amplitudes for the second 

positive peak. A 2 (Group: Women x BCI naïve) × 2 (Congruency: Incongruent, Congruent) 

repeated measures ANOVA was conducted. There was no main Effect of Group (p >0.05) in the 

time windows analyzed. 

 

Foreign Vs Portuguese 

In the current study, we had 3 foreign participants (who know some words in Portuguese) vs 7 

Portuguese participants. Our study includes letters that correspond to the Portuguese word for the 

used facial expressions (F for “Feliz” and T for “Triste”). Since we did not change the letters to 

those that correspond to the emotions in the participant’s native language, we will try to analyze 

if thinking in a non-native language has any implication on the evoked potentials.  

 

 

 

 

 

 

 

 

 

Figure 5.8: Grand Average of all trials for the Facial Emotional Stroop Task, for Women (n=5) 

and Men (n=4) group, at channel FCz. Blue Lines represent congruent trials, red lines represent 

incongruent trials and black lines represent the difference waveform (Incongruent-Congruent). 
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Comparing the difference waveforms of the Portuguese and foreign group we can see differences 

in the amplitude and latency of the main peaks. The foreign participants present (on average) 

longer latencies and higher amplitudes for both peaks. A 2 (Group: Portuguese x Foreign) × 2 

(Congruency: Incongruent, Congruent) repeated measures ANOVA was conducted. There was 

no main Effect of group (p <0.05) in the time windows analyzed. 

 

Stimulus emotion and gender  

Figure 5.10 and Figure 5.11 present the grand average of all trials for the Incongruent and 

congruent conditions, respectively concerning the two facial emotions and regarding the gender 

of the faces. Both Figure 5.10 and Figure 5.11 lead us to believe that the experimental conditions 

have minor impact on the results produced. In Figure 5.10 we analyze the influence of the emotion 

presented (happy, sad). The analysis of the significant time windows (220-320 ms) (340-450 ms) 

reveals an overlap between both congruent lines and a small difference in incongruent waveforms 

regarding time and latency. In incongruent trials, sad emotions produce waveforms with smaller 

latencies, and, regarding the second positive peak, their amplitude is bigger. Two point-wise 

paired t-tests were performed, one for each condition (incongruent happy x incongruent sad) 

(congruent sad x congruent happy) and neither test revealed statistically significant differences 

between emotions (p>0.01). Figure 5.11 tells us what effect of the gender of the facial expressions 

was. Visually, there are some differences in amplitude and latency, especially for the incongruent 

condition, however, as for Figure 5.10, the point-wise t-tests performed for both conditions 

(Incongruent female expression X Incongruent male expression), (Congruent female expression 

X Congruent male expression) reveal no significant influence of the gender of the facial 

expression used. (p>0.01) 

 

Figure 5.9:  Grand average of all Incongruent and Congruent trials and difference waveform for 

Portuguese (n=6) and foreign group (n=3), at channel FCz. Blue Lines represent congruent trials, 

red lines represent incongruent trials and black lines represent the difference waveform 

(Incongruent-Congruent). 
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Figure 5.10: Grand Average of Congruent and Incongruent trials for the Facial Emotional Stroop 

Task, for both facial expressions, at channel FCz. Blue Lines represent a happy facial expression 

while red lines represent a sad facial expression. 

Figure 5.11: Grand average of all trials for the Facial Emotional Stroop Task, for both facial 

expressions, at channel FCz. Blue Lines represent the female facial expressions while the red line 

depict the male facial expressions. 
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5.1.5 Interaction ErrPs 
 

In this section, we analyze the waveforms of the Interaction ErrPs elicited from the trials we 

labeled as correct or incorrect (as explained in section 4.2). We hoped an Interaction Error 

Potential would occur when the feedback provided by the BCI did not match the user’s 

expectation, i.e., when the face detected by the interface was not the same as the face identified 

mentally identified by the participant. 

Only six participants performed the online session. After acquiring data for S1, we realized that 

a malfunction with the synchronization block had happened, so it meant that the results obtained 

were not reliable. Analyses for this part of the task were conducted for all participants that took 

part in the online except for participant S2 due to issues regarding the photodiode. The plots 

presented below were obtained in Matlab after bandpass filtering at 1-10 Hz and artifact rejection 

using ICA (EEGLAB). The topographical maps were obtained through EEGLAB. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.12: a) Average of all trials in all conditions, Error (blue line), Correct (red line) and 

Incongruent-Correct (black), at channel FCz. The labelling of correct/error events was done 

according to section 4.8. b) Topographical maps in the peaks (220 ms, 350 ms, 490 ms and 610 

ms) 
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Figure 5.12 presents the ErrP comparison and shows the grand average of all error, correct and 

error-correct trials. The blue line represents correct trials, the red line represents error trials (both 

according to section 4.9), and the black line depicts the difference waveform between error and 

correct trials. The difference waveform had fronto-central positive and negative peaks. A first 

more accentuated negative peak occurs at 220 ms (-2.29 μV), possibly representing the Ne. We 

believe the Pe (3.14 μV) to be the peak occurring at 490 ms. Between the Ne and the Pe, there is 

a minor negative (290 ms) and positive peak (350 ms). 

Looking at Figure 5.13, which shows the individual grand averages, we observe great variability 

between subjects (especially if compared to the results of the Emotional Stroop Task). As we did 

for the Emotional Stroop Task, we found the r-square between the error and correct trials and 

applied a point-wise paired t-test for the two conditions. Statistical significance is found between 

the correct and erroneous trials in the colored time windows of Figure 5.14 (p<0.01). The analysis 

of the topographical maps of the difference (error-correct) shows that there is no focal point for 

the origin of the ErrP. For that purpose, we also generated the topographical maps for the error 

and correct trials, separately. Those topographical maps can be seen in Figure 5.17. The visual 

inspection shows a similar and even distribution of EEG activity in error and correct Trials. 

 

 

 

 

 

 

 

 

 

Grand Average of Every Participant and 
Grand Average of all trials with standard 

deviation 

Figure 5.13: Grand averages of Incongruent-Congruent trials with standard deviation and grand 

average (Incongruent-Congruent) of all participants for the interaction part of the task, at channel 

FCz. 
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The number of error and correct trials used in the analysis directly depended on the performance 

of the ErrP detector. As seen in Figure 5.16, it was quite variable across participants, which may 

have had an impact on the analysis.  

Figure 5.14: Statistical r-square between Incongruent and Congruent trials in the Interaction part 

of the task. 

 

Figure 5.15 : Color map of point-wise t-tests comparing Error and Correct potentials for the 

twelve channels. Significant differences appear in color for an alpha criterion ≤ 0.01. 
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Figure 5.16: Number of Correct and Error Trials utilized to plot the grand averages of the Interaction 

Error Potential. The red bars represent the correct trials, and the blue bars represent the error trials. 

Figure 5.17: Topographical Maps for Error and Correct Trials in the Interaction part of the 

Task at the latencies of 220, 350, 490 and 610 ms. 
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5.2. Classification Results  
 

5.2.1 Emotional Stroop Task 
 

This section presents the results for individual offline and online classifications regarding the 

Incongruent and Congruent Trials, classified at a single trial level. The metric used to evaluate 

the results was Balanced Accuracy, which considers the imbalance between congruent and 

incongruent trials. Balanced accuracy is calculated as:  

 

 

 

 

We considered True Positives (TP) and Trues Negatives (TN) respectively as Incongruent 

correctly classified and Congruent Trials correctly classified. False negative (FN) and False 

positive (FP) are congruent and incongruent trials incorrectly classified, respectively. 

5.2.1.1 Offline Classification   
 

Table 1 shows the Specificity, Sensitivity, and Balanced Accuracy obtained for all the subjects 

using calibration data. The results were obtained through n-fold cross-validation (7<n<10). The 

cross-validation performed served to provide robustness to the classification results obtained. The 

offline classification was obtained using the same preprocessing that was used online. 

Table 1: Results from offline classification from the calibration sessions for all participants, 

obtained using a n fold cross validation, n being the number of sessions kept for each subject. 

 

Table 1 shows the offline classification results. The average accuracy, sensitivity and specificity 

were 61.3± 11.2 %, 72.4 ± 11.2%, and 50.2± 15.6%, respectively. Averaging the results of BCI 

Participant Specificity 

(%) 

Sensitivity 

 (%) 

Bal Accuracy (%) Fold 

S1 38.6 60.4 49.5 10 

S2 77.9 89.7 83.8 10 

S3 44.8 73.9 59.4 10 

S4 19.1 81.1 50.1 10 

S5 57.1 71.6 64.4 7 

S6 47.5 59.9 53.7 7 

S7 45.9 54.2 50.1 7 

S8 58.6 81.5 70.0 8 

S10 62.5 79.0 70.8 9 

Mean ± STD 50.2 ± 15.6 72.4 ± 11.2 61.3 ± 11.2   

𝐵𝑎𝑙𝑎𝑛𝑐𝑒𝑑 𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
1

2
(

𝑇𝑃

𝑇𝑃 + 𝐹𝑁
+

𝑇𝑁

𝑇𝑁 + 𝐹𝑃
) 

(16) 
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experienced users the accuracy, specificity and sensitivity rates are 73.0%, 80,1% and 65.8%, 

respectively, against 55.5%, 68.5% and 48.4% for naïve BCI users. Participant S1 did not surpass 

the 50% mark (accuracy= 49.5%). Balanced Accuracy rates between men (61.1%) and women 

were equiparable (61.4%). Sensitivity rates (mean average= 72.4%) were significantly higher than 

Specificity rates (mean average = 50.2%) for all subjects, which in part can be from the fact that 

the amount of training samples of congruent trials were double the size of incongruent trials. Not 

all models were trained with the same number of trials, as some sessions contained artifacts, which 

could influence the overall accuracy results.  

5.2.1.2 Online Classification- Single Trial 
 

The results obtained from the single trial detection can be found in Table 2. The results are 

presented for the 6 participants that completed the online task (participants S2, S5, S6, S7, S8, 

and S10). The decoded and classified ERPs represent the responses to the incongruent and 

congruent stimulus (face with incongruent and congruent label on top). One of the trials of 

participant S8 was shorter in time, therefore the total number of single trials was lower. 

 

Table 2: Results from Online Classification (4 best sessions). Sub= Subject; Bal Acc= Balanced 

Accuracy; Spec= Specificity; Sens = Sensitivity. We considered incongruent trials to be positive 

and congruent trials as negative. 

 

By looking at table 2, we can see that single trial classification with different rates of success was 

achieved. The balanced accuracy was, on average, 67.8 ± 9.6%, and sensitivity and specificity 

rates were 69.9 ± 7.3% and 65.7±15.5%, respectively. Participant S5 had the best performance 

(balanced accuracy = 83.1%), while participant S7 had the worst performance (balanced 

accuracy= 57.7%). Participant S7 was also the one who performed worse in the Calibration Task, 

so it was expected he would provide weaker results. Participants S2, S8 and S10 decreased their 

performance in comparison with the calibration session, while participant S5 increased its 

performance.  

 

 

 Sens (%) Spec (%) Bal Acc (%) TP FP FN TN 

S2 86.0 70.2 78.2 31 5 25 59 

S5 88.8 77.4 83.1 32 4 19 65 

S6 52.8 64.3 58.5 19 17 30 54 

S7 58.3 57.1 57.7 21 15 36 48 

S8 55.2 73.0 64.1 16 13 17 46 

S10 52.8 77.4 65.1 19 17 19 65 

Mean ±SD 65.7±15.5 69.9 ± 7.3 67.8 ± 9.6     
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5.2.2 Interaction ErrP    
 

In this part of the analysis, we evaluated if the mental responses given when feedback is presented 

(‘System detection: Feliz /Triste’) could be classified. As it happened in section 5.1.2, analyses 

for the ‘Interaction Error Potential’ were made for all participants that completed the online part 

of the task, except for participant S2, who had issues regarding the photodiode. Table 3 shows the 

classification results obtained doing 4-fold cross-validation. For each participant, the total number 

of error and correct trials were different, since these were dependent on the classification of the 

BCI. The highest accuracy value was 67.9%, while the worst value was 54.68 %. Specificity 

values are much higher than Sensitivity Values, which is reflected by the number of Correct 

Trials. The worst Sensitivity value (21.7%) corresponds to the participant who had the lowest 

number of error trials while the best (56.9%) belongs to the participant who had the highest 

number of error trials. The best specificity values (87.63 % and 79.7%) are representative of the 

number of correct trials used (97 and 79 respectively). 

 

Table 3 Results from Offline Classification for subjects S5, S6, S7, S8 and S10 using a 4x fold 

cross validation. 

 

5.2.3 Feedback  
 

Table 4 presents the mechanical feedback given by participants regarding the detection of the 

system. The percentage presented corresponds to the percentage of trials in which the participant 

agrees with the feedback given by the interface. We could not obtain feedback from participants 

S2, S5 and S6. Participants said they could not concentrate properly doing it, so after one block 

they asked if it would be okay not to perform that part. 

 

Participant Sensitivity (%) Specificity (%) Accuracy (%) 

S5 21.7 87.63 54.68 

S6 53.2 53.4 53.3 

S7 56.9 69.6 63.2 

S8 56.7 79.0 67.9 

S10 31.7 79.7 55.7 

Mean± STD 43.6 ± 9.4 74.1 ± 13.6 58.8 ± 6.8 
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Table 4 Mechanical feedback provided by the participants, in percentage. The percentages 

correspond to the percentage of trials in which the user considered the feedback of the system to 

be correct. 

 

 

 

By looking at the rates for the mechanical feedback for all participants, we can see they are like 

the rates of balanced accuracy of the Facial Emotional Stroop Task. This means that the user was 

attentive during the first part of the task and could compare the facial expression identified with 

the one detected by the system and that the error in detecting the actual facial expression can be 

considered a flaw of the system.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Participant  S7 S8 S10 

Feedback (%) 55 57.5 65.8 
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6. Discussion  
 

 

In this chapter, the results of the project work will be discussed. This chapter is divided into four 

sections. First, a comparison with other studies in the literature will be performed. Section 6.2 

describes the significance and utility of the online results. In section 6.3 the results obtained for 

the Interaction Error Potential are debated and finally, section 6.4 presents the main limitations 

of the Study and potential future directions. 

6.1 Emotional Stroop Task  
 

Emotional Stroop Effect Studies  

First, we will make a comparison with other Stroop Tasks (section 2.4). Our ErrP presents a first 

negative component at 260 ms. In most emotional Stroop tasks and conflict detecting studies, this 

component is found to be modulated by conflict. Some facial Emotional Stroop Studies (Schreiter 

et al., 2018b, 2018a, 2019) have not been able to find a modulation of this component regarding 

congruency (side by side comparison in Figure 6.1) claiming that the lack of N2 modulation might 

be because emotional expressions require deeper processing and therefore, conflicts are not 

detected in the time window of the N2 (Figure 6.1). Our results prove otherwise and agree with 

Chen et al., 2016, as there were statistically significant differences regarding the time window 

where N2 is present. 

 

 

 

 

Figure 6.1: Left side) Stimulus-locked grand average waveforms at electrode Cz for congruent 

and incongruent trials (Schreiter et al 2018). Right side) Stimulus-locked grand average waveforms 

at electrode Pz for congruent and incongruent trials (our results). For both figures the N2 

component is shown in bold. 

N2 
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In the time window of 450-550 ms, usually associated with the N450, we found a small 

component with a negative deflection due to incongruent trials being more negative than 

congruent trials.  

In the time window of 500-750 ms, where the SP (linked to conflict resolution) is usually 

reflected, incongruent trials showed an increased positivity compared to congruent trials.  

Most Stroop Studies have reported statistically significant differences between Congruent and 

Incongruent trials for the N450 (Fan et al., 2016),  SP(Chen et al., 2016), or  both (Ma et al., 2016; 

Xue et al., 2016). However, our results do not show statistical significance for any of these 

components. 

The differences in components obtained between our study and other studies might be derived 

from the two differences between our and other Facial Emotional Stroop Tasks. All the Facial 

Emotional Stroop studies found (Chen et al., 2016; Fan et al., 2016; Huang et al., 2021; Ma et al., 

2016; Maier et al., 2016; Schreiter et al., 2018b, 2018a, 2019; Xue et al., 2016) required 

participants to perform an extra activity beyond thinking, whether this is pressing a button or 

performing a physical movement to identify the facial expression. Besides that, all the studies 

show the two attributes of the stimuli (face and word) at the same moment, while we first present 

the face and shortly after present the face with the label on top. The act of first identifying the 

face and then comparing it to an additional label has a different effect than looking at two distinct 

stimuli (face and label) and identifying them at the same time. Nevertheless, we consider this to 

be a positive characteristic of our task, the ability to study neuronal processes involved in error 

monitoring without interferences of motor response.  

We also found another positive component, in the time window of 350-450 ms, reflective of the 

bigger amplitude of incongruent trials in relation to congruent trials, however, this component 

has not been reported on any other Stroop Task.  

 

Error Potential Studies  

The difference waveform for the difference (Incongruent-Congruent) is comparable to those obtained 

in Chavarriaga & Millan, 2010; Iturrate et al., 2015; Spüler et al., 2012.  

Chavarriaga & Millan, 2010 performed a task in which users had to monitor the action of an external 

agent. The error potentials elicited by the task possessed a first negative peak at 260 ms, the Ne, 

followed by a positive peak at 330 ms, the Pe. Our neurophysiological responses have a first negative 

peak at 260 ms, followed by a positive peak at 380 ms. Our topographical maps of the difference 

waveform show a central and fronto-central focus for the peaks. In the literature, these are the regions 

associated with error monitoring.  

Altogether these findings lead us to believe that our first peak might represent the Ne/ERN, while 

the consecutive peak may represent the Pe and that we can classify our signals as Error Potentials. 

The exploratory analysis made regarding participants (Gender, BCI experience, Nationality) and 

experience characteristics (Emotions used, Gender of the faces presented) seem to suggest that error 

signals produced are not influenced by any of these conditions. 

The results regarding participants BCI experience reveal that any new (typically developing) user 

can carry out this task, although BCI experience might have influenced the results. 

Studies that have compared neural correlates of the presentation of female and male faces tasks have 

not drawn definite conclusions on the topic. Our results seem to agree with those who claim there 

are no electrophysiological differences between error potentials as a function of gender (Larson et 

al., 2011; Li et al., 2009). 
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The analysis we performed based on the nationality of the participants (Portuguese x Foreign) did 

not reveal any significant differences between groups. (Fan et al., 2016) used a similar task and 

varying the language used to produce incongruence (Participant’s mother language vs second 

language) discovered that the second language was less automatic to the activation of emotional 

content. Since we only used foreign participants’ second language, we cannot draw any direct 

conclusions. In our task, we only used the first letter of the two chosen emotions, as opposed to the 

full word. Even though it still requires foreign users to make an association between the letter and 

the facial expression, it facilitates the task.  

Taking all of this into account, our results suggest that the Facial Emotional Word Stroop Task 

proposed here can elicit Error Potentials, provoked by differences in congruency. EEG correlates 

during an emotional task are of great interest for investigating both error and emotional processing. 

We also found that the Stroop component N2 possessed the same distribution and latency as the 

error-monitoring component Ne/ERN. This leads us to believe that they may represent the same 

component.  

 

6.2 Significance of the online results 
 

The online results show that single-trial error detection is possible using an Emotional Stroop 

Task. Parashiva & Vinod, 2022 used a rapid serial visual presentation, with incorrect associations 

between objects and audio, and text labels and obtained similar classification results. To our 

knowledge, this is the first time a potential elicited by a facial Emotional Stroop Task can be 

classified on a single-trial basis. 

Most Participants performed similarly between tasks, (difference< 8%), however, participant S5 

showed a substantial increase from Calibration to the Online Task. This can be explained by 

habituation to the task (and therefore bigger automaticity in doing the associations). As expected, 

participants who performed better in the Calibration Task had higher performances in the Online 

Task. BCI users (S2, S5, S10) performed better than non-BCI users, which might have to do with 

the ability to focus for extended periods, something that is needed for this type of task. Congruent 

and Incongruent trials were detected at a similar rate (Incongruent= 65.7%, Congruent=69.9 %), 

however, specificity was higher than sensitivity for every participant except participant S6. This 

is expected as the number of Congruent (correct) trials used to create the classification model was 

much larger than the number of Incongruent (incorrect) trials. One approach to overcome this 

issue could be increasing the number of errors used during the calibration task, however, 15-30% 

are the error rates of studies that have shown successful results (Ferrez & del R. Millan, 2008; 

Iturrate et al., 2013). Also, Stroop Studies involving different rates of congruent and incongruent 

trials claim that there are stronger responses to incongruent trials when there is a larger proportion 

of congruent trials (Chen et al., 2016). Another approach would be increasing the number of 

sessions in calibration, however, this could result in a bigger loss of focus and decrease the quality 

of the signal, as the calibration task is already tiresome.  

The results obtained are far from those seen in other tasks that use ErrPs as a means of 

communication (Cruz et al., 2018; Kim et al., 2017). As seen in section 3.2 the ErrPs evoked in 

these tasks can successfully control and or correct the performance of machines used in real-time. 

Even though our results cannot reliably achieve that goal, they prove error signals evoked in 

emotional contexts are classifiable. The development of a BCI that makes use of error signals 

elicited in an emotional context might prove very useful in improving social cognition. Social 

Cognition includes various competences and cognitive skills required to recognize social stimuli 

and react accordingly. ASD subjects, as previously said, present deficits regarding functions of 
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SC, so, tasks that can help improve and reinforce ‘positive’ behaviors are potentially helpful. The 

approach developed here could be turned into a gamified BCI application, where to successfully 

“play” the game, participants must be focused and correctly evaluate the presented stimulus. 

6.3 Interaction Potential 
 

One of our secondary goals was to understand if an Interaction Error Potential would occur when 

the BCI feedback was not the one expected by the user (error of the BCI). If the evoked answers 

in the ‘Interaction’ part of the task (the moment when the feedback of which face the interface 

detected is presented to the user) could be classified, they could help in two separate ways. First, 

they could help us understand if a correct evaluation of the facial expression (presented in the first 

part) was made. For example, if the participant considers the facial expression presented to be 

happy, but the system detects a sad facial expression, then it is presumed that an error response, 

time-locked to the moment of the presentation of the feedback, occurs. If that does not happen, 

then that might indicate that there are alterations regarding the participant’s emotion recognition 

system. Besides working as an indicator of emotion recognition, the results given could help 

improve the accuracy of the classifier and reinforce the error-monitoring system. Yet, the low 

classification accuracy of congruent vs incongruent detection derails this purpose, providing the 

user with misclassifications, which may have affected users’ evaluation of feedback. Waveforms 

of Interaction-ErrPs were very oscillatory and variable between subjects. Although not the same, 

our Interaction-ErrP shows some resemblances with the Interaction Potentials obtained by (Ferrez 

& del R. Millan, 2008). These were characterized by a first positive peak at 200 ms, a first 

negative peak at 250 ms, a second positive peak at 320 ms, and a second negative peak at 450 ms. 

We have a first positive peak at around 150 ms, a first negative peak at 220 ms, a second positive 

peaking at 490 ms and after it a negative peak at 610ms. We have however a negative peak 

occurring at 220 ms and a third positive peak occurring at 750 ms, for which we could not find 

any direct correlate.  

Other reasons can be pointed out to the untypical waveform of the interaction-ErrP, namely, the 

way the feedback is shown may be confusing about what the participants should do, and on the 

other hand the long trial with a sequence of several cognitive processes.  

The distribution of EEG activity obtained from topographical maps still leave us uncertain 

regarding the focal point of the potentials. This could mean that the participant did not understand 

that the feedback provided was related to the facial expression recognition, and therefore he did 

not make a mental distinction between error and correct trials. However, the mechanical feedback 

given by participants, which in percentage was the same as the number correctly reported, 

revealed that they were able to relate the facial expression observed (the participants clicked the 

mouse in every successful single trial). Given the results achieved, it was not possible to be sure 

that the participants identified the system’s incorrection as an error. Perhaps, altering the way we 

provide feedback could clarify this issue. The classification results were worse when compared 

to the ones obtained with the Error Potentials of the Calibration Task. This is not a surprise given 

that the number of trials in every subject is much smaller when compared to those of the 

calibration task.  

The overall results show us that there is still progress to be made regarding the BCI feedback, and 

that to provide more concrete results, more experiments ought to be made. 
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6.4 Limitations and Future Directions 
 

The fulfillment of this study with a bigger number of participants would provide more sustainable 

conclusions. There were also some technical issues related to the photodiode which led to the loss 

of data. It required successive check-ups during the experiment, to ensure that it was properly 

attached to the monitor. Besides affecting data, this issue caused some experiments to take longer 

than expected. The experiment is already quite long, so further delays only make increase 

tiredness in participants, which then can be reflected in their performance. The next step could 

encompass the usage of another software for stimulus presentation. 

For this first version of the paradigm, we only used two emotions, and very expressive ones. 

Future iterations could encompass more subtle facial expressions as well as other emotions, to 

compare the differences with the evoked results. A paper by Sexton, 2015 discussed the 

importance of using rewards of social stimuli to participants engaging in BCI tasks. Taking this 

into account, one of the modifications involved could be displaying the feedback of the interface 

with pictures instead of words. As a first demonstration of the proposed paradigm, we have made 

use of a very straightforward classification approach. In the future, other approaches could be 

used to increase the performance of the BCI, reduce calibration time and increase usability.  
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7. Conclusion  
 

 

The main goal of this work was to implement a neurofeedback BCI system, which could be used 

to train social and cognitive skills in ASD. For that purpose, we designed a Face Word Emotional 

Stroop Task, to investigate the cognitive processes related to Facial Emotion Recognition and 

error detection. For validation of that paradigm, we tested the task on ten healthy subjects and 

used the responses to train a classification model. Finally, we implemented that classification 

model in an EEG-based BCI and obtained results for single-trial detection of the evoked 

potentials.  

The results obtained show that the Face Word Emotional Stroop Task designed produces specific 

responses regarding congruent and incongruent trials that can be decoded in real-time with 

different rates of success, validating the task. The neurophysiological evidence obtained by this 

paradigm is similar to those of studies involving error monitoring tasks, which leads us to believe 

that these can be considered Error Potentials. When compared to the responses of other Facial 

Emotional Stroop Studies, our results fail to display the existence of some its most recognizable 

components (N450, SP). Regarding the interaction error potential (resulting from the BCI 

performance evaluation by the user), we were able to detect differences between Error and Correct 

Trials, suggesting that an ErrP is elicited. However, offline analyses failed to show successful 

classification of these signals, leading us to reconsider the design of this part of the task.  

In sum, the conducted experiments conducted show the feasibility of using an emotional context 

to elicit an intuitive brain pattern (error potential) and lay the possibility of using the paradigm 

proposed in a social cognition training approach. 
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9.  ANNEX A 
 

The following figure (Figure 9.1) presents individual r-squares for the calibration session of the 

emotional Stroop Task.  
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Figure 9.1: R square for Incongruent and Congruent trials of all twelve channels, for participants S1, S2, S3, S4, 

S5, S6, S7, S8, S10, respectively. 


