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Abstract 

Most mechanical components are subject to cyclic or dynamic loads, which can cause 

failure in service. The main failure mode of such equipment is the fatigue phenomenon. 

Thus, fatigue design is crucial to predict the service life of components and avoid 

catastrophic consequences, especially in economic terms and in the loss of human lives. The 

prediction of service life is usually done by assessing fatigue crack growth (FCG), using 

𝑑𝑎 𝑑𝑁 − ∆𝐾⁄  curves. However, this methodology presents some limitations as the stress 

intensity factor, 𝐾, is an elastic parameter and the phenomena occurring at the crack tip are 

irreversible. These limitations led to the study of nonlinear parameters, which allow a better 

understanding of the FCG, such as the plastic crack tip opening displacement (CTOD) used 

in this work. 

This study aims to evaluate the effect of variable amplitude loadings on fatigue crack 

growth, in compact-tension (CT) specimens produced with an AA2024-T351 aluminium 

alloy. Specifically, it is intended to obtain the prediction of the crack propagation rate, when 

the specimen is subjected to a complex loading pattern, named “Christmas Tree Spectrum”. 

The numerical study was conducted using the in-house developed finite element code 

DD3IMP. The crack propagation is controlled by the plastic deformation value at the crack 

tip. 

Results present a good agreement between FCG and CTOD curves and are similar for 

both simulations subjected to constant amplitude and variable amplitude loading, except for 

the High Frequency pattern. The plastic deformation tends toward the same value regardless 

of the simulation under study, when considering the same time interval. Furthermore, both 

the propagation rate and plastic deformation tend towards higher values in the non-contact 

simulations, thus concluding that the crack closure phenomenon is relevant in this context. 

 

 

Keywords: Fatigue Crack Growth, Variable Amplitude Loading, CTOD, Plastic Strain, 
Crack Closure, Numerical Simulation. 
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Resumo 

A maioria dos componentes mecânicos está sujeito a cargas cíclicas ou dinâmicas, que 

podem provocar falhas em serviço. O principal modo de ruína destes equipamentos é o 

fenómeno de falha de fadiga. Deste modo, é importante o dimensionamento à fadiga para 

prever a vida útil dos componentes e evitar consequências catastróficas, especialmente 

económicas e humanas. A previsão da vida útil é obtida é habitualmente estudada através da 

propagação de fendas por fadiga (PFF), utilizando curvas 𝑑𝑎 𝑑𝑁 − ∆𝐾⁄ . Uma vez que o 

fator de intensidade de tensão, ∆𝐾, é um parâmetro elástico e os fenómenos que ocorrem na 

extremidade da fenda são irreversíveis, esta metodologia apresenta algumas limitações. 

Assim, essas limitações levam à procura de parâmetros não lineares para uma melhor 

compreensão da PFF, como por exemplo o CTOD plástico, como é utilizado neste trabalho. 

Esta dissertação tem como objetivo principal o estudo do efeito de carregamentos de 

amplitude variável na propagação de fendas de fadiga em provetes de tensão compacta (CT) 

de uma liga AA2024-T351. Assim, pretende-se obter a previsão da velocidade de 

propagação da fenda, quando o provete está sujeito a um carregamento complexo 

denominado “Christmas Tree Spectrum”. Este estudo realizou-se numericamente recorrendo 

ao programa de elementos finitos DD3IMP, assumindo que a propagação da fenda é 

controlada pelo valor da deformação plástica na extremidade da fenda. 

Verificou-se que a PFF e as curvas de CTOD são semelhantes tanto para as simulações 

submetidas a um carregamento de amplitude constante como para as de amplitude variável, 

com exceção do padrão High Frequency. A deformação plástica tende para o mesmo valor 

independentemente da simulação em estudo, desde que seja durante o mesmo intervalo de 

tempo. Além disso, tanto a velocidade de propagação como a deformação plástica tendem 

para valores superiores nas simulações sem contacto, concluindo assim que o fenómeno de 

fecho de fenda é relevante neste contexto. 

 

 

Palavras-chave: Propagação de Fendas por Fadiga, Carga de Amplitude Variável, 
CTOD, Deformação Plástica, Fecho de Fenda, Simulação 
Numérica. 
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1. INTRODUCTION 

1.1. Motivation 

The human being is distinguished by his logical and rational ability to create and 

improve inventions given his craving for efficiency and convenience, being necessary to 

perform several steps in the development of a project. This whole process begins by 

gathering all the knowledge about the subject under study, from projects already developed 

to date and/or information and concepts, to improve it.  

Most mechanical components are subjected to loads that vary over time. These 

components can fail in service due to various factors and phenomena with fatigue being 

particularly prevalent. Indeed, around 80% to 90% of the ruin of parts and structures, 

operating in the room temperature zone and subjected to cyclic or dynamic loadings are 

related to fatigue failure [1]. Fatigue is a slow and irreversible process of plastic deformation 

that depends on the number of cycles that a given material is subjected to. Moreover, this 

process depends on several factors, such as component geometry, material properties, 

loading type and orientation, environmental conditions, among others, thus making it 

extremely complex. Furthermore, fatigue damage is caused by stress levels below the tensile 

strength limit or even below the yield strength limit [2]. Finally, this process consists of three 

distinct phases, crack initiation, crack propagation and finally final fracture. The total fatigue 

life is equal to the sum of the lives of the initiation and propagation phases. In many 

situations, namely in the presence of defects or stress concentrators, the propagation time is 

dominant. 

Predicting unstable fracture or propagation of a pre-existing crack is the most 

fundamental issue in fracture mechanics [3]. As industrial components are constantly 

subjected to cyclic loadings, failure can bring catastrophic consequences both at the human, 

economic and environmental level. Thus, it is necessary to perform tests that help us 

understand and predict the behaviour of materials under these conditions. One of the 

methods to evaluate fatigue performance is through experimental results focused on material 

properties. However, since it is not possible to change material properties individually, as 

they are interdependent, improving fatigue resistance becomes an extremely difficult, time 
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consuming and expensive process. Alternatively, the fatigue behaviour can be evaluated 

numerically. Through this method it is possible to obtain a very close representation of the 

physical behaviour, allowing a better understanding of the effect of parameters on fatigue 

process. This methodology is very interesting to isolate the effect of the variables affecting 

the fatigue process, and therefore to develop parametric studies. 

Fatigue crack growth (FCG) has been studied for decades; however, several aspects 

are still controversial [4]. Most studies are based on constant amplitude loading conditions, 

since it is extremely difficult to perform studies on variable amplitude loads due to the 

random nature and consequently vastness of patterns. The lifetime of the components is 

obtained through the crack propagation rate 𝑑𝑎 𝑑𝑁⁄  and the range of the intensity factor ∆𝐾, 

resulting in the well known 𝑑𝑎 𝑑𝑁 − ∆𝐾⁄  curves [5]. This methodology has some 

inconsistencies and limitations. In fact, ∆𝐾 is an elastic parameter, and fatigue crack 

propagation is related to nonlinear and irreversible mechanisms that occur at the crack tip 

zone. To overcome this drawback, other methodologies have been proposed, such as the 

crack closure concept, T-stress, CJP model, J-integral, and CTOD, among others. The 

research team proposed the use of plastic CTOD and more recently the cumulative plastic 

strain to predict FCG rate. This last approach was used to study the effect of overloads, load 

blocks and the Superblock 2020 load pattern, which is composed of constant amplitude load 

blocks separated by overloads. However, it is important to study more elaborate load 

patterns, which approximate the patterns actually applied to real components, such as 

automobiles and airplanes. 

1.2. Objectives 

This dissertation aims to study the effect of variable amplitude loading conditions on 

FCG. For this purpose, an aluminium alloy, AA2024-T351, CT specimen is subjected to a 

variable amplitude loading pattern called "Christmas Tree Loading". The fatigue crack 

propagation is predicted numerically using the in-house developed finite element code 

DD3IMP (Three-Dimensional Elasto-Plastic Finite Element Program) [6], [7]. The crack 

propagation is here controlled by the cumulative plastic deformation at the crack tip. 

Additionally, two different constant amplitude loading spectrums are applied to the same 

specimen geometry in order to assess the effect of the variable amplitude loading on fatigue 

crack growth. 
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1.3. Layout of The Thesis 

This dissertation is divided into five chapters, where the numbering and main objective 

of each are presented below: 

• Chapter 1 – Introduction: Introduction to the subject under study, as well as 

its objectives and report structure. 

• Chapter 2 – Literature Review: Descriptions of the most important concepts 

and definitions necessary for the interpretation of the results. Additionally, the 

advantages and limitations of the methodology used to carry out this thesis are 

presented. 

• Chapter 3 – Numerical Model: Presentation and description of the numerical 

model used in the numerical simulations. The input files to the code are 

described, as well as the mesh of the specimen and boundary conditions. The 

propagation criterion, based on plastic deformation is also presented. 

• Chapter 4 – Numerical Results and Discussion: Presentation and discussion 

of the results obtained for the different evaluated loading patterns. The obtained 

correlations and the fatigue crack growth rates are discussed. 

• Chapter 5 – Conclusions: Presentation of the main conclusions obtained in 

this study. In addition, some proposals are suggested for future work. 
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2. FATIGUE CRACK GROWTH 

2.1. Fatigue Phenomenon 

In 1829, the first discoveries about material fatigue were made by Wilhelm August 

Julius Albert [8]. Since then, the study of this type of failure has become increasingly 

important, aiming to understand the processes of crack initiation and propagation. In fact, 

fatigue can be defined as the “process of progressive and localized plastic deformation, 

occurring in a material subjected to cyclic stresses and strains, at high stress concentration 

locations that may culminate in cracks or complete fracture after a sufficient number of 

fluctuations.” [9]. 

As mentioned earlier, fatigue is composed by three phases, assuming no initial cracks 

in the component. 

• Crack initiation – The first phase develops typically on the surface of the part, 

at point(s) where the stresses concentration is higher. Generally, this phase 

occurs due to the presence of some defect or due to the effect of roughness, 

concentrating plastic deformation by the action of repeated and continuous 

application of loads. This phase is divided into two stages, nucleation and 

microscopic crack growth. Nucleation is identified by the formation of slip 

lines on the surface, representing crack initiation. Microscopic crack growth 

can occur by ductile or brittle striation, coalescence of microcavities, or 

microcleavage. Due to the presence of microstructural barriers, it is 

characterized by slow crack growth rates. 

• Crack propagation – This phase is characterized by the progressive increase 

of the crack propagation speed, usually in the direction perpendicular to the 

load application. The crack paths are often not linear, showing Zigzag patterns, 

resulting from material microstructure, or even deflection, due to complex 

loadings. 

• Final fracture – The last phase occurs when the crack length reaches a critical 

value. The crack propagates at a very high and extremely unstable rate, 
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originating the fracture of the material when the resistant area is no longer able 

to support the applied loads. 

Several studies have been conducted to understand the effects of loading parameters, 

for example Paris and Erdogan [10], Erdogan and Ratwani [11] and, Hartman and Schijve 

[12]. A mechanical structure generally experiences variable amplitude loads, however most 

of the studies conducted so far have been on constant amplitude and variable amplitude with 

low complexity. This is because variable amplitude loads make the fatigue process even 

more complex, and because there is a vastness of load patterns. Usually only overloads, 

underloads and load blocks are studied, which does not replicate the real load patterns. 

2.2. Concepts of Linear Elastic Fracture Mechanics (LEFM) 

As mentioned before, FCG is related to nonlinear and irreversible mechanisms that 

occur at the crack tip. However, the stress distribution around the crack tip is usually studied 

using LEFM. This theory was proposed by Irwin [13], in 1958, to describe the behaviour of 

brittle fracture. Later, it was adapted for FCG problems.  

Despite the importance of LEFM it can only be applied to cases where the nonlinear 

behaviour is so small that it can be neglected. This means that the validity of this theory 

requires the region of nonlinear behaviour to be very small relatively to the crack length and 

other dimensions of the part in study (Small Scale Yielding, SSY, condition). In fact, the 

intensity and distribution of the stress at the crack tip results in the formation of a plastically 

deformed zone. Additionally, the stress intensity at the crack tip depends on numerous 

factors, such as the nominal stress applied to the part, the size, shape, and orientation of the 

crack. Since LEFM does not account for plastic deformation, the damage at the crack tip is 

assumed to be controlled by the elastic field [14].  

The fundamental principle of LEFM is the characterization of the stress field 

surrounding the crack tip. This is usually achieved through the stress intensity factor, 𝐾, 

which is the main parameter responsible for the elastic stress and strain field in the regions 

near the crack tip. The stress intensity factor can be obtained by: 

 𝐾 = 𝑌𝜎√𝜋𝑎, (2.1) 

where, 𝑌 is a dimensionless parameter that depends on the landing state and part and crack 

geometries, 𝜎 is the nominal applied stress and 𝑎 is the crack length. 



 

 

  Fatigue Crack Growth 

 

 

Francisco Alexandre Pereira Jesus  7 

 

2.3. ΔK – Based Fatigue Crack Growth Analysis 

The service life of a component is usually accessed through the FCG rates, using the 

𝑑𝑎 𝑑𝑁 − ∆𝐾⁄  curves. Since the value of the stress intensity factor varies over time when the 

component is subjected to cyclic loading, it is replaced by its range, ∆𝐾, given by: 

 ∆𝐾 = 𝐾max − 𝐾min, (2.2) 

where 𝐾max and 𝐾min consist in the stress intensity factors at maximum and minimum loads, 

respectively. 

To represent the 𝑑𝑎 𝑑𝑁 − ∆𝐾⁄  curves, it is necessary to know several parameters, such 

as ∆𝐾, 𝑎, and the maximum and minimum stresses, 𝜎max and 𝜎min, respectively, among 

others. Additionally, it is possible to identify three different regions in these curves, as shown 

in Figure 2.1. 

 

Figure 2.1 – 𝒅𝒂/𝒅𝑵 versus ΔK curve on log-log scale, adapted from [15]. 

• Near-threshold regime – This regime is characterized by a sharp increase in 

the propagation rate with increasing values of ∆𝐾. In addition, there is no crack 

propagation for values below the fatigue threshold, ∆𝐾th, which, therefore, 

plays an important role for safety design regarding fatigue damage tolerance 

approach. The value of ∆𝐾th decreases by increasing the mean stress, and is 

affected by crack geometry and size, component dimensions, material 

properties, loading parameters and surrounding environment. This parameter 

can be obtained experimentally. 
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• Stable propagation regime – In this regime, also known as the Paris-Erdogan 

regime, the 𝑑𝑎 𝑑𝑁 − ∆𝐾⁄  curve evolves linearly on a bi-logarithmic scale. In 

this region, the curve is governed by the Paris-Erdogan equation [10]: 

in which 𝐶 and 𝑚 are parameters that depend on the material, the 

environmental conditions, and the stress ratio, 𝑅, given by: 

• Final failure regime – In the upper regime, there is a sharp rise in the 

propagation rate with the increase of ∆𝐾, as the value of 𝐾max approaches 𝐾1C. 

In fact, when 𝐾maxvalue equals the 𝐾1C value, material fracture occurs. 

2.4. Issues Regarding LEFM 

The methodology used with the LEFM theory presents several advantages, such as the 

fact that 𝐾 values may be obtained analytically, where several solutions currently exist for 

different crack geometries [16]. In particular, for long cracks, LEFM presents good results 

where the linearity evidenced by Paris law is greatly contemplated. Despite all these 

advantages, several problems have been identified in this methodology, such as: 

• Inability to predict the influence of the stress ratio (𝑅) [17]; 

• Inability to predict the influence of loading history; 

• Abnormal behaviour observed in small cracks; 

• Dimensional problems of the 𝑑𝑎 𝑑𝑁 − ∆𝐾⁄  curve; 

• 𝑑𝑎 𝑑𝑁⁄  curves are obtained for constant amplitude loadings, which is an 

important limitation since real life loadings usually present varying amplitudes 

and stress ratios; 

• LEFM theory is valid only in the prevalence of the SSY condition. As 

mentioned before, this condition is true, when the plastic zone is restricted to a 

sufficiently small extension in relation to the dimensions of the crack or 

structure. 

 
𝑑𝑎

𝑑𝑁
= 𝐶(∆𝐾)𝑚, (2.3) 

 𝑅 =
𝜎min

𝜎max
. (2.4) 
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2.5. Complementary Concepts 

Since the LEFM-based theory has several limitations regarding the fatigue crack 

propagation process, different theories and parameters have emerged, trying to describe this 

phenomenon with a higher level of accuracy.  

One of the best-known approaches is the crack closure phenomenon which was firstly 

addressed by Elber [18]. He observed that a fatigue crack could be closed even while 

subjected to tensile loads. Consequentially, stresses lower than the crack opening stress are 

not expected to cause crack propagation. This phenomenon occurs when the crack faces 

contact each other, inducing a protective effect on the crack tip. Therefore, crack closure 

improves fatigue resistance [19], since it is assumed that only the range of the load cycle 

during which the crack is open contributes to crack propagation. 

Crack closure can be caused by several mechanisms, such as the (i) Plasticity Induced 

(PICC) [20]; (ii) Oxide Induced (OICC) [21] and (iii) Roughness Induced (RICC) [22] 

mechanisms, as presented in Figure 2.2, respectively. 

 

(i) (ii) (iii) 

Figure 2.2 – Schematic representation of the main crack closure mechanisms, adapted from [23].  

Fatigue crack propagation laws that include the effect of fatigue crack closure are 

based on the relationship between fatigue crack growth rate (𝑑𝑎/𝑑𝑁) and the effective range 

of the stress intensity factor, ∆𝐾eff [24]. The general FCG formula for the stable propagation 

regime, which takes into account the effect of crack closure, takes the following form: 

The effective stress intensity factor range, ∆𝐾eff, is then given by: 

where 𝐾open is the stress intensity factor below which the crack remains closed. Figure 2.3 

depicts the range of effective stress intensity factors and the relevant stress intensity factors. 

 
𝑑𝑎

𝑑𝑁
= 𝐶(∆𝐾eff)

𝑚. (2.5) 

 ∆𝐾eff = 𝐾max − 𝐾open, (2.6) 
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Figure 2.3 – Schematic representation of the effective stress intensity factor. Adapted from [18]. 

Despite not being consensual in scientific circles devoted to FCG analysis, the crack 

closure concept provided a better understanding of the effect of variable parameters, such as 

loading history and microstructure. In addition to crack closure other relevant approaches 

have emerged, such as the concept of partial crack closure [25], [26], T-stress [27], [28] and 

the CJP model [29]. 

Partial crack closure proposes that the loading spectrum below the crack opening load 

contributes to fatigue damage since, according to the authors [25], [26], the existing contact 

between the crack flanks does not occur immediately behind the crack tip. Another important 

concept is the T-stress where it is necessary to measure the stress parallel to the crack flanks. 

This approach was used to quantify the size and shape of the plastic zone at the crack tip by 

varying the sign and magnitude of T-stress. Finally, the Christopher James Patterson (CJP) 

model describes the stress field around the crack tip using various modified stress intensity 

factors. 

As mentioned before, the stress intensity factor is an elastic parameter and all the 

methodologies stated above are based on this parameter. Thus, nonlinear parameters were 

proposed to replace ∆𝐾 in order to have a better understanding of what happens at the crack 

tip. 

2.6. Elasto-Plastic Fracture Mechanics 

When a component is subjected to cyclic loading, three distinct zones are developed 

at the crack tip. Figure 2.4 shows the representation of these zones in tensile loading mode. 
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Figure 2.4 – Induced zones, around the crack tip, and their responses in stress-strain curves, adapted from 
[30]. 

Each zone can be characterized as follows: 

• Zone I – Cyclic Plastic Zone: This zone stands out for the hysteresis cycle, in 

stress-strain plots, being affected by 𝑅 and loading range. 

• Zone II – Monotonic Plastic Zone: A plastic deformation point is reached in 

this zone during loading. When the material is unloaded an elastic-type 

unloading occurs. 

• Zone III: This is the zone farthest from the crack tip, where the material has 

an elastic behaviour. 

It is important to note that the size of the plastic zone at the crack tip varies depending 

on the stress state developed at the yielding point and is also influenced by the yield stress 

of the material itself. Furthermore, the size of the plastic zone is larger under plane stress 

conditions than under plane strain conditions. This occurs because under plane stress 

conditions, the normal stress component, 𝜎Z, is zero but out of plane deformations, 𝜀z, are 

allowed. However, under plane strain conditions, the stress component takes non-zero 

values, restricting plastic flow.  

2.6.1. Crack Tip Opening Displacement – CTOD 

In 1961, Wells [31] proposed a measure of fracture toughness by noticing that the 

crack faces separated before fracture for materials that had a high degree of plasticity. This 
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way, the Crack Tip Open Displacement, CTOD, emerged as a parameter for measuring the 

displacement of the crack flanks. While CTOD is used for measurements near the crack tip, 

COD (Crack Opening Displacement) is used for measurements farther from the crack tip. 

The CTOD parameter is of particular importance when characterizing the fracture 

behaviour, and two definitions have been developed. The first one, proposed by Wells [31] 

focuses on the displacement normal to the crack plane relative to the original position of the 

crack tip, i.e., it measures the opening displacement of the original crack tip. The other 

definition was developed by Rice [32] and measures the displacement at an intersection of a 

90° vertex with the slits of the slit. These two definitions of the CTOD concept are shown in 

Figure 2.5. 

 

Figure 2.5 – Definitions of CTOD. Adapted from [33]. 

Over the years, several authors proposed FCG relations using the CTOD concept. 

More recently, Antunes et al [5], [34], [35], propose the use of the plastic CTOD, 𝛿p, at the 

crack tip instead of the parameter ∆𝐾. Through this parameter substitution, the model is now 

defined by 𝑑𝑎 𝑑𝑁⁄ − 𝛿p, with the advantage of integrating the crack closure phenomenon in 

a natural way. Furthermore, Antunes discloses in his works the hypothesis of quantifying the 

plastic deformation level through 𝛿p, assuming that the FCG is directly linked to plastic 

strain. 

Predicting FCG through CTOD requires accurate measurements at the crack tip zone. 

In fact, an underestimation of FCG rate would consequently result in unstable propagation 

and ultimately failure. On the other hand, an overestimation must also not occur as this can 

lead to defects of very small size and consequently increase the inspection intervals. 

Numerically, the measurement of the CTOD is usually obtained at the node just before the 

crack tip. 
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2.7. Models for Variable Amplitude Loads 

Over the years, several models for predicting FCG under variable amplitude loading 

have been proposed, addressing several aspects of variable amplitude fatigue. The reference 

list includes more than 290 publications [36]. 

The model proposed by Wheeler [37], is based on the analysis of the size of the plastic 

zone ahead of the crack tip. This was one of the first models to emerge and has proven 

successful for estimating fatigue crack growth life under constant amplitude loading spectra 

interrupted by single or repeated overloads. However, it presents some limitations when 

dealing with underload cycles that occur periodically within a load spectrum [38].  

The model proposed by Noroozi et al. [39] is based on the elastic-plastic strain-stress 

behaviour that characterizes the material response in the crack tip region. According to 

Skorupa [40], this model is grouped to the so-called "Residual stress-based models". This 

model was later modified to be applicable for all types of variable amplitude loading spectra 

[41]. The “residual stress-based models” are widely used and are based on calculations of 

the yield zone size ahead of the crack tip. There is another category of models based on the 

crack closure approach, which considers plastic deformation and the interaction of the crack 

tip with the plastic wake [42]. Later, models proposed by Elber [43] were used to simulate 

crack growth rates under varying amplitude loads. More recent proposals are based on 

combinations of Wheeler's and Newman's crack closure model based on the strain energy 

density factor [42]. 

There is still no universal model to study the FCG process due to the large number and 

complexity of mechanisms associated with the phenomenon. Skorupa [36] studied load 

interaction phenomena using several sequences of simple variable amplitude loadings, of 

which we highlight two-level blocks (High-Low, Low-High and step in both maximum and 

minimum load). However, sequences with overloads, single overloads, overload blocks, 

periodic overload blocks and combinations of overloads and underloads were also addressed. 

Recently, Silva [44] also conducted studies on the behaviour of simple variable amplitude 

loads with two-level blocks (High-Low, Low-High, Underload). 

In 1968, Matsuishi and Endo [45], [46] introduced the first accepted method used to 

extract closed-load cycles, the Rainflow Cycle. This analogy is derived from the similarity 

of this method to the rain flow, running off the edges of a roof. This method specifically 

identifies hysteresis cycles within a time history of load, stress, or strain [47]. Currently, 
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there are several different algorithms for the Rainflow Cycle counting method, such as the 

three-point [48], [49] and four-point cycle counting techniques [50]. 

The three-point cycle counting method continuously evaluates the load history when 

a peak or valley occurs. The basic rule for counting the points is illustrated in Figure 2.6. If 

the load history is periodic, it needs to be readjusted by starting the count with the peak or 

valley with the largest absolute magnitude. Subsequently, the cycle identification rule is 

applied to check three consecutive points from the first cycle, until a closed cycle is defined 

[47]. This procedure is repeated until the remaining data are exhausted. 

 

Figure 2.6 – The three-point rainflow cycle counting rule: (a) Hanging cycle, (b) Standing cycle. Adapted 
from [47]. 

Similar to the three-point counting method, the four-point counting method can be 

implemented for real-time cycle counting in a non-periodic loading history. This method 

excludes the contribution of unrepaired reversals and can only recognize closed cycles for 

fatigue analysis, thus distinguishing from the previous method. The four-point method is 

illustrated in Figure 2.7. 
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Figure 2.7 – The four-point rainflow cycle counting rule: (a) Hanging cycle and (b) Standing cycle. Adapted 
from [47]. 

For a complex multiaxial load time history, there are two cycle counting techniques 

broadly used for fatigue damage assessment [47]. The first approach, known as the critical 

plane method, uses the uniaxial cycle counting method to calculate fatigue damage in several 

planes of the material. The critical plane is the one that accumulates the most damage with 

the fatigue life being calculated through this plane. On the other hand, the equivalent stress 

or strain amplitude method is based on the assessment of a complex equivalent loading 

history. This way, fatigue damage, or life is evaluated from the cycles identified by 

composing the equivalent history.  
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3. NUMERICAL MODEL 

3.1. Physical Situation 

The numerical tests were performed with a C(T) (Compact-Tension) specimen, as 

presented in Figure 3.1. The specimen is characterized by its initial crack length, 𝑎0, of 15 

mm and its width, 𝑊, of 36 mm. The tests were performed considering plane stress state, 

where the out of plane stress component is null. Since it is not possible to achieve pure plane 

stress states, experimentally the thickness of the component is as small as possible, in order 

to make it predominant. This way, the specimen was conceived with a thickness of 0.1 mm 

in order to guarantee plane stress conditions. 

 

Figure 3.1 – Physical C(T) specimen. Dimensions in [mm]. 

3.2. Material  

The elastic-plastic behaviour of the materials deeply influences the fatigue process. 

Thus, it is crucial to describe and predict the elastic-plastic behaviour of metallic materials, 

in this case through phenomenological constitutive models. 

The theory of plasticity can predict the distribution of stresses and strains in 

polycrystalline metals, not only in situations where the elastic and plastic stresses are of 
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comparable magnitudes, but also in situations where the plastic stresses are large enough 

that the elastic stresses are disregarded [51]. 

These models generally consist of: 

• Yield criterion – Describes the elastic limit surface under any combination of 

applied stresses; 

• Hardening law – Describes the evolution of the elastic limit surface over 

plastic deformation; 

• Plastic flow rule – Establishes the relationship between the stress state and the 

increment of plastic deformation. 

The constitutive model is usually described by means of the equivalent stress, 𝜎, which 

is given by the yield criterion, and the evolution of the yield stress during deformation 

according to the hardening law, with the geometric factor 𝑌. 

Thus, the yield is defined through the equilibrium defined in ℱ, given as: 

The material stress state remains within the yield surface and elastic deformation 

occurs, when 𝜎 < 𝑌. On the other hand, plastic deformation occurs when the associated flow 

rule states that the increment of the plastic stress tensor is normal to the yield surface, for a 

stress state such that 𝜎 = 𝑌 [38]. 

For isotropic materials, where the physical properties are constant in all directions, 

yield criteria such as Tresca and Von Mises are usually adopted. Since the Tresca criterion 

presents some mathematical difficulties in solving problems due to the existence of angular 

points on the yield surface, the von Mises criterion emerged. Thus, von Mises' yield criterion 

was used in this study, defining the material as isotropic. 

3.2.1. Strain-Hardening Plasticity 

Through low cycle fatigue tests, the specimen undergoes successive loadings and 

unloadings, experiencing plastic deformation, which causing its yield stress to change. This 

phenomenon, called strain hardening, controls the evolution of the yield strength surface in 

size, position, and shape when the yield stress is exceeded, through the laws of strain 

hardening. There are essentially two types of hardening laws, isotropic and kinematic, but 

there are also hardening laws that are the junction of both. 

 

 ℱ = 𝜎 − 𝑌 ≤ 0 → 𝜎 = 𝑌. (3.1) 
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Isotropic Hardening 

Isotropic strain hardening controls the expansion of the yield surface during plastic 

deformation, without changes in its initial shape (homothetic expansion), as shown in Figure 

3.2. Thus, it is assumed that this surface is defined only by the final plastic stress state, 

regardless of the actual trajectory [52]. It should be kept in mind that according to this law 

the material remains isotropic throughout the deformation, while the Bauschinger effect is 

absent. This effect plays an important role in the presence of cyclic loads, as it allows to 

characterize the effect of the deformation history in the plastic behaviour. 

 

Figure 3.2 – Representation of the evolution of the yield surface in isotropic hardening, on the left and, 
on the right side the corresponding stress vs plastic strain curve, adapted from [53]. 

Some materials, namely aluminium alloys, the target material of this dissertation, 

present a phenomenon called saturation stress. To take this phenomenon into account, the 

Swift [54] model was developed. Swift's law can be written as: 

where, 𝐾 and 𝜀0 are material parameters. 

Kinematic Hardening 

Kinematic strain hardening consists in a translation of the yield surface, without 

changes in its shape and size, as shown in Figure 3.3. Unlike isotropic strain-hardening, 

kinematic strain-hardening models evidence the Bauschinger effect. This effect consists in 

the reduction of the yield stress in compression after a tensile load, or vice versa, showing 

oriented hardening and describing strain paths. The Bauschinger effect takes on special 

 𝑌 = 𝐾 × (𝜀0 + 𝜀̅𝑝)𝑛, (3.2) 
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importance as it shows that the deformation history is relevant to the plastic behaviour of 

metallic materials. 

 

Figure 3.3 – Representation of the evolution of the yield surface in kinematic hardening, on the left and, 
on the right side the corresponding stress vs plastic strain curve. Adapted from [53]. 

A non-linear kinematic model was proposed by Lemaitre-Chaboche [55], which can 

be written: 

where 𝐶X and 𝑋sat are material parameters and 𝑋 denotes the back-stress tensor. 

This thesis considers an aluminium alloy AA2024-T351 which is widely used in 

aircraft accessories, gears and shafts, screws, watch parts, computer parts, couplings, fuse 

parts, hydraulic valve bodies and cryogenic containers. The AA2024-T351 alloy is a high 

strength material of adequate workability, can be hardened after heat treatment, has good 

machinability and good surface finish. 

The properties of this aluminium alloy were obtained by calibrating numerical stress-

strain curves with experimental ones [56]. The experimental results for hysteresis cycles 

were obtained from low cycle fatigue tests. Table 3.1 shows the material parameters of this 

alloy. 

Table 3.1 – Material parameters of the material under study [56]. 

Material 
𝑬 

[GPa] 

𝝂 

[---] 

𝒀𝟎 

[MPa] 

𝑲 

[MPa] 

𝒏 

[---] 

𝑪𝒙 

[---] 

𝑿𝐬𝐚𝐭 

[MPa] 

AA2024-T351 72.261 0.29 288.96 389.00 0.056 138.80 111.84 

 

 𝑿̇ = 𝐶X [
𝑋sat

𝜎
(𝝈′ − 𝑿)] ε̇̄

p
 𝑤𝑖𝑡ℎ 𝑿̇(0) = 0, (3.3) 



 

 

Effect of Christmas Tree Loading Pattern on Fatigue Crack Growth  

 

 

20  2022 

 

3.3. Finite Element Model 

3.3.1. Finite Element Mesh and Boundary Conditions 

The mesh used in the numerical tests is shown in Figure 3.4. Note that, because of the 

CT specimen two symmetric planes, only 1 4⁄  of it was modeled. The model employs 3D 

linear hexahedral finite elements, with the size of the finite elements being reduced closer to 

the crack zone. This allows to obtain a greater accuracy of the results, through a refined mesh 

in the crack path and a lower computational cost due to the outer coarse mesh. At the crack 

tip, the mesh considers square elements with 8×8 μm2, allowing to precisely simulate local 

strain and stress gradients [57]. In addition, only one finite element layer was used along the 

thickness. 

  

(a) (b) 

 

(c) 

Figure 3.4 – (a) Mesh of the C(T) specimen model; (b) and (c) Details of finite element mesh. 

In this work, the plane stress state is numerically achieved by allowing out of plane 

displacements in the outer surface, as presented in Figure 3.5. Since only a part of the 

specimen is presented, the boundary conditions need to be very well defined, as they play a 

key role in stabilizing the crack tip fields and the level of crack closure. The contact between 

the flanks of the crack is modelled considering a rigid plane surface aligned with the crack 

symmetry plane. In some numerical simulations the crack flank contact was removed to 
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eliminate the crack closure phenomenon. It is important to note that the displacement in the 

x-axis direction, at the node where the external load is applied is restricted. 

 

Figure 3.5 – (a) Model of the C(T) specimen; (b) Boundary conditions for plane stress state. 

3.3.2. Crack Propagation 

The propagation criterion used in the present study is based on the accumulated plastic 

deformation at the crack tip. This criterion states that when a critical value of accumulated 

plastic deformation is reached, the node containing the crack tip is released, i.e., the 

propagation occurs. Thus, FCG is modelled by releasing the nodes present in the plane of 

symmetry. Since a node release strategy is followed fatigue is regarded as discrete process, 

while the physical process is expected to be continuous. The critical value of the accumulated 

plastic deformation for the AA2024-T351 alloy is of 1.10. This value is considered a material 

property and was obtained comparing one experimental crack propagation rate and various 

numerical simulations with different values of critical accumulated plastic strain [56]. It 

should be noted that this comparison is performed for the same crack length and loading 

parameters, and it is only necessary to ensure that the crack length of the numerical 

simulation is in the stabilized regime. The method discussed uses the Total Plastic Strain 

(TPS) criterion. This criterion considers the cumulative sum of all the plastic strain 

developed at the Gauss points, even when they do not contain the crack tip [58]. 

Knowing the distance between nodes (mesh size) and the number of load cycles 

required to achieve the critical value of accumulated plastic deformation, it is then possible 

to obtain 𝑑𝑎/𝑑𝑁, which is usually adopted in most literature dealing with constant amplitude 

loads. Since the present study is focused on variable amplitude loads, the crack propagation 



 

 

Effect of Christmas Tree Loading Pattern on Fatigue Crack Growth  

 

 

22  2022 

 

rate is obtained in 𝑑𝑎/𝑑𝑡. This way, knowing the time spent in each cycle it is possible to 

convert 𝑑𝑎/𝑑𝑁 into 𝑑𝑎/𝑑𝑡. Finally, it is expected to obtain very small crack propagation 

rates, making necessary to perform many loading cycles to obtain a considerable crack 

propagation length and, therefore, stabilized 𝑑𝑎/𝑑𝑡 and plastic strain values. This is the 

crack closure and yield surface expansion and translation require some propagations to 

stabilize. 

3.3.3. Load Patterns 

The specimen was subjected to four different load patterns, as shown in Figure 3.6. 

The Low Frequency and the High Frequency loads are constant amplitude loads (CAL). The 

Low Frequency loading ranges from 6 N to 60 N. On the other hand, the High Frequency 

load varies only from 6 N to 21 N. Christmas Tree (15-9) and Christmas Tree (9-3) are both 

variable amplitude loadings (VAL), ranging from 6 N to 60 N. The load pattern Christmas 

Tree (15-9) is defined during the global increase of the load by increments of +15 N and -9 

N. During the global decrease of the load, the pattern contains increments of -15 N and +9 

N. The load pattern Christmas Tree (9-3) is defined during the global increase of the load by 

increments of +9 N and -3 N. During the global decrease of the load, the pattern contains 

increments of -9 N and +3 N. The difference between these two loadings is that Christmas 

Tree (15-9) has steeper unloads. A complete cycle of all loading patterns takes 17 seconds, 

except for the High Frequency pattern, which lasts only 1 second. 
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Figure 3.6 – Four different load patterns used in the numerical simulation. 

3.4. Finite Element Software 

The FCG numerical analysis was carried out using the in-house finite element code 

DD3IMP, which was originally developed to simulate sheet metal forming processes [6], 

[7]. The numerical model considers an elastic-plastic material constitutive model, allowing 

large deformations and rotations. Furthermore, it assumes that the elastic strains are 

negligibly small relative to unity. 

The typical input files required by the code are presented below. 

• DD3_mesh.msh – Defines the finite element mesh of the specimen; 

• DD3_materX.dat – Contains the parameters of the material(s) constitutive 

laws (Young's modulus, yield stress, parameters of the hardening laws, etc.); 

• DD3_phase.dat – This file characterizes the loading. Since the loading is 

defined by force increments, it is necessary to have more than one file of this 

type, even when the load amplitude is constant; 

• DD3_bcon.dat – Imposes the boundary conditions on the specimen; 

• DD3_input.dat – Contains all the numerical parameters, such as the 

convergence criteria, maximum number of iterations and tolerances, among 

others; 
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• DD3_tool.dat – Defines the parametric surfaces; 

• DD3oCYCLIC.dat – Selects the propagation criterion to be used in the 

numerical simulation, as well as the critical value of the plastic deformation. 

The output files contain the simulation results, and the generated files are as follows: 

• R_Line1_CTOD.DD3 and R_line2_CTOD.DD3 – Displays the value of 

CTOD at one and two nodes behind the crack tip, respectively; 

• R_NODESreleased.DD3 – This file presents a list of all propagations that 

occurred throughout the simulation, the loading cycle in which the propagation 

occurred, as well as the plastic deformation at the crack tip nodes; 

• R_TIP.DD3 – Provides information about the stress and strain state in the node 

containing the crack tip, through all the increments of the simulation; 

• ToolBCIDx.res and ToolBCIDy.res – Displays displacements and forces of 

the parametric surfaces; 

• Tool_Sym.res – Presents the contact forces at the crack flanks. 
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4. NUMERICAL RESULTS AND DISCUSSION 

In this chapter, the obtained numerical results are presented and discussed for the 

different analyses. For each one the results of the simulations with and without (penetration 

allowed) crack flank contact is presented. At the end of each analysis, there is a discussion 

over results. 

4.1. FCG Rate 

Figure 4.1 presents the crack propagation rates of the 4 load patterns studied, 

considering contact between the crack flanks, and therefore, crack closure. The value of 

𝑑𝑎/𝑑𝑡 increases at the beginning, with a peak occurring after about 500 cycles for the VAL 

patterns, close to 1600 cycles for the High Frequency pattern, and about 30 cycles for the 

Low Frequency pattern, at a crack length of about 15.11 mm. Then, the value of 𝑑𝑎/𝑑𝑡 

starts a downward behaviour until it stabilizes. Except for the High Frequency, all loading 

patterns stabilize at a crack growth rate of about 0.19 µm/s for values of crack length greater 

than 15.30 mm. The High Frequency pattern does not exhibit the same initial peak, 

stabilizing very quickly. For this reason, the number of crack propagations for this simulation 

is relatively smaller. Finally, in this loading case the stable value of 𝑑𝑎/𝑑𝑡 is about 

0.07 µm/s, i.e., about 3 times smaller than the other patterns. 

Note that the number of load cycles required to achieve a crack length of 15.30 mm 

for both Christmas Tree patterns is about 1400 cycles, while the Low Frequency pattern 

requires only around 90 cycles. 
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Figure 4.1 – 𝒅𝒂/𝒅𝒕 in terms of the crack length, 𝒂, for the various applied loads from the simulations with 
contact. 

Figure 4.2 shows the propagation rates for the 4 load patterns considering no contact 

between the crack flanks. The 𝑑𝑎/𝑑𝑡 curves of these load patterns behave similarly to 

contact load patterns (see Figure 4.1). However, non-contact loading patterns show a more 

pronounced initial increase, and their stabilization value tends to increase linearly along the 

crack length. Note that, although the value of 𝑑𝑎/𝑑𝑡 also increases linearly, along the crack 

length in the simulations with contact, this is less evident, when comparing with non-contact 

results. Indeed, 𝑑𝑎/𝑑𝑡 increases because during propagation the crack length gets larger and 

larger, which implies a growth of the magnitude of crack tip fields, and so of the stress 

intensity factor and propagation rate. Finally, here the overall values of 𝑑𝑎/𝑑𝑡 are superior 

to those obtained in the simulations with contact, where the stabilization value is 0.33 μm/s 

as the protective effect provided by crack closure is not present. Similarly, to Figure 4.1, the 

High Frequency loading is also an exception, presenting a 𝑑𝑎/𝑑𝑡 value of about 0.08 μm/s, 

this is, around 4 times lower than the other load patterns. 

The number of cycles required to reach a crack with 15.30 mm differs from the number 

of cycles required, to achieve the same length, in the simulations with contact. Without 

contact, for the Christmas Tree patterns, about 1000 cycles are required. On the other hand, 

the Low Frequency pattern needs only 70 cycles, the lowest number of cycles. For the High 

Frequency pattern only 3200 cycles are needed while with contact about 3700 cycles are 

required. In conclusion, fewer load cycles are needed in the non-contact simulations to 
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achieve the same crack length and, consequently, higher propagation rates are verified. Note 

that, the oscillations that the Low Frequency pattern presents are caused by the very high 

value of ∆𝐾. Although the ∆𝐾 of the VAL patterns also presents high values, the crack 

propagation on these patterns can occur for different values of force, which tends to reduces 

the oscillations in a node release strategy. This is contrary to what happens with the Low 

Frequency pattern, where propagation always occurs at the minimum value of the load cycle. 

This fact is related to DD3IMP code itself. 

 

Figure 4.2 – 𝒅𝒂/𝒅𝒕 in terms of the crack length, 𝒂, of the various applied loads for the non-contact 
simulations. 

4.2. CTOD 

Figure 4.3 presents a typical CTOD curve, obtained at the node behind the crack tip 

during one load cycle. Results show that the crack remains closed between points A and B, 

despite the increase in load. The crack opening occurs only when point B is reached. 

Between B and C, there is a linear increment with load, which is linked to the linear elastic 

behaviour of the crack. The extrapolation of this linear regime to the maximum load gives, 

the elastic CTOD, 𝛿e. The transition to elastic-plastic behaviour occurs at point C. The 

plastic CTOD increases progressively until point D, where it reaches its maximum value, 

corresponding to the maximum load. Then the load decreases, and between points D and E 

a linear relationship is observed. Finally, as the load keeps decreasing the crack closes when 

the CTOD reaches a null value, at point F. 
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Figure 4.3 – Representation of CTOD versus applied force in simulations with contact. 

As mentioned before, the CTOD was measured at the node just before the crack tip, 

i.e., 8 µm behind the tip. This analysis was performed for several distinct crack lengths in 

order to follow the crack behaviour. Each analysis has a crack length increment of about 

0.1 mm between them, starting at the point where the 𝑑𝑎/𝑑𝑡 starts to stabilize (𝑎 =

15.30 mm). Results show that the evolution of the CTOD during the crack propagation is 

negligible (slight increase), as shown in Appendix A. This way, the first crack length, 𝑎 =

15.30 mm, was used as point of comparison between load patterns. 

 
 

(a) (b) 

Figure 4.4 – (a) Comparison of CTOD curves for the point 𝒂 = 𝟏𝟓. 𝟑𝟎 𝐦𝐦 in simulations with contact; (b) 
Schematic representation of the CTOD curve corresponding to 2 cycles of load on load of the Christmas 

Tree (15-9) pattern. 

Figure 4.4 (a) shows the evolution of the CTOD curves for a crack length of 

15.30 mm, comparing the four studied load patterns. The CTOD curves of the Christmas 

Tree patterns contain a kind of knurling. This phenomenon occurs due to load pattern 
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successive loadings and unloadings. Note that in Figure 4.4 (b) is shown a schematic 

representation of the path of the CTOD curve corresponding to 2 load cycle on load of the 

Christmas Tree (15-9) pattern. Since each unloading stage of the Christmas Tree (15-9) 

pattern is steeper, the knurling on the CTOD curves is also steeper. The crack opening load 

is higher in the Christmas Tree (15-9) pattern because the serration of this load pattern is 

more pronounced. The Low Frequency pattern shows the highest CTOD of all simulations. 

Additionally, it presents very similar elastic and plastic CTOD values, with values 1.83 μm 

and 1.84 μm, respectively. As expected, the High Frequency pattern has the lowest CTOD. 

Furthermore, this curve is extremely narrow, because the elastic CTOD (𝛿e = 0.64 μm) is 

much higher compared to the plastic CTOD (𝛿p = 0.04 μm). Indeed, here the value of the 

elastic CTOD is about 16 times higher than the plastic CTOD. 

The typical CTOD curve obtained through a non-contact simulation differs from the 

one obtained with a contact simulation, as shown in Figure 4.5. The non-contacting situation 

is not physically obtainable, only numerical studies allow its representation, since there is an 

overlap of the crack flanks at minimum load, which cannot occur in a physical specimen. 

Here, the crack tends to open from the minimum load, unlike what happens in Figure 4.3. 

Points A and B are coincident and analogously to Figure 4.3, point C corresponds to the 

transition between the elastic and elastic-plastic regime. Point D corresponds to the 

maximum load, where the elastic and plastic deformation are maximum. As in Figure 4.3, 

when the load starts to decrease a linear elastic relation is observed until point E is reached. 

Due to the reversed plastic deformation after point E, a nonlinear relationship typical of the 

elastic-plastic regime can be obtained. Note that without crack flanks contact, point F does 

not exist because there is no crack closure. Finally, the non-contact CTOD curves have a 

negative part, which corresponds to the penetration of the flanges when the load is close to 

the minimum. 
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Figure 4.5 – Representation of CTOD versus applied force in non-contact simulations. 

Appendix B presents the comparison between the distinct crack length analysed in 

each pattern, except for the Christmas Tree (15-9) simulation. This way, the first crack 

length, 𝑎 = 15.30 mm, was used as point of comparison between load patterns because the 

evolution of the CTOD during the crack propagation is negligible, as shown in Appendix B. 

In Christmas Tree (15-9) pattern, the behaviour of the CTOD at the various points along the 

crack length has a different behaviour, that is, the graphs have undergone translations 

between them, as presented in Figure 4.6. 

 

Figure 4.6 – Effect of crack length on CTOD curves for the Christmas Tree (15-9) simulation without 
contact. 

The first two crack length values analysed (𝑎 = 15.30 mm and 𝑎 = 15.40 mm) have 

almost coincident CTOD curves. Then, at point 𝑎 = 15.51 mm, the CTOD shows a slight 
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translation of about 0.25 μm in the upward direction. Also, the CTOD curve at 𝑎 =

15.62 mm shows a translation relative to point 𝑎 = 15.51 mm of about 1.29 μm. In order 

to verify the reasons for the occurrence of this phenomenon, a more detailed analysis was 

performed around 𝑎 = 15.40 mm and 𝑎 = 15.62 mm. This way, the behaviour of the 

CTOD curves, immediately before and after a propagation cycle was analysed, as shown in 

Figure 4.7 (c) and (d). Additionally, Figure 4.7 (a) and (b) present the respective propagation 

instants along the load blocks. 

  

(a) (b) 

  

(c) (d) 

Figure 4.7 – Christmas Tree (15-9) loading cycles around: (a) 𝒂 = 𝟏𝟓. 𝟒𝟎 𝐦𝐦; (b) 𝒂 = 𝟏𝟓. 𝟔𝟐 𝐦𝐦; CTOD 
curves corresponding to the Christmas Tree (15-9) loading cycles around: (c) 𝒂 = 𝟏𝟓. 𝟒𝟎 𝐦𝐦; (d) 𝒂 =

𝟏𝟓. 𝟔𝟐 𝐦𝐦. 

Note that a load block of the VAL patterns consists of 17 load cycles. The CTOD 

curves are discontinuous between two consecutive load blocks, causing vertical 

displacements of the curves, with no distortion of their shape. This phenomenon occurs 

because the crack propagation can occur at any time of the load block. This way, the crack 
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propagation may not occur at the global minimum load of the load block but at the local 

minimum of at load cycle, at higher load values. The first vertical dotted line in Figure 4.7 

(a) corresponds to the crack propagation from a value of 𝑎 = 15.392 mm to 𝑎 = 15.40 mm, 

while the second dotted line is the crack propagation from 𝑎 = 15.40 mm to 𝑎 =

15.408 mm. Analogously, this phenomenon happens at point 𝑎 = 15.62 mm, in Figure 4.7 

(b). Note that this phenomenon also occurs for the loading of the Christmas Tree (9-3). 

 

Figure 4.8 – Comparison of CTOD curves for the point 𝒂 = 𝟏𝟓. 𝟑𝟎 𝒎𝒎 in non-contact simulations. 

The comparison of the non-contact CTOD curves, between the various patterns is 

shown in Figure 4.8. The shapes of the CTOD curves are identical to the curves obtained 

with contact. Note that, the CTOD curves of the variable amplitude loadings were obtained 

after a node release at very low loading. Since the crack propagation did not occur at the 

minimum load of the load block, a translation of the CTOD curves of the VAL patterns 

occurred, as in Figure 4.6 and Figure 4.7 (c). 

4.3. Plastic Strain 

Figure 4.9 presents the evolution of the plastic strain, evaluated at the node containing 

the crack tip, during some node releases starting at a crack length, 𝑎 = 15.30 mm. Different 

load patterns are compared. Results show that the plastic strain value, at the beginning of 

each new propagation, is approximately 0.8 for all load patterns, except for the High 

Frequency one. Indeed, in High Frequency after each propagation, the node that receives the 
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crack tip has null plastic strain value. This indicates that due to relatively low load range, 

only the element at the tip is accumulating plastic deformation. Thus, to reach the critical 

plastic deformation value of this material, (𝜀c̅
𝑝 = 1.10) the High Frequency pattern requires 

the largest accumulation of plastic strain, once the node receives the crack tip, in comparison 

with the other load patterns. This means, that this pattern needs more load cycles to reach 

the critical value (assuming the same plastic strain growth rate in all cases). Therefore, the 

High Frequency pattern has a lower crack propagation rate than the other patterns. Note that 

the value of critical plastic deformation for the Low Frequency pattern is equal to the other 

loading patterns. However, this pattern reaches values close to 1.2 because the crack 

propagation occurs only at the minimum load value. 

 

Figure 4.9 – Comparison of plastic strain curves of the various applied loads from the simulations with 
contact. 

Figure 4.10 shows the evolution of the plastic strain, evaluated at the crack tip, during 

some crack propagations for 𝑎 = 15.30 mm, comparing different load patterns and 

neglecting the contact between the crack flanks. Results show that the crack flanks contact 

reduces the plastic strain accumulation rate, requiring a longer time, in all loading patterns, 

to reach the critical value of plastic deformation. In fact, this occurs due to the effect of crack 

closure that protects the material and slows down the accumulation of plastic deformation. 

The value of plastic deformation at the beginning of each new propagation is approximately 

0.8 for both variable load amplitude patterns. For the Low Frequency load pattern, the 

minimum plastic deformation value is slightly higher, around 0.9. This occurs because the 
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cumulative plastic deformation in the previous propagation reaches na higher value (~1.2) 

influencing the minimum plastic deformation for this load pattern. 

 

Figure 4.10 – Comparison of plastic strain curves of the various applied loads from the simulations 
without contact. 

Figure 4.11 shows the evolution of the plastic strain evaluated at the crack tip for 𝑎 =

15.30 mm, for the different load patterns. In order to compare the behaviour of the increase 

in plastic deformation during the same time interval, 17 load cycles of the High Frequency 

pattern were used. As mentioned earlier, for the remaining load patterns, only 1 load cycle 

is shown in Figure 4.11. Note that the plastic deformation graphs have undergone a 

translation of both axes, setting both initial plastic strain and time to zero. Considering the 

constant amplitude loading cases, both present exponential growths of plastic deformation 

at the crack tip. However, the Low Frequency pattern presents more prominent increases, in 

comparison to the High Frequency one, due to the also higher Δ𝐾 levels. For both Christmas 

Tree loadings patterns, the plastic deformation has several increasing steps. These steps 

occur due to successive loading and unloading phases. The biggest "jump" in the plastic 

strain occurs at maximum load, for a time of 8.5 s. In conclusion, all loadings have a similar 

plastic strain growth rate for the same time interval, i.e., plastic strain reaches values close 

to 0.14 for all simulations considering the same time intervals. 
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Figure 4.11 – Comparison of plastic strain evolution for the point 𝒂 = 𝟏𝟓. 𝟑𝟎 𝐦𝐦 in contact simulations. 

Figure 4.12 shows the evolution of the plastic deformation evaluated at the crack tip 

for 𝑎 = 15.30 mm, comparing different load patterns from the non-contact simulations. The 

plastic strain behaviour, of each simulation has several similarities with the results obtained 

considering the contact of the crack flanks. Despite the similarities, the crack closure has an 

important influence on the plastic deformation rise, in VAL and Low Frequency patterns. 

Nevertheless, the plastic strain growth rate is globally higher for the situation without 

contact. All plastic strain accumulation curves tend towards the limit value. This is because 

there is no crack closure phenomenon in the absence of contact. 
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Figure 4.12 – Comparison of plastic strain curves for the point 𝒂 = 𝟏𝟓. 𝟑𝟎 𝐦𝐦 in non-contact 
simulations. 

4.3.1. Constant Amplitude Loading 

In order to better understand the effect of the loading patterns on the plastic 

deformation at the crack tip, the portion of the loading cycle with plastic strain rise was 

identified. The results are presented, in Figure 4.13, for the constant amplitude loading 

patterns. Considering the Low Frequency loading pattern (Figure 4.13 (a) and (c)), before 

the crack opening loading, 𝐹open = 21.55 N, there is no plastic deformation. After its 

opening, it enters in the elastic domain, for about half a second, where is still no plastic 

deformation. After around 3 s, from the beginning of the load cycle, the plastic deformation 

increases exponentially until it reaches the maximum load. When the unloading starts, the 

crack recovers the elastic behaviour and, once again, enters the plastic domain where the 

plastic deformation increases, also exponentially, until the crack closes, at 𝐹closure =

16.73 N. After the crack closure plastic deformation still increases, but with a slight linear 

behaviour. This is important because it indicates that there is damage below crack closure, 

and therefore the concept of effective load range is not totally correct. 
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(a) (b) 

  

(c) (d) 

Figure 4.13 – Evolution of plastic deformation during loading to 𝒂 = 𝟏𝟓. 𝟑𝟎 𝐦𝐦: (a) Low Frequency 
pattern; (b) High Frequency pattern; Plastic strain rise: (c) Low Frequency pattern; (d) High Frequency 

pattern. 

In the High Frequency load pattern (Figure 4.13 (b) and (d)), the plastic deformation 

also increases exponentially. After the crack opening, at 𝐹open = 7.08 N, the crack is in the 

elastic domain and only enters the plastic domain when the loading reaches values close to 

the peak. When the loading starts to decrease, the crack behaves elastically, as it does with 

the Low Frequency pattern. The crack again has an increase in plastic deformation, also in 

an exponential way, when the applied force values reach low values. After the crack closure 

occurs at 𝐹closure = 6.88 N, the plastic deformation continues to increase, but in a less 

pronounced way. Note that the CTOD of this loading pattern (see Figure 4.4) is 

predominantly elastic, making the plastic deformation, in this loading, very small. The 

increase of plastic strain at the crack tip in a single load cycle under the High Frequency load 

pattern is about 15 times smaller than in the Low Frequency load pattern. 
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Figure 4.14 shows the constant amplitude loading cycles together with the time 

intervals where an increase in plastic deformation occurs, without crack flanks contact. As 

mentioned before, in non-contact simulations, the crack closure phenomenon does not occur. 

Consequently, the plastic deformation of these loads has a similar behaviour to that observed 

in Figure 4.13. The increase in plastic strain, in both cases, occurs only exponentially, 

because there is no linear behaviour in the plastic strain accumulation after crack closure, 

due to contact absence. Thus, higher values were obtained for the plastic deformation. 

Furthermore, for these load patterns, the growth of plastic deformation also starts sooner. 

Although this is more evident in the Low Frequency pattern, in the High Frequency pattern 

it also happens. This is because the crack opens from the minimum load. 

  

(a) (b) 

  

(c) (d) 

Figure 4.14 – Evolution of plastic deformation during loading to 𝒂 = 𝟏𝟓. 𝟑𝟎 𝐦𝐦 in non-contact 
simulations: (a) Low Frequency pattern; (b) High Frequency pattern; Plastic strain rise in non-contact 

simulations: (c) Low Frequency pattern; (d) High Frequency pattern. 
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4.3.2. Variable Amplitude Loading 

Figure 4.15 shows the portion of the Christmas Tree (15-9) and Christmas Tree (9-3) 

patterns where an increase in plastic deformation occurs. The increase of plastic deformation 

before the crack opening is negligible for both load patterns. The crack opening load is of 

𝐹open = 27.11 N in the Christmas Tree (15-9) pattern. For the Christmas Tree (9-3) pattern 

the crack opening occurs for a value of 𝐹open = 24 N. Until the loading reaches overall 

maximum peak of the load block, plastic deformation occurs essentially at the load cycle 

peaks. When the loading starts to have global decreasing behaviour, after around 9 s, the 

plastic deformation starts to manifest itself in the valleys of successive unloadings. Note that 

plastic strain keeps on increasing, even after crack closes, at 𝐹closure = 19.13 N and 

𝐹closure = 17.85 N for the Christmas Tree (15-9) and Christmas Tree (9-3) pattern, 

respectively. Nevertheless, after closure, the increase in plastic deformation become much 

less pronounced than when the crack is open. This, once again, destroys the purity of 

effective load range, which usually represents the crack closure phenomenon. 

  

(a) (b) 

0

6

12

18

24

30

36

42

48

54

60

0 2 4 6 8 10 12 14 16

A
p

p
li

ed
 F

o
rc

e 
[N

]

Time [s]

Without Plastic Strain Rise

With Plastic Strain Rise

Fopen

Fclosure

0

6

12

18

24

30

36

42

48

54

60

0 2 4 6 8 10 12 14 16

A
p

p
li

ed
 F

o
rc

e 
[N

]

Time [s]

Without Plastic Strain Rise

With Plastic Strain Rise

Fopen

Fclosure



 

 

  Numerical Results and Discussion 

 

 

Francisco Alexandre Pereira Jesus  41 

 

  

(c) (d) 

Figure 4.15 – Evolution of plastic deformation during loading to 𝒂 = 𝟏𝟓. 𝟑𝟎 𝐦𝐦: (a) Christmas Tree (15-9) 
pattern; (b) Christmas Tree (9-3) pattern; Plastic strain rise: (c) Christmas Tree (15-9) pattern; (d) 

Christmas Tree (9-3) pattern.  

Figure 4.16 shows the portion of the variable amplitude loading patterns where plastic 

deformation increases, neglecting the contact between the crack flanks in the simulations. 

The plastic deformation behaves similarly to what was previously observed in contact 

simulations (see Figure 4.15). Since the phenomenon of crack closure does not exist, higher 

values of plastic deformation arise. The growth of plastic deformation is more pronounced, 

both at the beginning of the loading cycle and at the end. 
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(c) (d) 

Figure 4.16 – Evolution of plastic deformation during loading to 𝒂 = 𝟏𝟓. 𝟑𝟎 𝐦𝐦 in non-contact 
simulations: (a) Christmas Tree (15-9) pattern; (b) Christmas Tree (9-3) pattern; Plastic strain rise in non-

contact simulations: (c) Christmas Tree (15-9) pattern; (d) Christmas Tree (9-3) pattern.  

4.4. Deformed Plastic Zone 

4.4.1. Constant Amplitude Loading 

Figure 4.17 shows the size of the plastically deformed zones, which was identified 

considering a limit plastic strain of 0.05%, for the constant amplitude load patterns. The size 

of the plastically deformed zone for the High Frequency pattern is very small compared to 

the other load patterns. This is because the load range of this simulation is lower than the 

others (see Figure 3.6). The plastic zone size ahead of the crack tip is of 0.18 mm and 

1.42 mm for the High Frequency and Low Frequency loading patterns, respectively, in the 

crack propagation direction. 
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(a) 

 

(b) 

Figure 4.17 – Plastically deformed zone for 𝒂 = 𝟏𝟓. 𝟑𝟎 𝐦𝐦: (a) Low Frequency pattern; (b) High 
Frequency pattern. 

Figure 4.18 shows the size of the plastically deformed zones for the constant amplitude 

loadings considering no contact between the crack flanks. Although the maximum plastic 

deformation value is higher near the crack tip, the size of the plastically deformed zone is 

identical to that of the simulations with contact, as can be seen in Figure 4.17. 
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(a) 

 

(b) 

Figure 4.18 – Plastically deformed zone for 𝒂 = 𝟏𝟓. 𝟑𝟎 𝐦𝐦 in non-contact simulations: (a) Low 
Frequency pattern; (b) High Frequency pattern. 

4.4.2. Variable Amplitude Loading 

Figure 4.19 shows the size of the plastically deformed zone for both Christmas Tree 

load patterns, evaluated for 𝑎 = 15.30 mm. The size of the plastically deformed zone is 

similar between patterns, which was expected since the plastic deformation level tends to 

the same value (see Figure 4.11) and the crack propagation rates are identical (see Figure 

4.1). Moreover, the Christmas Tree patterns has a deformed zone similar those obtained in 

the Low Frequency pattern due to the same load range. In fact, the monotonic plastic zone 
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is obtained at the maximum load of the load block, which is the same for Low Frequency 

and Christmas Tree load patterns. 

 

(a) 

 

(b) 

Figure 4.19 – Plastically deformed zone for 𝒂 = 𝟏𝟓. 𝟑𝟎 𝐦𝐦: (a) Christmas Tree (15-9) pattern; (b) 
Christmas Tree (9-3) pattern. 

Figure 4.20 shows the plastically deformed zone from simulations of non-contact 

variable amplitude loading. The size of the plastically deformed zone is identical to the one 

obtained in the simulations with contact (see Figure 4.19). 
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(a) 

 

(b) 

Figure 4.20 – Plastically deformed zone for 𝒂 = 𝟏𝟓. 𝟑𝟎 𝐦𝐦 in non-contact simulations: (a) Christmas Tree 
(15-9) pattern; (b) Christmas Tree (9-3) pattern. 

4.5. Stress Distribution 

4.5.1. Constant Amplitude Loading 

Figure 4.21 presents the distribution of the vertical component of the stress evaluated 

at the instant of minimum load, considering constant amplitude load patterns. The level of 

stress distribution in High Frequency pattern is less noticeable than in the Low Frequency 

because the maximum load is lower. Note that at the crack tip, the stresses are negative 

(compressive) due to plastic deformation near the crack. Considering the Low Frequency 
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pattern, the transition between compressive and tensile stresses occurs 24 μm after the crack 

tip. Note that, the stress distribution of the Low Frequency pattern is similar to the one 

obtained in the Christmas Tree patterns (see Figure 4.23) due to the load range. 

 

(a) 

 

(b) 

Figure 4.21 – Stress distribution for 𝒂 = 𝟏𝟓. 𝟑𝟎 𝐦𝐦: (a) Low Frequency pattern; (b) High Frequency 
pattern. 

The distribution of the vertical component of the stress evaluated at the instant of 

minimum load, for non-contact simulation is presented in Figure 4.22. The stress distribution 

behind the crack tip is almost zero in the absence of contact (see Figure 4.22), while in 

simulations with contact the values are compressive. (see Figure 4.21). There are no 

compressive stresses before the crack, i.e., at the crack flanks, because there is no crack 
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closure in the non-contact simulations, so there is no resistance to the movement of the crack 

flank and therefore no compressive stresses are generated. 

 

(a) 

 

(b) 

Figure 4.22 – Stress distribution for 𝒂 = 𝟏𝟓. 𝟑𝟎 𝐦𝐦 in non-contact simulations: (a) Low Frequency 
pattern; (b) High Frequency pattern. 

4.5.2. Variable Amplitude Loading 

Figure 4.23 shows the vertical stress component field predicted for each variable 

amplitude loading pattern, evaluated near the crack tip at the instant of minimum load. The 

stress distributions of the variable amplitude loadings are very similar. The transition 

between compressive and tensile stresses occurs at 368 μm ahead of the crack tip for a crack 

length, 𝑎 = 15.30 mm. Despite the loading history and kinematic strain hardening, the stress 
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distribution of the Low Frequency pattern (see Figure 4.21) is identical to the one obtained 

in the Christmas Tree patterns due to the similar load range. 

 

(a) 

 

(b) 

Figure 4.23 – Stress distribution for 𝒂 = 𝟏𝟓. 𝟑𝟎 𝐦𝐦: (a) Christmas Tree (15-9) pattern; (b) Christmas Tree 
(9-3) pattern. 

Figure 4.24 shows the stress distribution from simulations of non-contact variable 

amplitude loading. In these stress distributions the same phenomenon that happened for the 

constant amplitude loading patterns, occurs. This is the crack closure phenomenon 

influences the stress distribution before the crack. Unlike the High Frequency loading 

pattern, this phenomenon is very noticeable for both the Low Frequency pattern and variable 

amplitude loading patterns. 
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(a) 

 

(b) 

Figure 4.24 – Stress distribution for 𝒂 = 𝟏𝟓. 𝟑𝟎 𝐦𝐦 in non-contact simulations: (a) Christmas Tree (15-9) 
pattern; (b) Christmas Tree (9-3) pattern. 
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5. CONCLUSIONS 

In this thesis a numerical study on the effect of variable amplitude loadings on FCG 

was carried out. The so-called Christmas Tree loading pattern is compared with constant 

amplitude loading patterns. The numerical model used the cumulative plastic deformation at 

the crack tip as fatigue crack growth driving force. Through the obtained numerical results, 

it is possible to draw some more important conclusions: 

• Considering the same value of minimum and maximum load, the crack 

propagation rates of the variable amplitude and constant amplitude loading 

patterns are similar. On the other hand, the inexistence of contact between the 

crack flanks increases 𝑑𝑎/𝑑𝑡 since the plastic strain growth rate is larger due 

to the absence of crack closure. 

• The CTOD curves are similar for the various simulations except for the High 

Frequency pattern due to its loading amplitude. For the variable amplitude 

loads, without crack flanks contact, the CTOD curves undergo translations 

because crack propagation occurs at any time during the cycle. Despite this 

phenomenon, for patterns whose loading amplitude is equal, the shapes of the 

CTOD curves are quite similar. 

• Despite the differences in the loading pattern, the plastic deformation tends to 

the same limit value, considering equal time intervals. The same occurs for the 

non-contact simulations, but here plastic strain tends to a higher maximum 

value. In general, the plastic deformation rise, is essentially evident at the end 

of each loading phase, when the maximum value of the applied force is 

reached. On the other hand, when the unloading phase is being applied, the 

plastic deformation is more evident at the end of the cycle, when the value of 

the applied force is lower. 

• The size of the plastic zone for both Christmas Tree patterns, and the Low 

Frequency pattern is identical. Besides, there is no significant influence of the 

contact between crack fanks on in the size of the deformed zone. 

• The stress gradient of the High Frequency pattern is much smaller compared 

to the other simulations. On the other hand, the stress gradients of the other 
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simulations are extremely similar for both the contact and non-contact 

simulations. The non-contact simulations do not exhibit compressive stresses 

behind the crack tip since closure phenomenon does not exist. 

Following on from this dissertation, it would be important to further study the effect 

of variable amplitude loads, evolving to load patterns that replicate real loads. In this sense, 

there is the possibility of generating normalized load patterns, namely: 

• TWIST – Transport WIng Standard, representative of the lower skin wing root 

of transport aircraft; 

• FALSTAFF – Fighter Aircraft Loading STAndard For Fatigue evaluation; 

• Helix – Standardised loading sequence for a helicopter main rotor (hinged); 

• Felix – Standardised loading sequence for a helicopter main rotor (fixed); 

• WISPER – Standardised loading sequence for wind turbines. 

In this context it will be important to identify the fundamental mechanisms responsible 

for fatigue crack propagation and to study the material effect. The comparison of numerical 

predictions with experimental results obtained for the same loading patterns will be 

important for the validation of the numerical models. 
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APPENDIX A 

This section presents the comparison charts for each simulation with contact. 

 

Figure A.1 – Effect of crack length on CTOD curves for the Low Frequency simulation with contact. 

 

Figure A.2 – Effect of crack length on CTOD curves for the High Frequency simulation with contact. 

0

0.25

0.5

0.75

1

1.25

1.5

1.75

2

0 5 10 15 20 25 30 35 40 45 50 55 60 65

C
T

O
D

 [
µ

m
]

Applied Force [N]

a = 15.30 mm

a = 15.40 mm

a = 15.51 mm

a = 15.62 mm

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0 3 6 9 12 15 18 21

C
T

O
D

 [
µ

m
]

Applied Force [N]

a = 15.264 mm

a = 15.272 mm

a = 15.28 mm



 

 

  Appendix A 

 

 

Francisco Alexandre Pereira Jesus  61 

 

 

Figure A.3 – Effect of crack length on CTOD curves for the Christmas Tree (15-9) simulation with contact. 

 

Figure A.4 – Effect of crack length on CTOD curves for the Christmas Tree (9-3) simulation with contact. 

 

Figure A.5 – Effect of crack length on plastic strain curves for the Low Frequency simulation with contact. 
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Figure A.6 – Effect of crack length on plastic strain curves for the High Frequency simulation with contact. 

 

Figure A.7 – Effect of crack length on plastic strain curves for the Christmas Tree (15-9) simulation with 
contact. 

 

Figure A.8 – Effect of crack length on plastic strain curves for the Christmas Tree (9-3) simulation with 
contact. 
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APPENDIX B 

This section presents the comparison charts for each contactless simulation. 

 

Figure B.1 – Effect of crack length on CTOD curves for the Low Frequency simulation without contact. 

 

Figure B.2 – Effect of crack length on CTOD curves for the High Frequency simulation without contact. 
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Figure B.3 – Effect of crack length on CTOD curves for the Christmas Tree (9-3) simulation without 
contact. 

 

Figure B.4 – Effect of crack length on plastic strain curves for the Low Frequency simulation without 
contact. 

 

Figure B.5 – Effect of crack length on plastic strain curves for the High Frequency simulation without 
contact. 
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Figure B.6 – Effect of crack length on plastic strain curves for the Christmas Tree (15-9) simulation without 
contact. 

 

Figure B.7 – Effect of crack length on plastic strain curves for the Christmas Tree (9-3) simulation without 
contact. 
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