1

UNIVERSIDADE B

COIMBRA

Antonio Alexandre Marques de Sa

IOT DEVICE FUNCTIONALITY ATTESTATION
MECHANISMS

Dissertation in the context of the Master in Informatics Security, advised by
Professor Bruno Sousa and presented to the Department of Informatics Engineering
of the Faculty of Sciences and Technology of the
University of Coimbra.

September of 2022

1 2

~ FACULDADE DE
CIENCIAS E TECNOLOGIA

UNIVERSIDADE b

COIMBRA

DEPARTMENT OF INFORMATICS ENGINEERING

Antonio Alexandre Marques de Sa

loT Device Functionality
Attestation Mechanisms

Dissertation in the context of the Master in Informatics Security, advised by Prof.
Bruno Sousa and presented to the Department of Informatics Engineering of the
Faculty of Sciences and Technology of the University of Coimbra.

September of 2022

~ FACULDADE DE
CIENCIAS E TECNOLOGIA

UNIVERSIDADE b

COIMBRA

DEPARTAMENTO DE ENGENHARIA INFORMATICA

Antonio Alexandre Marques de Sa

Mecanismos de atestacao de
funcionalidades de dispositivos loT

Dissertagdo no ambito do Mestrado em Seguranca Informatica, orientada pelo
Professor Doutor Bruno Sousa e apresentada ao Departamento de Engenharia
Informatica da Faculdade de Ciéncias e Tecnologia da Universidade de Coimbra.

Setembro de 2022

Acknowledgements

I would like to thank professor Bruno Sousa, my advisor, who welcomed me,
even late, and trust that we can work together.

In memory of my mother and brother, victims of complications from our war
against SARS-Cov19.

iv

Abstract

Attestation is a mechanism that is employed to verify the authenticity and in-
tegrity of the other(s) part(s), i.e., in hardware and/or software of a device. The
remote attestation is the activity of verifying the authenticity and integrity of a
target that provides evidence to a verifier over a network that should be accepted
or denied as a result of this process. Classic authorization relies in the infor-
mation provided by a device and gives permission for a specific operation. The
attestation adds a new a layer of information, not only we need to know who
the device is, but we also need to know if it is in good standing (i.e. perform-
ing according to its design) before authorization. This document proposes the
use of the Passport model, using the Challenge /Response development based on
the architecture described by the IETF working group RATS - Remote Attestation
Procedures Architecture [1]. The elaborated Proof-of-Concept is designed and
evaluated using docker containers and TPM software simulation.

Keywords

Remote attestation, IoT, challenge-response, Passport Model, framework, RATS,
IETF,

Resumo

Atestagdo é o mecanismo pelo qual um parceiro usa para verificar a autenticidade
e integridade da (s) outra (s) parte (s), ou seja, no hardware e / ou software de um
dispositivo. Ja a atestagdo remota é a atividade de verificagdo da autenticidade
e integridade de um alvo que fornece evidéncias a um verificador em uma rede
que devem ser aceites ou negadas como resultado desse processo. A autoriza-
cdo classica esta relacionada com o acreditar no que um dispositivo afirma quem
é e, no dar permissdes para uma operagdo especifica. O atestado adiciona um
Nnovo mecanismo; ndo sé precisamos saber quem é o dispositivo, como também
precisamos de saber se estd em boas condi¢des (i.e. a funcionar conforme foi de-
senhado) antes de conceder autorizacdo. Este documento propde a utilizacdo do
modelo Passport, utilizando o desenvolvimento Challenge /Response baseado na
arquitetura descrita pelo grupo de trabalho da IETF RATS - Remote Attestation
Procedures Architecture [1]. A prova de conceito foi elaborada e avaliada usan-
dos containers docker e simulagao de software TPM.

Palavras-Chave

Atestagdo remota, 10T, desafio-resposta, Modelo Passaporte, estruturas, RATS,
IETF

vi

Contents

Introduction

1.1 Objectives
1.2 Contributions/Achievements
1.3 Structure e

Background

2.1 Trusted Platform Model 2.0-TPM2.0
2.1.1 Endorsement Certificate
2.1.2 Platform Configuration Registers-PCR

2.2 Constrained Application Protocol -CoAP
221 CoAPFETCHMethod

2.3 Datagram Transport Layer Security - DTLS

2.4 Concise Binary Object Representation-CBOR

State of the Art and Standardization

3.1 Standardized Attestation Mechanisms

3.2 Attestation Mechanisms in the literature
321 RATSModel o
322 SHeLAModel
323 SARAModel

33 CHARRAProject
331 Advantages
3.3.2 Limitations e

34 Summary

Research Methodology

41 Motivation
42 Objectives
43 Approach.
44 Methodology

CHARRA-PM - CHARRA Passport Model

51 PassportModel
51.1 Considerations,
5.1.2 The Contribution of CHARRA-PM
51.3 Challenge/Responsesteps
514 PassportModelSteps

52 Implementation of CHARRA-PM
521 Establishing a CoAP session with DTLS

Vii

Contents

522 Certificate Signing Process, 33

5.2.3 Receipt of the certificate by the Relying Party 34

524 CoAPEndpoints 35

525 Docker Environment o 0oL 35

526 Considerations, 37

6 Validation, Evaluation and Results 38
6.1 ProofofConcept 38

6.2 Evaluation Methodology 42

6.3 Results 44

7 Conclusion 47
Appendix A Protocol Message Exchanges 53
Appendix B Command Line Parameter for CHARRA-PM 56
Appendix C Measurements Data Source 58

viii

Acronyms

ASCII American Standard Code for Information Interchange.
CA Cetrification Authority.

CBOR Concise Binary Object Representation.

CHARRA-PM CHAllenge-Response based Remote Attestation - Passport Model.
CoAP Constrained Application Protocol.

DTLS Datagram Transport Layer.

EK Endorsement Key.

IETF Internet Engineering Task Force.

IoT Internet of Things.

JSON JavaScript Object Notation.

M2M Machine to Machine.

MITM Man in the Midlle.

MQTT Message Queuing Telemetry Transport.

PCR Platform Configuration Registers.

PoC Proof of Concept.

PSK Pre-Shared Key.

RA Remote Attestation.

RATS Remote Atestation Procedures.

RPK Raw Public Keys.

RTS Root of Trust Storage.

SARA Secure Asunchronous Remote Attestation for IoT Systems.
SHA Secure Hash Algorithm.

SHeLa Scalable Heterogeneous Layered Attestation.

SSL Secure Sockets Layer.

TLS Transport Layer Security.

TPM Trusted Platform Module.

UDP User Datagram Protocol.

URI Uniform Resource Identifier.

ZigBee Zonal Intercommunication Global-standard.

ix

List of Figures

2.1
2.2
2.3
24
2.5
2.6

3.1
3.2
3.3
34
3.5
3.6
3.7

51
52
53
54

6.1
6.2
6.3
6.4
6.5
6.6
6.7
6.8
6.9
6.10
6.11

Al
A2
A3
A4
Ab5
A6

Trusted Platform Module (TPM) 3
EndorsementKey) 5
High Level block diagram of interposer onanIC2bus 6
CoAP Message Diagram 8
Abstract Layering of COAP oL 9
ASCII Table foundin [30] 13
Challenge-response protocol [31] 14
RATS Dataflow 17
PassportModel o 19
Background-check Model 20
SHeLA Topology 21
SARA systemModel 22
CHARRA protocol flow 23
CHARRA-PMdataFlow 30
Application’sendpoints oo o000 35
Docker Containers 36
Docker with TPM 2.0 configured 36
Attesterready Lo Lo 38
Relying Partyready 38
Verifierready 39
Attester Processing Evidence 39
Evaluating Evidences and issuing the Attestation Result 40
Evaluating Evidences and issuing the Attestation Result 41
Attestation Result Receives from Verifier 41
Relying Party Receives and appraise the Attestation Result 42
Times measurement interactions 43
Avgerage execution time per aproaches 45
Overhead per Implementations 46
CoAPwith DTLS-RPK 53
CoAPwith DTLS-RPK, 53
CoAP with FETCHmethod 54
CBOR complete messagesent 54
CBOR complete message received 55
Attestation Result Received 55

List of Tables

21
2.2

3.1
B.1
C1

CoAP MessageFormat 9
COBRTextencoding 12
Roles 18
Parameters of CHARRA-PM 56
Measurements Table 59

X1

Listings

21
2.2
51
52
53
54
6.1
6.2
6.3
6.4
6.5

ExtendingaPCR 5
CodingCBOR 12
Function to set up PSK CoAP connection 33
Function to set up RPK CoAP connection 33
Sign and encoding the attestation Results 33
Receive and apreaise AttestationResults 34
Structure of requestclaimso oo L 39
Structure of attestationresponse oL 40
Structure of AttestationResult 40
CBOR decoding time measurement 43
Attestation Signature time measurement 44

xii

Chapter 1

Introduction

The wide range of low-cost embedded devices with the ability to command other
devices on a network has grown enormously. The network to which these devices
belong is called the Internet of Things (IoT), which at the year 2021 registered a
growth of 9% compared to the previous year (12.3 billion dollars) according to
IoT Analytic [2].

Such devices have low cost, low consumption and easy integration. Their appli-
cation is possible in several layers of the industry, such as the medical, automo-
tive, smart cities, smart-home sectors.

IoT devices generally do not have built-in security features or the ability to install
or update software. That was a limitation without major problems when installed
in isolated networks and not connected to the outside world. However, as tech-
nology advances, the IoT interconnectivity with the internet’s enterprise network
grows [3]. Another point of observation is the manufacture of these devices on
a large scale, where manufacturers want to produce quickly and at a lower cost
without safety, security concerns. On the other hand, we have the installation
of devices without proper precautions. Due to this, IoT systems are becoming
a favourite target for cyber attacks [4]. That said, we can use Remote Attesta-
tion (RA), which allows us to find which device is not following the network’s
policies, or not functioning as intended and was possibly the target of an attack.

In 2019, the Internet Engineering Task Force (IETF) started a working group [5]
to discuss the creation of standards for remote attestation models and procedures
(models for Remote Atestation Procedures (RATS)). IETF is one of the organiza-
tions responsible for internet technology standards [6].

Not all IoT devices have computation power to perform complex calculations or
have security features implemented hardware (e.g. TPM explained in section 2.1).
That opens a gap in this field of research. In addition, RA protocols are randomly
executed at unpredictable times, causing the tester’s regular operation to be in-
terrupted for the attestation process. Such protocol features are not tolerated on
devices that perform critical functions or operate under intermittent connectivity.
Disruption of service is a challenge to be improved in the remote attestation.

In this work, We will study aspects of recent proposals for attestation of IoT de-

Introduction

vices based on Asynchronous attestation - Secure Asunchronous Remote Attesta-
tion for IoT Systems (SARA) [7] and based on scalable systems, such as Scalable
Heterogeneous Layered Attestation (SHeLa) [8]. Both try to solve synchroni-
sation problems, heterogeneity and device overload, considering static and dy-
namic network problems.

1.1 Objectives

In this work, the objective is a remote attestation model for IoT environments.
To achieve such goal, I've looked for a realistic implementation of a remote at-
testation model in which it was possible to add security functionality to increase
the reliability and integrity of information in IoT environments. Make use of the
result produced by the Challenge/Response model, allowing this work to con-
tribute to future investigations where tests and analyses are necessary for vali-
dating Remote Attestation models.

1.2 Contributions/Achievements

The main contribution of this work, includes a new proof of concept based on
the RATS Passport Model [1] - the CHAllenge-Response based Remote Attesta-
tion - Passport Model (CHARRA-PM). This contribution is an approach from the
attestation Challenge/Response Model with the addition of a Relying Party re-
sponsible to grant authorization for IoT devices. This contribution is available as
open source code on GitHub [9]

Within the context of a European project - ARCADIAN-IoT - where the Univer-
sity of Coimbra and the IPN are involved, the IPN engaged us during the study
and development phase to assist them in reviewing the ideas put forward in this
dissertation. Several meetings were held where the application of CHARRA and
the implementation of the Passport Model were presented. In addition, some
chat and video sessions were made with a project member to explain interactions
using RATS concepts in more detail.

1.3 Structure

This document is organized as follows:
¢ Chapter 2 presents the main technologies to support the implementation.

¢ Chapter 3 documents the state of the art and standardization on remote
attestation.

¢ Chapter 4 the research methodology.
¢ Chapter 5 presents the implementation of the CHARRA-PM.
¢ Chapter 6 The Proof of concept is explained.

¢ Chapter 7 concludes the document.

Chapter 2

Background

This chapter will present the technologies used to implementation of CHARRA
and CHARRA-PM. The Trusted Platform Module (TPM) 2.0 simulator and other
protocols that used also to guarantee security and integrity in many implemen-
tations, either in IoT devices with low capacity and in Windows 11 devices with
TPM for secure boot.

2.1 Trusted Platform Model 2.0 - TPM 2.0

The Trust Platform Module (TPM) is an international standard (ISO/IEC 11889-
1:2015) [10] that defines the architectural elements of a low-cost, secure crypto-

processor, enabling trust in general computing platforms.

TPM

Cryptographic Co-Processor
= Asymmetnc enJdecrypticn (RSA) —

+ Digital signature (R5A)

| SHA

InputiOutput
= Profocal enfdecoding
» ERfofces BCCoks pobics

| HMAC

PCR{23]

| Random Number Generation

Key Generation

= Agymmetne keys (RSA)
» Symimspinic keys

* Nonces

PCRID]

Optin

« Stores TPM state information
(e.g. ¥ TPM is disabled)

» Enforcas slato-dapancend bmilatong
(e.g.. some commands must not be
exgcited if the TPM is disabled)

Execution Engine

= Procasses TPM commands

= Ensures segregation of operations
= Ensurés protection of secrets

Platform Configuration Registers (PCR)
= Storags of integrily maasurements

Mon-Volatile Memory
= Stones persislent TPL data
{@.g. the TPM identity or special keys)
= Prowides read-, witte- of unphobecied
SHOTAGHD BCoassibhy Trom outsica the TFM

Figure 2.1: Trusted Platform Module (TPM)

The implementation consists of a physical device connected to the motherboard
that communicates with the main processor (CPU) over a slow, low-bandwidth
channel, providing secure, hardware-based, tamper-proof key generation and en-

Background

crypted key storage. Malicious software cannot tamper with security functions
as it implements physical security features to prevent tampering. The use of TPM
technology has several significant benefits, including [11; 12]:

* Create, maintain and restrict the use of cryptographic keys.

* Device authentication using the TPM’s unique RSA key, which was written
to the device by the manufacturer.

¢ Allows guaranteeing the platform’s integrity by storing unique values in its
registers.

The most adopted use by the industry is the measurement of system integrity and
the creation and use of keys. Let us imagine that during a system’s boot process,
the boot code (the firmware and operating system components) can be measured
and recorded in the TPM. These measurements can be used as evidence of sys-
tem boot health. The TPM first version (1.2), published around 2005, used Secure
Hash Algorithm (SHA) version 1.0 as the hashing algorithm. However, after the
attacks against SHA-1, the working group started the development of version
2.0 of the TPM, which was completely redesigned, allowing the use of more se-
cure hashing algorithms (SHA-256, SHA-384 and SHA- 512) [11; 13]. Figure 2.1
presents the general components of TPM [14]

The TPM cannot interrupt normal CPU execution because it is a passive device.
To function needs to be fed with data from the host (such as information mea-
sured during a boot process) on which it is installed and accessed by programs
specifically built to interact with the TPM. This information is recorded in the
Platform Configuration Registers (PCR) Registers, explained in the PCR section
2.1.2. TPM instruction execution is single-thread; in other words, it executes one
instruction at a time. Each statement must wait for the executing statement to
complete.

2.1.1 Endorsement Certificate

Each TPM chip has a unique and secret Endorsement Key (EK), usually certified
by a trusted Cetrification Authority (CA). Figure 2.2 shows the flow of creating
and writing the EK in the TPM. The flow starts during the fabrication of the TPM
chip. First, a self-signed root certificate is created by an internal CA (it may al-
ready exist). Subsequently, the processes of creating the public and private keys,
where the private key is stored on the TPM chip, and the creation of the endorse-
ment certificate, sighed by a proprietary key known only by the manufacturer
and not stored on the TPM chip. Finally, the endorsement certificate is engraved
on the TPM chip.

2.1.2 Platform Configuration Registers - PCR

Platform Configuration Registers (PCR), are a set of fixed-size registers in the
TPM. Unlike regular registers, PCR values cannot be set to arbitrary values. The
only operation they support (other than Read) is Extend, which is explained in

4

Background

| Vendor.com | Wendor CA | | Factory

Self signed root cert

Publishes reot cert

[E]

Manufacturing Time I

Create Primary Endorsement Key

Ekpub

Creates EKcert

Sign EKCert (CSR)

Signs cert w/
root key

Signed EKcert

Store EMcert

+

Stores EKcert
in NVDATA

Done

| Vendor.com | Vendor CA | | Factory

Figure 2.2: Endorsement Key)

the following paragraphs. Platform Configuration Registers (PCRs) are particular
TPM objects that can only be modified or written by the hash extension mecha-
nism. The new input value is concatenated with the existing value in the PCR
and hashed. The new hash value now replaces the old value, which means that
even though it is a single location, the final value reflects a history of all hash
extensions. PCRs are organized into banks (up to 32 PCRs), one for each specific
hash algorithm family of SHA1 and SHA2. The Trusted Computing Group has
a specification indicating which part of the system software should be extended
for PCR indices. [15]. Robustness mechanisms prevent physical tampering with
these making the TPM a Root of Trust Storage (RTS).

// Get initial PCR value.

01: var pcr = ByteArrayToForgeBuffer (sim.GetPcr(1));
// Extend PCR1 with the SHA256 digest of ’Hello’.

02: var rc = app.ExtendPcr (/*pcr=%/1, ’Hello’);

03: assert(rc == TPM2_RC_SUCCESS, ’ExtendPcr failed’);
// Verify PCR extend semantics.

04: var measurement = new forge.sha256.create ()

05: measurement.update(’Hello’);

// PCR := Hash(PCR || M)

06: var extend = new forge.sha256.create()

07: extend.update(pcr.data);

08: extend.update(measurement.digest().data);

09: pcr = extend.digest();

10: wvar actual = ByteArrayToForgeBuffer (sim.GetPcr(1));

11: print(’Expected: ’, forge.util.bytesToHex (pcr.data));
12: print(’Actual : ’, forge.util.bytesToHex (actual.data));
13: assert(_.isEqual(pcr.data, actual.data) == true, ’PCR value

does not match’);
14: print(’0K’);

Listing 2.1: Extending a PCR

Background

The code listing 2.1 is an example in C demonstrating the PCR1 "extend" process,
as shown in [16]. Explaining in more detail the PCR extension process, we have:

In line 01, the value stored in PCR1 that is retrieved and placed in a PCR
variable. On lines 02 and 03, the PCR extension is performed by the "Ex-
tendPcr’ function, which does all the work, applying hash 256 to the "Hello"
value, and then concatenating it with the previous hash value stored in

PCRI1. Finally calculates the hash of the concatenated value and stores it
in PCR1.

In the block of lines 04 to 13, the step-by-step is presented in case we do not
use the "ExtendPcr” function.

In line 04, hash 256 of the "Hello’ value is created and stored in the variable
‘'measurement’ in line 05.

On line 06, a variable called ‘extend’ is created that will receive the values
of the concatenated hashes. In line 07, the value retrieved in line 01 (which
is already a hash) is inserted. On line 08, the word "Hello” hash is created
and inserted into the variable ‘extend’. Finally, the final hash (over the pre-
viously concatenated hash data) is created and stored in PCR1.

From line 10 to the end, a check is made between the value calculated (PCR)
and the value retrieved (current) from the PCR. If the comparison is correct,
the word "Ok" is displayed.

The size stored in each PCR is defined by the associated hash algorithm, which
can be updated per the policy defined for the PCR. Version 1.2 only supports
SHA-1, and version 2.0 supports SHA-2 algorithms in addition to this.

In a typical trust boot, operations measure the first stage firmware (reading and
hashing the binary code), using the result to extend the first PCR. Each subse-
quent stage of the process measures the next stage before executing it. Eventually,
when the kernel is measured and initialized, the TPM will have a set of PCRs de-
scribing the software it has run. If these PCRs do not contain the expected values,
someone has tampered and the system is unreliable.

Tele Trusted
Peripheral 1 Peripheral 2 Platform
Module
§ g ‘ Remote
[Control
Host | Interposer <~
Computer l
SCL .
SDA
& - &

Figure 2.3: High Level block diagram of interposer on an IC2 bus

Background

The TPM is a device accessed through a device driver, so any process that wants
to query the TPM must do so through the kernel. There is a potential problem:
if the kernel has been corrupted, it can lie about the values stored in the PCRs,
thus nullifying the entire measurement process. The article [17] presents possible
attacks using the IC2 Serial Bus responsible for the communication interface of
the TPM with the device hardware:

“The tool, which we call TPM Genie, has the ability to intercept and modify all traffic
that is sent over the bus and is intended to assist in vulnerabilities research of discrete
TPMs and the host-side drivers that interact with them. Leveraging TPM Genie, we show
how an interposer device can easily spoof measurements stored in Platform Configuration
Register (PCR) banks. This act of PCR spoofing serves to carry out a variety of attacks
against the main functions of a TPM that depend on the integrity of the PCR, namely:
metered boot, remote attestation, and sealed storage” [17].

It should be noted that such attacks come from techniques at the circuit level
(hardware), as shown in figure 2.3. Software attacks, which manipulate the data
extracted from the TPM, can be avoided with time, nonces and hash control tech-
niques, such as replay attacks.

The operation called "quoting" ensures that this information is reliable. This op-
eration provides current PCR values signed by a private factory key on the TPM
device. When these values are requested, a random nonce is inserted in the re-
quest payload (digest) of the signed response, preventing the "quotes" from being
reused by malicious software.

Thus, a system that wants to verify a "quote" uses the TPM public key and ensures
that the "nonce" matches what was provided. If all goes well, it can be assumed
that the PCR values provided by the TPM are healthy.

It is possible to read the PCR values directly, but this process does not guarantee
that the values returned are intact; that is, there is the possibility of an attacker
carrying out a Man in the Midlle (MITM) attack, tampering with the values of
one or several PCRs. Reading by “quote” is the safest, and a random nonce must
be generated for each new request.

Note: For the scope addressed by this dissertation, we will use version 2.0 of TPM, with
values starting at zero, as it is not a boot process but a proof of concept that uses a TMP
emulator by Software [18; 19]

2.2 Constrained Application Protocol - CoAP

The Constrained Application Protocol (CoAP) [20] is a specialized web transfer
protocol for use in constrained nodes (e.g. low-power, 8-bit microcontrollers with
small amounts of ROM and RAM). The protocol is designed for Machine to Ma-
chine (M2M) applications such as smart energy, building automation, and IoT in
general. It is a protocol implemented at the Application layer, which interacts
with the lower layers.

CoAP provides a request/response interaction model between application end-

Background

points, supports integrated service and resource discovery, and includes key web
concepts such as URIs and Internet Media Types. CoAP is designed to easily in-
terface with HTTP for web integration, meeting specialized requirements such
as multicast support, very low overhead, and simplicity for constrained environ-
ments. The purpose of CoAP is not to blindly compress HTTP [21], but to per-
form a common subset with HTTP in an optimized fashion for M2M applications.
CoAP has the following main characteristics [20]:

¢ Web protocol that meets M2M requirements in constrained environments;

¢ UDP binding [22] with optional reliability that supports unicast and multi-
cast requests;

¢ Asynchronous message exchanges;

* Low header overhead and parsing complexity;
¢ URI and Content-Type support.

¢ Simple proxy and caching features;

¢ Stateless HTTP mapping, allowing building proxies providing uniform ac-
cess to CoAP resources via HTTP;

¢ Security link to Datagram Transport Layer Security (DTLS) [23].

- y " y - y b d

H""'--—-"'" \\"""'--—-""-' "“"--—-"'"F E""-—--""'
CON [Ox4d45] CON [0X4D46]
Cet/temperature Get/ temperature
(Token 0x21) | (Token 0x22)
ACK [0x4d45] ACK [0x4d45]
2,05 Content 4.04 Not Found
(Token 0x21) [Token 0x22)
“20.ac” “Not Found”

Figure 2.4: CoAP Message Diagram

The CoAP interaction model is similar to the HTTP client/server model. How-
ever, when there are M2M interactions, the CoAP implementation will act as a
client and server. Equivalent to HTTP, a CoAP request can be as follows: A re-
quest is sent by a client, requesting a particular action (using a Method Code) on
a resource (identified by a Uniform Resource Identifier (URI)) on a server. Unlike
HTTP, CoAP handles these exchanges asynchronously in a datagram-oriented
transport such as UDP, using a messaging layer that supports optional reliabil-
ity. CoAP defines four types of messages [20]: Confirmable, Non-committable,
Acknowledgment, Reset. The Method Codes and Response Codes included in

Background

some of these messages cause them to carry requests or responses.

A piggybacked Response is included right in a CoAP Acknowledgment (ACK) message
that is sent to acknowledge receipt of the Request for this Response. The Piggybacked
Response is illustrated in figure 2.4.

Application Layer

Requests / Responses
—————————————————————————————— — CoAP

Messages

upr

Figure 2.5: Abstract Layering of CoAP

We can logically think of CoAP as using a two-tier approach; a CoAP messaging
layer used to handle UDP and request/response interactions using Method and
Response Codes, as represented in figure 2.5.

Ver T TKL code Message ID
Token (if any, TKL bytes) ...

Options (if any) ...

Payload (if any) ...

Table 2.1: CoAP Message Format

Based on the exchange of compact messages that, by default are transmitted over
User Datagram Protocol (UDP), each CoAP message occupies the data section of
a UDP datagram. [20]. The header has a fixed size of 4 bytes, a variable-length
token value, the CoAP options, and the Payload as described in Table 2.1.

The fields that make up the CoAP message header are composed of, as per REC
7252 [20]:

Version (ver) : CoAP version number.

Type (T) : Indicates the message type: Confirmable (0), Non-confirmable (1), Ac-
knowledgment (2), or Reset (3).

Token Length (TKL): Indicates the length of the Token field (variable). Lengths
between 9 and 15 are reserved and must not be sent. It should be processed as a
message format error.

Code: It is a field divided into a 3-bit class (most significant bits) and a 5-bit
detail (least significant bits), documented as "c.dd", where "c" is a digit from 0
to 7 to represent the class, and "dd" are two digits from 00 to 31 to represent the
detail.

Background

The class can indicate a request (0), a success response (2), a client error response
(4), or a server error response (5). All other class values are reserved.

The code (0.00) indicates an Empty message. In case of request, the Code field
indicates the Request Method; in case of response, a Response Code. [20] sections
3,5and 12.1.

Message ID: Used to detect message duplication and to match Commitable/Un-
confirmable type messages.

CoAP proposes using Datagram Transport Layer (DTLS) as the security proto-
col for data encryption, integrity protection, and authentication that will be ex-
plained in section 2.3.

2.2.1 CoAP FETCH Method

Like HTTP, CoAP uses the REST model. In other words, REST can be defined as
servers making resources available in a URL, and clients access those resources
using methods such as GET, PUT, POST and DELETE. However, three new meth-
ods were introduced to CoAP [24]: FETCH, PATCH and IPATH.

The FETCH method used to perform the equivalent of a GET with a request body;

The twin methods PATCH and iPATCH, to perform partial modifications of an
existing CoAP resource (similar to HTTP PATCH).

The FETCH method is used in our development because it provides a solution
that spans the usage range of GET and POST. Like the POST method, the input
on the FETCH method is passed within the request payload and not as part of
the request URIL

2.3 Datagram Transport Layer Security - DTLS

The DTLS protocol [23] was created to be responsible for providing secure com-
munication over a datagram network (UDP). The DTLS design is to be similar to
Transport Layer Security (TLS) as possible. This fact allowed the reuse of existing
code and infrastructure.

The primary purpose of DTLS is to build "TLS over datagram transport”. As is
well known, datagram transport does not require or provide reliable or orderly
delivery of data. Due to the delay-sensitive nature of the transported data (me-
dia streaming, Internet telephony, online gaming, and even IoT applications), the
behaviour of applications that use UDP will remain the same when the DTLS
protocol is used for security. DTLS will not compensate for lost or reordered data
traffic.

The following are some reasons why TLS cannot be used directly over UDP: [23]
¢ TLS relies on an implicit sequence number in the records.

DTLS solves this problem by adding sequence numbers to records.

10

Background

The TLS handshake is a block-step cryptographic protocol. Messages must
be transmitted and received in a defined order, and any other order is con-
sidered an error.

The DTLS handshake includes message sequence numbers, allowing the
reassembly of fragmented messages and in-order delivery in the event of
reordering or loss of datagrams.

Handshake messages are larger than a single datagram.

DTLS adds fields to handshake messages to support fragmentation and re-
assembly:.

DTLS has mechanisms to handle issues, such as:

Packet Loss: DTLS uses a simple retransmission timer to handle packet loss.

Reordering: each handshake message receives a specific sequence number.
If the message is not in the expected sequence, it is queued and processed
when all previous messages have been received.

Fragmentation: DTLS handshake messages can be fragmented into multi-
ple DTLS records. Each record is intended to fit into a single UDP datagram
containing the offset and fragment length allowing the recipient to reassem-
ble the fragmented handshake message once it has received all the bytes of
the message.

Repetition Detection: DTLS maintains a bitmap window of received records.
It is optional. Without detailing the process, it should be noted that DTLS
supports Raw Public Keys (RPK) [25] and Pre-Shared Key (PSK) [26].

Pre-Shared keys: In this case, a secret is shared (or already known) that
needs to be available to the device as well as to the other party in the com-
munication before the process starts.

Raw Public Keys: The parties involved have a public/private key stored,
and the public key must be known to authenticate the other party.

The C library, Mbed-TLS [27], implements cryptographic primitives, handling
X.509 certificates, Secure Sockets Layer (SSL)/TLS and DTLS protocols. Its code is
extremely small, which makes it suitable for embedded systems. Implementation
are detailed in section 5.

24

Concise Binary Object Representation - CBOR

The Concise Binary Object Representation (CBOR) [28] is a data format whose
design goals include the possibility of very small code and message size. It is a
format similar to JavaScript Object Notation (JSON) [29] with binary encoding,
whose goals are:

1.

Unambiguous encoding of the most common data formats of Internet stan-
dards; i.e. arrays, maps, numbers and trees

11

Background

Compact code for encoder or decoder (to work on restricted devices);
No schema description is needed;

Fairly compact serialization;

Applicability to restricted and high-volume applications;

Good conversion to JSON;

N o Ok WD

Extensibility and Backward Compatibility, the format can be extended while
maintaining backward compatibility with older decoders.
An example of very simple use of encoding and decoding can be :

data = "coimbra"
encoded = CBOR.encode(data) // 67436F696D627261
data = CBOR.decode(encoded) // coimbra

Listing 2.2: Coding CBOR

The encoded text "coimbra" is represented as an American Standard Code for
Information Interchange (ASCII) value 67436F696D627261, where:

* 67 represents the octal of the number seven (see 2.6 - the total size of the
"Coimbra" string is seven characters;

* 436F696D627261 - The table 2.2 help us to understand the conversion. Also,
using the figure 2.6, we can convert the hexadecimal to the individual char-
acter of the word "Coimbra".

Position | 1 2 3 |4 5 16 |7
Hexa 43 | 6F | 69 | 6D | 62 | 72 | 61
Text Clo |i m |b |r a

Table 2.2: COBR Text encoding

We will not go into the details of CBOR representation. This format is very similar
to the JSON data model, using binary data serialization (according to the data
type), which significantly reduces the size, and time for encoding and sending
the data over the network. The detail of data representation (major types) can be
found in the appendices of RFC8949 [28].

12

Background

ASCII Tabl

Dec Hex Oct Char |Dec Hex Oct Char |Dec Hex 0Oct Char |Dec Hex 0Oct Char
0 0 0 32 20 40 [space] 64 40 100 @ 96 60 140

1 1 1 33 21 41 ! 65 41 101 A 97 61 141 a
2 2 2 34 22 a2 ¢ 66 42 102 B 98 62 142 b
3 3 3 35 23 43 # 67 43 103 C 99 63 143 c
L a4 4 36 24 44 $ 68 44 104 D 100 64 144 d
5 5 5 37 25 45 % 69 45 105 E 101 65 145 e
6 6 6 38 26 46 & 70 46 106 F 102 66 146 f
7 7 7 39 27 47 ! 71 47 107 G 103 67 147 g
8 8 10 40 28 50 (72 48 110 H 104 68 150 h
9 9 11 41 29 51) 73 49 111 I 105 69 151 i
10 A 12 42 2A 52 * 74 4A 112] 106 6A 152 j
11 B 13 43 2B 53 + 75 4B 113 K 107 6B 153 k
12 C 14 a4 2C 54 , 76 4Cc 114 L 108 6C 154 |
13 D 15 45 20 55 - 77 4D 115 M 109 6D 155 m
14 E 16 46 2E 56 . 78 4E 116 N 110 6E 156 n
15 F 17 a7 2F 57 / 79 4F 117 o 111 6F 157 [}
16 10 20 48 30 60 0 80 50 120 P 12 70 160 p
17 11 21 49 31 61 1 81 51 121 Q 113 71 161 q
18 12 22 50 32 62 2 82 52 122 R 114 72 162 r
19 13 23 51 33 63 3 83 53 123 S 15 73 163 s
20 14 24 52 34 64 4 84 54 124 T 116 74 164 t
21 15 25 53 35 65 5 85 55 125 u 117 75 165 u
22 16 26 54 36 66 6 8 56 126 V 18 76 166 v
23 17 27 55 37 67 7 87 57 127 w 119 77 167 w
24 18 30 56 38 70 8 88 58 130 X 120 78 170 X
25 19 31 57 39 71 9 89 59 131 Y 121 79 171y
26 1A 32 58 3A T2 H 90 5A 132 Z 122 1A 172 z
27 1B 33 59 3B 73 H 91 5B 133 [123 7B 173 {
28 1C 34 60 3C 74 < 92 5C 134 |\ 124 7C 174 |
29 1D 35 6l 3D 75 = 93 5D 135 1 125 D 175 }
30 1E 36 62 3E 76 > 94 5E 136 ~ 126 7E 176 -~
31 1F 37 63 3F 77 7 95 5F 137 127 7F 177

Figure 2.6: ASCII Table found in [30]

13

Chapter 3

State of the Art and Standardization

This section is intended to describe recent works in remote attestation. All pro-
posals came from a simple challenge-response protocol, as shown in figure 3.1,
which is basically the attestation of a single Verifier and a single Prover. [31]

Verifier Prover

X X

: (1) Challenge
>

(2) compute proof
of internal state

(3) Response

(4) Validity check
of proof

R e RRRtee e L

Figure 3.1: Challenge-response protocol [31]

Initially, the Verifier generates a challenge.
The Verifier sends the challenge to the Prover.

The Prover calculates a proof of state and forwards it to the Verifier.

L A .

Ultimately, the Verifier validates the response to the challenge and can, for
example, agree or not with the state of that device.

There is no industry standard for remote attestation. There are IETF studies that
intend to recommend the use of a framework for remote attestation. Some re-
searchers have proposed different types of remote attestation that have been im-
proved over the years published on websites and conferences, but they are not

14

State of the Art and Standardization

used as standards. Two of the most current and the IETF proposal are docu-
mented in section 3.2.1.

3.1 Standardized Attestation Mechanisms

There is an agreement on the four general approaches that remote attestation
should be categorized: implementation-based: hardware-based, software-based,
and hybrid remote attestation. In addition, we must rely on security architectures
as they provide the foundation for many remote attestation protocols:

® Security Architectures - It should provide reliable computing for low-cost
IoT devices, for example, key protection.

¢ Hardware-based Attestation - Chips or physical hardware modules that
guarantee the reliability of the remote attestation.

¢ Software-based Attestation - The program runs in memory to validate the
state of the system software. Communication with other devices is gener-
ally not allowed while the attestation protocol runs, and communication is
limited to one-hop distance.

¢ The Hybrid Remote Attestation - The goal is to combine the security of
hardware attestation with the lowest cost of software attestation and thereby
solve software-based remote attestation problems.

* Swarm attestation - Instead of describing the attestation of a single device,
it describes the attestation of many devices.

3.2 Attestation Mechanisms in the literature

An untrusted remote prover’s status can be determined by a remote verifier us-
ing the security service known as Remote Attestation. However, remote attesta-
tion includes extensions like code updates, device resets, and runtime state at-
testation. Additionally, the demand for device swarm attestation grows with the
popularity of networked IoT devices. In this section, the RATS Model will be pre-
sented in more detail since it is the focus of this work. The section 3.3 analyze the
Proof of Concept (PoC) of RATS Challenge /Response model.

The main disadvantage of RATS, is that it is still under specification and is not
yet a formal RFC document. Thus, other approaches may provide more adher-
ence given their stability. The Scalable embedded device attestation (SEDA) stood
out among the studies, which defines the term swarm as a set of 8 devices, where
there is the possibility of different hardware and software [32]. However, SEDA is
the basis of improvement for other more recent research, such as Scalable Hetero-
geneous Layered Attestation (SHeLA) [8], section 3.2.2 and Secure Asynchronous
Remote Attestation for IoT Systems (SARA) [7] in section 3.2.3.

15

State of the Art and Standardization

3.2.1 RATS Model

The objective of the RATS working group is to propose a framework (architec-
ture and standardized data formats) that can guide the secure and reliable con-
nection between IoT devices. The structure currently in place consists of a device
- “attester” - that produces reliable information - “evidence” - about itself, trans-
mitting it to another device responsible for validating the information received -
“verifier”. A third party is responsible for receiving the verification result - “Re-
lying Party” - to make decisions about communication, access, and permissions,
which the attester may or may not perform on the network.

The Verifier, when evaluating the Evidence, or the Relying Party, when evalu-
ating the Attestation Results, verify that the Claims values correspond to their
evaluation policy. Such checks include, for example:

¢ The equality comparison with a reference value, or
* Bein a range delimited by reference values, or

* Belonging to a set of reference values or

* Appear as a value in other claims.

A concrete example would be the need for a device - Attester - to prove that it can
convey with another device. For that, it has to provide Evidence from its system
that must be validated by a trusted entity - Verifier. The verifier will appraise
the Evidence and return an attestation result to prove the attester’s state. This
example can be enough for Challenge /Response Model but not for other models
defined in RATS documents [33].

Upon completion of all checks regarding the assessment policy, values are ac-
cepted as input to determine Attestation Results when evaluating Evidence or as
input to a Relying Party when evaluating Attestation Results. A Relying Party
can be any equipment with software capable of performing authorizations on
the network, such as a router, switch, or access point responsible for admitting
certified devices to the network.

Within the scope of this dissertation, it is essential to give relevance to the follow-
ing documents from the RATS Study Group:

e Remote Attestation Procedures Architecture that deals with the definition
of the RATS working architecture, in version 15 [1];

e Reference Interaction Models for Remote Attestation Procedures, in version
05 [34], deals with implementing remote attestation based on the architec-
ture.

In the conceptual flow of messages proposed by RATS in Figure 3.2, we have three
main actors: Attester, Verifier and Relying Party. In addition to the entities that
support the actors with pre-defined policies, reference values and endorsements.
These support entities are not part of the scope of implementation proposed by
the document [34] and for which they will not be mandatory in the development
demonstrated by this dissertation. We will stick with the three main actors.

16

State of the Art and Standardization

e e R L R S Hdckkhkdkmdkkkh Rtk
* Endorser * * Reference * * Verifier * * Relying Party *
EEREEREFRRREE * Value * * Owner * * Owner *
| # Provider * g kR R R s o o o o R SRR R R R R
| EEEREEEZEEERRER | |
| | | |
| Endorsements |Reference |&ppraisal |&ppraisal
| |values |Policy |Policy for
| | | for |Attestation
pmmmmmmm - . | |Evidence |Results
| | | |
| | | |
'l.l' 'llln' '|.,|' |
o e e ———— e = |
————— > Verifier [------. |
| Bl | |
| | |
| Attestation| |
| Results | |
| Evidence | |
| | |
| 'llln' 'I.l'
| Attester | | Relying Party
: . .

Figure 3.2: RATS Dataflow

In the RATS conceptual flow, we have [1]:

An “Attester” sends evidence to the “Verifier”, - which the verifier may
have requested in advance.

The “Verifier” assesses the evidence using or not “Endorsements”, “Refer-
ence Values”, or “Policies” and thereby attests to the reliability of the “At-
tester”. The “Verifier” then generates "Attestation Results" that may or may
not be used by the "Relying Party", as we will see later.

The “Relying Party” uses the attestation result (which can be positive, neg-
ative or have other values) and can apply its evaluation policy to make
application-specific decisions, such as authorization decisions, or accept the
received attestation result as valid. A negative result can mean a limitation
of permissions, or even the attesting party is not confident or has had part
of its system corrupted and needs corrective actions.

"Evidence" is a set of information requested about the target environment
that reveals operational status, health, and configuration with security rele-
vance.

"Attestation Results" are the input the Relying Party uses to decide to what
extent it will trust a specific Attester and allow it to access data or perform
some operation.

17

State of the Art and Standardization

* An "Endorsement" is a secure statement that some entity (e.g. a manufac-
turer) attests to the device’s integrity.

* When evaluating Evidence or when evaluating Attestation Results, the Ver-
ifier, the Relying Party or the Relying Party, use the corresponding Claims
values against the restrictions specified in its evaluation policy, which can
be, for example, the comparison between values (true/false, valid /not valid)

¢ The other entities serve to support the decisions of the “Verifier” and the
“Relying Party” with values and depend a lot on the type of implementation
and expected results.

The table 3.1 shows the main roles defined by RATS and helps us understand
each actor shown in figure 3.2.

Role Function performed by an entity: Produces Consume
produces evidence about
attester itself, which must be evaluated for the evidence N/A
attester to be considered reliable.
- Evidence,
assesses the validity of an - Reference Values,
verifier attester’s evidence and produces an attestation result - Endorsements,
attestation resulting from that assessment - Appraisal Policy
for Evidence
depends on the validity of - Attestation Results,
Relying Party information about an Attester, for Access validation - Appraisal Policy
the purpose of applying trusted actions for Attestation Results
is authorized to configure an Appraisal Poli
Relying Party Owner Assessment Policy for attestation P ppraisal Foucy N/A
. . . or Attestation Results
results in a relying party (admin)
is authorized to configure the A isal Poli
Verifier Owner Assessment Policy for evidence in a P pprallsa olicy N/A
o . or Evidence
verifier (admin)
whose Endorsements can help
endorser Vel.‘iﬁers assess the authenticity of endorsements N/A
Evidence and infer other
capabilities of the Attester.
whose Benchmark Values help
Verifiers assess Evidence to determine
Reference Value Provider | whether Known Acceptable Claims Reference Values N/A
have been recorded by the Attester
(Manufacturers)

Table 3.1: Roles

Terms and Concepts

In the RATS specification proposal document [34], the concepts are related to
information produced, requested and exchanged between entities. A complete
list can be found in the document, as mentioned earlier.

For a better understanding, a list of those that will be used in the context of the
dissertation, is provided below:

¢ Claim - Make up the structure of evidence and other artefacts in the infor-
mation chain in RATS. They can be a statement or a value pair, for example.

* Evidence - A set of Claims generated by the Attester to be evaluated by a
Verifier. Evidence can include configuration data, measurements, telemetry,
or inferences.

18

State of the Art and Standardization

¢ Attestation Result - This is the output generated by a verifier containing
information about an Attester, where the Verifier guarantees the validity of
the results.

Reference Models

According to the RATS architecture document, two reference models are pro-
posed to increase the fundamental mode (Challenge/Response)l [1; 34]: Passport
Model and Background-check model.

The Passport-Model is an analogy to the model of issuing passports by a nation
to an individual and its use at an immigration counter. So, in this immigration
counter analogy, the citizen is the Attester, the passport issuing agency is a Veri-
fier, the passport application and identification information (e.g. birth certificate)
is the Proof, the passport is a Result Certificate, and the immigration desk is a
Relying Party.

| | compare Evidence

| werifisr | against appraisal policy
| |
Fmmmmmm e +
A |
Evidence | Attestation
| Result
Fmmm e + fmmm e +
| R > | Compare Attestation
| Attester | Attestation | Relying | Result against
| | Result | Party | appraisal policy
Fmmmmmm e + R +

Figure 3.3: Passport Model

In this model. as illustrated in figure 3.3, an Attester transmits the Evidence to a
Verifier, who compares it against its assessment policy or verifies the requested
data. The Verifier then returns an Attestation Result to the Attester, which does
not consume the Attestation Result but can cache it. The Attester can then present
the Attestation Result (and possibly additional Claims) to a Relying Party, who
then compares this information against its own assessment policy.

The Background-check model has this name because of the similarity of how
employers and organizations perform background checks. When a prospective
employee submits information about previous education or experience, the em-
ployer will contact the respective institutions or employers to validate such in-
formation provided. So, in this analogy, a potential volunteer is an Attester, the
organization is the Relying Party, and the reporting organization is a Verifier.

In this model - figure 3.4, an Attester transmits Evidence to a Relying Party, who

19

State of the Art and Standardization

| | Compare Evidence

| wverifier | against appraisal

| | policy

e +

LS |
Evidence | Attestation
| Result

Fom e + dmmmmm - +
| |-------------- | | Compare Attestation
| Attester | Evidence | Relying | Result against
| | | Party | appraisal policy
Fommm e + dmmmmm - +

Figure 3.4: Background-check Model

forwards it to a Verifier. The Verifier compares the Evidence against its assess-
ment policy and returns an Attestation Result to the Relying Party. The Relying
Party then compares the Attestation Result with its own evaluation policy.

The Model, namely “challenge/response”, only allows the validation that an at-
tester meets the conditions to convey with another entity. This would be enough
in some cases to implement a model with these two entities. However, using
a third entity whose function would be to validate that the information gener-
ated by the Verifier is trustworthy and, from there, grant access permission to
resources or other entities provides us with an increase in security.

Considerations

The Relying Party believes in the Verifier. This trust can be expressed “by storing
one or more trust anchors in a secure location known as a trust anchor store”
[1], causing the Relying Party to store the Verifier’s public key or certificate in its
trust anchor store, which can be on local storage or an external entity defined in
RFC6024 [35].

For a more robust level of security, the Relying Party may require the Verifier to
provide information about itself that the Relying Party can use in assessing the
Verifier’s reliability before accepting the Attestation Results. In order to imple-
ment a trust model that fully utilizes the “trust anchor” concept, it is necessary to
have implemented the “Relying Party Owner”. In none of the models mentioned
above, the use of the Relying Party Owner is essential.

In the scope of this dissertation, we will consider that the Passport Model has
prior knowledge about the Verifier’s public key, thus making it unnecessary to
implement a "Relying Party Owner".

The disadvantage of the Models are as follows [1]:

1. The Verifier may not issue a positive Attestation Result due to the Evidence

20

State of the Art and Standardization

not passing the Evidence Assessment Policy;

2. The Attestation Result is examined by the Relying Party and based on the
Attestation Results Evaluation Policy, and the result does not pass the pol-

icy.
3. The Verifier is inaccessible or unavailable.

For 1 and 2, actions can be configured according to the fault level. These actions
depend directly on where the protocol is implemented. For example, in a request
for access permission, the Attestation Result can take a non-positive value that
indicates the level of access granted. Another example is receiving a negative
attestation where the protocol implementation does not support this value but
has means of denying access to the network or even requesting a reboot and even
a firmware reapplication. Failure 3 to be relevant depends on the implementation
of the network, as the Attester and the Relying Party can have a list of verifiers
and choose the one that is available, closest, or has another availability policy.

Besides that, Passport Model has less network traffic than the Background-check
Model and the possibility to cache the attestation result (for some time) the At-
testation Result in case of no communication with a Relying Party.

3.2.2 SHeLA Model

It is a model of at least three layers, as showed in the figure 3.5, where the Root
Vefifier is at the top layer, which is the "owner" of the attestation network and has
unlawful computing power.

o
=
O
S o Vif
~om
‘;- I
g Evl \
a BV,

SWARM

Figure 3.5: SHeL A Topology

Communicate with the edge verifiers through the network (wired or wifi). The
Edge Verifiers are devices with significant computing power and storage, so they
are more potent than high-end devices, called Swarm Nodes. Edges verifiers
have a permanent connection to root verifiers. The SHeLA model assumes that

21

State of the Art and Standardization

Edge devices are trusted entities supporting secure hardware that the root veri-
fier can attest. Swam nodes (the provers) are low-end devices that communicate
using particular wifi protocols such as Zigbee, Wifi or Bluetooth. These can be
static or mobile devices that allow one-to-one attestation [8]

The possible limitation of applying the SHeLA model to our framework would
be the high cost of Root and Edge Verifier equipment.

3.2.3 SARA Model

SARA proposes using asynchronous protocols for group attestation, resulting in
the non-interruption of all devices simultaneously. In addition, it keeps the his-
tory of previous interactions of the tasters [7]

@ Initiate attestation | w- Compute:
> el GHV, = Hash(P)

Verifier Publisher: P
Tlme To
initialization

Publish:
Output data + GHV;

@ Send a challenge h 4

- Compute:
< a' GHV2= Hash(S) + GHV,
Challenge + GHV2

Verifier Subscriber: S

Time T4
Attestation

Figure 3.6: SARA system Model

Sara proposes the publisher/subscriber model as the Message Queue Telemetry
Transport (MQTT) [36] or Advanced Message Queuing Protocol (AMQP) [37], as
depicted in figure 3.6. However, MQTT is already used in services provided by
Cloud providers (e.g., Google IoT and AWS IoT) and is present in the simplest
IoT devices such as a smart socket plug (e.g., Shelly Plug S).

The use of queue managers is an advantage. However, it can be a point of fail-
ure, which we should observe. Another positive point is the historical attestation
about previous attestations that can serve us as a reputation record.

3.3 CHARRA Project

CHARRA - CHAllenge-Response based Remote Attestation with TPM 2.0, as
stated on its website: “is a proof-of-concept implementation of the Remote Chal-
lenge/Response Attestation interaction model of the IETF RATS Reference In-
teraction Models for Attestation Procedures Remote using TPM 2.0.” CHARRA

22

State of the Art and Standardization

conforms to the RATS architecture description [38]. It is an implementation de-
veloped by the Fraunhofer Institute for Secure Information Technology, whose
responsible developer, Michael Eckel [39], has completed the proof of concept, as
shown in figure 3.7.

tpmQuote(nonce, pcrSelection)
| =» evidence

eVidence =-=-====seseccsccccccsccscscsscnesersnnnns >

appraiseEvidence(evidence, nonce, referencePcrs)
attestationResult <= |

Figure 3.7: CHARRA protocol flow

The documents generated by the RATS working group standardize formats, pro-
cedures and protocols to describe the exchange of information between the in-
volved trusted parties. The working group does not determine or indicate one
specific technology implementation to be used in its application.

3.3.1 Advantages

CHARRA was written in C language, implementing libraries for accessing data
on TPM chips and transporting this data using protocols suitable for use in more
restricted environments such as the IoT.

The implementation was entirely developed using software, not being linked to
a specific hardware pltform for code execution. Docker containers are using the
official repository of the TPM2 Software community [40]. Each container uses a
TPM 2.0 chip simulator, developed by IBM [41] and a C library for interaction
with the TPM [42].

The network communication uses the CoAP (Constrained Application Protocol)
protocol (recall 2.2), developed to use UDP instead of TCP, optimizing for use
on devices and networks with fewer resources. CoAP uses UDP to transport in-
formation, and considering the security required when dealing with IoT devices,
CoAP can use DTLS (Datagram Transport Secure Layer) over UDP 2.3. Three
modes, depending on the configuration indicated at the time of code execution,
are supported by CHARRA:

e UDP without using DTLS;

23

State of the Art and Standardization

e UDP with PSK (Pre-Shared Key) using DTLS (Datagram Transport Secure
Layer);

¢ RPK (Raw Public Keys) using DTLS (Datagram Transport Secure Layer).

The collected data (before being sent) is encoded in the CBOR (Concise Binary
Object Representation) format. When the data is received, it is decoded to the
original format, enabling content to be evaluated. In the case of the Attester, the
content received is the necessary claims, basically, TPM data, for Verifier to carry
out the attestation.

CHARRA is under the BSD 3 - Clause License - “A permissive license similar to
the BSD 2-Clause License, but with a 3rd clause that prohibits others from using
the name of the project or its contributors to promote derivative products without
written consent” [43].

3.3.2 Limitations

CHARRA implements the secure challenge/response flow to validate evidence
collected by an attester but does not return the attestation result back to the at-
tester. It does not fully apply to the CDDL Specification for a Simple CoAP Chal-
lenge /Response Interaction - Appendix A [34].

This Challenge/Response model can be used where, for example, we want to en-
sure that a system has started correctly and is compliant by running only authen-
tic software. An excellent way to better understand and extend remote attestation
to user-level software (Java, Python) can be seen in the article [44].

Limitations of implementing the Challenge /Response Model in CHARRA, are as
follows:

¢ What should be the purpose of the certificate received?

* When establishing a new communication with a Relying Party, how can the
Attester verify whether or not he is trustworthy?

¢ Challenge/Response is not an answer to Remote Attestation if you have no
Response

The answer lies in the proposal of this dissertation that, from the open-source
code of CHARRA, the development of the CHAllenge-Response based Remote
Attestation - Passport Model (CHARRA-PM) [9] according to the specifications
of IETG RATS working group.

3.4 Summary

Recent surveys [45; 46] identify relevant remote attestation mechanisms for IoT
scenarios, given the context of 5G networks and its support for Machine to Ma-
chine (M2M) communications.

Besides RATS, SARA and SHeL A, the aim is to complete the state of the art con-
sidering these recent surveys, in order to identify possible implementations that

24

State of the Art and Standardization

can contribute to the goals of this dissertation.

25

Chapter 4

Research Methodology

This chapter presents the research methodology that was followed to enable the
implementation of a remote attestation to enhance the reliability of devices.

4,1 Motivation

Classic Authorization is only concerned with the information that user/device
proves to possess, for instance, it knows the credentials that are associated with
its identity, and thus can be authenticated. On another side, attestation is con-
cerned with the device functionality and integrity, so that evidence is provided
that the device has not been modified, compromised, or tampered with regarding
its initial design. Thus, a device providing evidences that it is benign and is not
compromised and therefore full access can be provided.

After reading the documentation of IETF RATS, there was the need to choose a
model, either background-check or the Passport Model, as explained in section
5. The choice was the Passport Model , given its advantages, and by operating as
the citizen’s passports:

1. The type of Evidence that a person must present to their local authorities
depends on the nation in question., which corresponds to claims in remote
attestation.

2. When citizens have to prove their citizenship or identity, they submit the
resultant passport document to other organizations, such as an airport im-
migration counter, while still in control. Analogue to the Attester sending
Evidence to a Verifier in the remote attestation.

3. The Passport is regarded as adequate since it attests to the claims of citizen-
ship and identity and because a reliable institution issued it, corresponding
to the Attestation Result in the remote attestation.

4. In this comparison, the immigration desk serves as the Relying Party, the
Passport is the Attestation Result, and the passport issuing agency is the
Verifier.

26

Research Methodology

5. The immigration desk also has the power to approve or deny your Passport
and also can give an expiration date (how long you can stay in the country)

4.2 Objectives

The attestation in IoT devices are a challenge, because most devices have limited
computing capacities, the majority of the devices does not include trustable and
secure elements to act as root of trust, among other aspects. There are proposals
that tackle such challenges, proposing solutions for Remote Attestation in hetero-
geneous environments, as documented in section 4.

In this study, a strategy for remote attestation in IoT devices is specifically de-
signed, tested, and validated.

Focusing on the documents of IETF RATS workgroup[1] and using the open-
source code for the Challenge/Response PoC - CHARRA [38]. The aim is to add
another entity that will grant or deny access as a principal function based on an
appraisal of the Attestation Result.

More specifically, the objectives of this work are:

* Research a Model with a real implementation of a Framework for Remote
Attesting functionality for IoT devices.

¢ Implement Remote Attestation mechanisms for IoT devices.
e Evaluate the Remote Attestation mechanisms for IoT Devices.

¢ Document the results for dissertation and scientific publication purposes.

4.3 Approach

The approach for the thesis starts with the analysis of current standardization
efforts for Remote Attestation (RA). In parallel, relevant works in the state of the
art are also analysed to identify relevant aspects that contribute to the major goal
of this thesis - A framework for remote attestation in heterogeneous IoT devices.

There are several works in Remote Attestation (RA) [7; 8; 32; 47]. As stated, the
study began by looking for the existence of "de facto" standards, which led us to
the IETF working group on the Remote Attestation Protocol (RATS) [1].

The RATS proposal intends to cover all situations without indication of protocols,
hardware and security we should use. It is like a one size fits all. RATS can be a
guideline when we need to check one approach or another in our scope. Its appli-
cation considers many policies and information from different sources that make
it unfeasible to use in low-cost IoT environments. On the other hand, the most
current proposals already think about the capacity of low-cost devices, as ob-
served at SARA, which presents us with a proposal for a framework for cheaper
devices, using protocols such as Wifi [48], Zonal Intercommunication Global-
standard (ZigBee) [49] and Message Queuing Telemetry Transport (MQTT) bro-
kers, for example.

27

Research Methodology

In SHeL A, there is the possibility of implementing a smaller version than the
full proposal to meet such devices. However, edge and layer attesters may need
powerful hardware.

4.4 Methodology

The research was based on scientific articles (conference papers, Journals) taken
from Research Gate [50], IEEXplore [51], and hardware manufacturers” websites,
such as IBM. Using these articles and resources from reliable sources, it was pos-

sible to design, develop and evaluate the proposed framework for IoT devices -
CHARRA-PM.

Among the preliminary studies, we have the proposal of the working group that
intends to launch a standardization for remote attestation covering most of the
devices that need this layer of reliability. However, there are gaps to be resolved:
The clock synchronization issue where the application is geographically distinct;
the security of sensitive data that travel through the protocol must be treated
separately; the possibility of an attacker having access to attestation policies and
carrying out an attack; insufficient packet size in some networks, for example.

There are an implementations (PoC) of the RATS Challenge /Response on GitHub
[38]. These development and related documents were the base for put the work
into practice.

After identifying an implementation that was available for Remote Attestation,
several emails were exchanged with the author, Mickael Eckel [39] to understand
how CHARRA works and how it follows the recommendations of the RATS” doc-
umentation and his opinion regarding the implementation of the Passport Model.

We delved deeper into the C language to understand the concepts used by CHARRA,
its functions and results, using Debug messages, reading functions and examples
from libraries and also the technologies related, such as CoAP protocol, DTLS,
and CBOR. When the whole operation of CHARRA was understood, We de-
veloped functions to modify CHARRA from a Challenge/Response Model to
the Passport Model. New functions were created within the CHARRA utilities,
CBOR and cryptographic libraries, and finally, the code was written for the Pass-
port Model.

In response to my e-mails with questions about the efficiency of using the Pass-
port Model instead of the Background-check Model, Mickael Eckel replied that
the most significant advantage is that the checker is not involved in every attes-
tation, reducing network traffic and additional communication. with the verifier.

“ I think the main advantage is that the verifier is not involved on every attes-
tation. The verifier sends the attestation result to the attester, The RP can then
directly talk to the attester, and the attester sends the signed attestation result
to the RP (so, the RP knows the verifier verified the attester; the RP must trust
the verifier by its certificate). So, the main advantage is that network traffic and
additional communication with the verifier is reduced.” Michael Eckel answer

28

Chapter 5

CHARRA-PM - CHARRA Passport
Model

CHARRA is an open-source PoC of the Challenge/Response model defined in
RATS [34]. CHARRA-PM is a development of the Passport Model (see in sec-
tion 6), also defined by RATS workgroup documents using the source code from
CHARRA and developing functions and interactions into a new model.

5.1 Passport Model

The motivation for choosing the Passport Model was primarily due to the mini-
mization of traffic processed by the Relying Party, compared to the one observed
in the Background-chek model observed in the figures 3.3 and 3.4. On the other
hand, we isolated the Relying Party that centralizes claims and responses as
described in the Background-Check model, significantly reducing the Relying
Party’s work, processing and network connections.

The insertion of a trusted third party in the Challenge/Response model aims to
validate the attestation result, sent by the Verifier to the Attester that forwards it
to the Relying Party. This process, in turn, can decide the type of permission/role
the Attester can have on the network, including limiting or blocking communi-
cation.

We created a new proof of concept: the CHARRA-PM [9], taking advantage of
the development already carried out in CHARRA, including a new device, the
Relying Party, and the entire process necessary for the signing, transfer and vali-
dation of the Resulting Certificate as described in the Passport Model in the Drafts
of RATS.

5.1.1 Considerations

Some considerations are necessary for the global understanding of what was ef-
fectively developed. It was also observed what is necessary in case of application
in production.

29

CHARRA-PM - CHARRA Passport Model

¢ All traffic is handled via DTLS between devices, although there is an option
to use the UDP protocol (without DTLS);

® RP Trust Verifier - We assume that the Relying Party trusts the Verifier by
knowing its public key exchanged over secure channels.

¢ Attestation freshness (not implemented in CHARRA) - in the RATS archi-
tecture document, chapter 10 [1], the freshness of attestation information
is described. This information is used to minimize replay attacks. How-
ever, the considerations for implementing such functionality involve many
variables that are costly and beyond the scope. Examples can be found in
Appendix A - Time considerations in [1].

5.1.2 The Contribution of CHARRA-PM

We have identified as relevant the third party entity - relying party in the overall
challenge/response model. Where could we really apply the attestation result,
for policy enforcement ?

The addition of a third party can be thought of in two situations: functioning as
a gateway or firewall for granting privileges depending on the attestation result
or even an end device that would only establish communication upon a valid
attestation result.

Aftester Verifier R;Q'Eg
] :
| | |
ga;iiazfg__a:”f {attestingEnvironment) E E
E requestAttestation (handle, authSecIDs I i
claimSelection) 2 H
L] i
:ra::'' teEvidence (handle, auw 1?&::“5 i
-slepd ==» evidence) B . E
4 : :
vidence, ewventLogs N E i
T i
i appraiseEvidence (evidence, ewventlogs, I i
i e N 1 ref} =_;-4:a: i
/1 T ™
attestationResulcs (evidence, results E . E
' .
i s H
]]

_ Passport Model : _/

Figure 5.1: CHARRA-PM data Flow

30

CHARRA-PM - CHARRA Passport Model

Noting the limitations of the Challenge /Response Model in subsection 3.3.2, we
responded for each one:

¢ The attestation result, validated by the Verifier, is not sent to the Attester.

— Even being a proof of concept, the model should return the attestation
result to the Attester according to the interactions document [34].

¢ What should be the purpose of the certificate received?

— The attestation result proves that the Attester has requirements (valid
or not) to present to another peer to gain some level of access.

* When establishing a new communication with a Relying Party, how can the
Attester verify whether or not he is trustworthy?

— The Relying Party reviews the submitted certificate by any policy it
has or through a relying party owner. This policy can be a true or false
check, for example. Most importantly, the Relying Party trusts Verifier
and Tester.

The figure 5.1 helps us understanding the generation and data exchange flow be-
tween the Passport model parts. Assuming that the communication between the
parties is carried out safely and securely, as recommended by the RATS docu-
ments, in this case, using the DTLS-RPK or DTLS-PSK, recall section 2.3.The col-
lection of information and communication between the parties involved is sum-
marized in two steps: Challenge/Response and the Passport Model.

5.1.3 Challenge/Response steps

When the Attester starts up, it produces claims about its startup and operational
state. Event logs track the statements produced by providing a trail of critical
security events in a system, as depicted in steps 1 of Figure 5.1.

The Challenge/Response remote attestation procedure is initiated by the Veri-
fier sending a remote attestation request to the Attester. This request includes an
identifier (e.g. in the form of a nonce), authentication secret IDs and claims selec-
tion, corresponding to step 2 in Figure 5.1. In the Challenge/Response model, the
handle is composed in the form of a virtually unguessable nonce (e.g., a strong
random number). The nonce generated by the Verifier ensures that the Evidence
is up to date and prevents replay attacks. The authSecID is a key sent by the
Verifier to the Attester to sign the Attestation Evidence. Each key is uniquely
associated with an Attestation Environment in Tester. As a result, a single Au-
thentication Secret ID identifies a single Attestation Environment.

The Attester collects Claims based on the Claim Selection submitted by the Ver-
ifier. If Claim Selection is omitted, all Claims available in the Attester must be
used to create the corresponding evidence by default. For example, in a boot
health assessment, the Verifier may only ask for a subset, such as Evidence on
BIOS/UEFI and firmware, and does not include other information about the cur-
rently running environment. This corresponds to step 3 in Figure 5.1.

31

CHARRA-PM - CHARRA Passport Model

With Collected Claims, Handle, Authentication Secret IDs, Attester produces the
evidence and signs it. It digitally signs the Handle and Claims collected with a
cryptographic secret identified by the Authentication Secret ID. It is done once
per Attestation Environment, which is identified by the specific Authentication
Secret ID. The Attester communicates the signed evidence and all accompanying
Event Records back to the Verifier, as depicted in step 4 of Figure 5.1.

Note: The implementation of CHARRA behaves differently, using the TPM pri-
vate key of the Attester and sending the public key along with the message to the
Verifier, as documented in section 2.1.

When the Verifier receives the Evidence and Event Logs, it starts the Evidence
assessment process, validating the signature, received nonce against sent nonce,
and received claims. The assessment procedures are application-specific and can
be conducted by comparing values, using reference measures, and producing the
Attestation Results. This is done in step 5 of Figure 5.1.

5.1.4 Passport Model Steps

This subsection discusses the steps involving the passport model, one of the key
objectives of this work.

After producing the attestation, the Verifier signs it with its private key and sends
it, through a secure channel, to the Attester, as illustrated in step 6 of Figure 5.1.
The Attester must immediately send the received certificate to be evaluated by
the Relying Party, as per step 7 in Figure 5.1. The Attester cannot process, verify
or change the certificate received. At most, it can keep until it expires.

According to RATS documents [1], Attestation results can contain a Boolean value
indicating compliance or non-compliance with a verifier’s assessment policy, dis-
pensing with the use of a Relying Party Owner to provide an additional evalu-
ation policy. The Relying Party confers greater confidence in the model, as it is
responsible for verifying whether the attestation result is reliable and valid, de-
ciding the level of access it will give (or not) to the system.

When the relying party receives the certificate, it starts evaluating the informa-
tion, verifying the signature and the value(s) received. At this time, and depend-
ing on the policy, it will or will not give privileges to the Tester, as per step 8 in
Figure 5.1.

In the stages where information is exchanged between parties, it is carried out
through a secure communication channel, as mentioned in section 2.3. Evidence
from TPM chips created exclusively to store and generate reliable information,
such as binary serialization of data, encryption of keys and hash using algorithms
from the SHA-2 family, used by version 2.0 of TPM as explained in section 2.

5.2 Implementation of CHARRA-PM

In development, we reused CHARRA code, such as calling connection and cryp-
tographic functions. New functions were also developed from scratch to handle

32

CHARRA-PM - CHARRA Passport Model

the Passport Model part. It should be noted that it was not a development from
scratch but an improvement to the existing code with the endorsement of devel-
oper Michael Eckel [39]. The CHARRA-PM was coded as PoC to the Passport
Model as described in RATS documentation [1] and the opensource code is avail-
able on GitHub [9].

5.2.1 Establishing a CoAP session with DTLS

This section will present and explain the piece of code functions that handle
CoAP sessions using DTLS PSK and RPK.

coap_session = charra_coap_new_client_session_psk (ctx,
LISTEN_RP, port_rp, COAP_PROTO_DTLS, tls_psk_identity,
(uint8_t #*)dtls_psk_key, strlen(dtls_psk_key)

Listing 5.1: Function to set up PSK CoAP connection

The function charra_coap_new_client_session() listed in List 5.1, is responsi-
ble for establishing a channel through the CoAP protocol using DTLS-PSK (Pre-
shared key). The shared key is known to all parties involved (dt1s_psk_key). The
other fields identify the Relying Party, the DTL protocol (COAP_PROTO_DTLS),
the shared key, and its size.

charra_coap_setup_dtls_pki_for_rpk (&dtls_pki,
dtls_rpk_private_key_path, dtls_rpk_public_key_path,
dtls_rpk_peer_public_key_path, dtls_rpk_verify_peer_public_key) ;

Listing 5.2: Function to set up RPK CoAP connection

The function charra_coap_setup_dtls_pki_for_rpk() listed in List 5.2, is re-
sponsible for establishing a channel through the CoAP protocol using DTLS-RPK
(Raw Public Keys). Here the public key of the target device must be known. That
is, the Attester knows the public key of the Verifier and the Relying Party; Veri-
tier knows the Tester’s public key; the Relying Party knows the public key of the
Tester and the Verifier.

5.2.2 Certificate Signing Process

This section shows CHARRA-PM calling the responsible function to sign the at-
testation result.

01: /* signing attestationResult */
charra_sign_att_result(dtls_rpk_private_key_path,

(unsigned char *) attestationResult,

signature ,&signature_len) ;

02: /* compiling data into struct */

att_result = {

.attestation_result_data_len = sizeof (attestationResult),
.attestation_result_data = (unsigned char *) attestationResult,
.attestation_signature = signature,
.attestation_signature_len = signature_len,

Jg

03: /* unmarshal data */

charra_marshal_attestation_result (&att_result, &ares_buf_len,

33

CHARRA-PM - CHARRA Passport Model

kares_buf) ;

Listing 5.3: Sign and encoding the attestation Results
The listing 5.3 shows the piece of code where the Verifier call functions responsi-
bles to sign the attestetionResult and encoding using CBOR.
This process occurs in the Verifier, within the following steps:
¢ Step 01: The attestationResult is signed using your private key.

charra_sign_att_result() : is the function responsible for signing the attesta-
tion Result. The signature and its length are returned in the signature and
signature_len fields.

¢ Step 02: Is where the values are associated with the message structure
(att_result);
¢ Step 03: The entire message structure is formatted for CBOR in the

charra_marshal_attestation_result () function.

5.2.3 Receipt of the certificate by the Relying Party

This is where the Relying Party call functions responsible to appraise the Attes-
tation Result the attestetionResult.

01: /* Reading CoAP datax/
coap_get_data_large(in, &data_len, &data,
&data_offset, &data_total_len);

02: /* convert from CBOR to data */
charra_unmarshal_attestation_passport(data_len, data, &att_result);

03: /* Validating signature x*/
charra_verify_att_result(verifier_public_key_path,
att_result.attestation_result_data,
att_result.attestation_signature,
att_result.attestation_signature_len);

04: /* mbedtls function related to signature verify x*/

mbedtls_pk_parse_public_keyfile (&peer_public_key,
peer_public_key_path);

charra_crypto_hash (MBEDTLS_MD_SHA256, att_result, att_result_len,
hash) ;

mbedtls_pk_verify(&peer_public_key, MBEDTLS_MD_SHA256, hash, O,
signature, sig_size);

Listing 5.4: Receive and apreaise Attestation Results

The listing 5.4 shows the piece of code, with the followins steps:
¢ Step 01: Reading the data received via CoAP;

34

CHARRA-PM - CHARRA Passport Model

¢ Step 02: Reverting the CBOR encoding in data that the code can process;

* Step 03: Verifies the validity of the received signature using the Verifier’s
public key. This process will generate a new hash (SHA256) that will be
used with the public key to verify the validity of the signature.

¢ Step 04: Functions called by step 03, coming from the C mbedtls library
used to read the public key, generate the hash of the attestationResult
and validate the signature.

5.2.4 CoAP Endpoints

The development was based on using the CoAP protocol, documented in sec-
tion 2.2, with endpoints for communication using the FETCH method, as docu-
mented in section 2.2.1. Each endpoint in the code is associated with a handler
function that handles the information received. Figure 5.2 illustrates the CoAP
endpoints exported by each device and the flow and sequence of data.

endpoint
1: ask for evidences o attest

»>

. B 5 Send svidences 4:zend attestation
Verifier < Attester » O Relying
3:send attestation endpoint Party
192.168.1.4 zndpoint 192.168.1.2 atiRes 102 16213

result

Figure 5.2: Application’s endpoints

5.2.5 Docker Environment

The running environment chosen for this PoC was Docker containers. Three
docker containers Attester, Verifier and Relying Party, run the same docker image
and map a volume in a local folder on the host with the binaries.

35

CHARRA-PM - CHARRA Passport Model

Host
container container container
. Relying
Altester Verifier Party
192.168.1.2 19216814 19216813
pub_net
pub_net pub_net
Y
gateway
192.168.1.1

Figure 5.3: Docker Containers

Figure 5.3 help to understand the container distribution and the shared network
configuration.

Example of docker command to creating a network (pub_net) for use in a Docker
environment.

docker network create -d macvlan --subnet=192.168.1.0/24 \
--gateway=192.168.1.1 -o parent=ethO pub_net

[=
{ MWelcome to Docker TPM 2.8 Simulator Development Environment (DoTSiDE)
(=
¢
(
L

You have the following extra tools available:
The IBM TPM2 Simulator (already started)
Resets the TPM2 Simulator: clearing its state, restarting it)
s Compiles C code files with T552 libraries (dynamic linking))
TPM2 tools

L
L
L
L

{)

N TeM2| s
! '

Started TPM Simulator in working directory /tmp.

Figure 5.4: Docker with TPM 2.0 configured

The docker container image was based on the official tmp2software repository
[40][41], which simulates a TPM environment showed in figure 5.4. All detailed
steps to create the container are in the README.md file at GitHub [9].

36

CHARRA-PM - CHARRA Passport Model

5.2.6 Considerations

The Attester must know the IP of the Relying Party. The Verifier needs to know
the Attester’s IP, and only the Relying Party does not need to point to an IP, as it
will receive the attestation result through the Attester. There is no mechanism yet
published to perform the discovery of the Relying Pary aand Attester endpoints.

All binaries can be configured from options in the command line. For example,
"-1r" indicates that the DTLS protocol will use the RPK; "-p" will use DTLS with
PSK; "-ip" respectively indicates the IP of a pair; "—ip-rp" indicates the IP of the
relying part and can only be configured in the Attester. See more detailed options
in appendix B.

The Relying Party can be configured in a future version with a list of IPs corre-
sponding to authorized testers. So only the attesters on this list would have their
claim/evidence confirmed.

37

Chapter 6

Validation, Evaluation and Results

This chapter introduces the validation, the evaluation methodology and the re-
sults achieved in the proof of concept CHARRA-PM.

6.1 Proof of Concept

A Proof of Concept to validate CHARRA-PM was developed implementing in C,
the steps 6, 7 and 8 of figure 5.1. This section aims to show and explain the PoC
running process using screenshots.

The PoC consists of 3 (three) different devices, each running its isolated environ-
ment in a Docker container on a internal shared network, as illustrated in Figure
5.3.

S4f4dds: ~/charra$ bin/attester -r --ip
[attester] Ind i -wise mode.
[attester] Cre « ver endpoint wsing DTLS-RPK.
[attester] Reg ring CoAP res -
[coap-util] Adding CoAP FETCH
[attester] Registering CoAP ATTESTED resources.
[coap-util] Adding CoAP FETCH r
: [coap-util] (hecking peers public key for equivalence against peers' known
public key.

g

1
1
1
1
|
1
|

Figure 6.1: Attester ready

When starting the Attester, we can see in the figure 6.1 information about creating
two CoAP endpoints using the FETCH method: attest and result.

The endpoint attest is where the Verifier requests evidence and the endpoint re-
sult is where the Verifier will send the attestation result back to the Attester.

bobB8d24f87 fibedb:~/charrad bin/relying party -r
[relying_party] Initializing CoAP in block-wise mode.
[relying party] Creating CoAP server endpoint using DTLS-RPK.

[relying party] Registering CoAP [relying party] resources.
[coap-util] Adding CoAP FETCH resource ‘attRes'.
150:58 [coap-util] Checking peers public key for eguivalence apainst
peers' known public key.

Figure 6.2: Relying Party ready

38

Validation, Evaluation and Results

The figure 6.2 shows the Relying Part endpoint attRes to where the Attestation
Result from the Attester will be received.

bob@fafe83574125: ~/charra® bin/verifier -r --ip=192.168.1.2
[werifier] Initializing CodP in block-wise mode.
[werifier] Repistering CoAP response handler.
[werifier] Creating CoAP client session using DTLS-RPK.
[werifier] Creating attestation reguest.
[werifier] Generated nonce of length 28:

ex352c58F5367 feftec3izd]120206aal715a460d782a

13:
13:
13:
13:
13:

13:
13:
13:
13:
13:
13:

[werifier] Marshaling attestation reguest data to CBOR.
[werifier] Adding CofP option URI_PATH.

[werifier] Adding CofP option COMTENT _TYPE.

[werifier] Creating request POU.

[werifier] Sending CoAP messapge.

[werifier] Processing and waiting for response ...

LY SHHD I
YYUuay g9y9ay

Figure 6.3: Verifier ready

When the Verifier starts, it creates a CoAP connection with the Attester, in this
case (IP 192.168.1.2). Then it creates an attestation request indicating what it
needs (claims) as a response. The listing 6.1 is the request structure format. Then
creates the CoAP message (encoded in CBOR) and sends it. Then wait for the
Attester’s response, as depicted in Figure 6.3.

[attester] Resource "attest': Received message.
[attester] Received data of length 52.
[attester] Received data of total length 52.
[attester] Parsing received CBOR data.
[attester] Preparing TPM gquote data.
Received nonce of length 28:
Bx352c58F53677efec3i34120296aa1715a460d782a
[attester] Loading TPM key.
Loading key "PK.RSA.default".

Primary Key created successfully.
[attester] Do TPM Quote.
[attester] TPM Quote successful.
[attester] Preparing response.
[attester] Marshaling response to CBOR.
[attester] Size of marshaled response is 1277 bytes. XTCG
[attester] Adding marshaled data to CoAP response PDU and send it.

Figure 6.4: Attester Processing Evidence

typedef struct {

bool hello;

size_t sig_key_id_len;

uint8_t sig_key_id[SIG_KEY_ID_MAXLEN];
size_t nonce_1len;

uint8_t nonce[sizeof (TPMU_HA)I];
uint32_t pcr_selections_len;
pcr_selection_dto pcr_selections [TPM2_NUM_PCR_BANKS];
uint32_t event_log_path_len;
uint8_t * event_log_path;
} msg_attestation_request_dto;

Listing 6.1: Structure of request claims

39

Validation, Evaluation and Results

typedef struct {
uint32_t attestation_data_len;
uint8_t attestation_datal sizeof (TPM2B_ATTEST)];
uint32_t tpm2_signature_len;
uint8_t tpm2_signature[sizeof (TPMT_SIGNATURE)];
uint32_t tpm2_public_key_len;
uint8_t tpm2_public_key[sizeof (TPM2B_PUBLIC)I];
uint32_t event_log_len;
uint8_t * event_log;

} msg_attestation_response_dto;

Listing 6.2: Structure of attestation response

typedef struct {
uint32_t attestation_result_data_len;
unsigned char * attestation_result_data;
uint8_t * attestation_signature;
size_t attestation_signature_len;

} msg_attestation_appraise_result_dto;

Listing 6.3: Structure of Attestation Result

Once Attester receives the message formatted, as listing 6.1 in the attest end-
point, it extracts the information from the CBOR-formatted message, turning it
into readable data. It then collects the requested information, transforms it into
CBOR format, and sends it to Verifier, as depicted in figure 6.4, using the response
format shown by listing 6.2.

[verifier] ‘attest’': Received message.

[werifier] ived data of length 1277.

[werifier] i data of total length 1277.

[verifier] Parsing received (BOR data.

[verifier] Starting verification.

[verifier] Loading TPM key.

[verifier] External public key loaded.

[verifier] Preparing TPM Quote verification.

[verifier] Verifying TPM Quote signature with TPM ...

[verifier] =» TPM Quote sipnature is walid!

[verifier] Conwverting TPM public key to mbedTLS public key ...

[werifier] Verifying TPM Quote sipnature with mbedTLS ...

[verifier] =» TPM Quote sipnature is walid!

[verifier] Verifying nonce ...

[verifier] =» Nonce in TPM Quote is wvalid! (matches the one

[verifier] Verifying PCRs ...

[verifier] Actual PCR composite dipest from TPM Quote is:
Bx2d5565fbd83d8ead 52572022067 7d1838ad Hbbe2 2 cBd5152

H--H
158
:58:
H--H
H=-H
158:
H--H
H--H
158
H--H
H--H
H
:58:
H--H
H--H
158:
H--H

Found matching PCR composite dipest at index @ of the
[verifier] =» PCR composite dipest is walid!
[verifier] +
[verifier] | ATTESTATION SUCCESSFUL
[verifier] +

$8g8E

Figure 6.5: Evaluating Evidences and issuing the Attestation Result
The Verifier receives the message from the Attester, transforms the CBOR into

readable information, and then verifies the received data, as listed in listing 6.2,
and issues the Attestation Result, as illustrated in Figure 6.5.

40

Validation, Evaluation and Results

[verifier] Sending attestatioR Valid] to be signed

[verifier] Private ke - = ifier.der]
[erypto_wtil] Received attestationflesult is: [Valid)
[crypto_util] ing the random number generator...
[erypto_util] ing private "k ifier.der"
[crypto_uwtil] Generating the SHA

hash generated c483dcB332afbf IB60afIbefbeS4501958691 3edon106ebbede
elliiTaectd

3845822106+ 400 Mabd14814Fe02ee36F8 3073570558561

2286bch7eaTelec cBEB165FC T 2dd1d]a8d7 doebE] Tel 350006189082 cdT 28219
erifier] attestatioResult signed
ifier] Creating Appraisal 5
ifier] Initializing CofP in
[verifier] shali testatio data to CBOR.
t] to URI_PATH.
ier] Adding CofP option [r t] to CONTENT_TYPE.
[verifi Creating [result] POU.
[werifier]
[]

Figure 6.6: Evaluating Evidences and issuing the Attestation Result

After issuing the result, Verifier signs the content of the attestation and fills in the
message information - listing 6.3, converts the message into CBOR format and
transmits it to the attester. That is Verifier’s final participation in the model, as
per figure 6.6.

r] Calling
Relying Part IP:

Adding C option [attesta
Adding CoAP option [attes
Creating [atte
[attester] Sending [attes sult] CoAP messapge to Relying Party.
[coap-util] Checking peers public key for eguivalence against peers® known

public key.
Figure 6.7: Attestation Result Receives from Verifier
The Attester receives the certificate, creates the connection via CoAP with the

Relying Party and forwards the received message, not keeping a copy of it, as per
figure 6.7.

41

Validation, Evaluation and Results

[relying party] +

[relying party] |

[relying party] +

[relying_party] Resource 'attRes': Received message.

[relying party] Received data of lemgth 83.

[relying party] Received data of total length B3.

[relying_party] Parsing received (BOR data.

[relying party] Attestation Result Unmarshelled

[relying party] Public key path [keys/verifier.pub.der]
[crypto_util] Recieved attestationResult: [Valid]
[crypto_util] Recieved attestationResult: [71]
[crypto_util] Reading public key from 'keys/verifier.pub.de

=]

n
&

158
158
H=
158
158
158
158
158

hash regenerated BxE9c483dc8332afbf 3568af Sbefbe54581958691 3209
@186ebbcdcelld3Taects
sipnature to verify e 304502 2108F c49c9bte20abd 14814 fed2ee36F83d7 3
S7655856C13F2a0083b3Fded 34 794 F£FO2206bch 7 eeTeSeccBEB165FCT 2dd1d1a8d7 ddbbE 1 7el FEELDOE 18000 2cd7 28a
13:58:58 to_util] Signature Confirmed!
3:58:58 [relying party] +
13:50:58 [relying party] | PASSPORT MODEL VALIDATED

B:58 [relying_party] 4+-----------————==-mmmmmmmmmee—}

Figure 6.8: Relying Party Receives and appraise the Attestation Result

The signed attestation is received at the Relying Party, and verification begins.
Once the signature is valid, the attestation value can be used to grant the ap-
propriate level of permission to the Attester or even block communication. For
example, if the Relying Party is a firewall, it can allow or block access, as per
figure 6.8.

Note: In this proof of concept, we only send a text value due to the attestation - see
listing 6.3. However, it is possible to add other relevant information depending
on the application built to improve the granularity of the evaluation in Relying
Party. In figures 6.1, 6.2 and , 6.3, it is also possible to verify that the Passport
Model runs on a CoAP connection using DTLS with RPK.

In Appendix A, we exemplify, with screenshots, the CoAP, DTLS and CBOR traf-
fic between the devices.

6.2 [Evaluation Methodology

To assess the performance of the PoC, we consider the time required to execute
each step in the attestation process. This measurement also allowed us to quantify
the impact of the additional steps that were introduced with CHARRA-PM

Looking the figure 6.9 helps us understand which process steps were measured.
Each step was measured by capturing the time registered by the CPU clock before
and immediately after execution. For the time measurement, the clock() function
of the time.h C library language was our choice. This function returns the num-
ber of elapsed clock pulses since it was called. To get the number of seconds
used by the CPU, one needs to divide by the number of CPU ticks per second
(CLOCKS_PER_SEC).

CLOCKS_PER_SEC is the macro responsible for storing the number of pulses per
second of the machine’s processor on which the program is being executed [52].

42

Validation, Evaluation and Results

For different executions the times go up or down regardless of the use of encryp-
tion using the DTLS protocol (PSK or RPK).

Relying

Aftester Verifier Party

tingEnvironment)

Time #1

Time #2

Time #3

Nt
SN

Time #4

F Y

Time #5

i

w
o
of
m
w
o
w
of
[

5]
&)
b
m
5
=
o
W
m
]
IS}
(=3
m
=]
0
[0

Time #6

appralseResult 1153'_1_:5'::I
T

Figure 6.9: Times measurement interactions

Times were computed for the remote functions (libraries call) and the total execution
time of the local functions (which are part of the execution code).

01: t = 0 ;

02: t = clock();

03: charra_r = charra_unmarshal_attestation_request(data_len, data,
&req) ;

04: t = clock() - t;

04: time_taken ((double)t)/CLOCKS_PER_SEC;

06: total_func total_func + (double)t;

07: charra_log_info("[TIME] charra_unmarshal_attestation_request
() tooks %f secs" , time_taken);

Listing 6.4: CBOR decoding time measurement

43

Validation, Evaluation and Results

01: t = 0 ;
02: t clock () ;
03: if ((charra_sign_att_result(dtls_rpk_private_key_path,
(unsigned char *) attestationResult,
signature, &signature_len) != 0))
{ charra_log_error(
"[" LOG_NAME "] error signing attestation result.");
result = CHARRA_RC_CRYPTO_ERROR;
goto cleanup;
}
04: t = clock() - t;
05: time_taken = ((double)t)/CLOCKS_PER_SEC;
06: total_func = total_func + (double)t;
07: charra_log_info(
"[TIME] AttestatioResult signed tooks %f secs" , time_taken);

Listing 6.5: Attestation Signature time measurement
The listings 6.4 and 6.5 presents two code fragments to exemplify how the time
were collected.

Times were computed for the remote functions (which are called by external li-
braries) and the total execution time of the local functions (which are part of the
programs). Below is explained what each line of code represents:

e Line 01 - resets the variable;

¢ Line 02 - start counting time;

e Line 03 - call the remote function;

¢ Line 04 - ends the time discounting the elapsed time;
e Line 05 - calculate the value in seconds

¢ Line 06 - accumulates the time spent in the function it is running on. This
will be the total value of the running function;

¢ Line 07 - displays the result in seconds in the log;

6.3 Results

The measured results take into account the steps shown in figure 6.9. They are
related to the execution of the CoAP protocol using DTLS PSK versus DTLS RPK
and the overhead in the CHARRA-PM implementation.

44

Validation, Evaluation and Results

Average time per approaches

0.014+
0.012+
0.010+
@
o 0.008-
€
i~ 0.006
0.004+
0.0004 ————
1 2 3 4 5 6
Steps

Approach . PSK . RPK

Figure 6.10: Avgerage execution time per aproaches

The total processing time of CHARRA-PM implementation increases the execu-
tion time, as expected.

The following considerations are formulated considering the results in figure 6.10
for the diverse steps in the attestation process.

1. The development of CHARRA does not consider the signature of the attes-
tation, the data packaging time and its transmission to the Attester [step 4].
This step, besides having the higher average times also have an higher vari-
ation, mainly due to the signature, packaging and transmission processes;

2. Although shown in the appraising results - figure 5.1 [step 6], it was imple-
mented only in the development of the CHARRA-PM;

3. The signature process can be time-consuming and will always run;

4. PSK is faster than RPK when signing but longer when checking the signa-
ture [step 6];

5. All other processes and communications are below the order of millisec-
onds.

45

Validation, Evaluation and Results

Overhead ratio per implementation
759
501

251

CHARRA CHARRA-PM

Approach . PSK . RPK

Figure 6.11: Overhead per Implementations

Another observable point is about the total overhead between CHARRA and
CHARRA-PM as pictured in figure 6.11. The results put in evidence that CHARRA-
PM introduces more overhead, as referred and illustrated. It should be noticed
that this overhead is justified by the fact of involving a third entity - relying party
to allow the application of policies.

The difference between the use of PSK and RPK is almost negligible, since there
is not a pattern. In some steps the RPK takes longer (step 4, 5) in figure 6.10,
while PSK takes longer in other step 6. RPK has the advantage of not requiring
a full PKI infrastructure [53], and thus might be suitable to scenarios with low
complexity, which also is inline with the PSK model.

The measurement table used for constructing the graphics is summarized in ap-
pendix C for verification.

46

Chapter 7

Conclusion

This work presented the implementation of the passport model described in the
RATS workgroup documents, which proposed using a trusting third party to
grant access to devices that have a certificate validated by a verifying party.

We have seen that the use of TPM chips is an enabler. It has cryptographic and
security functions, in addition to allow the storage and retrieval of data in its
records securely on the chip. CoAP is a versatile and easy-to-implement protocol
that allows to use or not use of a secure transport layer, DTLS. Both were built
for use and application in restricted environments, with little processing and net-
work traffic consumption. In addition, we saw the CBOR format, which has the
same structures as JSON, only converting the structure to a binary representation,
which helps speed encoding/decoding processing.

The technologies used can be replaced by others with the same function, as long
as due care is observed. Security, implementation language, and network usage
are some examples.

The choice of the Passport Model over the Background-check Model was due to
the interpretation of the number of requests and traffic that the Relying Party
would have to support in this model, where the Relying Party is the centre of
requests, possibly making it a more robust device.

CHARRA-PM can be used as a source of study and knowledge for implementa-
tions of domestic IoT networks, where the Relying Party can be software on the
router. Tests show that it is necessary to investigate the delay in create the attes-
tation results. We believe that the implementation should be improved, but as a
PoC, the times are acceptable since it is one of the essential processes.

As a next step, a compelling extension to this PoC would be the insertion of a
policy provider for Attestation Results, the Relying Party Owner, adding more
reliability and integrity without adding structural complications to the model.

47

References

[1] Henk Birkholz, Dave Thaler, Michael Richardson, Ned Smith, and Wei Pan.
Remote attestation procedures architecture. Internet-Draft draft-ietf-rats-
architecture-15, Internet Engineering Task Force, 05 2022. Work in Progress.

[2] State of iot 2021: Number of connected iot devices growing 9%. https:/ /iot-
analytics.com/number-connected-iot-devices/ .

[3] Aamir Lakhani. Examining Top IoT Security Threats and Attack Vectors |
Fortinet. https://www.fortinet.com/blog/industry-trends/examining-top-
iot-security-threats-and-attack-vectors, 2021.

[4] Erik David Martin, Joakim Kargaard, and Iain Sutherland. Raspberry Pi
Malware: An Analysis of Cyberattacks towards IoT Devices. Conference Pro-
ceedings of 2019 10th International Conference on Dependable Systems, Services
and Technologies, DESSERT 2019, pages 161-166, 2019.

[5] Remote attestation procedures workgroup.
https:/ /datatracker.ietf.org/wg/rats/about/.

[6] Internet engineering task force. https://www.ietf.org/about/who/.

[7] Edlira Dushku, Md Masoom Rabbani, Mauro Conti, Luigi V. Mancini, and
Silvio Ranise. SARA: Secure Asynchronous Remote Attestation for IoT Sys-
tems. IEEE Transactions on Information Forensics and Security, 15:3123-3136,
2020.

[8] Md Masoom Rabbani, Jo Vliegen, Jori Winderickx, Mauro Conti, and Nele
Mentens. SHeLA: Scalable Heterogeneous Layered Attestation. IEEE Inter-
net of Things Journal, 6(6):10240-10250, dec 2019.

[9] Antonio Marques. Charra passport mode (charra-pm) - source code.
https:/ /github.com/aamarques/CHARRA-PM.

[10] ISO-IEC 11889-1:2015. Information technology — Trusted platform module
library — Part 1: Architecture. https:/ /www.iso.org/standard/66510.html.

[11] Trusted Computing Group. Trusted Computing Group - Trusted Platform
Module - TPM - Latest Version. https:/ /trustedcomputinggroup.org/work-
groups/trusted-platform-module.

[12] Microsoft. Trusted Platform Module Technology Overview.
https:/ /docs.microsoft.com/en-us/windows/security /information-
protection/tpm /trusted-platform-module-overvie.

48

References

[13] Will Arthur Challener and David. A Pratical Guide to TPM 2.0. Apress Open,
2015.

[14] Professor Norbert Pohlmann. Trusted Platform Module (TPM).
https:/ /norbert-pohlmann.com/glossar-cyber-sicherheit/ trusted-platform-
module-tpm.

[15] Trusted Computing Group. TCG PC Client PlatformFirmware
Profile = Specification. https:/ /trustedcomputinggroup.org/wp-
content/uploads/TCG_PCClient_PFP_r1p05_v23_pub.pdf.

[16] TPM-]S - Learn Trusted Platform Module (TPM) in your browse.
https:/ /google.github.io/tpm-js/#pg_pcrs.

[17]]J. Boone. Tpm genie: Interposer attacks against the trusted platform module
serial bus. NCC GROUP, 112:1-23, 2018.

[18] IBM’s Software TPM 2.0 - This project is an implementation of
the Trusted Computing Group’s (TCG) TPM 2.0 specification. It is
based on the TPM specification Parts 3 and 4 source code donated
by Microsoft, with additional files to complete the implementation.
https:/ /sourceforge.net/projects /ibmswtpm?2.

[19] Tpm2-tools - the source repository for the trusted platform module (tpm?2.0).
https:/ /github.com/tpm2-software / tpm2-tools.

[20] Rfc 7252 - the constrained application protocol (coap). https://www.rfc-
editor.org/rfc/rfc7252.html.

[21] Rfc 2616 - the hypertext transfer protocol (http). https://www.rfc-
editor.org/rfc/rfc2616.html.

[22] Rfc 0768 - wuser datagram protocol - udp. https:/ /www.rfc-
editor.org/rfc/rfc768.htm.

[23] Rfc 9147 - datagram transport layer security (dtls) version 1.3.
https:/ /www.rfc-editor.org/rfc/rfc9147.

[24] Rfc 8132 - patch and fetch methods for the constrained application protocol
(coap). https:/ /www.rfc-editor.org/rfc/rfc8132.

[25] Rfc 7250 - wusing raw public keys in transport layer security (tls)
and datagram transport layer security (dtls), ietf. https://www.rfc-
editor.org/rfc/rfc7250.html.

[26] Rfc 4279 - pre-shared key ciphersuites for transport layer security (tls).
https:/ /www.rfc-editor.org/rfc/rfc4279. html.

[27] Mbed tls is a c library that implements cryptographic primitives, x.509 cer-
tificate manipulation and the ssl/tls and dtls protocols. its small code foot-
print makes it suitable for embedded systems. https://github.com/Mbed-
TLS/mbedtls.

[28] Rfc 8949 - concise binary object representation (cbor). https://www.rfc-
editor.org/rfc/rfc8949.html.

49

References

[29] Rfc 7159 - the javascript object notation (json) data interchange format.
https:/ /www.rfc-editor.org/info/rfc7159.

[30] RISHABH DEV Founder and Editor at Durofy. Ascii values and table gen-
erator in c. https:/ /durofy.com/ascii-values-table-generator-in-c.

[31] Alexander Sproge Banks, Marek Kisiel, and Philip Korsholm. Remote At-
testation: A Literature Review. pages 1-34, 2021.

[32] N. Asokan, Ferdinand Brasser, Ahmad Ibrahim, Ahmad Reza Sadeghi,
Matthias Schunter, Gene Tsudik, and Christian Wachsmann. SEDA: Scalable
embedded device attestation. Proceedings of the ACM Conference on Computer
and Communications Security, 2015-Octob:964-975, 2015.

[33] Remote attestation procedures workgroup documents.
https:/ /datatracker.ietf.org/wg/rats/documents/.

[34] Henk Birkholz, Michael Eckel, Wei Pan, and Eric Voit. Reference Interac-
tion Models for Remote Attestation Procedures. Internet-Draft draft-ietf-
rats-reference-interaction-models-05, Internet Engineering Task Force, Jan-
uary 2022. Work in Progress.

[35] R. Reddy and C. Wallace. Trust anchor management requirements.
https:/ /www.rfc-editor.org/info/rfc6024.

[36] MQTT - The Standard for IoT Messaging. https://mqtt.org/.
[37] Home | AMQP. https://www.amqp.org/.

[38] Fraunhofer Institute for Secure Information Technology. Fraunhofer-
SIT/charra: Proof-of-concept implementation of the "Challenge/Response
Remote Attestation" interaction model of the IETF RATS Reference In-
teraction Models for Remote Attestation Procedures using TPM 2.0.
https:/ /github.com /Fraunhofer-SIT/charra.

[39] Michael Eckel. Michael eckel website. https://eckelmeckel.me/.

[40] Developer community for those implementing APIs and infrastructure
from the TCG TSS2 specifications. Repository of metadata and scripts used
to generate the container images used by the various tpm2-software projects.
https:/ /github.com/tpm2-software / tpm2-software-container.

[41] IBM’s Software. Tpm 2.0 - this project is an implementation
of the trusted computing group’s (tcg) tpm 2.0 specification. it is
based on the tpm specification parts 3 and 4 source code donated
by microsoft, with additional files to complete the implementation.
https:/ /sourceforge.net/projects /ibmswtpm?2.

[42] Developer community for those implementing APIs and infrastructure
from the TCG TSS2 specifications. The source repository for the trusted
platform module (tpm?2.0) tools. https://github.com/tpm2-software/tpm2-
tools.

[43] Charra opensource bsd-3 license infomration.
https:/ /github.com /Fraunhofer-SIT/charra/blob/master /LICENSE.md.

50

References

[44] Michael Eckel and Tim Riemann. Userspace software integrity measure-
ment. ARES 21, New York, NY, USA, 2021. Association for Computing Ma-
chinery.

[45] Boyu Kuang, Anmin Fu, Willy Susilo, Shui Yu, and Yansong Gao. A survey
of remote attestation in internet of things: Attacks, countermeasures, and
prospects. Computers and Security, 112:102498, 2022.

[46] Sigurd Frej Joel Jorgensen Ankergard, Edlira Dushku, and Nicola Dragoni.
State-of-the-art software-based remote attestation: Opportunities and open
issues for internet of things. Sensors, 21(5), 2021.

[47] Raja Naeem Akram, Konstantinos Markantonakis, and Keith Mayes. Re-
mote attestation mechanism for embedded devices based on physical un-
clonable functions. Cryptology and Information Security Series, 11:107-121,
2013.

[48] , Institute of Electrical and Electronics Engineers. Ieee 802.11, The Working
Group Setting the Standards forWireless LANs. [Online; accessed 2022-09-
03].

[49] Zigbee specification. https:/ / zigbeealliance.org/wp-
content/uploads/2019/11/docs-05-3474-21-0Ocsg-zigbee-specification.pdf.

[50] Research Network Website. Research gate. https:/ /www.researchgate.net/.

[61] Institute of Electrical and Electronics Engineers. Ieeexplore.
https:/ /ieeexplore.ieee.org/.

[52] Programa de educagdo tutorial (pet) da universidade de sdo carlos, brasil.
https:/ /petbcc.ufscar.br/time.

[53] A. Gonzalez Robles. M2m and mobile communications: an implementation
in the solar energy industry (dissertation). Technical report, 2015.

51

Appendices

52

Appendix A

Protocol Message Exchanges

This appendix will show some connection messages between devices after en-
abling DEBUG mode. We can see the CoAP, DTLS and CBOR traffic in the figures
below. All these figures were screenshots of CHARRA-PM execution.

The figure A.1 and A.2 shows some messages exchanged between Attester and
Verifier using CoAP with DTLS-RPK. The figure A.1 also shows the creation of
two endpoints: attest and result.

14:18:21
14:18:21
Aug 11 14:18: JEBG created DT

[coap-util] Adding

[attester] Registering CoAP ATTESTED re
14:18:21 [coap-util] Adding CoAP FETC result’.
Aug 11 14: 3. 92.168. 68.1.4 { J néw incoming session
Aug 11 3 f
Aug 11
Aug 11
Aug 11
Aug 11
Aug 11
Aug 11
Aug
Aug
Aug
Aug
Pug 4:18: 92.168.1.2] 8. 665 (if21) DTLS i 119 bytes
14: coap-util] ¢ ivalence against
public key.

14:18:30 [verifier] Initializing CoAP in block-wise mode.
[werifier] Registering CoAP response handler.
[verifier] Creating CoAP client session using DTLS-RPE.
68.1.4:47665 <-> 192.168.1.2:5683 DTLS: new outgoing session

Figure A.2: CoAP with DTLS-RPK

The figure A.3, we can verify the use of the FETCH method receiving a message
in "attest" endpoint usig the CBOR format.

53

Protocol Message Exchanges

In the figure A.4 is a complete CBOR Message with the evidence sent by the At-
tester to the Verifier. Moreover, The figure A.5shows the same message received
by Verifier.

Aug 11 14:18:38.727 DEBG call custom handler for resource "atbest’
14:18:38 [attester] Resource 'attest': Received message.
wv:l t:00N c:FETCH 1:9973 {@1} [Uri-Path:attest, Content-Format:application/cbor 1 :: binary data length 52

<< B5F44e504b2e52534]1 2e040566617 5674 544bd21 c5c4967 7812584111 1de 311 b6 1 ded 3e9 20051 8200E00001 820304850087 0ale > »
. .NPK.R5A.defaultTK. . VIgX. . .0. .00t o' oeusioeeesneaea@»

Figure A.3: CoAP with FETCH method

Aug 11 14 2 DEBG == 192.168.1 92.168.1.4:47665 (if21) DTLS: lg »mit Bx55e2918f6af@ initialized

{1} [C
200007 29aF 2

Bug 11 14 3 DEBG call
Aug 11 14:1 DEBG * 192.168.1.

Figure A.4: CBOR complete message sent

The figure A.6 shows the Attestation Result received, encoded in CBOR, by the
Relying Party.

54

Protocol Message Exchanges

14:18:38 [verifier] Resource
wil t:ACK c:2.85 i: @1, Content-Format:ap

813402 ' wmwmzwmwm P00 BPRAORDEAANAR00DDRORNANE
EORRAOONNAERRON0ARE0NNNAAIREI0DAAARREE000GAAR0ROAIREE0000AAINE00DRIRROE00D0ARERO000BAR0000MIBANO0DEGANOR00D

4y

Figure A.5: CBOR complete message received

Figure A.6: Attestation Result Received

55

Appendix B

Command Line Parameter for
CHARRA-PM

This appendix shows the option to pass to any program used in CHARRA-PM

and /or CHARRA also.
OPTIONS DESCRIPTION
—help: Print this help message.
v Set CHARRA and CoAP log-level to DEBUG.
—verbose:

1,
-log-level=LEVEL

Set CHARRA log-level to LEVEL.
Available are: TRACE, DEBUG, INFO, WARN, ERROR, FATAL.
Default is INFO.

-,
—coap-log-level=LEVEL

Set CoAP log-level to LEVEL. Available are:
DEBUG, INFO, NOTICE, WARNING, ERR, CRIT,
ALERT, EMERG, CIPHERS.

Default is INFO.

—ip=IP local IP address of service.

—port=PORT Open PORT instead of port 5683.

DTLS-PSK Options:

P Enable DTLS protocol with PSK. By default the key "Charra DTLS Key’
—psk and hint ‘Charra Attester’ are used.

-k, -

“key=KEY Use KEY as pre-shared key for DTLS. Implicitly enables DTLS-PSK.

-h, . -

—hint=HINT Use HINT as hint for DTLS. Implicitly enables DTLS-PSK.

DTLS-RPK Options:

Charra includes default ‘keys’ in the keys folder, but these are only intended for testing.
They MUST be changed in actual production environments!

-1,

-rpk

Enable DTLS-RPK (raw public keys) protocol . The protocol is intended for scenarios in
which public keys of either attester or verifier or both of them are pre-shared.

—private-key=PATH

Specify the path of the private key used for RPK.
Currently only supports DER (ASN.1) format.

—public-key=PATH

Specify the path of the public key used for RPK.
Currently only supports DER (ASN.1) format.

—peer-public-key=PATH:

Specify the path of the reference public key of the peer, used for RPK.
Currently only supports DER (ASN.1) format.

—verify-peer=[0,1]:

Specify whether the peers public key shall be checked against the reference public key.
0 means no check, 1 means check. By default the check is performed.

WARNING: Disabling the verification means that connections from any peer will be accepted.
This is primarily intended for the verifier, which may not have

the public keys of all attesters and does an identity check with the attestation response.
Implicitly enables DTLS-RPK.

Table B.1: Parameters of CHARRA-PM

The usage is: binary [OPTIONS], where binary should be attester, verifier or re-

lying_party.

56

Command Line Parameter for CHARRA-PM

For exemple:

attester --ip-rp 192.168.1.5 -r
relying_party -r

The table B.1 shows each [OPTIONS] and respective description.

57

Appendix C

Measurements Data Source

This appendix shows the collected data between five runs of CHARRA-PM for
each approach - RPK and PSK. These data were used to plot the graphics in sub-
section 6.3

Device | Step no. | Results in sec | Run | Approach
Verifier 1 0.000111 | 1 RPK
Attester 2 0.001770 | 1 RPK
Attester 3 0.000174 | 1 RPK
Verifier 4 0.009740 | 1 RPK
Attester 5 0.000693 | 1 RPK
Relying P. 6 0.000693 | 1 RPK
Verifier 1 0.000113 | 2 RPK
Attester 2 0.002157 | 2 RPK
Attester 3 0.000115 | 2 RPK
Verifier 4 0.009363 | 2 RPK
Attester 5 0.000502 | 2 RPK
Relying P. 6 0.002596 | 2 RPK
Verifier 1 0.000120 | 3 RPK
Attester 2 0.001644 | 3 RPK
Attester 3 0.000084 | 3 RPK
Verifier 4 0.014291 | 3 RPK
Attester 5 0.000258 | 3 RPK
Relying P. 6 0.00259%6 | 3 RPK
Verifier 1 0.000130 | 4 RPK
Attester 2 0.002284 | 4 RPK
Attester 3 0.000111 | 4 RPK
Verifier 4 0.012431 | 4 RPK
Attester 5 0.000207 | 4 RPK
Relying P. 6 0.002100 | 4 RPK
Veritier 1 0.000121 | 5 RPK
Attester 2 0.001870 | 5 RPK
Attester 3 0.000152 | 5 RPK
Verifier 4 0.010247 | 5 RPK

58

Measurements Data Source

Device | Step no. | Results in sec | Run | Approach
Attester 5 0.000192 | 5 RPK
Relying P. 6 0.002017 | 5 RPK
Verifier 1 0.000148 | 1 PSK
Attester 2 0.002416 | 1 PSK
Attester 3 0.000086 | 1 PSK
Verifier 4 0.012709 | 1 PSK
Attester 5 0.000184 | 1 PSK
Relying P. 6 0.004307 | 1 PSK
Verifier 1 0.000127 | 2 PSK
Attester 2 0.002327 | 2 PSK
Attester 3 0.000056 | 2 PSK
Verifier 4 0.013625 | 2 PSK
Attester 5 0.000207 | 2 PSK
Relying P. 6 0.007467 | 2 PSK
Verifier 1 0.000101 | 3 PSK
Attester 2 0.001933 | 3 PSK
Attester 3 0.000027 | 3 PSK
Verifier 4 0.003875 | 3 PSK
Attester 5 0.000118 | 3 PSK
Relying P. 6 0.003970 | 3 PSK
Verifier 1 0.000111 | 4 PSK
Attester 2 0.001857 | 4 PSK
Attester 3 0.000026 | 4 PSK
Verifier 4 0.003717 | 4 PSK
Attester 5 0.000132 | 4 PSK
Relying P. 6 0.003796 | 4 PSK
Verifier 1 0.000126 | 5 PSK
Attester 2 0.002192 | 5 PSK
Attester 3 0.000031 | 5 PSK
Verifier 4 0.004692 | 5 PSK
Attester 5 0.000143 | 5 PSK
Relying P. 6 0.003029 | 5 PSK

Table C.1: Measurements Table

59

	Introduction
	Objectives
	Contributions/Achievements
	Structure

	Background
	Trusted Platform Model 2.0 - TPM 2.0
	Endorsement Certificate
	Platform Configuration Registers - PCR

	Constrained Application Protocol - CoAP
	CoAP FETCH Method

	Datagram Transport Layer Security - DTLS
	Concise Binary Object Representation - CBOR

	State of the Art and Standardization
	Standardized Attestation Mechanisms
	Attestation Mechanisms in the literature
	RATS Model
	SHeLA Model
	SARA Model

	CHARRA Project
	Advantages
	Limitations

	Summary

	Research Methodology
	Motivation
	Objectives
	Approach
	Methodology

	CHARRA-PM - CHARRA Passport Model
	Passport Model
	Considerations
	The Contribution of CHARRA-PM
	Challenge/Response steps
	Passport Model Steps

	Implementation of CHARRA-PM
	Establishing a CoAP session with DTLS
	Certificate Signing Process
	Receipt of the certificate by the Relying Party
	CoAP Endpoints
	Docker Environment
	Considerations

	Validation, Evaluation and Results
	Proof of Concept
	Evaluation Methodology
	Results

	Conclusion
	Appendix Protocol Message Exchanges
	Appendix Command Line Parameter for CHARRA-PM
	Appendix Measurements Data Source

