

Ana Maria Marques Cruz

PREDICTING THE PERFORMANCE OF

BUCHBERGER`S ALGORITHM

Dissertação no âmbito do Mestrado em Matemática, Ramo Análise Aplicada e
Computação, orientada pelos Professores Doutores João Eduardo da Silveira

Gouveia e Eduardo Manuel Dias e apresentada ao Departamento de
Matemática da Faculdade de Ciências e Tecnologia.

Setembro de 2022

Predicting the performance of
Buchberger‘s algorithm

Ana Maria Marques Cruz

Master in Mathematics

Mestrado em Matemática

MSc Dissertation | Dissertação de Mestrado

Setembro 2022

Acknowledgements

Quero agradecer ao Eduardo Dias e ao Professor João Gouveia pela orientação, disponibilidade e
ensinamentos ao longo da elaboração desta dissertação. Agradeço também ao Departamento de
Matemática pelos recursos disponibilizados e a todos os Professores com quem me cruzei ao longo do
meu percurso académico.

À empresa Inductiva Research Labs, e à incrível equipa que a constitui, obrigado por me terem
dado a oportunidade de fazer parte deste projeto durante o último ano, por tudo o que aprendi ao longo
do estágio e por me terem aberto as portas a novas áreas de conhecimento.

Agradeço à minha família, principalmente aos meus pais por me terem dado esta oportunidade e,
sobretudo, por todo o apoio, paciência e carinho presentes ao longo do meu percurso académico. À
minha irmã, pelos conselhos e bons momentos partilhados, enquanto estudantes e irmãs, e à Luna por
ter estado sempre ao meu lado.

Por último, quero agradecer a todos os meus amigos que sempre me apoiaram e estiveram
presentes, pelos abundantes momentos de descontração e diversão que desempenharam um importante
papel na minha vida e no processo de escrita desta dissertação.

Abstract

Gröbner bases are a fundamental concept in computational algebra. Since the creation of the theory
behind them in 1949, by Wolfgang Gröbner, they became an important tool in any area where
polynomial computations play a part, both in theory and in practice. Although they have proved to be
very useful, their calculation is very expensive in certain cases. The first algorithm ever developed to
compute these bases is the so-called Buchberger’s Algorithm, and is still one of the most commonly
used algorithms for this purpose.

As a preliminary step in improving the efficiency of the algorithm, one would like to be able
to predict, given an ideal, how complicated it is to compute its Gröbner basis using Buchberger’s
Algorithm. In this dissertation, we cover precisely this question, following recent work of Mojsilović,
Peifer and Petrović. More precisely we introduce and apply linear regression and Machine Learning
tools to attempt to predict the number of iterations needed, and show that it is, in certain cases, possible
for us to achieve this goal.

Resumo

As bases de Gröbner são um conceito fundamental em álgebra computacional. Desde a criação
desta teoria, em 1949, por Wolfgang Gröbner, elas tornaram-se numa ferramenta importante em
qualquer área onde exista computação polinomial, tanto na teoria como na prática. Embora se tenham
demonstrado extremamente úteis, o seu cálculo é muito pesado em certos casos. O primeiro algoritmo
desenvolvido para calcular estas bases é chamado Algoritmo de Buchberger, que ainda é um dos
algoritmos mais utilizados para esse fim.

Como passo preliminar para melhorar a eficiência do algoritmo, gostaríamos de poder prever, dado
um ideal, quão complicado é calcular a respetiva base de Gröbner usando o Algoritmo de Buchberger.
Nesta dissertação, abordamos precisamente esta questão, seguindo o trabalho recente de Mojsilović,
Peifer e Petrović. Mais precisamente, introduzimos e aplicamos ferramentas de regressão linear e
Machine Learning para tentar prever o número de iterações necessárias, e mostramos que, em certos
casos, é possível atingir esse objetivo.

Table of contents

List of figures xi

List of tables xiii

1 Introduction 1

2 Gröbner Basis 5
2.1 Ideal Membership Problem . 5
2.2 Monomial Ordering . 7
2.3 Division Algorithm in multivariate polynomial rings 9
2.4 Gröbner Basis . 11
2.5 Buchberger Algorithm . 12

3 Machine Learning 15
3.1 Supervised learning . 15
3.2 Neural Network . 17

3.2.1 Recurrent Neural Network . 19

4 Literature Review 21
4.1 Binomial Ideals and Toric Ideals . 21
4.2 Learning a performance metric of Buchberger’s algorithm 22
4.3 Contributions of this thesis . 27

5 Data Generation 29
5.1 Dataset Structure . 29

5.1.1 Selection Strategy evaluation . 32

6 Linear Regression and Neural Network Models 35
6.1 Polynomial additions prediction by linear regression models 35

6.1.1 Application . 35
6.2 Neural Networks . 38

6.2.1 Models Architecture . 39
6.2.2 Neural Network Models Training . 42

7 Conclusion 43

x Table of contents

References 47

List of figures

2.1 A representation of the Circle Theorem of Apollonius 6

3.1 A representation of a neural network . 18
3.2 A representation of an hidden layer in a RNN. [25] 19

4.1 Predicted versus actual polynomial additions in 3-20-10-weighted dataset. 26

5.1 Histograms of some features from the 3-20-10-uniform from binomial ideals. 31
5.2 Histograms of some features from the toric-6-0-5-8 from toric ideals. 31
5.3 Density estimations of number of polynomial additions in 3-20-10-uniform model

with 100 000 samples. 33
5.4 Density estimations of number of polynomial additions in 3-20-10-weighted model

with 100 000 samples. 33

6.1 Train and Validation learning curves during training of a recursive neural network
for predicting the number of polynomial additions using already calculated statis-
tic features, MMMSDDeg, for 3-20-4-weighted dataset. The parameters taken in
consideration are the batch size, units per layer and learning rate. 39

6.2 Train and Validation learning curves during training of a recursive neural network
for predicting the number of polynomial additions using the ideals exponents, for
3-20-10-weighted dataset. The parameters taken in consideration are the batch size,
units per layer and learning rate. 40

6.3 Train and Validation learning curves during training of a recursive neural network
for predicting the number of polynomial additions using the ideals exponents, for
toric-2-0-5-8 dataset. The parameters taken in consideration are the batch size, units
per layer and learning rate. 41

7.1 Actual versus predicted polynomial additions of a 100 000 sized test set in toric-2-0-
5-8. The black line represents the perfect prediction versus actual matches. 44

7.2 Actual versus predicted polynomial additions of a 100 000 sized test set in toric-6-0-
5-8. The black line represents the perfect prediction versus actual matches. 45

xi

List of tables

2.1 Polynomial equations for the Circle Theorem of Apollonius. 6

4.1 Characterizations of normal and extremely disconnected spaces 24
4.2 Summary of regression analyses: coefficients of various predictors in multiple linear

regression for each ideal dataset. 25
4.3 Summary of regression analyses: R2 statistics in multiple linear regression models for

each ideal dataset. 25
4.4 Trained model performances on the dataset 3-20-10-weighted with uniformed model,

linear regression model and recursive neural network model. 26
4.5 Summary of neural network predictions: R2 with different training and test datasets. . 27

5.1 Dataset distributions and sample size. 30
5.2 Mean and standard deviation of the number of polynomial additions for two binomial

distributions and a toric distributions of the same samples of 100 000 ideals. The table
entries format are: mean standard deviation. 32

6.1 Summary of fitting the number of polynomial additions with four linear regression
models in two binomial ideal datasets. 36

6.2 Summary of fitting the number of polynomial additions with four linear regression
models in a toric ideal dataset. 36

6.3 Summary of fitting the number of polynomial additions with four linear regression
models, representing the corresponding R2 statistics. 37

6.4 Summary of fitting the number of polynomial additions with linear regression and two
neural network models. The results are represented by R2 statistics. The calculation
of the Gröbner basis in this dataset were computed with selection strategy Sugar. . . 42

6.5 Summary of fitting the number of polynomial additions with linear regression and two
neural network models. The results are represented by R2 statistics. The calculation
of the Gröbner basis in this dataset were computed with selection strategy Degree. . . 42

xiii

Chapter 1

Introduction

The concept of Gröbner basis was first introduced in 1949, by Wolfgang Gröbner, an Austrian
mathematician. Later, in 1965, Bruno Buchberger, with Gröbner by his side, developed the Gröbner
basis theory for ideals in commutative polynomial rings [4]. This development of the Gröbner basis
began with the initial task to find the complete solution of a system of algebraic equations:

f1(x1, ...,xn) = 0, f2(x1, ...,xn) = 0, . . . , fm(x1, ...,xn) = 0. (1.1)

As is commonly known, the fewer the number of variables, compared to the number of equations, the
easier it is to solve the system. But when the number of variables is big, it is necessary to approach
the problem in a different way. One approach is to find a new system of equations, 1.2, equivalent to
the initial system 1.1, with less variables to work with, such that the roots of 1.1 are also the roots of
1.2. What was described is the core idea of the elimination theory, it starts by eliminating the variable
xn, by finding equivalent equations, and so on until there is an equivalent system with less variables.

g1(x1, ...,xt) = 0,g2(x1, ...,xt) = 0, . . . ,gs(x1, ...,xt) = 0. (1.2)

A few classical methods for cases with only one variable already existed. Even though the methods
work, they were not efficient enough for the multivariate case, as it is flawed. Therefore, Professor
Wolfgang Gröbner figured that another more efficient method must exist, this method is now known
as the Gröbner Basis. In order to avoid these flaws, ideal theory was introduced [17]: “All of the
polynomials of the ideal A = (f1, . . . , fm) which do not contain the variable xn form an ideal (. . .) in
the polynomial ring K[x1, ...,xn−1], whose basis polynomials set equal to zero produce the system of
equations 1.2.”

It was a few years later that, with the help of Buchberger, this theory was defined and denominated
Gröbner basis, and it also developed the algorithmic theory for the computing of a basis that could take
any set of polynomials and always construct an unique Gröbner basis for any set of polynomials. In
the following years, work to improve the algorithms performance in problems related to Gröbner basis
was done. Having the Buchberger algorithm as a starting point, other algorithms such as Faugère’s
F4[13] and F5[14] algorithms were designed to fix some performance problems in the initial algorithm.
The F4 algorithm shows more efficiency for large input, by implementing simultaneous reductions
of several S-polynomials, computing the reduced row echelon form of coefficient matrices. And the

1

2 Introduction

F5 algorithm was created to avoid redundant computations from F4, the idea behind it is to detect
unnecessary reductions before they appear. By using machine learning training methods such as
Supervised Learning and Reinforcement Learning, useful information was discovered. For example,
discovering new selection strategies for steps with freedom of choice, data domain information and
that Buchberger’s algorithm can be machine learnable.

The applications of Gröbner basis are important in many fields of research in mathematics such
as: commutative algebra, geometric theorem proving and elimination theory among others. Also, in
science and engineering, for example: in coding theory, robotics, software engineering and many
others. The Gröbner basis theory can be introduced in almost anywhere polynomials are used. In
computer algebra, some problems with polynomials are quite complex to solve, between them there
are the problem of solving polynomial equations and the ideal membership problem. Solving these
problems provide an answer to many practical challenges and Gröbner bases are a powerful tool that
can be used in the process of solving those problems.

In this dissertation, Chapter 2 introduces some needed base notions for understanding what are
and how Gröbner basis work. First, the Ideal Membership Problem is stated as motivation for the need
of Gröbner basis. Then, following the motivation problem, and in order to try and solve it, Monomial
Ordering, Division algorithm and Gröbner basis are defined. In the end of the subchapter 2.4 the
problem initially introduced as a motivation, is solved using a Gröbner basis. After that, the needed
algorithmic theory for the Gröbner basis computation, the Buchberger’s algorithm, completes the
second chapter.

Some machine learning tools were used in the study of the Buchberger’s Algorithm, such as in
the article Learning a performance metric of Buchberger’s algorithm[26]. Where the complexity of
Buchberger’s Algorithm is studied, by trying to predict the number of polynomial additions during
one run of the algorithm. This article is the backbone of this dissertation. To better understand the
methods used in the article, some background related to Machine Learning, that will be mentioned
and used in the following chapters, is presented. Since, for this dissertation, only some Supervised
learning algorithms were needed, this chapter focuses on Linear Regression models, Simple Neural
Networks and Recursive Neural Networks.

For a proper review, some concepts of abstract algebra referred in the article and in the follow
up chapters, Binomial Ideals and Toric Ideals, are firstly described in Chapter 4. Then, the articles
methodology and results are described, to be used ahead for comparison purposes. Following the
review, the research goals, succeeding the article’s for this dissertation, are described.

Chapter 5 contains information regarding the data used for the research and how it was generated.
It also compares the performance of multiple selection strategies in different datasets, and from it, the
main selection performance used for the calculation of Gröbner bases is defined.

In Chapter 6, the linear regression models used are described, as well as respective performance
results, using linear and multiple regressions. Those results are compared with the linear regression
models from the article in Chapter 4. Next, the architecture of the neural networks models are detailed,
both simple neural network and recursive neural network. The models have multiple parameters to
decide, the selection process is explained for the purpose of understanding how different datasets have
different model architecture. The final results from the training of the models are depicted in the last
section of the chapter.

3

Lastly, in the last Chapter 7, the results are discussed and compared with the article results in
Chapter 4. Throughout this research, some remarks and suggestions that surfaced for possible future
work and improvements that were not possible to execute for this dissertation, are also mentioned.

Chapter 2

Gröbner Basis

2.1 Ideal Membership Problem

The Ideal Membership problem is a fundamental algorithmic problem with multiple applications
in solving polynomial systems. It essentially consists of finding when some polynomial identity is
implied by a set of other polynomial relations.

In order to properly define the Ideal Membership problem, the notion of a polynomial ideal needs
to be introduced first:

Definition 2.1.1. Let R = K[x1, ...,xs] be a polynomial ring. Its elements are all polynomials with
x1, ...,xs variables and coefficients from a field K. A polynomial ideal, I = ⟨ f1, ..., fk⟩ ⊆ R is the set of
all polynomials generated by f1, ..., fk, i.e.

I = {g1 f1 + · · ·+gk fk, |gi ∈ R}.

Now, the problem can be stated:

Ideal Membership Problem (IMP): Given f1, ..., fs, a set of polynomials on multiple variables. Is
there a way to know if a polynomial f belongs to the ideal I generated by f1, ..., fs? To put it more
simply, are there q1, ...,qs polynomials such that f can be written as

f = q1 f1 + ...+qm fs?

As stated before, this is a fundamental problem in commutative algebra, and has numerous
applications. One illustrative example is geometry theorem proving. Consider the classic Circle
Theorem of Apollonius whose illustration is given in Figure 3.2. The theorem states:

Example 2.1.1. Let ABC be a right triangle in the plane, with a right angle at A. The midpoints of the
three sides and the foot of the altitude drawn from A to the line BC lies in a circle.

The result can be rewritten into an IMP. For this, it is necessary to express the premises as
multivariate polynomials. First, the coordinates of each point need to be defined. Without loss of
generality, one can assume A as the origin, A = (0,0), B in the y axis, B = (y,0), C in the z axis

5

6 Gröbner Basis

Fig. 2.1 A representation of the Circle Theorem of Apollonius

C = (0,z), the center of the circle O = (x7,x8) H = (x5,x6), D = (x1,0), F = (0,x2) and E = (x3,x4),
the last three are the midpoints of each side. Having the coordinates defined, one can translate the
geometric hypothesis into eight polynomial identities, as shown in Table 2.1.

Polynomial Equations Description

p1 := 2x1− y = 0 D is the midpoint of AB

p2 := 2x2− z = 0 F is the midpoint of AC

p3 := 2x3− y = 0
p4 := 2x4− z = 0

E is the midpoint of BC

p5 := x5y− x6z = 0 AH ⊥ BC

p6 := x5z+ x6y− yz = 0 H lies in BC

p7 := (x1− x7)
2 + x2

8− ((x3− x7)
2 +(x4− x8)

2) = 0
p8 := (x1− x7)

2 + x2
8− x2

7− (x8− x2)
2) = 0

|OD|= |OE|= |OF |

c =: (x5− x7)
2 +(x6− x8)

2− ((x1− x7)
2− (0− x8)

2) = 0 |OD|= |OH|

Table 2.1 Polynomial equations for the Circle Theorem of Apollonius.

Now it is just necessary to show that c lies in the ideal generated by the polynomials p1, ..., p8.

How can one solve this IMP? If it was the univariate case, finding if a polynomial can be expressed
as a polynomial combination of elements of F = { f1, ..., fk} is quite easy, since there is a single
polynomial that can be used to verify the membership. In fact, the ring of polynomials in one variable
over any field is a Principal Ideal Domain i.e., every ideal is generated by a single polynomial.

2.2 Monomial Ordering 7

This polynomial is the greatest common divisor (GCD) of F, and can be obtained, for example, by
a simple use of the Euclidean Algorithm. One way of thinking of the Euclidean Algorithm to find the
greatest common divisor of F is the following:

• Take a pair of elements from F and divide the one with the largest degree by the other.

• Replace the one with the largest degree by the remainder of the division. If the remainder is
zero, remove it from F .

• Repeat until only one polynomial is left, that is the GCD of F .

Example 2.1.2. Consider the two polynomials, p(x) = x5−4x3 +4x+3 and g(x) = x3 +3x+1, with
x ∈ Z. To calculate the greatest common divisor of the pair (f (x),g(x)), one need to perform repeated
divisions with the remainder, like so, gcd(f ,g) = gcd(g,r1) = gcd = (r1,r2) = ...= gcd(rn,0), where
rn represent the remainder from the division of the previous two polynomials. First, it starts by having
gcd(f ,g):

x5−4x3 +4x+3 = (x3 +3x+1)(x2 +1)+(4x2 + x+2)

obtaining r1 = 4x2 + x+2. Then, calculate gcd(g,r1):

x3 +3x+1 = (4x2 + x+2)(4x+4)+(x+3),

obtaining r2 = x+3, and finally see that r2 divides r1,

4x2 + x+2 = (x+3)(4x+4)

so gcd(r2,r1) = 0, and therefore gcd(f ,g) = r2 = x+3.

Once the GCD(F) is found, simply divide f by GCD(F), to verify if it is or is not generated by F,
which happens if and only if the rest of the division is zero.

The problem appears when there is more than one variable to consider as it stops being a Principal
Ideal Domain. One can try to see what fails in the division algorithm, to see what needs to be fixed.
The whole idea of the Euclidean Algorithm is that at each step the degree of one of the elements of
the set can be reduced by dividing it by another. This fails in a set of multivariate polynomials, and it
is not even clear what highest degree should be replaced with. The first step towards a multivariate
division algorithm is therefore to clarify this notion.

2.2 Monomial Ordering

To be able to generalize the long division algorithm to multivariate polynomials, the task of finding the
leading term of a polynomial requires to sort the terms of the polynomial in a descending or ascending
order, without ambiguity. To do that, it is necessary to define what is needed from this order.

Definition 2.2.1. A monomial order (>) is a relation on the set of monomials of K[x1, ...,xs] that
satisfies the following properties:

• is a total order, meaning every two monomials are comparable;

8 Gröbner Basis

• is a well order, i.e., in a non-empty set of monomials there is always a smallest element;

• respects multiplication, i.e., if a≥ b and c is another monomial in k[x1, ...,xn], then ac≥ bc.

These three properties play an important role in the division algorithm. The first property allows
to identify the leading term from a polynomial with multiple terms, the second property implies that
the algorithm will eventually end and finally, the last property ensure that the leading terms will not
change even with the multiplications involved in divisions.

There are many monomial orderings, and picking which one to use has an important numerical
impact. For theoretical purposes and simplicity, only the lexicographic order is defined.

Definition 2.2.2. The lexicographic order is defined as in the lexicographical order on words. When
having multiple variables x1,x2, ...,xn (where the order of the variables is fixed) it works by comparing
the exponents of x1 in the monomial first, and if the exponents are equal, it will break the tie by
comparing the exponents of x2 and so on.

Example 2.2.1. Consider the following two examples for monomial representation and comparing
two monomials in lexicographic order:

• xy2 > y3z4 in lex order,

• x3y2z4 > x3y2z in lex order.

Note that it will be used xq to symbolize an arbitrary monomial with q representing a vector of
exponents, q = (q1, ...,qs) and x a vector of its variables with x = (x1, ...,xs), e.g., for the monomial
x1x4

2x5
3 then the correspondent vector of exponents and vector of variables are: q = (1,4,5) and

x = (x1,x2,x3). With this convention it is possible to identify monomials with their exponent vectors
and the inequalities above can be interpreted as

• (1,2,0)> (0,3,4),

• (3,2,4)> (3,2,1).

It is a simple exercise to verify that the lexicographic order verifies all the conditions to be a
monomial order. Knowing what an order implies, the concept of leading term for a multivariate
polynomial can be defined rigorously, a concept that will depend on the order chosen.

Definition 2.2.3. Given a fixed monomial ordering in R = K[x1, ...,xs], and f ∈ R then the leading
term of f , LT (f), is the term associated to the maximum monomial of f .

For instance, if f = 3xy3 +2x2y−3y5 +7, then the leading term is LT (f) = 2x2y in the lexico-
graphic order induced by x > y. If the chosen order is induced by y > x, instead the lexicographic
order, then the leading term would be LT (f) = y5.

2.3 Division Algorithm in multivariate polynomial rings 9

2.3 Division Algorithm in multivariate polynomial rings

The idea behind the division algorithm in the multivariate case is similar to the case of a single variable.
While for one variable, the algorithm divides two polynomials by comparing their highest degree
terms, in the multivariate case it does the same but by comparing the leading terms with respect to
some ordering. The following pseudo-code and definition describes properly the algorithm.

Algorithm 1 Multivariate Division Algorithm with remainder

Require: a polynomial f and a set of non-zero polynomials F = f1, ..., fs and a monomial order
Ensure: r = remainder(f ,F)

q1 = q2 = ...= qn = 0, r = 0
p← f
while p ̸= 0 do

if LT (fi)|LT (p) for some i then
choose i such that LT (fi)|LT (p)
qi← qi +

LT (p)
LT (fi)

p← p− LT (p)
LT (fi)

fi

else
r← r+LT (p)
p← p−LT (p)

end if
end while

The basic idea is that at each step it will decrease the leading term of f by subtracting from f
LT (f)
LT (fi)

fi while there is some fi such that divides the leading term of f , and if there is not such fi, collect
the leading term in the remainder and proceed with what is left.

Example 2.3.1. Consider the polynomial p := f = x3y+y2+yz divided by the polynomials {xy+1,z}
with the lex order induced by x > y > z

• LT (p) = x3y which is divisible by xy = LT (xy+1) so p becomes p−x2(xy+1) =−x2+y2+yz.

• LT (p) is now −x2 which is not divisible by any of the leading terms of the divisors, so that term
is moved to the remainder that becomes r(x) =−x2, leaving with p = y2 + yz

• Now LT (p) = y2, which once again is not divisible by any leading term, so r =−x2 + y2 and
p = yz

• Finally LT (p) = yz is divisible by z and p becomes p− yz = 0, so it stops.

In the end, it may be observed that the remainder is −x2 + y2 and that in fact f = (xy+1)x2 +(z)y+
(−x2 + y2).

Below it is possible to see that this algorithm always stops, and contributes with the following
result.

Proposition 2.3.1 (Division Algorithm in k[x1, ...,xn]). Let > be a fixed monomial order (e.g. lex) and
(f1, ..., fn) polynomials of multivariate variables, x1, ...,xn. Then every polynomial f can be written

10 Gröbner Basis

as f = q1 f1 + ...+qn fn + r, with qi,r ∈ k[x1, ...,xn] and no term of r (where r is the remainder of the
division from f by (f1, ..., fn)) being divisible by LT (f1), ...,LT (fn).

Proof. First, it is necessary to show that f can be written as

f = q1 f1 + ...+qn fn + p+ r

in every iteration of the above algorithm. The algorithm begins with q1 = q2 = ...= qn = 0 and r = 0,
so in the initial stage it holds. On the IF-ELSE step, if LT (p) is divided by a LT (fi) for some i=1,...,n,
this way:

qi := qi +
LT (p)
LT (fi)

p := p− LT (p)
LT (fi)

fi

By checking the equality:

q1 f1 + ...+qn fn + p = (p− LT (p)
LT (fi)

fi)+q1 f1 + ...+(qi +
LT (p)
LT (fi)

) fi + ...+qn fn

It is apparent that the equation holds, and will hold for the next loop. Else, is the remainder step, in
this stage p and r will change, but p+ r will remain the same:

p+ r = p−LT (p)+ r+LT (p).

In the remainder step, terms are added to the remainder and subtracted to p if LT (p) is not divisible
by any LT (fi). Meaning, that the leading term of p strictly decreases, so the number of loops in the
while stage are limited and when p = 0 the final equation computed is f = q1 f1 + ...+qn fn + r.

However, even if the above algorithm works up to a point, it is still not enough on its own to solve
the IMP. This is because there can be more than one output to the algorithm, depending on the choices
made.

Example 2.3.2. Given a polynomial set F = { f1, f2}, with f1 = xy−1 and f2 = x2−1 ∈ k[x,y]. To
figure out if f = xy2− x belongs to the ideal generated by F, the f needs to be divided by F. If f is
firstly divided by f1 first, and then f2, the result is:

xy2− x = y(xy−1)+(−x+ y),

so the remainder is −x+ y. However, if a different order is attempted, picking f2 as the first divisor,
the answer will be different from the first division order, xy2− x = x(y2−1), so the remainder is 0
and therefore, f is in the ideal generated by F.

As stated before, the previous example shows where the division algorithm fails. Even with a
fixed monomial order, the remainder is not always the same, given that there is an ambiguous step in
the algorithm.

To fix this ambiguity one would need to find a set of polynomials, a basis, where the remainder
would always be the same and unique, once a monomial order was fixed. This basis is the Gröbner

2.4 Gröbner Basis 11

basis, a “magical” basis where irrespective of the order by which the divisors were chosen, the
outcome does not vary.

2.4 Gröbner Basis

Now there is enough information to define a Gröbner basis.

Definition 2.4.1. Fix a monomial order on the polynomial ring k[x1, ...,xn]. Given an ideal I ⊆
k[x1, ...,xn] and consider LT (I), the leading term ideal of I, as the ideal generated by the lead-
ing terms of all polynomials in I. A finite subset G = {g1, ...,gm} is called a Gröbner basis if
⟨LT (g1), ...,LT (gm)⟩= LT (I) . [8]

Putting the previous definition in simpler terms: a set G= {g1, ...,gm} from an ideal I, is a Gröbner
basis of I if the leading term of any element of I is divisible by one of the leading terms of G.
This basis has important properties that help solving the Ideal membership Problem.

Proposition 2.4.1. Consider I ⊆ k[x1, ...,xn] an ideal and G = {g1, ...,gn} a correspondent Gröbner
basis for some fixed monomial ordering. If f ∈ k[x1, ...,xn] then there is a remainder, r ∈ k[x1, ...,xn],
from the division of f by the Gröbner basis. This remainder is unique and follows two properties:

1. No term of r is divisible by any of the leading terms from G, (LT (g1), ...,LT (gt)).

2. There is a polynomial g ∈ I such that f = g+ r

Proof. Since the division algorithm outputs f = q1g1 + ...+ qsgs + r, the first property is already
satisfied.
Suppose one can write f in two different ways: f = g+ r and f = g′+ r′ for some g,g′ ∈ I and r ̸= r′.
Then,

g+ r = g′+ r′ ⇐⇒ g−g′ = r− r′.

Since g,g′ ∈ I then g− g′ = r− r′ ∈ I, this implies that LT (r− r′) ∈ ⟨LT (I)⟩ = ⟨LT (G)⟩, meaning
that there is some gi such that LT (gi)|LT (r− r′), which is a contradiction with property (i), so r and
r′ have to be equal, and therefore, r is unique.

Example 2.4.1. Going back to the previous Example 2.1.1, it is now possible to solve the problem.
Recalling that the proof of the Circle Theorem of Apollonius was reduced to proving that a polynomial
c is an element of the ideal generated by {p1, ..., p8}, I(p1, ..., p8), where these are the polynomials
presented in Table 4.1. For the computations in this example Macaulay2 software[34] was used.

In the Macaulay2 software, the Gröbner basis of the ideal I(p1, ..., p8), regarding the variables
x,y,z,x1, ...,x8, was first computed. The result was the following 12 generators:

{2x4− z,2x2− z,2x1− y,4x7y− y2−4x8z+ z2,x6y+ x5z− yz,

x5y− x6z,x3y,x2
3−2x3x7,4x3x8z− x3z2,4x6x7z−4x5x8z+2x5z2− yz2,

4x5x7z+4x7x8z−2x6z2−4x7z2 + z3,x3x6z,x2
5z+ x2

6z− x6z2,x3x5z}

12 Gröbner Basis

In order to find if c is one of the ideal member, it is necessary to perform the polynomial division
of c by the Gröbner basis. With the help of the Macaulay2, the division result interpreted by:

c = (−1/2x1 + x7−1/4y)∗ (2x1− y)+1/4∗ (4x7y− y2−4x8z+ z2).

Hence, the remainder is zero, so c is an element of the ideal(p1, ..., p8) and the theorem is proven with
the help of Gröbner Bases calculations.

2.5 Buchberger Algorithm

It turns out that every ideal I in k[x1, ...,xn] has a Gröbner basis, as can be seen in [8] in pages 76-81,
and therefore, a method to compute them exists. The Buchberger’s Algorithm was introduced in the
1970s, and more recent variants of the same algorithm appeared after in [13][14]. The Buchberger’s
Algorithm receives a generating set as an input and computes a Gröbner basis for the ideal generated
by that set.

Firstly a monomial order is fixed, then the algorithm starts with an “approximation” of a Gröbner
basis, which is the generating set where more elements are added until the Gröbner basis is completed.

This is achieved by repeatedly producing combinations of the basis elements. Sometimes, when
computing this polynomial combinations one might get leading terms that are not in the ideal generated
by the leading terms of the original generating set, F . This can occur when computing the linear
combination with the leading terms, as they can cancel and present smaller terms. Since it is a linear
combination, the smaller terms belong to the ideal generated by the initial basis. This cancellation is
studied using S-polynomials (the S stands for subtraction).

The S-polynomial, with the notation S(fi, f j), is a necessary tool to find a Gröbner basis. They are
used to check if a basis is a Gröbner basis and are also a tool to construct a Gröbner basis.

Definition 2.5.1. Consider the two polynomials from the initial basis f and g,

S(f ,g) =
lcm(LM(f),LM(g))

LT (f)
f − lcm(LM(f),LM(g))

LT (g)
g

is the S-polynomial of f and g. Here, lcm(p,q) stands for the least common multiplier of the monomials
p and q, while LM(f) is the leading monomial of f , i.e., the leading term without the coefficient.

In other words, the S-polynomials allow the creation of additional lower-order polynomials in the
ideal by reducing the corresponding lead terms.

Example 2.5.1. Using the lex order, the calculation of the S-polynomial S(f1, f2) for f1 = x+ y and
f2 = xy+ z goes as follows.

S(f1, f2) =
LCM(LT (f1),LT (f2))

LT (f1)
(f1)−

LCM(LT (f1),LT (f2))

LT (f2)
(f2).

This means
S(f1, f2) =

xy
x
(x+ y)− xy

xy
(xy+ z) = y2− z.

2.5 Buchberger Algorithm 13

In the Buchberger algorithm, the set of generators will grow at each step by calculating the
S-polynomials and then dividing them by the previous generator set, adding the remainder to the set.
The process repeats itself until all the remainders of the division with the S-polynomials are zero.
Meaning that in each step where a S-polynomial remainder is added to the basis then there will be
more S-polynomials to be calculated, and more divisions to perform.

This condition comes from a key criterion to define if a given basis is a Gröbner basis, using the
S-pairs to discover. This is called the Buchberger’s Criterion which leads to the algorithm that allows
to compute Gröbner basis.

Theorem 2.5.1. A basis G = {g1, ...,gn} of a polynomial ideal I is a Gröbner basis if and only if for
all pairs (gi,g j), i, the remainder of the division of S(gi,g j) by G is zero.

Example 2.5.2. Considering F = { f1, f2, f3} with f1 = x+ y, f2 = xy+ z and f3 = y− z, and using
the results from Example 2.5.1, the first step of Buchberger’s Algorithm would be to take a pair, for
instance { f1, f2}, take its S-polynomial S(f1, f2) = y2− z, and divide it by F. In this case,

y2− z = (0)(x+ y)+(0)(xy+ z)+(y+ z)(y− z)+ z2− z

As seen before, if the remainder is non-zero then the Gröbner basis needs to be updated, by adding
f4 = z2− z.

Theorem 2.5.2. Consider an ideal I = ⟨ f1, ..., fn⟩ ̸= 0, then a Gröbner basis for I can be computed
using the following algorithm:

Algorithm 2 Buchberger’s Algorithm

Require: F = f1, ..., fn

Ensure: a Gröbner basis G = (g1, ...,gm) for I, F ⊆ G
G← F
P←{(fi, f j) : 1≤ i < j ≤ s} ◃ P is the set of all S-pairs from F
while P ̸= /0 do

G′← G
(fi, f j)← select(P)
P← P\ (fi, f j)

r← S(fi, f j
G′

◃ r is a remainder of the division of S-polynomial by G’
if r ̸= 0 then

P← update(P,G,r)
G← G∪ r

end if
end while

Proof. Following the Buchberger’s criterion, the algorithm ends when the remainder of all the division
of the pairs in the current G′ by G is zero. That is, when all pairs have been considered and there are
no more polynomials to be added, the algorithm returns a Gröbner basis.

To prove that the algorithm always terminates the while step is analysed. In every loop repetition,
G is set to be equal to the previous G′ plus non-zero remainders of the S-polynomials division. Thus
having ⟨LT (G′)⟩ ⊆ ⟨LT (G)⟩, since G′ ⊆ G. Also, if G′ ̸= G then ⟨LT (G′)⟩ is strictly smaller. From

14 Gröbner Basis

successive iterations, a chain of monomial ideals is created and that chain can not stretch infinitely,
from the Ascending Chain Condition theorem, in page 80 from [8], so, after a finite number of
iterations the algorithm will reach to ⟨LT (G′)⟩= ⟨LT (G)⟩, which implies that G′ = G. Therefore, it
must terminate.

As seen, the Buchberger’s algorithm begins with a fixed monomial order and a set of polynomials,
F , as an input and outputs a Gröbner basis of the ideal generated by the set of polynomials. Certain
aspects of it need further consideration.

In each iteration, one picks a pair (f ,g) ∈ P: in this step a pair from a set of possible pairs P is
chosen. This is called the “pair selection”. Since it is choice driven, there are many strategies to select
pairs in order to try to minimize runtime. There are some well-known selection strategies that select
the pair (fi, f j).The following selection strategies are considered:

• First: Among pairs with minimal j, select the one with minimal i. In other words, the last pair
to be added to the set is the “biggest”.

• Degree: Select the pair with minimal total degree of lcm(LM(fi),LM(f j)). If needed, break
ties with First.

• Normal: Select the pair with lcm(LM(fi),LM(f j)) minimal in the monomial order. If needed,
break ties with First.

• Sugar: If one consider the input homogenized, it selects the pair with minimal sugar degree,
which is the degree lcm(LM(fi),LM(f j)).

• Random: Select an element of the pair set uniformly at random.

Another detail to consider is that the output is a Gröbner basis is often much bigger than needed.
When this happens, it is possible to eliminate generators from the basis. This is a result of the
following property:

Proposition 2.5.1. Suppose G is a Gröbner basis of an ideal I ⊆ k[x1, ...,xn]. If p ∈ G is such that
LT (p) ∈ ⟨LT (G\{p})⟩, then G\{p} is also a Gröbner basis of I.

This reduction is done by seeing if any leading term of a generator divides the leading term
of other generator from G. Also, usually the polynomials are divided so that the leading term has
coefficient one. After this process, the final result is a reduced Gröbner basis.

Definition 2.5.2. A reduced Gröbner basis for an ideal I ⊆ k[x1, ...,xn], is a Gröbner basis G with the
following properties:

• The leading terms coefficients are equal to one, for all p ∈ G.

• For all p ∈ G, LT (p) /∈ ⟨(G\{p})⟩.

Chapter 3

Machine Learning

The term machine learning was introduced by Arthur Samuel, a pioneer in artificial intelligence [21]
and computer gaming [29], in 1959. Before this, the initial mathematical models aiming to map
mathematically the thought process and decision making of the human brain were conceived only
in 1943 by Walter Pitts [24]. A few years later, a simple model called the perceptron was presented
by Frank Rosenblatt in 1957 [28], that learned through data and gradient-based learning rules. From
this point on, single hidden-layer networks [32] began to emerge inspired by the previous researches
and developed models, machine learning algorithms became more popular and began to be applied in
various areas such as cancer diagnose [33], computer gaming [2] among others.

With the Buchberger Algorithm, a Gröbner basis for any ideal is always ensured. However,
its performance depends on multiple factors seen before, such as the monomial ordering, selection
strategy and the ideals features. The use of machine learning tools allows to better understand the
algorithms complexity, learn patterns and make predictions based on generated data, that consist in
ideals and their Gröbner bases, and seek improvements. Since for this problem there are no size
limits for generated data, only time constraints, it is a good set up for supervised learning. Besides
supervised learning there are other machine learning algorithms types, they are unsupervised learning
and reinforcement learning. These differ in the type of data available to train the algorithm and the
methods to analyse the training data and evaluate test data. Of the three categories mentioned above,
only supervised learning is discussed since is the only one of relevance for this thesis.

3.1 Supervised learning

In general, supervised learning algorithms learn a function using training data composed by input-
output pairs. After learning the function that mapped the input to an output, it can be used to map new
examples. The model is evaluated in terms of a loss function, although most of the time the user is
interested in some score as accuracy or precision. The loss function, that can be seen as some distance
from the predicted values and correct values, is a function that is minimized during training. It is
used for common problems such as classification, where it predicts qualitative outputs, and regression
problems, where it predicts quantitative outputs.

The input is basically a selection of examples, each example is a collection of observations,
features, from different cases, such as times or places. For example, if one wants to make a system

15

16 Machine Learning

for speech recognition then the dataset will be a set of examples with different voice recordings of
sentences, and the features could be the amplitude of the sound wave in a specific moment in time.
A common way to express the dataset is with a design matrix. This matrix consists of a different
example in each row, and each column corresponds to a different a feature. The input is denoted by X
and the output by Y .

The learning task can be described as: given an input X (where X is a matrix N× p, composed by
a set of N p-vectors xi, i = 1, ...,N), find a good estimate for the correct output Y , which is an array
N×1 composed by the values to be predicted, denoted by Ŷ , with N×1 dimension. In order to train
the algorithm it is necessary to have a considerable amount of data, called training data, denoted
(xi,yi), i = 1 . . .N.

A well-known learning algorithm, at least for mathematicians, is the Linear Regression. It has
many practical uses, like forecasting and to understand the relationship between variables.

Linear Regression

The linear regression algorithm is commonly used for predictive analysis and to study the association
between continuous variables. Like stated before, the algorithm is given an input, in this case a vector
X ∈ Rn, and predict Ŷ ∈ R as an output.

The output of this model will be a linear function that will return Ŷ , the value wanted to predict:
Ŷ =W T X , where W ∈ Rn is a vector of parameters. These parameters are the weight that regulates
how the features affect the prediction. The way weights affect the prediction is quite straightforward:
if xi gets a positive weight wi, then it increases the value of the prediction ŷ, if wi is negative it will
decrease the value of the prediction.

The goal of the algorithm is to find the best fit line for the data, i.e., the error between predicted
values and true values should be minimized. The cost function measures that error, which also defines
the models performance. It optimizes the weights or the regression coefficients until a desired accuracy
is reached. The cost functions can be designed in different ways to fit different expectations of the
output.

Suppose one have a design matrix X for N × p for evaluating a models performance and a
regression vector with the correct values of Y , denoted Y . In order to measure the performance of the
model, in linear regression algorithms, the mean squared error (MSE) cost function is used, which is
the average of squared error.

Then the mean squared error is designated by:

MSE =
1
N

N

∑
i=1

(yi−wT xi)
2.

In order to create a good model, it is necessary to improve the weights, for that it is necessary
to minimize the mean squared error when working with a training set. The minimization process is
done by using the least squares method, where the goal is to minimize the sum of the vertical distance
between the true values and Y .

min
w

1
N

N

∑
i=1

(yi−wT xi)
2.

3.2 Neural Network 17

This problem is solved using matrix multiplication. Considering the linear regression equation
X
−→
W =

−→
Y . The parameter estimates can be calculated with the equation:

−→
W = (XT X)−1XT−→Y .

If there are two or more independent variables and a dependent variable then it is the case of
multiple linear regression. The estimated function is

Y = w0 +w1x1 +w2x2 + ...+wnxn.

Similarly as in the simple linear regression, the goal is to choose the regression coefficients that returns
the most accurate possible function and these values are obtained by minimizing the sum of the square
errors, using the least squares method.

In this case it is,

−→
W =

w1

w2
...

wn

and from the linear model is X

−→
W =

−→
Y . The difference is in the number of w and x variables, but there

are as many w as there are x. Therefore, the procedure goes similarly as for the linear case.

3.2 Neural Network

Neural network offer an alternative way to approximate an unknown function f (x) that represents
some kind of behaviour in nature, for example a time series of climate forecasting for prediction
purposes.

A neural network approximates the function through a composition of multiple simple functions.
Even though the function that one wishes to approximate might be complicated, there is a theorem, the
Universal Approximation theorem, that states that, under certain conditions, any continuous function
can be estimated by a shallow neural network [11][20]. In other words, a neural network is an universal
function approximator, (more about this theorem and its proof can be read in [22][27]) which makes it
a versatile tool for any problem solving that can be reduced to functions.

The architecture of a neural network is composed by stacked units, called layers, and there are
three types:

• Input layer: which receives the input data and pass it forward to the rest of the network;

• Hidden layer: there can be more than one hidden layer in each network. For example, in the
neural network above there are two hidden layers.

• Output layer: predicts our final output.

In order to better understand the mechanics of a neural network, consider the architecture in
Figure 3.1 as a graph, more specifically a acyclic directed graph G = (V,E) where each edge has a

18 Machine Learning

Fig. 3.1 A representation of a neural network

correspondent weight w and each node or vertex a bias b. The first layer has no input edges, this
layer receives the input data x0. The other nodes have input and output edges. Consider V0 the set
of vertices in the input layer and VI the set of vertices with input edges. It is possible to extend x0 to
x ∈ Rvi , recursively for every v ∈VI , by the rule

xv = σ

(
∑

(i,v)∈E
(Wi,vXi)−bv

)
,

where the function represented by σ is called an activation function and it evaluates the weighted
sum of the inputs and defines the vertex output. There are multiple commonly used activation
functions [15] that do different types of transformations to their inputs. Notice that, by the Universal
Approximation theorem, the activation functions need to be non-polynomial [23]. For example, the
Sigmoidal Function [11] or the Rectified Linear Units (ReLu) [18], which is one of the most common
used activation functions. The ReLu can be described very simply, it returns its input if it is positive
or zero otherwise, in other words, σ(x) = max(0,x).

The output layer, which will be denoted by V1, is composed by the vertices without leaving edges,
those nodes outputs the neural networks result. The function can then be represented by FG(x;w,b)
with FG : RV0 ×Rp→ RVl , a function that receives the input data x together with parameters (w,b)
and outputs some values in the output layer.

For the regression case, the goal is to minimize the loss function

L(x,y;w,b) =
1
2
||y−F(x;w,b)||2,

averaged over out training data. In other words, we want to solve the problem

min
w,b

1
2N

N

∑
i=1
||yi−F(xi;w,b)||2.

3.2 Neural Network 19

In order to do this a gradient-based optimization method is usually used. For large data, this is
generally some variant of the stochastic gradient descent method.

In a basic model, at each iteration step, first a batch of k data points (xi,yi) is picked and the
loss function considered is L = 1

2k ∑
k
i=1 ||yi−F(xi;w,b)||2, and the weight update is made using the

formula

wl = wl−η
∂L
∂wi

,

where η represents the learning rate, this is, the size of the iteration step, which is, consequently, an
important parameter when training neural networks.

Training a neural network is therefore basically updating the weights w,b for each edge and vertex
as new data is fed to the network. The graphical structure of this type of function allows to compute
these updates very swiftly via what is called back-propagation.

3.2.1 Recurrent Neural Network

A recurrent neural network (RNN) can be described as an extension of a mainstream neural network
model that handles sequenced and variable sized data and generate sequences. Another valuable
characteristic of RNN is the concept of “memory” which stores past input data useful for generating
the next output. They have multiple applications in various fields, such as video [30], music [3][12]
and text [31].

Consider a sequence x1,x2... of any size. A recurrent neural network processes each xt sequentially
at a time t. It consists of hidden states h that take in consideration the sequence data input and the
previous state and outputs ot . A simple way to describe the process is, for a time step t, a hidden state
ht is updated by

ht = σ(f (ht−1,xt ;wt ,bt)),

where σ is an activation function [7].

Fig. 3.2 A representation of an hidden layer in a RNN. [25]

The recurrent name comes from the repetition of the same task over all data sequence. Unfortu-
nately, in the RNNs, long sequences might create a numerical issue, which is called the exploding or
vanishing gradient problem. This problem happens when the derivatives get increasingly larger or

20 Machine Learning

grown smaller and smaller, this affects the weights update step where either it does not converge or the
weights updates are too small. This causes the possibility of the network losing important information.
In order to deal with this problem, Long Short-term Memory (LSTM) and Gated Recurrent Units
(GRU) were introduced into RNNs. They implement a gating mechanism that allows to regulate the
information’s flow by deciding how much past data it is not important and can be forgotten. In this
report it is only of relevance to discuss GRUs, but one can read about LSTMs in [15][6].

The GRUs uses two gates: an update gate and a reset gate, the gates act as a threshold and together
they choose what information is important enough to go through. To understand how this works first
consider an update gate in a time step t, defined by the formula

zt = σ(wZxt +uzht−1 +bZ),

where xt is the input vector, ht−1 the previous hidden state and wZ,uZ,b are two weights and bias in
vector format. The function proceeds to add the multiplication of the input data by its own weight wZ

and the ht−i also multiplied by also its own weight, and then applies a sigmoid activation function
which will return a value between zero and one. Then, there is the reset gate that informs the model of
the amount of information to forget. It is calculated by

rt = σ(wRxt +uRht−1 +bR),

it works similarly to the update formula, the only changes are the weights and the gates usage. To
know exactly the amount of information to forget first it is created a hidden state candidate

ĥt = tanh(whxt +(rt ◦ht−1)+bh)

where ◦ represents the elementwise product operator, in this case the output will be between (−1,1).
This function was initially designed with tanh function, but other functions can be used. The impact
of the reset gate can be analysed from the elementwise multiplication where if it is close to zero then
the result will not depend on the previous layer, behaving like a single hidden layer network. If it is
close to one than it will behave like a plain RNN. The final update takes in the update gate that will
determine how much of the new candidate hidden state is used, represented by the equation:

ht = zt ◦ht−1 +(1− zt)◦ ĥt .

In this case, if zt is close to zero then the updated hidden state will approach the candidate hidden
state. Otherwise, if it is close to one then it will approach the majority of the previous information and
discard most of the current information. By doing these four steps recursively between hidden states,
a GRU is able to store relevant information, passing it through the other layers, for each data point
consisting in a sequence xi and an output yi.

Chapter 4

Literature Review

This Chapter presents the contents of the article [26], from which the work in this thesis is derived.
Since this paper uses binomial and toric ideals as numerical examples for the Buchberger algorithm,
before introducing the results of the paper, it is necessary to introduce the background on those types
of ideals.

4.1 Binomial Ideals and Toric Ideals

Definition 4.1.1. Let k be a field and R = k[x1, ...,xn] a polynomial ring. A binomial in R is a
polynomial with the format u− v, where u,v are monomials in R.

A binomial ideal is an ideal of R generated by a finite set of binomials.

Within the binomial ideals, there are a class of binomials that respect certain properties called
toric ideals.

Definition 4.1.2. Consider the matrix A = [a1, ...,am] ⊆ Zn with non-zero columns and consider
the group homomorphism ψ : Zn→ Zm determined by A. For example, given v = (v1, ...,vm) ∈ Zm

then, ψ(v) = v1a1 + ...+ vmam ∈ Zn. Each column of A, i = 1, ...,n forms a monomial in the format
tai = tai1

1 ...tain
n .

Now, consider the following polynomial rings over a field K, K[x1, ...,xm] and K[t±1
1 , ..., t±1

n]. The
toric ideal IA associated to A is the kernel of the homomorphism φ :

φ : K[x1, ...,xm]→ K[t1, ..., tn]

with φ(xi) = tai = tai1
1 tai2

2 ...tain
n .

The monomial degrees are such that deg(t j) = 1, j = 1, ...,m and deg(tai) = ai1+ai2+ ...+aim, i=
1, ...,n. This allows saving the degrees in the format τ = (τ1, ...,τm), where τi = deg(tai) = ai1 +ai2 +

...+aim.
For α = (α1, ...,αm) ∈ Zm and xα = xα1

1 ...xαm
m then deg(xα) = x1α1 + ...+xmαm ∈NA. Note that

φ(xα) = tAα) hence xα − xβ belongs to IA = ker(φ) if and only if α−β belongs to ker(φ). In fact
one can prove that the toric ideal associated to A is generated by:

xu− xv|u,v ∈ Zn,Au = Av

21

22 Literature Review

A toric ideal I can also be defined as a binomial prime ideal, where I ⊂ K[x1, ...,xn], the proof
of this theorem can be seen in [19]. In the following example, a toric ideal is calculated given a
monomial set.

Example 4.1.1. Consider the monomial set {x2y,xy2,x2z,xz2,y2z,yz2}, what is the ideal toric associ-
ated to the set? The following matrix corresponds to the degrees of each monomial:

A =

2 1 2 1 0 0
1 2 0 0 2 1
0 0 1 2 1 2

The toric ideal IA is the kernel of the homomorphism φ :

φ : K[x1,x2,x3,x4,x5,x6]→ K[t1, t2, t3]

Where, for each xi the function returns tai , this is

x1→ t2
1 t2; x2→ t1t2

2 ; x3→ t2
1 t3; x4→ t1t2

3 ; x5→ t2
2 t3; x6→ t2t2

3 .

Therefore, the toric ideal is: IA =(x1x6−x2x4,x1x6−x3x5,x2
2x3−x2

1x5,x2x2
3−x2

1x4,x1x2
5−x2

2x6,x1x2
4−

x2
3x6,x2

4x5− x3x2
6,x1x4x5− x2x3x6,x4x2

5− x2x2
6).

4.2 Learning a performance metric of Buchberger’s algorithm

This section describes the contents of the article [26], on which this thesis is based.
When computing a Gröbner basis of a polynomial ideal with the Buchberger algorithm, the

runtime of the algorithm can be evaluated by the number of additions of polynomials to the basis.
Each addition enlarges the set of generators to be considered in the following steps. The goal of
this article was to see if it is possible to predict the number of additions that occur in one run of the
algorithm. With this information one would be able to understand and predict when and why the
computations of Gröbner bases are hard.

The question this article wants to answer is: For a given ideal I, how many polynomial additions
are performed during one run of Buchberger’s algorithm to compute a Gröbner basis of I? Several
prediction methods are employed to achieve this, including a multiple linear regression model and a
recursive neural network with a gated recurrent unit.

For the numerical tests, two families of ideals are considered: binomial and toric ideals.

The Data

The question above was studied for binomial ideals of three unknown variables and generated by sets
picked randomly with the following fixed parameters:

• 4 binomials of degree up to 20;

• 10 binomials of degree up to 20.

4.2 Learning a performance metric of Buchberger’s algorithm 23

For toric ideals, four different distributions were considered, in eight variables. The generation
of the toric ideal samples were with the following parameters with a non-negative integer matrices
A ∈ ZD×8 format:

• D = 2 rows and integer entries up to 5;

• D = 4 rows and integer entries up to 5;

• D = 6 rows and integer entries up to 5;

• D = 6 rows and integer entries up to 10.

In the toric case, the number of generators is not given. The binomial instances are generated
by polynomials, these are created fixing three parameters: the number of variables (denoted n), the
maximum degree of a monomial in the polynomials (denoted d) and the number of polynomials
generators of the ideals (denoted s). The binomials are constructed by sampling two monomials, of n
variables and degree equal or less than d. The monomial sampling have two distributions: uniform
and weighted. The uniform distribution samples a pair of monomials uniformly at random from
the monomial set. The weighted distribution first picks a degree from one to d uniformly, and then
from the monomial set with the chosen degree, it samples uniformly at random each monomial. The
difference between the two distributions is that with the weighted distribution the sample has more
binomials of low total degree, comparing to the uniform distribution sample, which has a mix but with
more high total degrees.

As seen before, the toric ideal is the kernel of the monomial map ϕ , so that is exactly the way the
toric ideals sample is generated. Firstly, a random monomial map is generated using a Macaulay2
function. This toric model was extended in order to allow negative exponents for the generation of the
A matrix and it receives 4 fixed parameters: D the number of the lines (that corresponds to the number
of variables), a minimum L (bound on the negative total) and maximum U (bound on the positive total
degree) for the sum of each column of the matrix, and n as the number of columns, which represents
the number of monomials.

The format of each distribution of binomial and toric ideals is denoted by n-d-s-uniform/weighted
and τ(D,L,U,n), correspondingly.

The data was generated in the following formats described in table 3.1.
To study the diversity of the dataset many features were computed. For binomial ideals, the features

are the minimum generator degree, mean generator degree, maximum degree, Krull dimension (length
of the longest chain of ideals in the partially ordered set of prime ideals), regularity and number of
pure powers. Where regularity studies relations between the generators and number of pure powers
being the number of monomials that are a power of a single variable. In the toric ideals case, the
same features were analysed except for number of pure powers and substituted by the number of
ideal generators. Some of the features of the distributions are expensive to compute but they show the
diversity of the dataset.

An important step is studying the Buchberger’s algorithm performance with the dataset. From
the Bruno Buchberger’s thesis [4], one can see that there is a high variance in difficulty in many
distributions, which shows to be a challenge for reinforcement learning training. For example,

24 Literature Review

Table 4.1 Characterizations of normal and extremely disconnected spaces

Model Type of ideals Sample size

3-20-10-weighted binomial 1,000,000.

3-20-10-uniform binomial 1,000,000.

3-20-4-weighted binomial 1,000,000.

3-20-4-uniform binomial 1,000,000.

τ(2,0,5,8) toric 429,093

τ(4,0,5,8) toric 314,688

τ(6,0,5,8) toric 325,927

τ(6,0,10,8) toric 151,532

analysing the number of polynomial additions, its distributions have high variance. But in some cases,
such as S-pair selection, it displays improvements between the strategies.

Linear Regression

In order to predict the number of polynomial additions in Buchberger’s algorithm, simple and multiple
linear regression models were used, working with the data distributions in 4.1. To do this, firstly it is
needed to find the function of predictor variable. This function is the one that computes the weight
that certain features have in the output. This means, that it is necessary to fix the predictor variables
first. Starting with the basic, for the binomial ideals they are: maximum, minimum, mean, standard
deviation of generator degrees and the number of pure power leading terms of generators. For the toric
ideals, they share mostly the same predictor variables with binomial ideals, except for the number of
pure powers and the addition on number of generators (since it is not fixed for toric ideals). When
a linear model is properly fit, one is able to collect the coefficients correspondent to the predictor
variables.

4.2 Learning a performance metric of Buchberger’s algorithm 25

MaxDeg MinDeg MeanDeg StdDeg PurePowers Deg Dim Reg NumGens

3-20-10-w -0.34 6.84 11.69 -9.75 -1.39 -0.03 -4.11 0.19 -
3-20-10-u -1.69 -0.79 10.65 2.27 1.42 -0.03 -10.13 0.80 -
3-20-4-w 2.05 3.13 9.15 -3.14 -12.14 -0.18 -21.91 0.16 -
3-20-4-u 1.84 -0.02 6.21 -0.52 -2.82 -0.18 -30.79 1.65 -
T(2-0-5-8) 8.85 -30.39 147.44 -71.75 - 3.70 - 30.34 6.08
T(4-0-5-8) -15.81 -66.45 76.58 -10.92 - -1.02 -263.08 13.49 15.98
T(6-0-5-8) -0.88 -0.55 -1.13 1.97 - 0.06 -52.76 0.44 8.57
T(6-0-10-8) -0.16 -0.10 0.11 0.17 - -0.00 -384.88 0.08 4.33

Table 4.2 Summary of regression analyses: coefficients of various predictors in multiple linear
regression for each ideal dataset.

3-20-10-w 3-20-10-u 3-20-4-w 3-20-4-u T(2-0-5-8) T(4-0-5-8) T(6-0-5-8) T(6-0-10-8)

MMMSDDeg 0.248 0.017 0.169 0.029 0.226 0.278 0.129 0.572
Regularity 0.041 0.010 0.035 0.036 0.264 0.156 0.051 0.148
Dimension 0.010 0.003 0.000 0.014 0.000 0.000 0.214 0.018
Degree 0.005 0.000 0.006 0.005 0.094 0.059 0.020 0.003

Table 4.3 Summary of regression analyses: R2 statistics in multiple linear regression models for each
ideal dataset.

The Table 4.2 shows a summary of how the linear model performs based how the predictors,
meaning, how well they estimated the number of polynomial additions . Between them, the best
predictors are chosen by analysing the correlation between the number of polynomial additions and
possible predictors. In general, the predictors do not always have a stable correlation. It was observed
that almost all of the predictors are statistically significant, with the exception of the minimum degree
as it can be seen in the distribution for 3-20-4 uniform. This table is not enough to define which are
the best predictors for polynomial additions.

More complex predictors are also analysed: Krull dimension, degree and Castelnuovo-Mumford
regularity. These are costly to compute but they offer important information about the Gröbner basis
complexity. The regression models were trained using 90% of each dataset and the remaining 10%
was used to test the models predictions regarding the number of polynomial additions.

Learning via recursive neural networks

Recursive neural networks, denoted by RNNs, are a type of deep learning network. They are used to
recognize patterns and structures within the data, learned from the past, and processes new data from
experience.
Using RNNs, one is able to compare the machine learning method to the naive human “guess” and
the regression model computed before. The naive human model is denoted as uninformed model,
where only the mean value of the polynomial additions are computed from the training set and simply
guess the mean value for every input. Then, a linear model is built using the features seen previously,
for binomial ideals data are the maximum, minimum, mean, standard deviation of generator degrees

26 Literature Review

and the number of pure power leading terms of generators, and for the toric ideals are mostly the same
predictor variables except for the number of pure powers and the addition on number of generators.
Lastly, the recursive network algorithm is used to find a more suitable model for the problem.

Conclusion

In order to train the network, a matrix composed by vectors which entries are the exponents of the
terms in each generator, which is a matrix of integers with the size of 10×6. The network does not
receive its features, like in the linear models, it learns by itself.

Mean Squared Error Mean Absolute Error R2

Uninformed 2555058 39.46 0.0000
Linear 1946.40 33.71 0.2384
RNN 1499.37 29.25 0.4133

Table 4.4 Trained model performances on the dataset 3-20-10-weighted with uniformed model, linear
regression model and recursive neural network model.

Fig. 4.1 Predicted versus actual polynomial additions in 3-20-10-weighted dataset.

Analysing the Table 4.4, one can conclude that the RNN model has a better performance compared
to the other models in the binomial case. This shows that, for the binomial problem, some properties
can be learned using machine learning methods.
In Figure 4.1, it is noticeable that both models struggle to predict polynomial additions in extreme
values. Nevertheless, the RNN model still shows improvement over the uninformed model and linear

4.3 Contributions of this thesis 27

model, when looking at the 3-20-10-weighted distribution. In the following Table 4.5, it is presented
the summary of other distributions trained in RNN models. This shows that the learning models
made some improvements compared to the regression model, comparing to the Table 4.2. But, due
to input format restrictions and the fact that RNNs models performed poorly when considering the
generalization of other distributions, the predictions on others distributions weren’t evaluated.

Train/Test data 3-20-10-w 3-20-10-u 3-20-4-w 3-20-4-u

3-20-10-w 0.41 0.06 -4.58 -6.36
3-20-10-u 0.23 0.13 -5.06 -6.62
3-20-4-w 0.06 -0.63 0.37 0.19
3-20-4-u 0.03 -0.36 0.29 0.22

Train/Test data T(2-0-5-8) T(4-0-5-8) T(6-0-5-8) T(6-0-10-8)

T(2-0-5-8) 0.39 -0.04 -15.43 -0.32
T(4-0-5-8) -2.55 0.15 -78.20 -3.03
T(6-0-5-8) -2.63 -0.00 0.65 0.04
T(6-0-10-8) -3.31 -0.07 0.05 0.52

Table 4.5 Summary of neural network predictions: R2 with different training and test datasets.

The goal was to prove that the Buchberger’s algorithm performance metric can be predicted from
data and that can be modeled as a machine learning problem. By evaluating linear regression models
and recursive network models in random samples of binomial and toric ideal in different distributions,
it was able to create an efficient approach that models polynomial additions properly. This model can
be used as a reference for future work with RNNs.

4.3 Contributions of this thesis

As mentioned before, this thesis builds from the article reviewed in this chapter. It replicates the work
done in the paper and explores some new possible paths of progress. More concretely it does the
following:

• The results in [26] use some unspecified S-pair selection strategy. In order to see if this
omission is justified, tests were conducted to measure the impact of the selection strategy on
the predictability of the performance of the Buchberger’s algorithm, and to identify the strategy
used in the paper.

• A database was constructed with very large datasets, mimicking the datasets used in [26] but
with a different selection strategy. This gives a playground to test different approaches, and
allows to complement the results obtained in that paper with similar results obtained for a
different strategy, for comparison purposes.

28 Literature Review

• The same linear regression tests as in [26] are performed in this new datasets, providing some
insight on the robustness of the results obtained there. Moreover, some different features are
introduced, to show that the linear approach can be further improved.

• Finally, neural networks are applied to the datasets. To do that the network models are chosen,
and numerical experiments are run in order to fine tune the parameters. The results obtained
complement the ones in the original paper and provide further insights on the learnability of the
Buchberger’s performances under several different data models.

Chapter 5

Data Generation

5.1 Dataset Structure

Machine learning algorithms depend heavily on data, since it needs to meet the requirements of each
machine learning algorithm. Having a dataset structure helps having a clear vision of the underlying
problem and a better performance. The dataset, composed by binomial and toric ideals, was generated
using the software system Macaulay2 [16]. The ideals distributions 5.1 are defined similarly to [26]
dataset distributions. The first four samples are binomial ideals, denoted by n-d-s-uniform/weighted,
where n is the number of variables, d denotes the maximum degree of a monomial in the ideal
generators and s is the number of each ideal polynomial generators. The last parameter refers to the
polynomials generator monomials sampling, where the uniform distribution first samples a pair of
monomials uniformly and randomly from a monomial set. Meanwhile, weighted distribution first
randomly chooses a degree from one to d and creates a monomial set of the chosen degree, then it
selects uniformly at random a pair of monomials from that set. The last four distributions are toric ideal
samples. The used format to identify the distribution is τ(D,L,U,n), where D denotes the number of
variables, L is the negative bound of the total degree, U is the positive bound of the total degree and n
is the number of monomials. This was achieved by using the Ideals.m2 and SelectionStrategies.m2
packages created by Dylan Peifer. The ideals are generated using Ideals.m2 with the graded-reverse-
lexicographic monomial ordering, by defining the ideal type and parameters, and the Gröbner basis
of the ideals are calculated using the Buchberger algorithm from SelectionStrategies.m2, where
the selection strategy is defined, and it returns the Gröbner basis and correspondent polynomial
additions. The files can be found in the code repository of Dylan Peifer’s Github account, https:
//github.com/dylanpeifer/deepgroebner.git. This script was created by modifying the make_stats.m2
script in order to save additional information such as the ideals exponents, degree, dimension and
regularity, which will be described ahead. The dataset is composed by one million of each ideal
distribution:

29

https://github.com/dylanpeifer/deepgroebner.git
https://github.com/dylanpeifer/deepgroebner.git

30 Data Generation

Model Ideal Type Sample size

3-20-10-uniform binomial 1 000 000.

3-20-10-weighted binomial 1 000 000

3-20-4-uniform binomial 1 000 000

3-20-4-weighted binomial 1 000 000

2-0-5-8 toric 1 000 000

4-0-5-8 toric 1 000 000

6-0-5-8 toric 1 000 000

6-0-10-8 toric 1 000 000

Table 5.1 Dataset distributions and sample size.

Some invariants of both binomial model 3-20-10 and toric model T(6-0-5-8) are illustrated in the
Figures 5.1 and 5.2. The algebraic invariants used are, for the binomial samples, maximum generator
degree, minimum generator degree, mean generator degree, ideal degree, Krull dimension, regularity
and the number of pure powers, i.e, the leading term of a generator is a pure power of only one
variable. As for the toric samples, the invariants are the same with the exception of the pure powers,
which in this case is replaced by the number of generators of the ideal. The Krull dimension refers to
the supremum of all the heights of the prime ideals from a polynomial ring R. Where if the polynomial
ring R is written as a chain of prime ideals p0 ∈ p1 ∈ ... ∈ pn then its Krull dimension is equal to n, or,
in other words, it is the dimension of the solution set. As for the regularity, or Castelnuovo-Mumford
regularity, this parameter is a good complexity measurer for the Gröbner basis computation. The
resemblance with the models used in [26] is evident, therefor the data see eye to eye as the one in [26].

5.1 Dataset Structure 31

(a) Minimum generator degree (b) Mean generator degree (c) Maximum generator degree

(d) Krull dimension (e) Regularity (f) Number of pure powers

Fig. 5.1 Histograms of some features from the 3-20-10-uniform from binomial ideals.

(a) Minimum generator degree (b) Mean generator degree (c) Maximum generator degree

(d) Krull dimension (e) Regularity (f) Number of ideal generators

Fig. 5.2 Histograms of some features from the toric-6-0-5-8 from toric ideals.

32 Data Generation

5.1.1 Selection Strategy evaluation

To generate the random samples of the ideal models some parameters need to be fixed, these are the
monomial ordering and a selection strategy. The monomial ordering used is the default ordering in
Macaulay2, the graded-reverse-lexicographic. Given that the selection strategy for the datasets used to
study the prediction of polynomial additions was not mentioned in the article [26], three distributions
were chosen, with a sample size of one hundred thousand, and computed the Gröbner basis of each
ideals using four different selection strategies: Sugar, First, Normal and Degree. As previously
described in 2.5, these datasets are useful for studying the behaviour of polynomial additions in
different distributions. They will be later used to guess the selection strategy used for the generation
of the datasets in 4.1.

Ideal Distributions
Sugar First Degree Normal

mean SD mean SD mean SD mean SD

3-20-10-weighted 159.14 66.12 187.34 74.01 135.50 50.73 135.61 51.40
3-20-10-uniform 265.40 88.15 352.84 117.14 196.60 56.89 197.22 57.85
toric-2-0-5-8 385.30 154.93 392.95 160.60 398.05 167.32 441.64 207.27

Table 5.2 Mean and standard deviation of the number of polynomial additions for two binomial
distributions and a toric distributions of the same samples of 100 000 ideals. The table entries format
are: mean standard deviation.

In the previous table, it is possible to compare the different impact that the selection strategies
have when computing the Gröbner basis on the same samples. In the 3-20-10-weighted the “worst”
selection strategy is First performing with the most polynomial additions and the best is the Normal
selection strategy, very close to the Degree performance. The same happens with the 3-20-10-uniform
distribution but in the toric case the best performing selection strategy is Sugar, while Normal is the
worse.

5.1 Dataset Structure 33

Fig. 5.3 Density estimations of number of polyno-
mial additions in 3-20-10-uniform model with 100
000 samples.

Fig. 5.4 Density estimations of number of poly-
nomial additions in 3-20-10-weighted model with
100 000 samples.

Chapter 6

Linear Regression and Neural Network
Models

6.1 Polynomial additions prediction by linear regression models

Before using complicated methods for polynomial addition prediction, one should first try simpler
prediction methods such as linear regression. The goal is to predict the response variable which in
this case is the number of polynomial additions when a Gröbner basis is calculated. The predictors
used are features of the degrees from the generators, that are easy to calculate. Picking the maximum,
minimum, mean and standard deviation seem like reasonable options for predictions. In addition, pure
powers for binomial datasets is an easy statistic to calculate and the number of generators for toric
ideals also have potential of being a predictor since it is not fixed, unlike binomial datasets. Each
dataset used contains one million ideals and correspondent Gröbner basis samples. They are split into
training and test sets, in this case, 90% of the data is for the training process, and 10% is for the test
set.

The multiple linear regressions are performed by using Scikit-Learn [5], a Python library, which
has the LinearRegression class. This method fits the data into a linear model and returns the regression
coefficients. After this step, the model performance must be analysed, this is done by making
predictions using the test data and see how accurate the algorithm is. Evaluation metrics used were
mean absolute error, means squared error, root mean squared error and R2.

6.1.1 Application

In the article [26], it is not clear what selection strategy for S-pairs was used in the Buchberger
algorithm. In an attempt to discover the selection strategy used for the generation of the datasets,
and to verify the consistency of the data, multiple linear regressions were performed. Using the
same regression models but with three different datasets, 3-20-10-weighted, 3-20-10-uniform and
toric-2-0-5-8, each with one hundred thousand samples.

The Gröbner basis were computed using four selection strategies: Sugar, First, Degree and Normal,
and the number of polynomial addititions were recorded for each. The results, presented in the tables
6.1 and 6.2, are R2 statistics for the multi-linear fit with the four selection strategies for each dataset

35

36 Linear Regression and Neural Network Models

and four linear regression models that vary in the choice of the considered parameters: MMMSDDeg
model which is built with multiple generator degrees (maximum degree, minimum degree, mean
degree, standard deviation degree), and the remaining three models are built with regularity, dimension
and degree.

Ideal Distributions
3-20-10-weighted 3-20-10-uniform

Sugar First Degree Normal Sugar First Degree Normal

MMMSDDeg 19.02 22.48 23.56 23.98 5.69 9.54 1.64 1.62
Regularity 4.42 7.55 3.95 3.91 2.53 4.15 1.02 0.97
Dimension 0.67 1.06 0.96 1.01 0.41 0.49 0.35 0.38
Degree 0.60 0.98 0.43 0.41 0.07 0.16 0.08 0.07

Table 6.1 Summary of fitting the number of polynomial additions with four linear regression models
in two binomial ideal datasets.

Ideal Distributions
toric-2-0-5-8

Sugar First Degree Normal

MMMSDDeg 15.81 14.4 21.7 30.16
Regularity 28.34 28.68 26.23 19.54
Dimension -0.0 -0.0 -0.0 -0.0
Degree 8.50 9.22 9.38 8.5

Table 6.2 Summary of fitting the number of polynomial additions with four linear regression models
in a toric ideal dataset.

Between the binomial models, comparing both multiple and linear regression results with 4.3
from the article [26], the ones that resemble the most to ours correspond to the selection strategies
Degree and Normal. The toric model results settles between both selection strategies, as the Degree
strategy R2 differs significantly from the Normal one, and approximates that of the article [26].

With the purpose of confirming this claim, an additional sample of 3-20-10-weighted was gen-
erated, in order to see the prediction behaviour with one million samples. The results maintain for
the linear regression models. Having established that the original results from the article [26] were
generated using the Degree strategy, the datasets generated for our research were generated using the
selection strategy Sugar in order to study the selection strategy impact on the models.

When calculating the maximum, minimum, mean and standard deviation degree, two degree
interpretations were used, which will be denoted by absolute difference degree (AbD) and polynomial
degree. In the AbD degree, the degree considered was the sum of the absolute values of the exponents
of the quotient between the two monomials. In other words, it is the sum of the entry wise absolute
values of the difference between the vectors of exponents of each monomial. For example, if two
monomials exponents were (1,0,0,1),(0,2,0,0), then the subtraction result, considering the absolute
values, is, (1,2,0,1), and therefore, the polynomials degree is equal to 4. The polynomial degree is

6.1 Polynomial additions prediction by linear regression models 37

just the usual degree: it computes the sum of the exponents from both monomials, and chooses the
maximum value.

The following table exhibit the R2 results from fitting the number of polynomial additions
using four different linear regressions models: MMMSDDeg model is built with multiple generator
degrees(maximum Degree, minimum degree, mean degree, standard deviation degree), where these
features were calculated with AbD, degree and both degrees, and the remaining three models are built
with regularity, dimension, degree, pure powers in binomial ideals and number of generators in toric
ideals respectively. The datasets used for this fitting were all the datasets samples described in 5.1.

3-20-10-w 3-20-10-u 3-20-4-w 3-20-4-u

MMMSDAbD 13.60 0.98 21.56 5.09
MMMSDDeg 19.07 1.37 23.58 1.86
MMMSDDeg+AbD 19.87 1.83 24.54 5.59
Regularity 4.46 2.52 8.95 5.29
Dimension 0.66 0.42 0.01 1.64
Degree 0.62 0.09 1.34 0.67
Pure Powers 1.15 0.01 0.98 0.0
Number of generators - - - -

T(2-0-5-8) T(4-0-5-8) T(6-0-5-8) T(6-0-10-8)

MMMSDAbD 16.9 25.57 5.07 15.27
MMMSDDeg 13.61 31.48 5.14 15.24
MMMSDDeg+AbD 17.78 32.59 5.24 15.31
Regularity 29.22 17.52 5.18 9.99
Dimension -0.0 0.01 20.71 1.88
Degree 8.43 6.31 2.02 0.23
Pure Powers - - - -
Number of generators 4.38 27.65 19.54 15.26

Table 6.3 Summary of fitting the number of polynomial additions with four linear regression models,
representing the corresponding R2 statistics.

Analyzing the results of 6.3, and comparing the R2 results of the binomial samples, there is
an evident contrast between uniform and weighted distribution, where the samples with uniform
distribution perform worse when compared to weighted. The ideals with a uniform monomial sampling
distribution show less prospect for polynomial additions prediction. Also, the number of generators
proves to have an impact in the prediction, where fewer ideal generators, in this case 4, shows better
results than ideals generated with 10 generators. With toric ideals, toric-6-0-5-8 presents lower R2

values for most of the regression models, with the exception of the linear regression model with
Dimension feature.

Focusing on the variants MMMSD model with two different generator degree calculation types,
between absolute difference degree and polynomial degree there is not one that stands out in the

38 Linear Regression and Neural Network Models

eight ideal samples. However, when fitting the number of polynomial additions with the multiple
linear regression model MMMSDDeg+AbD, there is a general improvement. Demonstrating how the
regression models can improve with more features, in this case, using maximum Degree, minimum
degree, mean degree, standard deviation degree with different ideal generator degree calculation. It
also suggest that the linear regression approach used here is not optimal, and can still be improved by
adding well-crafted predictors to the existing models.

Pure powers do not show to be good predictors for binomial ideals. The linear regression model
using the number of generators have better results for toric-6-0-5-8, but low R squared in general for
toric ideals.

As mentioned above, one could try to derive other features from the data, that better reflect the
hardness of the problem, in order to get better prediction values. However, that is a time consuming
task, that demands a profound knowledge of the algorithms and ideals that are working with. In
the next section it is possible to see how the results can be improved automatically with recourse to
machine learning.

6.2 Neural Networks

With the aim to improve the prediction regression models results, it is necessary to use more sophis-
ticated tools. In this section, two machine learn prediction models are used in order to study if the
prediction of polynomials additions are learnable. The training of the neural network models are
performed using Keras, the application programming interface from Tensorflow [1], an open-source
software library for implementation of machine learning and artificial intelligence. The model is
built according to the wanted architecture, and then it iterates the training data in batches. After the
training, the model is evaluated with the test dataset, which is 10% of the dataset. In order to evaluate
the model, the performance metrics used are mean absolute error, means squared error and R2. As
initial research, the neural network models used in [26] for polynomial addition prediction were
implemented. They are a simple neural network model and a recursive neural network model. The first
model is a neural network with two hidden layers with either 128 units or 300 units. The activation
function of the nodes are ReLU and the he_normal distribution for the weights initialization. ReLU ,
or rectified linear unit, is the most popular activation function used. It transforms its input by using
the formula f (x) = max(0,x), this is, returns zero if the input is negative but if the input received is
positive it returns that value back. This activation function requires no heavy computation, which
helps on reducing the models computations time. This network was trained with hand-picked features,
alike the linear regression models. The initialization of parameters used was he_normal initialization,
where the weights are sampled from values of a normal distribution wi ∼ N[0,σ] with σ =

√
(2

f an_in),
where f an_in represents the number of input units in the weight.

The second model is a recursive neural network (RNN) with gated recurrent unit cells (GRU).
This RNN in particular, uses a gated state mechanism that manages the flow of information between
the nodes of the RNN and have only one hidden state, with 128 hidden units or 300 units. This model
was trained with a matrix composed by each ideals exponent vectors from each generator, for example,
for the dataset 3-20-4-weighted, for each ideal there is a 4×6 matrix where each row represents each
ideal generator exponents with the three variables for each monomial.

6.2 Neural Networks 39

6.2.1 Models Architecture

The models parameters were defined by experimenting different number of layers, nodes per layer,
batch size and learning rate, where batch size is the number of training samples in one iteration and
the learning rate defines the step size in each iteration when minimizing the loss function. These
parameters are decided by analyzing the learning and validation curves of the training and evaluation
metrics, in this case is the R2, with the intention of avoiding learning underfit or overfit. The dataset
used to measure the best fit for the data was considerably small, containing one thousand samples.
This is because the training using the full dataset takes several hours to conclude. These tests were
performed in all eight smaller datasets and, for each neural network model binomial and toric ideals,
they have different architectures.

(a) Batch size=16, two dense layers, each
with units 128 and learning rate = 10−5

(b) Batch size=16, two dense layers, each
with units 300 and learning rate = 10−5

(c) Batch size=32, two dense layers, each
with units 128 and learning rate = 10−5

(d) Batch size=32, two dense layers, each
with units 300 and learning rate = 10−5

Fig. 6.1 Train and Validation learning curves during training of a recursive neural network for predict-
ing the number of polynomial additions using already calculated statistic features, MMMSDDeg, for
3-20-4-weighted dataset. The parameters taken in consideration are the batch size, units per layer and
learning rate.

In Figure 6.1, each graph displays the learning and validation curves which describes the multiple
models learning evolution. Comparing the results from the different models, one can see that the
learning curve of the training improves for the smaller learning rate and there is a smaller gap between
the curves. Considering the curves behaviour and the R2, the best fitting model is (d).

40 Linear Regression and Neural Network Models

Both of the models above were to predict the number of polynomial additions using a fixed set of
features, the same for the multiple linear regression model. For the case where the input of the neural
network model is the ideals exponents dataset the model was similarly modified in order to have the
best results possible. Unlike the previous model with fixed features, this model learns its own features
since the only input given are the exponents. Just like they were modified for the different input, the
models parameters were also modified for the different ideal distributions: binomial and toric. This
change is explained by the difference between the dimension of the binomial and toric dataset, since
the binomial have a fixed number of generators, never bigger than ten, and the toric ideals do not
have a fixed number of ideal generators, in many cases surpassing the number of generators of the
binomials by a large amount, for example, over one thousand ideal generators.

(a) Batch size=16, units per layer=128 and
learning rate = 10−5

(b) Batch size=16, units per layer=300 and
learning rate = 10−5

(c) Batch size=32, units per layer=128 and
learning rate = 10−5

(d) Batch size=32, units per layer=300 and
learning rate = 10−5

Fig. 6.2 Train and Validation learning curves during training of a recursive neural network for
predicting the number of polynomial additions using the ideals exponents, for 3-20-10-weighted
dataset. The parameters taken in consideration are the batch size, units per layer and learning rate.

Analysing the learning and validation curves from the graphs in Figure 6.2, it is clear that the
smaller learning rate shows to be more underfit than the bigger learning rate. With the help of the
model metrics, in this case R2, the model with better results is the model (a), which shows that it is
capable of further learning and improvements and the R2 result is better than the other models.

As for the toric case, the only difference is in the batch size, in which it was considered the sizes
ten and twenty. Once again, the training using a bigger learning rate, this is 10−4, showed to return a
better fit for the toric data. The number of units in the GRU layer and batch size was ultimately decided

6.2 Neural Networks 41

(a) Batch size=10, units per layer=128 and
learning rate = 10−4

(b) Batch size=10, units per layer=300 and
learning rate = 10−4

(c) Batch size=20, units per layer=128 and
learning rate = 10−4

(d) Batch size=20, units per layer=300 and
learning rate = 10−4

Fig. 6.3 Train and Validation learning curves during training of a recursive neural network for
predicting the number of polynomial additions using the ideals exponents, for toric-2-0-5-8 dataset.
The parameters taken in consideration are the batch size, units per layer and learning rate.

based on the R2 metric, calculated after training. Therefore, the parameter choice that displayed more
promising results was with a batch size of 20, 300 units per layer and a learning rate of 10−5. But,
when training with other toric datasets, due to the increasing ideals dimension, the batch size had to
be also increased, as in for the other three datasets the batch size of doubled to 80 samples.

Each dataset was divided in training data, validation data and test data, the size of each sample
was 80%, 10% and 10%, respectively. When working with the binomial datasets, the input dimensions
were always fixed since the number of generators were also fixed. For the toric datasets, the ideals
generators were mot a fixed parameter, so the ideals exponents vector size fluctuated, but always a
multiple of sixteen. This means there were exponents vectors with an extremely big dimension or
small dimension, and that also showed to be a problem when processing that data. To work around
this problem, the input data was processed in batches and each sequence batch was padded to the
same length. The padded value used was −10 due to it being an unlikely value for an exponent. This
means, if the biggest length in a certain batch is 256, and an ideal exponent vector in the same batch
is, for example, 240, the output of the padding function is a vector with a size of 256 where the last
sixteen values are equal to −10. Doing so, might be seen has a forced improvement, given that the
chosen value can prove to be an advantage with comparison if it was zero, as the value −10 is not a
possible value for exponent.

42 Linear Regression and Neural Network Models

6.2.2 Neural Network Models Training

In this section, the results from training each dataset from the Table 5.1 in a simple neural network and
RNN are displayed in the following tables. These models are the multiple linear regression model with
fixed features: maximum degree, minimum degree, mean degree, standard deviation degree and pure
powers for binomial datasets and number of generators for toric datasets. With the neural networks,
it is pursued improvement from the linear regression. To do so, a simple linear regression model to
predict polynomial additions using the same fixed features in linear regression was performed. After,
it was attempted to train neural network models using only the exponents, so that the algorithm would
be free to choose its own features in order to predict polynomial additions. The model used for this
was a recursive neural network with gated recurrent units. The datasets used for the fitting of the
models represented in this table were computed using the selection strategy Sugar.

3-20-10-w 3-20-10-u 3-20-4-w 3-20-4-u

Multiple Linear Regression 0.19 0.01 0.20 0.02
Simple Neural Network(MMMSDDeg+PurePowers model) 0.19 0.01 0.24 0.02
GRU RNN 0.31 0.15 0.47 0.21

T(2-0-5-8) T(4-0-5-8) T(6-0-5-8) T(6-0-10-8)

Multiple Linear Regression 0.17 0.31 0.22 0.15
Simple Neural Network(MMMSDDeg+NumGen model) 0.19 0.32 0.22 0.16
GRU RNN 0.39 0.27 0.68 0.72

Table 6.4 Summary of fitting the number of polynomial additions with linear regression and two
neural network models. The results are represented by R2 statistics. The calculation of the Gröbner
basis in this dataset were computed with selection strategy Sugar.

Parallel to the table above, the following table represents the results from a multiple linear
regression (maximum degree, minimum degree, mean degree, standard deviation degree, pure pow-
ers/number of generators), a simple neural network model with features maximum Degree, minimum
degree, mean degree, standard deviation degree, pure powers/number of generators and a recursive
neural network with GRU units model using the exponents. The dataset used for the fitting of the
models represented in this table was computed using the selection strategy Degree, with a size of one
million samples.

3-20-10-w

Multiple Linear Regression 0.24
Simple Neural Network(MMMSDDeg model) 0.24
GRU RNN 0.40

Table 6.5 Summary of fitting the number of polynomial additions with linear regression and two
neural network models. The results are represented by R2 statistics. The calculation of the Gröbner
basis in this dataset were computed with selection strategy Degree.

Chapter 7

Conclusion

In the previous chapter, the main result came from datasets with the same distributions as in the article
[26] but with a different selection strategy. Comparing the results from the linear regression model
using Degree in Table 4.3 and results using Sugar in Table 6.3 it is clear that, in general, the selection
strategy Degree have better results than Sugar, this is, the prediction ability is better than Sugar. In an
attempt to improve our linear regression models a different ideal degree calculation was considered.
When using the MMMSDAbD model it performs worse than the MMMSDDeg, but together there is a
considerable improvement, this comparison can also be seen from the results in Table 6.3. One can
conclude from these results that the regression models can be improved greatly by choosing different
prediction parameters. Another interesting detail comes from the different results between weighted
and uniform binomials, weighted binomials are much easier to predict than uniform, this is most
likely from the exponents degrees distribution, since weighted tends to generate binomials with lower
degrees in comparison to uniform, where the uniform samples have higher degrees.

Using a more advanced model, a simple neural network, and feeding as an input the same
MMMSDDeg model plus pure powers or number of generators, one should not expect any better
result than the results of a linear regression. This comes from the fact that the features are fixed and
are probably not the best for predicting polynomial additions. Therefore, the idea of implementing a
neural network that takes as inputs the exponent matrix of each ideals comes naturally since it allows
the model to learn by itself the best features for predicting polynomial additions. Observing the Table
6.4 and comparing to the results in Table 4.5 in the binomial dataset, the 3-20-10 uniform performed
slightly better where with a Degree strategy, the R2 is 13% and with Sugar increased to 15%, where
for the 3-20-4-weighted it improved with Sugar, with a difference of 10%. The remaining binomial
datasets performed worse. Although there were some better results for binomials, they don’t show as
much improvement as for toric datasets. In general the results are all similar, but the toric-6-0-10-8
with sugar selection strategy had much better results than with degree, with a difference of 20%. One
should note that the fact that it is easier to predict the performance of some selection strategy does not,
by any means, imply that it is a better strategy. The takeaway should only be that if one wants to study
learnability of the performance of Buchberger’s algorithm, in which the choice of selection strategy
does have an impact on the results.

43

44 Conclusion

In order to also confirm that our data and models agree with the article, the dataset 3-20-10-
weighted with Degree selection strategy was also used for the RNN, the results are very similar, with
a difference of only 1%, this may be a consequence of the randomness from the datasets generation.

The toric ideals exhibit much more promising results than binomial ideals, in Tables 6.3 and 6.2.
This may occur from the ideals generation, where the toric ideals appear more “natural”. The models
still have difficulty predicting when the number of polynomial additions are higher, as we can see in
Figures 7.1 and 7.2, the improvement is visually noticeable, where in the recursive neural network
model, for both distributions, the actual and predicted values are more condensed near the black line.
This demonstrates how the predicted values from the RNN model are more accurate than with a simple
regression model.

Linear Regression model

Recursive Neural Network model

Fig. 7.1 Actual versus predicted polynomial additions of a 100 000 sized test set in toric-2-0-5-8. The
black line represents the perfect prediction versus actual matches.

Evaluating the multiple ideal datasets in linear regression models and recursive neural network
models demonstrated how different ideal characteristics can influence the number of polynomial
additions and the prediction of the same. Uniform sampling in the binomial ideals are associated with
highest number of polynomial additions, as we can see in Tables 5.2,5.3 and 5.4, also they perform
worse both in linear regression models and neural network models. This can be associated with the
models difficulty to predict higher number of polynomial additions. In the toric ideals datasets, it is

45

Linear Regression model

Recursive Neural Network model

Fig. 7.2 Actual versus predicted polynomial additions of a 100 000 sized test set in toric-6-0-5-8. The
black line represents the perfect prediction versus actual matches.

46 Conclusion

easier to predict distributions with six target variables, as can be seen in Table 6.3. But, can conclude
that, in general, RNNs proves to be a useful tool for predicting the number of polynomial additions,
and consequently, to be able to predict the performance of the Buchberger’s algorithm for some ideal
distribution.

For a future approach, generating bigger samples of datasets for the RNN training could improve
the results. Also, regarding the results from toric ideals, a broader distribution of toric ideals datasets
would be interesting to research, with bigger number of target variables and number of source variables,
and also compute the correspondent Gröbner basis with more selection strategies. In this project, for
both binomial and toric case, the ideals exponents were saved for the training, but a better approach
for the toric ideals would be to save the correspondent matrices with integer entries of each ideal and
utilize them for the training process. To be able to generate such datasets, with at least one million
samples will require a considerable amount of time and hardware capacity. In addition, more complex
neural network models can be designed to better fit the inputs, and see how they would perform.
Additionally, trying to predict the final Gröbner basis size and not the overall number of polynomials
additions could reveal other interesting results, and perhaps, could be more predictable. The creation
of the data and its processing consisted the most laborious task during this dissertation, given that the
generation of a large sample size for each ideal distribution took a considerable amount of time and
had to be occasionally redone due to generation errors. The dataset used for this dissertation can be
found in Zenodo at [10], and the correspondent code for the linear regression and machine learning
models is available in Zenodo at [9].

References

[1] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G. S., Davis,
A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y.,
Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray,
D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke,
V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., and
Zheng, X. (2015). TensorFlow: Large-scale machine learning on heterogeneous systems. Software
available from tensorflow.org.

[2] Bernstein, A. and de V. Roberts, M. (1958). Computer v. chess-player. Scientific American,
198(6):96–107.

[3] Boulanger-Lewandowski, N., Bengio, Y., and Vincent, P. (2012). Modeling temporal dependencies
in high-dimensional sequences: Application to polyphonic music generation and transcription.
arXiv preprint arXiv:1206.6392.

[4] Buchberger, B. (2006). An Algorithm for Finding the Basis Elements in the Residue Class Ring
Modulo a Zero Dimensional Polynomial Ideal. PhD thesis.

[5] Buitinck, L., Louppe, G., Blondel, M., Pedregosa, F., Mueller, A., Grisel, O., Niculae, V.,
Prettenhofer, P., Gramfort, A., Grobler, J., Layton, R., VanderPlas, J., Joly, A., Holt, B., and
Varoquaux, G. (2013). API design for machine learning software: experiences from the scikit-learn
project. In ECML PKDD Workshop: Languages for Data Mining and Machine Learning, pages
108–122.

[6] Calin, O. (2020). Deep learning architectures. Springer.

[7] Cho, K., Van Merriënboer, B., Gulcehre, C., Bahdanau, D., Bougares, F., Schwenk, H., and
Bengio, Y. (2014). Learning phrase representations using rnn encoder-decoder for statistical
machine translation. arXiv preprint arXiv:1406.1078.

[8] Cox, D., Little, J., and O’Shea, D. (2007). Ideals, varieties, and algorithms. an introduction to
computational algebraic geometry and commutative algebra.

[9] Cruz, A. (2022a). Code files for ’predicting the performance of buchberger‘s algorithm’.

[10] Cruz, A. (2022b). Ideals dataset. Available at https://doi.org/10.5281/zenodo.6939734.

[11] Cybenko, G. (1992). Approximation by superpositions of a sigmoidal function. Math. Control.
Signals Syst., 5(4):455.

[12] Eck, D. and Schmidhuber, J. (2002). A first look at music composition using lstm recurrent
neural networks. Istituto Dalle Molle Di Studi Sull Intelligenza Artificiale, 103:48.

[13] Faugére, J.-C. (1999). A new efficient algorithm for computing gröbner bases (f4). Journal of
Pure and Applied Algebra, 139(1):61–88.

47

https://doi.org/10.5281/zenodo.6939734

48 References

[14] Faugére, J.-C. (2002). A new efficient algorithm for computing gröbner bases without reduction
to zero f5. Proceedings of ISSAC. ACM press, pages 75–83.

[15] Goodfellow, I., Bengio, Y., and Courville, A. (2016). Deep learning. MIT press.

[16] Grayson, D. R. and Stillman, M. E. (2009). Macaulay2, a software system for research in
algebraic geometry. Available at http://www.math.uiuc.edu/Macaulay2/.

[17] Gröbner, W. (1998). On elimination theory. SIGSAM Bull., 32(2):40–46.

[18] Hanin, B. and Sellke, M. (2017). Approximating continuous functions by relu nets of minimal
width. arXiv preprint arXiv:1710.11278.

[19] Herzog, J., Hibi, T., and Ohsugi, H. (2018). Binomial ideals, volume 279. Springer.

[20] Hornik, K. (1992). Multilayer feed-forward networks are universal approximators. Artificial
neural networks: Approximation and learning theory.

[21] Kohavi, R. (1998). Glossary of terms. Special issue on applications of machine learning and the
knowledge discovery process, 30(271):127–132.

[22] Leshno, M., Lin, V. Y., Pinkus, A., and Schocken, S. (1993a). Multilayer feedforward networks
with a nonpolynomial activation function can approximate any function. Neural networks, 6(6):861–
867.

[23] Leshno, M., Lin, V. Y., Pinkus, A., and Schocken, S. (1993b). Multilayer feedforward networks
with a nonpolynomial activation function can approximate any function. Neural Networks, 6(6):861–
867.

[24] McCulloch, W. S. and Pitts, W. (1943). A logical calculus of the ideas immanent in nervous
activity. The bulletin of mathematical biophysics, 5(4):115–133.

[25] McGonagle, J., Williams, C., and Khim, J. (2015). Recurrent neural network. Available at
https://brilliant.org/wiki/recurrent-neural-network/.

[26] Mojsilović, J., Peifer, D., and Petrović, S. (2021). Learning a performance metric of buchberger’s
algorithm. arXiv preprint arXiv:2106.03676.

[27] Pinkus, A. (1999). Approximation theory of the mlp model in neural networks. Acta numerica,
8:143–195.

[28] Rosenblatt, F. (1958). The perceptron: a probabilistic model for information storage and
organization in the brain. Psychological review, 65(6):386.

[29] Samuel, A. L. (1959). Some studies in machine learning using the game of checkers. IBM
Journal of Research and Development, 3(3):210–229.

[30] Sutskever, I., Hinton, G. E., and Taylor, G. W. (2008). The recurrent temporal restricted
boltzmann machine. Advances in neural information processing systems, 21.

[31] Sutskever, I., Martens, J., and Hinton, G. E. (2011). Generating text with recurrent neural
networks. In ICML.

[32] Widrow, B. and Hoff, M. E. (1962). Associative storage and retrieval of digital information in
networks of adaptive “neurons”. In Biological Prototypes and Synthetic Systems, pages 160–160.
Springer.

[33] Wolberg, W. H., Street, W., and Mangasarian, O. (1994). Machine learning techniques to
diagnose breast cancer from image-processed nuclear features of fine needle aspirates. Cancer
Letters, 77(2):163–171. Computer applications for early detection and staging of cancer.

[34] Wolfram Research, Inc. (2010). Mathematica 8.0.

http://www.math.uiuc.edu/Macaulay2/
https://brilliant.org/wiki/recurrent-neural-network/

	Table of contents
	List of figures
	List of tables
	1 Introduction
	2 Gröbner Basis
	2.1 Ideal Membership Problem
	2.2 Monomial Ordering
	2.3 Division Algorithm in multivariate polynomial rings
	2.4 Gröbner Basis
	2.5 Buchberger Algorithm

	3 Machine Learning
	3.1 Supervised learning
	3.2 Neural Network
	3.2.1 Recurrent Neural Network

	4 Literature Review
	4.1 Binomial Ideals and Toric Ideals
	4.2 Learning a performance metric of Buchberger’s algorithm
	4.3 Contributions of this thesis

	5 Data Generation
	5.1 Dataset Structure
	5.1.1 Selection Strategy evaluation

	6 Linear Regression and Neural Network Models
	6.1 Polynomial additions prediction by linear regression models
	6.1.1 Application

	6.2 Neural Networks
	6.2.1 Models Architecture
	6.2.2 Neural Network Models Training

	7 Conclusion
	References

