
Eduardo Vilas Boas Varanda Guerra

JETNAVIGATOR
COMPUTER VISION AND DEEP LEARNING TECHNIQUES TO

IMPROVE INDOOR NAVIGATION

Internship Report in the context of the Master in Data Science and Engineering
supervised by Prof. Carlos Lisboa Bento from the University of Coimbra and

Eng. Rui Lopes from Critical Software SA. and presented to the Department of
Informatics Engineering of the Faculty of Sciences and Technology of the

University of Coimbra.

September 2022

This page is intentionally left blank.

Department of Informatics Engineering

Eduardo Vilas Boas Varanda Guerra

JetNavigator
Computer Vision and Deep Learning Techniques to

Improve Indoor Navigation

Internship Report in the context of the Master in Data Science and Engineering
supervised by Prof. Carlos Lisboa Bento from the University of Coimbra and Eng.

Rui Lopes from Critical Software SA. and presented to the Department of
Informatics Engineering of the Faculty of Sciences and Technology of the

University of Coimbra.

September 2022

This page is intentionally left blank.

Abstract

Indoor localization systems are helpful in many practical applications where mobile
and robotic operators require precise direction and location. These systems are
mainly used to compensate for weak GPS signals in indoor environments.

However, existing indoor localization systems require additional equipment, such as
Wi-Fi routers and distributed beacons, to accurately capture the necessary informa-
tion to calculate a pose (consisting of location coordinates and orientation angles).
These systems work perfectly in scenarios with pre-available suitable hardware, such
as Wi-Fi routers, like in universities or schools. However, the same situation might
not apply to large complex industrial installations, where extra hardware must be
installed and maintained.

The main goal of this work is to present a new indoor localization method that
significantly reduces the dependency on external hardware resources by leveraging
state-of-the-art computer vision and deep learning techniques. To use this system,
the user needs only a smartphone with a camera and our mobile application installed.

To achieve this objective, we divided our project into three steps:

• Dataset collection - We programmed a robotic agent to collect an image
dataset.

• Image-based pose prediction model - We implemented and trained an image-
based pose prediction model utilizing the previously built dataset.

• Mobile application - We created a prototype mobile application and a server.
This mobile application is responsible for user interaction, sends the camera
images to the server, and displays the path to the destination on the building
map. The server utilizes the smartphone’s pictures and the prediction model
to calculate the user’s pose. Then, using the user destination, it returns the
calculated path to the mobile application to be displayed to the user.

The created mobile application did not perform well on actual test conditions. How-
ever, we have identified the issues that lead to poor results and challenges that future
works need to address. This problem identification constitutes the main contribution
of this work.

Keywords

Convolutional Neural Network, Deep Neural Network, Transfer Learning, ROS, In-
door Navigation

v

This page is intentionally left blank.

Acknowledgements

I want to thank my advisors, Professor Carlos Lisboa Bento and Engineer Rui Lopes,
for all the support and availability. I learned a lot during this internship.

I also thank the Critical Software team for the integration opportunity and the
positive team spirit. This project was a real challenge for me, and CSW people’s
expertise allowed me to achieve my goals.

vii

This page is intentionally left blank.

Contents

List of Figures xv

List of Tables xxi

1 Introduction 1
1.1 Context . 1
1.2 Objectives and success criteria . 2
1.3 Our solution . 3
1.4 Document structure . 3

2 Prior knowledge 5
2.1 Deep Learning . 5
2.2 Transfer Learning . 6
2.3 Regularization . 6

2.3.1 Dropout . 7
2.3.2 Parameter norm regularization 8

2.4 Convolutional Neural Networks (CNN) 10
2.4.1 Convolutional Layer . 10
2.4.2 Activation function . 12
2.4.3 Pooling layer . 12
2.4.4 Top layers . 12

2.5 One-stage vs Two-stage Object Detectors 12
2.6 Long Short-Term Neural Networks 16

2.6.1 Recurrent Neural Networks 16
2.6.2 Long Short-Term Neural Networks - a subclass of RNN 16

3 Prototype 19
3.1 First semester . 19

3.1.1 Robotic Operating System (ROS) 20
3.1.2 JetRacer AI Kit . 20
3.1.3 RPLIDAR A2 . 20
3.1.4 Work done in the first semester 21

3.2 Second semester . 22
3.2.1 Environment Sensors Module 22
3.2.2 Work done in the second semester 23

4 State-of-the-art 25
4.1 Robotic Auto-exploration . 25
4.2 Mapping Algorithm . 27

ix

Chapter 0

4.2.1 Frontier-based Exploration . 27
4.2.2 Hector SLAM . 27
4.2.3 Gmapping . 28
4.2.4 Cartographer . 29
4.2.5 Mapping algorithm comparison 30

4.3 Image-based Pose Prediction . 32
4.3.1 Local feature detectors . 33
4.3.2 Convolution Neural Networks (CNN) 33
4.3.3 Comparison . 34

4.4 ContextualNet . 35
4.4.1 Model output - pose representation and loss Function 39

4.5 State-of-the-art Object Detectors . 41

5 Approach 47
5.1 Requirements . 47

5.1.1 Functional requirements . 47
5.1.2 Non-functional requirements 55

5.2 Work methodologies . 57
5.3 Risk analysis . 57
5.4 Technical specifications . 60

5.4.1 Data collection . 60
5.4.2 Image-based pose prediction model 61
5.4.3 Mobile application . 62
5.4.4 Components integration . 63
5.4.5 System workflow . 63
5.4.6 Components introduced error 63
5.4.7 Project limitations and constraints 65
5.4.8 Planning . 66

6 Implementation 69
6.1 Image Dataset Collection . 69

6.1.1 Localization . 69
6.1.2 Orientation . 70
6.1.3 Orientation proposed alternatives 72

6.2 Location and orientation prediction Model 73
6.2.1 Model validation in the 7-Scenes Dataset 74
6.2.2 Model validation in the collected dataset 75

6.3 Mobile Application System . 76
6.3.1 Mobile Application . 76
6.3.2 Server . 77

7 Results 81
7.1 Dataset . 81

7.1.1 Localization . 81
7.1.2 Orientation . 84
7.1.3 Generated dataset . 85

7.2 Location and orientation prediction Model 87
7.2.1 7-scenes validation - Experiments results 87
7.2.2 7-scenes validation - Experiments results - final parameters . . 90

x

Contents

7.3 Mobile Application System . 92
7.3.1 Prediction model validation - Experiment process 92
7.3.2 Prediction model validation - Model training process 93
7.3.3 Prediction model validation - Experiment results 94
7.3.4 Mobile application performance 96

8 Conclusion 97

References 99

xi

This page is intentionally left blank.

Acronyms

AI Artificial Intelligence. 5

CNN Convolutional Neural Network. 3, 5, 10, 41, 44

FPN Feature Pyramid Network. 44

IPS Indoor Positioning System. 1, 97

LSTM Long short-term memory. 3, 5, 16, 17

ML Machine Learning. 5, 6

RNN Recurrent Neural Network. xv, 12, 16

ROS Robot Operating System. 20, 22, 69, 97

RPN Region Proposal Network. 14

SLAM Simultaneous Location and Mapping. 27–29

xiii

This page is intentionally left blank.

List of Figures

2.1 Left: Base network. Right: Ensemble of sub-networks; some net-
works have no path between inputs and outputs. This problem be-
comes insignificant in large networks. The image is depicted as in
[1]. 7

2.2 The components of a typical convolutional layer as depicted in [1]. . . 10
2.3 An example of 2-D convolution as depicted in [1]. 11
2.4 Example of image processing performed by a convolutional layer. Ac-

cording to [1], the "image on the right was formed by taking each
pixel in the original image and subtracting the value of its neighbor-
ing pixel on the left. This shows the strength of all the vertically
oriented edges in the input image, which can be a useful operation
for object detection." ([1], page 334). 11

2.5 Example of an object detector used in a traffic picture, as depicted
in [2]. 13

2.6 YOLO is a one-stage object detector and models detection as a re-
gression problem, as depicted in [3]. 14

2.7 Left: Region Proposal Network (RPN) as depicted in [3]. Right:
Example detections using RPN proposals on PASCAL VOC 2007
test as depicted in [3]. 14

2.8 Basic architecture of an RNN. 16
2.9 Block diagram of the LSTM recurrent network cell, as depicted in [1]. 17

3.1 JetRacer AI Kit as depicted in [4]. 20
3.2 RPLIDAR A2 as depicted in [5]. 21
3.3 Cardboard prototype. 21
3.4 3D printed the second prototype. 21
3.5 Critical Software Coimbra Office B, first floor. Image generated by

Hector SLAM in our robotic agent. 22
3.6 Environment sensor module designed for Jetson Nano as depicted in

[6]. 23

4.1 Proposed ROS framework as depicted in [7]. 26
4.2 Multi-resolution representation of the map as depicted in [8]: Left:

20cm grid cell length Center: 10 cm grid cell length, Right: 5cm
grid cell length. 28

xv

Chapter 0

4.3 These images illustrate the particle distributions in different map-
ping scenarios. According to [9], "in an open corridor, the particles
distribute along the corridor (a). In a dead-end corridor, the uncer-
tainty is small in all dimensions (b). Such posteriors are obtained
because we explicitly take into account the most recent observation
when sampling the next generation of particles (...) (c)" ([9], page 4). 29

4.4 Cartographer overview as depicted in [10]. 30
4.5 Mapping algorithms in different situations as depicted in [11]. 30
4.6 Error calculated with ADNN (average distance to the nearest neigh-

bor) metrics for SLAM methods relative to the ground truth, in cm,
as depicted in [11]. 31

4.7 Example of detected interest points for a Sunflower field by SURF
algorithm as depicted in [12]. 33

4.8 Map with predicted poses as depicted in [13]. Comparison of esti-
mated position and orientation by our Contextual model and PoseNet
with ground truth. 35

4.9 Model’s architecture as depicted in [13]. 36
4.10 Last layers of GoogLeNet architecture, as depicted in [14]. The bot-

tom "DepthConcat" block is the top "DepthConcat" block of the
figure 4.11. 37

4.11 First layers of GoogLeNet architecture, as depicted in [14]. The top
"DepthConcat" block is the bottom "DepthConcat" block of the fig-
ure 4.10. 38

4.12 Inception blocks as depicted in [14]. 39
4.13 Representation of cartesian unit vectors i, j, and k, as depicted in

https://www.3dgep.com/understanding-quaternions/. 40
4.14 Scaled-Yolov4 achieves new state-of-the-art capable of achieving 55.5%

AP on COCO dataset as depicted in [15]. 42
4.15 "Our system models detection as a regression problem. It divides the

image into an S × S grid and for each grid cell predicts B bounding
boxes, confidence for those boxes, and C class probabilities. These
predictions are encoded as an S × S × (B * 5 + C) tensor." ([2],
page 2). 42

4.16 Left: DenseNet and Right: Cross Stage Partial DenseNet (CSP-
DenseNet). "CSPNet separates feature map of the base layer into
two part, one part will go through a dense block and a transition
layer; the other one part is then combined with transmitted feature
map to the next stage.". ([16], page 3). 43

4.17 "Comparisons of different object detection pipelines. (a) In dense
detectors, HWk object candidates enumerate on all image grids, e.g.
RetinaNet. (b) In dense-to-sparse detectors, they select a small set of
N candidates from dense HWk object candidates, and then extract
image features within corresponding regions by pooling operation,
e.g. Faster R-CNN [37]. (c) Our proposed Sparse R-CNN, directly
provides a small set of N learned object proposals. Here N « HWk."
([17], page 1). 43

xvi

https://www.3dgep.com/understanding-quaternions/

List of Figures

4.18 "An overview of Sparse R-CNN pipeline. The input includes an im-
age, a set of proposal boxes and proposal features, where the latter
two are learnable parameters. The backbone extracts feature map,
each proposal box and proposal feature are fed into its exclusive dy-
namic head to generate object feature, and finally outputs classifica-
tion and location" ([17], page 3). 44

4.19 "(a) Using an image pyramid to build a feature pyramid. Features are
computed on each of the image scales independently, which is slow.
(b) Recent detection systems have opted to use only single scale fea-
tures for faster detection. (c) An alternative is to reuse the pyramidal
feature hierarchy computed by a ConvNet as if it were a featurized
image pyramid. (d) Our proposed Feature Pyramid Network (FPN)
is fast like (b) and (c), but more accurate. In this figure, feature maps
are indicate by blue outlines and thicker outlines denote semantically
stronger features.". ([18], page 1). 45

4.20 "EfficientDet architecture – It employs EfficientNet [39] as the back-
bone network, BiFPN as the feature network, and shared class/box
prediction network. Both BiFPN layers and class/box net layers are
repeated multiple times based on different resource constraints" ([19],
page 5). 45

4.21 One representation with explicit knowledge and implicit knowledge
for serving multiple tasks as depicted as in [20]. 46

5.1 Component diagram of the Data Collection component. In the center,
we have the robotic agent (JetRacer AI Kit), which communicates
with three devices - a laser scanner (RPLIDAR A2) and a camera
(pre-installed on JetRacer). 60

5.2 Original ContextualNet Model as depicted in [13]. 61
5.3 Component diagram of the mobile application system’s architecture. . 62
5.4 Phase 1 - Our Cartographer ROS uses sensor data to map the envi-

ronment and predict the robotic agent’s pose. The closer these pre-
dicted values are to their real values, the less error is generated from
this step. Phase 2 - Using the previously constructed image dataset
to train a pose prediction model. The more precise this model, the
less error it has. Phase 3 - After training our prediction model, we
deploy it to a server to be used in our mobile application. Due to
the difference between our dataset images and the user smartphone
images, there is always some error generated from this step. 65

5.5 The first semester planned work schedule. 66
5.6 First semester actual work schedule. 66
5.7 The second semester planned work schedule. 67
5.8 The second semester actual work schedule. 67

6.1 Example of a map computed by Google Cartographer using laser scan
data. The white cells represent open space (rooms, corridors, and
others), black cells represent occupied space (walls, chairs, structural
beams, for example), and grey cells represent unknown or uncertain
space (unexplored regions). 70

6.2 Component diagram of the mobile application system’s architecture. . 76

xvii

Chapter 0

6.3 Example of use of the mobile application. 77
6.4 In a 2D Grid, obstacles are represented by dark cells, and the free path

is represented by white cells. For example, A* Star is an algorithm to
find a path from the user to its destination. Our mobile application
uses the Dataset Collection’s generated map as a 2D grid for the A*
algorithm. 78

7.1 Left - Set of points defined in the test environment (Critical Software
building’s ground floor) as evaluation points. Right - Point D marked
in building floor. 82

7.2 Best results obtained with old LIDAR device - average error of
1.622 m and a variance of 0.590 m. 82

7.3 Results obtained with the new LIDAR device - average error of
0.830 m and a variance of 0.238 m - using the same configuration
as in the old LIDAR device. 83

7.4 Left: In the test environment of the article, [21], Google Cartographer
algorithm was able to achieve an average error of less than 10 cm.
However, we must point out that the environment does not contain
reflective or transparent surfaces and is more simple. Right: As we
can observe, the CSW text environment is much more complex, with
lots of chairs, tables, and reflective and transparent surfaces. 83

7.5 Green lines are the real angles, and red lines are the predicted angles.
The line’s direction is from their respective point A to point B. Here
are the errors for the different pair points - Left: 8.49º; Center:
12.46º; Right: 6.19º. 84

7.6 We can calibrate our map using a calculated offset using two marked
points and a compass. For example, the angle of line A->B is 160º,
and the compass heading (angle to the magnetic north) is 33º (anti-
clockwise). With these two values, we get an offset of 127º. 85

7.7 We used the same points defined in the mapping process because
we know the actual coordinates. We recorded a video sequence that
ended on the marked points and extracted images from these videos
to evaluate the prediction. 92

7.8 Captured images using a mobile phone camera for point A. Before
inputting them into the model, they are resized and cropped into
320x240 dimensions (the exact dimensions utilized in the mobile ap-
plication). 93

7.9 Captured images using the robotic agent. 94
7.10 Captured images using a mobile phone camera (the images were

cropped to be the same dimension as utilized on the mobile appli-
cation). 95

7.11 Example of Fish eye. The metal beam on the right is in reality straight. 96

xviii

This page is intentionally left blank.

Chapter 0

xx

List of Tables

4.1 The median error in position (m)/ orientation (degrees) for the 7-
scenes dataset [22], of SURF-based methods, such as SurfCNN [23],
SURF-LSTM [24], and purely CNN methods, such as PosetNet [25],
Directional PoseNet [26] and ContexualNet [13]. The results were
transcribed from the work reported in [24] and [13]. 34

4.2 Comparison of the best configuration for each algorithm, according
to [15] and [17]. Evaluated run time on NVIDIA Tesla V100 GPU. . . 46

5.1 High-level functional requirements. 48
5.2 Functional requirements related to FR-1:Dataset collection. 49
5.3 Functional requirements related to FR-2:Image-based location. 51
5.4 Functional requirements related to FR-3:Mobile application. 53
5.5 Functional requirements related to FR-4:Robotic auto-exploration. . . 54
5.6 Non-functional requirements. 56
5.7 Risk 1 - Destruction/Damaging of JetRacer robot or peripheral devices. 58
5.8 Risk 2 - Indoor positioning/orientation model not working. 58
5.9 Risk 3 - Augmented reality application not being a helpful user to

navigate indoors. 58
5.10 Risk 4 - Tasks not completed within deadlines. 59
5.11 Risk 5 - Lack of mobile app development experience leads to perfor-

mance issues. 59
5.12 Risk 6 - Lack of familiarity with ROS leads to delays. 59

7.1 Prediction model experiment table 1 - L1 penalty. 88
7.2 Prediction model experiment table 2 - Weight decay. 89
7.3 Prediction model experiment table 3 - Dropout rate. 89

xxi

This page is intentionally left blank.

Chapter 1

Introduction

This document reports the work developed during the curricular internship at Crit-
ical Software (CSW) within the scope of the Master’s Degree in Data Science and
Engineering at the Faculty of Sciences and Technologies of the University of Coim-
bra.

The main goal of this work is to present a new indoor localization method with
reduced dependency on external hardware resources by leveraging state-of-the-art
computer vision and deep learning techniques.

1.1 Context

Usually, a GPS is used to navigate from spot A to spot B. But GPS works with
satellite signals, which can be disturbed or blocked when operating indoors. There-
fore, Indoor Positioning Systems (IPS) are utilized to solve this issue, which can
navigate users in indoor environments with weak or nonexistent GPS signals.

Several technologies, such as Wi-Fi devices, ultrasound, and magnetic fields, have
been explored to implement these Indoor Positioning Systems. However, these tech-
nologies require using specialized hardware distributed inside the building to nav-
igate. This solution is perfect in environments with pre-installed beacon devices,
such as universities or schools with Wi-Fi routers. However, in locations with no
pre-available hardware, such as large industrial/agricultural environments, those
devices need to be installed and maintained.

With this project, Critical Software aimed to develop a cheaper alternative using
state-of-the-art Computer Vision and Deep Learning techniques, with no need for
additional specialized hardware.

Our main objective was to create a mobile application capable of navigating a user
inside a building. Its best feature is that the user only needs a smartphone with a
camera and the mobile application installed.

This project differentiates itself from other related projects because we implement
and test it in a natural environment. While other projects aim to develop better

1

Chapter 1

pose (consisting of location coordinates and orientation angles) prediction models,
our project goes further in deploying and testing it on a natural system, using a
smartphone camera as a test device. While this project did not obtain good results,
we have identified several challenges that future related projects need to address to
be more successful.

1.2 Objectives and success criteria

During this internship at Critical Software, the main goal was to develop a new
indoor localization method as an augmented mobile application using Computer
Vision and Deep Learning techniques.

Due to the project’s complexity and its broad range of employed technologies, it
can be confusing what the project’s real goals are. Therefore, here are explicitly
described our objectives are/are not.

Our objectives include:

1. Development of an augmented reality mobile application to help a human user
navigate (The augmented reality mobile application will be minimalist and
will only serve as a proof of concept)

2. Implement and train an ML model that will use the images as input and output
the user’s pose.

• Ideally, we will want to predict x, y coordinates and orientation (0 to
359).

• However, due to the project’s complexity, we might be forced to reduce
its complexity.

3. Another less critical objective is the creation of an image-based location dataset.
This dataset will be used in this project and also be helpful in future projects.

Our objectives do NOT include:

1. Robot self-navigation - our final users will be humans, not robots.

2. Building mapping algorithm development - we will use a pre-developed solution
in our project.

The main objective of this internship is to create a mobile application. However,
the prediction model of the pose (which consists of location coordinates and orien-
tation angles) is the most exploratory component. Therefore, a solution for the pose
prediction model will be researched and developed. As for the other parts, we will
use pre-developed software.

2

Introduction

1.3 Our solution

Our solution consists of a mobile application capable of solely navigating users in-
doors utilizing the smartphone camera. The mobile application would work as fol-
lows:

1. First, the user specifies in the mobile application what building they are.

2. The app calculates the user’s pose and displays it in the mobile application,
using the following steps:

(a) The user records the environment with a camera.
(b) The mobile application sends the images to a server.
(c) The server uses the images as input for the prediction model of the pose

(which consists of location coordinates and orientation angles).
(d) The server sends the pose to the user. In addition, a plant of the building

floor is also downloaded from the server and displayed on the screen.
(e) The mobile application displays where the user is in the building floor

plant and what direction they are facing.

3. The user specifies the destination.

4. The mobile application calculates the shortest path to the destination.

5. Both position, direction, and course are regularly updated until the user
reaches its destination.

1.4 Document structure

We divide this report into chapters in the following way:

Chapter 1 - Introduction

The current chapter introduces and contextualizes the work carried out during the
internship and describes its goals.

Chapter 2 - Prior Knowledge

This chapter exposes the differences between Machine Learning and Deep Learning
and introduces the theoretical concepts of Convolutional Neural Networks and Long
short-term memory neural networks. These architectures enable us to predict the
location associated with an image.

Chapter 3 - Prototype

This chapter analyzes the devices CSW has made available for the data collection
phase. We describe their technologies and their use for the different dataset collec-
tion steps.

Chapter 4 - State-of-the-art

3

Chapter 1

This chapter analyzes the best methods available. Then, we will explore some solu-
tions regarding environment mapping and image-based pose prediction algorithms.

Chapter 5 - Approach

This chapter describes the work methodology followed during the internship and its
planning. First, we present the functional and non-functional requirements below,
design prototypes, and perform risk analysis and the corresponding mitigation plans.
Finally, we give the technical specifications.

Chapter 6 - Implementation

Here are all the tasks taken to reach the internship objectives and the reasoning
behind the decisions made.

Chapter 7 - Tests

This chapter presents the adopted methodology and test results for the various
prediction models, the mobile application prototype, and the final results. These
final results are the quality of the collected dataset and the prediction model’s
performance in the test environment.

Chapter 8 - Conclusion

This chapter summarizes the work carried out during the internship. Then, we
assess the experience and discuss the plans for future work.

4

Chapter 2

Prior knowledge

In this chapter, we expose important notions that allow the implementation of the
most exploratory component of this project: a machine learning model that predicts
user coordinates and orientation using images.

For this purpose, we will describe some Deep Learning methods and some most
commonly used Machine Learning regularization techniques.

Finally, we will describe two types of neural networks - Convolutional Neural Net-
works (CNN) and Long short-term memory (LSTM) networks. CNNs are state-of-
the-art image classification and object detection methods. LSTMs (Long Short-term
Memory) are neural networks capable of establishing short and long-term dependen-
cies.

2.1 Deep Learning

Before describing what defines Deep Learning, we need to refer to Machine Learning
(ML) and Artificial Intelligence (AI).

AI is the art/science of enabling machines to mimic human intelligence rather than
explicitly programming them to do as we tell them.

A subset of AI is Machine Learning (ML). ML uses techniques (such as deep learning)
that enable machines to learn from experience and do tasks better. In ML, we usually
follow these steps:

1. Provide data to an algorithm (before this step, we might use feature engineer-
ing techniques to improve the data quality).

2. Train, test, and tune our model.

3. Deploy our final model.

4. Use our model to automate tasks like stock market price prediction.

5

Chapter 2

A subset of ML is Deep Learning. Deep Learning is characterized by deep neural
networks with broad and numerous hidden layers. Posterior layers are responsible
for performing feature engineering. In Deep Learning, the first layers capture low-
level features (vertical and horizontal lines, for example). In contrast, the latter
capture more complex features (depending on the problem, it might be faces, eyes,
or car parts, for example). Deep learning is applied in many situations to process
vast amounts of data, such as image processing or stock market price prediction.

There are some differences between Machine Learning and Deep Learning:

• Data volume - While other ML techniques, such as Random Forests or Sup-
port Vector Machines, work with smaller amounts of data, Deep Learning
typically requires vast amounts of data.

• Automatic feature extraction - Many ML techniques require manual fea-
ture engineering. On the other hand, Deep Neural Networks automatically
generate high-level features from raw data.

• Number of hyper-parameters - By definition, Deep Learning architectures
have a much larger number of hyper-parameters compared to the traditional
machine learning models.

2.2 Transfer Learning

Training deep neural networks often requires enormous amounts of training data,
high-end computers, and time. Using Transfer Learning allows researchers to share
and reuse previously trained models. This process enables the training of models for
other purposes using substantially less data than the amount used for the original
model.

The first set of layers usually contains simple features. In contrast, the final layers
produce higher-level features closer to the domain in question. Using transfer learn-
ing, we can take a neural network trained for a specific problem and adapt its final
layers for a different but related problem. For example, we can take a model trained
for identifying flowers and apply it to identify fruits.

During training, the initial layers might have their weights frozen to maintain the
original features or fine-tuned for the new problem.

2.3 Regularization

A significant problem in machine learning is creating an algorithm that performs
well on the training data and new inputs - the algorithm must be able to generalize
well. Many strategies used in machine learning reduce the test error at the expense
of increased training error. These strategies are known collectively as regularization.

Regularization techniques are performed during training, allowing the neural net-
work to generalize better.

6

Prior knowledge

We describe some of the more common techniques for regularization - Dropout and
Parameter norm regularization.

2.3.1 Dropout

As described in [1], we can think of dropout as a method of making bagging practical
for ensembles of very large neural networks. Bagging involves training and evaluating
multiple models on each test example. Another way to look at dropout is to ensure
each hidden unit performs well regardless of other hidden units in the model.

In the case of dropout, the parent neural network’s parameters are shared across
the models, with each model inheriting a different parameter subset.

Dropout trains the sub-networks formed by removing non-output units from an
underlying base network, as illustrated in figure 2.1. The probability of a unit to be
removed is a hyper-parameter fixed before training begins, generally defined as the
dropout rate.

Figure 2.1: Left: Base network. Right: Ensemble of sub-networks; some networks
have no path between inputs and outputs. This problem becomes insignificant in
large networks. The image is depicted as in [1].

Typically, a deep neural network is complex enough that it would be impossible to
generate all possible sub-networks. Instead, only a tiny fraction is generated and
trained in each step. Due to parameter sharing, the remaining sub-networks arrive
at good parameter settings.

7

Chapter 2

2.3.2 Parameter norm regularization

Neural networks are trained using an algorithm that optimizes the value for an
objective function (also known as loss function). This objective function varies
according to the nature of the problem. For example, we might use the Mean
Absolute Error (MAE) for a regression problem.

Therefore, as described in [1], another type of regularization approach limits the
model’s capacity. We do this by adding a parameter norm penalty Ω(θ) to the
model’s objective function.

We denote the regularized objective function by J̃ :

J̃(θ;X, y) = J(θ;X, y) + αΩ(θ) (2.1)

where J(θ;X, y) is the objective function, J̃(θ;X, y) is the regularized objective
function, and α ∈ [0, ∞) is a hyperparameter. Setting α to 0 results in no regular-
ization. Larger values of α correspond to more regularization. This approach can
prevent the model from putting weights on fewer features, allowing it to generalize
better.

There are two commonly used forms of parameter regularization - L1 and L2 (this
last one is known as weight decay).

L2 parameter norm regularization

L2 parameter regularization, also known as weight decay, is the most common form of
parameter norm regularization. A model regularized by L2 parameter regularization
has the following total objective function:

J̃(w;X, y) =
α

2
w⊺ + J(w;X, y) (2.2)

where J(θ;X, y) is the objective function, J̃(θ;X, y) is the regularized objective
function, and α

2
w⊺ is the penalty. It has the corresponding parameter gradient

∇wJ̃(w;X, y) = αw +∇Jw(w;X, y) (2.3)

L1 parameter norm regularization

L1 parameter regularization - adds a term
∑n

i=0 ||wi|| (where w are the weights of
the neural network model) to the objective function.

Thus, the regularized objective function is given by

J̃(w;X, y) = α||w||+ J(w;X, y) (2.4)

where J(θ;X, y) is the objective function, J̃(θ;X, y) is the regularized objective
function, and α||w|| is the penalty. It has the corresponding gradient

∇wJ̃(w;X, y) = αsign(w) +∇Jw(w;X, y) (2.5)

8

Prior knowledge

where sign(w) is the sign of w.

We can see in the equation above that the regularization factor does not scale lin-
early; instead, it is a constant factor. Therefore, this attribute means the optimal
weight of w can be 0.

Compared to L2 regularization, L1 regularization results in a more sparse solution.
In L1 regularization, some parameters have an optimal value of zero.

9

Chapter 2

2.4 Convolutional Neural Networks (CNN)

A Convolutional Neural Network (also known as CNN) is a class of neural networks
that process data in a grid-like topology, such as images.

CNNs are very good at picking up patterns in the input image, such as lines, gra-
dients, circles, or more complex ones, such as eyes and faces. Additionally, a great
advantage of using CNNs is that it is not necessary to do much data pre-processing.

A convolutional layer typically consists of three layers - convolutional layers, pooling
layers, and fully connected layers.

Figure 2.2: The components of a typical convolutional layer as depicted in [1].

2.4.1 Convolutional Layer

The convolution layer is the core building block of the CNN, enabling the CNN to
capture the most relevant information on an image. While the first layers capture
simple features, such as lines and curves, the latter can capture more complex ones,
such as eyes or faces.

This layer performs a dot product between two matrices - the kernel and the input
image.

As depicted in figure 2.3, the kernel is slid over the image and performs the dot
product with each image section, looking for patterns. The operation returns a
large positive value when we have a strong match. Otherwise, we get a smaller
value.

10

Prior knowledge

Figure 2.3: An example of 2-D convolution as depicted in [1].

In figure 2.4 we can see an example of a kernel operation.

Figure 2.4: Example of image processing performed by a convolutional layer. Ac-
cording to [1], the "image on the right was formed by taking each pixel in the original
image and subtracting the value of its neighboring pixel on the left. This shows the
strength of all the vertically oriented edges in the input image, which can be a useful
operation for object detection." ([1], page 334).

Due to the kernel being applied to the same image and parameter sharing, there
is no need to learn a specific pattern for each image section, substantially reducing
the number of parameters. At the same time, it is exponentially more efficient than
matrix multiplication.

11

Chapter 2

2.4.2 Activation function

After the convolution layer, we apply a non-linear activation function to the output.
This function’s main objective is to add non-linearity to the convolutional layer
output.

There are different activation functions, such as:

1. Sigmoid - 1/(1 + exp(−x)) -

2. Hyperbolic Tangent - (e2x − 1)/(e2x + 1) -

3. ReLU - max(x, 0)

2.4.3 Pooling layer

The pooling layer is used to sub-sample the input image to reduce the computa-
tional load, memory usage, and the number of parameters, which results in a more
negligible risk of over-fitting. The pooling layer does this by preserving the strongest
matches of the activation function output and disregarding the other values.

Another contribution of the pooling layer is the invariance to small changes in the
input image. The pooling layer causes only the strongest matches to be preserved
from layer to layer, disregarding the exact position. However, while this process can
be helpful in some contexts, it can be detrimental in others.

Many algorithms are used for pooling, such as max pooling, average or the L2 norm.

Due to the information destruction effect, the pooling layers must be used with
caution.

2.4.4 Top layers

We place a neural network on top at the end of our convolutional layers sequence.
This NN will use the outputted features to make a prediction. Depending on the
task we have in hand, we can have a Fully Connected Neural Network followed by
a soft-max function to output probabilities for object classification or an RNN if we
are working on a video feed.

2.5 One-stage vs Two-stage Object Detectors

We have studied state-of-the-art object detection and classification. Object detectors
need to find objects in the image and delimit their bounding boxes - the model
accuracy is affected by the correct class prediction and the bounding box coordinates
(this problem is called region proposal).

12

Prior knowledge

Figure 2.5: Example of an object detector used in a traffic picture, as depicted in
[2].

There are two approaches for region proposal and classification - one-stage and
two-stage object detectors. In this project, all proposed networks use anchors (also
known as "priors" or "default boxes"). Anchors are a set of bounding boxes overlaid
on the image at different spatial locations and with different sizes and aspect ra-
tios. The size of these anchors can be parameterized and inferred from the training
dataset. These anchors act as a default object size and help networks find objects.
However, they are used differently in one-stage and two-stage detectors.

One-stage object detectors treat the region proposal and classification as a simple
regression issue and make both predictions in a simple step. Then, the model is
trained to make two predictions for each anchor:

1. a discrete class prediction for each anchor.

2. the positioning vector between the anchor and the ground-truth bounding box.

A commonly used one-stage object detector is YOLO [2]. YOLO (depicted in figure
2.6) detects objects and classifies them in a single step.

13

Chapter 2

Figure 2.6: YOLO is a one-stage object detector and models detection as a regression
problem, as depicted in [3].

Accordingly to the article [27] (page 2), the "advantage of having a regular grid of
anchors is that predictions for these boxes can be written as tiled predictors on the
image with shared parameters (i.e., convolutions) and are reminiscent of traditional
sliding window methods."

Two-stage object detectors handle these issues separately - one NN is responsible
for processing the image and proposing bounding boxes that contain objects. Then,
another NN classifies the objects in those bounding boxes. Sparse R-CNN belongs
to this class.

A Region Proposal Network (RPN) "takes an image (of any size) as input and
outputs a set of rectangular object proposals, each with an objectness score" ([3],
page 2). The objectness score indicates the presence or not of an object in the
proposed region.

An example of an RPN utilization is displayed in figure 2.7.

Figure 2.7: Left: Region Proposal Network (RPN) as depicted in [3]. Right:
Example detections using RPN proposals on PASCAL VOC 2007 test as depicted
in [3].

One-stage object detectors are typically faster, while two-stage object detectors

14

Prior knowledge

generally are more accurate.

15

Chapter 2

2.6 Long Short-Term Neural Networks

LSTMs (Long short-term memory) are a subclass of Recurrent Neural Networks
capable of dealing with long-range dependencies. Furthermore, unlike standard
feed-forward neural networks, LSTMs have feedback connections and can process
single data points and sequences of data.

2.6.1 Recurrent Neural Networks

A Recurrent Neural Network(RNN) is a type of Neural Network where we use the
output from a previous step as an input to the current one (as we can observe in
figure 2.8). In other neural networks, all the inputs and outputs are independent.
On the other hand, in areas such as Natural Language Processing or stock market
price prediction, the past values are essential to predicting the next.

The fundamental feature of RNN is the Hidden state, which remembers some infor-
mation about a sequence.

Figure 2.8: Basic architecture of an RNN.

RNNs retain information about what was previously calculated. Each layer uses
the same parameters for each input, reducing the number of parameters. By stack-
ing layers on top of each other, RNN can capture very complex patterns, such as
predicting the next word of a sentence.

2.6.2 Long Short-Term Neural Networks - a subclass of RNN

Despite being very useful, traditional RNNs are not very good at capturing long-
range dependencies. When we have a huge dataset and a deep neural network, we
risk the vanishing or exploding gradient problem preventing our neural network from
being trained.

It is because of this issue that LSTMs[28] were introduced. LSTMs are capable of
remembering RNNs weights for an extended time. In addition to "hidden state",
"cell state" is passed down to the next block.

16

Prior knowledge

Figure 2.9: Block diagram of the LSTM recurrent network cell, as depicted in [1].

LSTMs do this by employing three main gates (gate scheme is depicted in figure
2.9):

1. Forget gate - Removes information that is no longer useful in the current cell
state.

2. Input Gate - Useful information is added to the cell state.

3. Output Gate - Additional helpful information is added to the cell state.

This gate mechanism determines which information must be forgotten, ignored, or
added to the memory state.

17

Chapter 2

18

Chapter 3

Prototype

To create our image dataset, we need a robotic agent capable of moving around our
testing environment, collecting our images, and associating each image with a pose
(which consists of location coordinates and orientation angles). Furthermore, both
our localization and direction values must have a reference point for values to be
consistent.

In this chapter, we describe the work performed on the robotic agent throughout
the first and second semesters.

3.1 First semester

While several different devices are available in the market, we have decided to utilize
pre-available devices to collect our image dataset to save time and money - the
robotic agent (JetRacer AI Kit [4]) and the laser scanner device (RPLidar A2 [5]).
A past project used this equipment to map the environment using a laser scanner
using LIDAR technology.

LIDAR is a method for determining ranges by emitting laser and measuring the
time for the reflected light to return to the receiver. It has been used for decades
for a variety of applications [29].

We used LIDAR to create a map of the environment and used that map to associate
images with coordinates and orientation (relative to a reference point). For this
purpose, Critical Software has made available the following devices:

• JetRacer AI Kit [4] - This is an AI Racing Robot kit based on Jetson Nano
Developer Kit, and it supports deep learning, auto line following, autonomous
driving, and so on. We can see an image of this device in figure 3.1.

• RPLIDAR A2 Laser Range Scanner [5] - Performs a 360-degree omnidirectional
laser range scanning for its surrounding environment and then generates an
outline map for the environment. We can see an image of this device in figure
3.2.

19

Chapter 3

3.1.1 Robotic Operating System (ROS)

The Robot Operating System [30] (ROS) is an open-source set of software libraries
and tools for robot applications and it is widely used in robotics companies, uni-
versities, and research institutes. ROS has packages for many problems, such as
navigation and obstacle avoidance.

For more details, please check ROS homepage at http://wiki.ros.org/.

3.1.2 JetRacer AI Kit

JetRacer AI Kit [4] (we can see an image of this device in figure 3.1) is an AI Racing
Robot powered by a Jetson Nano that was designed to be a cheap prototype for self-
driving and deep learning experiments. NVIDIA Jetson Nano is a small computer
supporting many AI frameworks, such as TensorFlow and Keras.

JetRacer AI Kit comes installed with a compatible camera.

Jetson Nano’s operating system is Ubuntu 18.04 LTS, and it can be connected to
peripherals, which allows scripts to be developed and executed directly on it. We
can also manage Jupyter Notebooks scripts via a web browser.

Figure 3.1: JetRacer AI Kit as depicted in [4].

NOTE: Due to the robotic agent’s limitations and time constraints, we will limit
the environment to a single Critical Software office space floor.

3.1.3 RPLIDAR A2

RPLIDAR A2 [5] (we can see an image of this device in figure 3.2) is a laser range
scanner. The core of RPLIDAR A2 runs clockwise to perform a 360-degree omni-

20

http://wiki.ros.org/

Prototype

directional laser range scanning for its surrounding environment and generates an
outline map. It has a maximum range of 16 meters and a sample of up to 8000
points.

Figure 3.2: RPLIDAR A2 as depicted in [5].

3.1.4 Work done in the first semester

We utilized ROS to integrate the RPLIDAR A2 and our JetRacer robot. To test our
prototype, we used the package hector_slam ([31]), a ROS package that implements
Hector SLAM [8]. Hector SLAM only requires laser scan data (unlike Gmapping,
which requires odometry data), and it does not require any parameter setup/tuning
(unlike Cartographer).

To physically integrate the RPLIDAR into JetRacer, we needed a way to connect
them and keep RPLIDAR stable while scanning. We created a simple cardboard
structure for the prototype, but it was fragile and started deteriorating rapidly (we
can see this prototype in figure 3.3). So the second prototype was made of 3D
printed pieces designed to integrate our devices (we can see this second in figure
3.4).

Figure 3.3: Cardboard proto-
type.

Figure 3.4: 3D printed the
second prototype.

In figure 3.5 we can observe a map of Critical Software Coimbra Office B, first floor.

21

Chapter 3

Hector SLAM generated this map in our robotic agent (second prototype) after
completing a full circle inside the office, with the lower-left room being the start
and endpoint. The map generated is not very accurate. However, the purpose of
this test was not to test the algorithm’s accuracy but to check if the prototype was
robust enough for future experiments.

Figure 3.5: Critical Software Coimbra Office B, first floor. Image generated by
Hector SLAM in our robotic agent.

3.2 Second semester

We integrated the robotic agent and the laser scanner device in the first semester
using Robot Operating System (ROS). We tested the device’s integration by map-
ping Critical Software’s building. We expect these devices to be able to obtain all
necessary data. However, after analyzing that our laser scanner could not provide
us with the robotic agent’s orientation angle, we have decided to add a device -
Environment Sensors Module [6], designed for Jetson Nano (the processing unit of
the robotic agent). It can be directly connected and used out-of-the-box, with no
need for wire connections or software setup.

3.2.1 Environment Sensors Module

After integrating the robotic agent with the laser scanner, we observed that obtaining
an orientation angle from the data was impossible. Therefore, an alternative was
necessary.

22

Prototype

After some search, we found a suitable device called Environment Sensors Module([6]).
This module has an accelerometer, a gyroscope, and a magnetometer. It would be
possible to extract an orientation angle using this sensor data. Another reason for
the choice of this device was that it was purposely designed for the Jetson Nano
(JetRacer AI Kit’s computational unit), which saves time in hardware and software
integration.

Figure 3.6: Environment sensor module designed for Jetson Nano as depicted in [6].

3.2.2 Work done in the second semester

To connect our sensor module to our prototype, we joined the male and female pins
of Jetson Nano and the Environment sensor module. After that, we can extract
the sensor data by simply utilizing Python scripts available on the WaveShare wiki
page.

23

Chapter 3

24

Chapter 4

State-of-the-art

In this chapter, we will present the state-of-the-art approaches for:

• Mapping - To associate images with coordinates and build our dataset, we
must be able to map the environment. Here we discuss different algorithms
for mapping which use LIDAR.

• Robotic auto-exploration - We research some algorithms that would allow
our robotic agent to move autonomously, simplifying the setup necessary to
implement our system in a new environment. Here, we discuss some alterna-
tives. However, due to time constraints, we had to drop this feature to take
care of more critical matters.

• Image-based pose prediction - In this section, we will expose different algo-
rithms developed for image-based pose (localization + direction/orientation)
prediction and compare them to find the best solution.

• ContextualNet - After analyzing the different image-based pose prediction
algorithms available, we discuss the best solution, ContextualNet.

• State-of-the-art object detectors - In this section, we explore and compare
different models which improve ContextualNet. Unfortunately, due to time
constraints, we abandoned this research to focus on more pressing matters.

4.1 Robotic Auto-exploration

We wanted to implement auto-exploration in our robotic agent. This feature would
allow our robotic agent to autonomously explore the environment and simplify the
setup of our system in a new environment. This auto-exploration algorithm must
also be ROS-compatible. Unfortunately, we had to drop this feature due to other
more concerning matters more critical for this project’s success.

Exploration consists of goal allocation (1) and path planning and navigating (2).
Frontier-based allocation is the most referenced method for goal allocation. First, a

25

Chapter 4

set of frontiers is extracted from the current map; the allocator selects a frontier as
the next goal based on different strategies (e.g., random, nearest, etc.).

Due to the devices utilized, we must use ROS-compatible solutions which can utilize
a map to find unknown areas and explore them.

Following these requirements, we found frontier_exploration (http://wiki.ros.
org/frontier_exploration) and move_base (http://wiki.ros.org/movebase).
However, these packages have some limitations. For example, we need to specify a
boundary area for frontier_exploration to specify which area to explore, and
move_base has some difficulty passing through narrow spaces, such as doorways.

In the project, [7] researchers created two packages to improve the original ones -

• frontier_allocation (http://wiki.ros.org/frontier_allocation) - works
efficiently with the entire actual actual map to enable out-of-the-box au-
tonomous exploration.

• adaptive_local_planner (http://wiki.ros.org/adaptive_local_planner)
- move_base plugin that acts as a local planner and allows the robot to navi-
gate flexibly in a narrow space.

Figure 4.1: Proposed ROS framework as depicted in [7].

26

http://wiki.ros.org/frontier_exploration
http://wiki.ros.org/frontier_exploration
http://wiki.ros.org/move base
http://wiki.ros.org/frontier_allocation
http://wiki.ros.org/adaptive_local_planner

State-of-the-art

4.2 Mapping Algorithm

As stated in section 3, due to time constraints and pre-available hardware, we will
use LIDAR technology to map the environment by mounting a laser scanner device
on top of a robotic agent. We can use this map to build an image dataset with all
image coordinates about the same reference point.

To get the most precise pose values, we researched the best mapping algorithms
that used LIDAR. However, we will solely use the laser scanner data to map the
environment without additional data due to time constraints. Additionally, as de-
scribed in section 3, the algorithms must have a ROS-compatible implementation
to integrate with our laser scanner. Finally, we must clarify that the robot will
navigate exclusively using the laser scan data and never the images captured by the
camera.

For this section, three different alternatives are available:

1. Hector SLAM [31] - The main idea of this algorithm is to use the high frequency
of laser scan devices to match laser prints to build a map representation of the
environment.

2. Gmapping [32] - Uses a Particle Filter SLAM approach for integrating laser
scan data and odometry (data from motion sensors).

3. Cartographer [10] - Developed by Google, the main idea is to create and com-
bine sub-maps (maps of the neighborhood) to create a more precise global
map.

4.2.1 Frontier-based Exploration

Both Hector SLAM, Gmapping, and Cartographer are frontier-based approaches
[33]. In Frontier-Based Exploration, the main idea is to gain the newest information
about the world by moving to the boundary between open space and uncharted
territory. Frontiers are regions on the border between open space and unexplored
space. When a robot moves to a frontier, it can see into an unknown room and add
new information to its map.

The environment is represented by an occupancy grid, where each cell is classified
as either open (clear space), occupied, or unknown (need further exploration). As
more and more area is explored, the occupancy grid is constantly updated until we
have explored all unknown spaces.

4.2.2 Hector SLAM

The central concept behind Hector SLAM [8] functioning is scan matching, which
aligns laser scans with or with an existing map. Modern laser scanners have low
distance measurement noise and high scan rates.

27

Chapter 4

The objective is to find the transformation which allows the last scan to align better
with our map at the current coordinates.

Figure 4.2: Multi-resolution representation of the map as depicted in [8]: Left:
20cm grid cell length Center: 10 cm grid cell length, Right: 5cm grid cell length.

As scans align with the existing map, the matching is implicitly performed with all
initial scans.

Hector SLAM outperforms algorithms that use other data types (such as motion
sensors) on uneven terrains because it relies solely on laser scan data [34].

4.2.3 Gmapping

Gmapping is a laser-based SLAM algorithm [9] using a Particle Filter SLAM ap-
proach. First, we compute the robot localization by integrating the most recent
sensor observations with the odometry robot motion model (odometry is data from
motion sensors). This step decreases the uncertainty about the robot’s position in
the prediction step of the particle filter. Therefore, the quality of the laser scan
matching process reduces the number of particles, and the robot’s pose is more
accurate.

28

State-of-the-art

Figure 4.3: These images illustrate the particle distributions in different mapping
scenarios. According to [9], "in an open corridor, the particles distribute along the
corridor (a). In a dead-end corridor, the uncertainty is small in all dimensions (b).
Such posteriors are obtained because we explicitly take into account the most recent
observation when sampling the next generation of particles (...) (c)" ([9], page 4).

4.2.4 Cartographer

The Google Cartographer algorithm[35] comprises two subsystems - local SLAM and
global SLAM. The local SLAM’s job is to build sub-maps (each sub-map representing
a region of the environment), while the global SLAM combines the different sub-
maps to generate a complete map of the whole environment.

To reduce computation, a scan is only inserted into the current sub-map if its motion
is above a certain distance, angle, or time threshold. Otherwise, the scan is dropped.
A sub-map is complete when the local SLAM has received a given amount of range
data.

The other subsystem is global SLAM. It runs in background threads, and its main
job is to find loop closure constraints. Loop closure is when an algorithm connects
ending sections of the global map, such as a corridor around a building. It does
that by scan-matching scans against sub-maps. The final objective is to identify the
most consistent global solution.

29

Chapter 4

Figure 4.4: Cartographer overview as depicted in [10].

Cartographer outperforms other algorithms that use different types of data (laser
scan, odometry, linear and angular acceleration) [36], but it needs to be tuned to
function correctly.

4.2.5 Mapping algorithm comparison

Since Hector SLAM relies solely on laser scan data, it tends to perform better when
other types of data (such as angular or linear speed) do not work so well, such as
on uneven terrain.

Figure 4.5: Mapping algorithms in different situations as depicted in [11].

30

State-of-the-art

Figure 4.6: Error calculated with ADNN (average distance to the nearest neighbor)
metrics for SLAM methods relative to the ground truth, in cm, as depicted in [11].

Since Hector SLAM does not provide any solution for loop-closure, it is outperformed
by the other approaches.

On the other hand, while Gmapping does not require tuning like Google Cartogra-
pher, Cartographer outperforms it in most situations. Its ROS package [32] does
not provide a straightforward solution to work without odometry (data from other
sensors), unlike Google Cartographer [10], which can rely solely on laser scan data.

31

Chapter 4

4.3 Image-based Pose Prediction

Even a small RGB image of 224x224 pixels consists of 224x224x3=150528 different
values, which is too big to be analyzed without feature extraction to reduce the total
number of feature values.

Therefore, all image-based pose prediction models have two parts - a feature extrac-
tion section and a prediction top section. The feature extraction section will process
the image and output a feature vector. The prediction top section will utilize the
feature vector to compute a prediction.

There are two main methods of image preprocessing:

• Local feature detectors methods, such as speeded up robust features [12]
(SURF). These algorithms follow a previously implemented algorithm - they
are not trained like CNNs. These methods detect and identify key points and
features of the images according to the previously implemented algorithm.
These sorts of algorithms are beneficial for comparing images or finding du-
plicates. Another advantage these methods have over Convolutional Neural
Networks is that they work out of the box, requiring no pre-training.

• Convolutional Neural Networks (CNN) can also be used to preprocess
images and reduce the total number of features. They work by identifying
patterns but must be trained in a data set to extract meaningful features.

32

State-of-the-art

4.3.1 Local feature detectors

Figure 4.7: Example of detected interest points for a Sunflower field by SURF
algorithm as depicted in [12].

«

Unlike Convolutional Neural Networks, which can be trained to identify different
patterns in different contexts, Speeded up robust features (SURF) [12] is a pre-
implemented algorithm that detects key points and features. This can be an advan-
tage because they do not have to be trained to be able to see patterns.

In some works, researchers applied these algorithms for feature extraction. In [24],
SURF is combined with LSTM layers to predict x,y coordinates and θ orientation of
an image on a building floor. SURF is used for feature extraction before inputting
the resulting key points and feature vectors into a bi-directional LSTM to predict its
pose. In another work [23], SURF is utilized for feature extraction before inputting
the resulting key points and feature vectors into a CNN. This approach dramatically
reduces training time and increases accuracy, removing the need for a pre-trained
neural network.

4.3.2 Convolution Neural Networks (CNN)

Several works have been done regarding image-based pose (which consists of location
coordinates and orientation angles) prediction algorithms that utilize CNNs.

In some approaches, we directly compare the image extracted feature vectors to get
a label. For example, in [37], the CNN ResNet50 is used to extract features from
images from indoor scenes before a query is made using the k-nearest neighbors

33

Chapter 4

(kNN) to find the closest classification label (corridor, elevator, etc.). A similar
approach is used in [38], where CNNs are also used to extract features from the
image, but instead of kNN, the Euclidean distance between them is used to predict
the correct label.

In order approaches, we insert a top prediction module on top of a pre-trained
CNN backbone to predict coordinates and orientation. In PoseNet [25], they use a
modified CNN, based on the GoogLeNet model [14], to indicate coordinates and ori-
entation angle of camera images. Other projects improved on this model by adding
the additional feature. On one hand, ContextualNet [13] implements LSTM layers
on top of GoogleNet [14] and uses past frames to improve the current forecast. On
the other hand, Directional-PoseNet [26] uses LSTMs for structured dimensionality
reduction on the feature vector, leading to improved localization performance.

4.3.3 Comparison

All algorithms are trained and tested in the same dataset - 7-scenes [22].

The 7-scenes dataset is composed of tracked RGB-D camera frames in different
scenarios. All scenes were recorded from a handheld Kinect RGB-D camera at
640×480 resolution, and the predicted poses from the Kinect are considered the
"ground truth". In addition, there are predefined training and test sequences to
train and test different algorithms and compare them.

Dataset SurfCNN SURF-LSTM PoseNet Directional PoseNet ContextualNet
Chess 0.19/8.10 0.21/7.98 0.32/8.12 0.24/5.77 0.15/6.12
Fire 0.24/8.20 0.22/11.87 0.47/14.40 0.34/11.90 0.16/10.93

Heads 0.17/12 0.16/12.1 0.29/12.0 0.21/13.70 0.25/13.2
Office 0.35/7.05 0.32/7.05 0.48/7.68 0.30/8.08 0.25/7.45

Pumpkin 0.36/10.80 0.40/9.94 0.47/8.42 0.33/7.00 0.26/6.62
Red Kitchen 0.37/10.25 0.36/7.60 0.59/8.64 0.37/8.83 0.20/6.97

Stairs 0.28/10.14 0.35/10.10 0.47/13.80 0.40/13.70 0.17/10.83
Average 0.28/9.17 0.29/9.39 0.44/10.43 0.31/9.85 0.20/8.87

Table 4.1: The median error in position (m)/ orientation (degrees) for the 7-scenes
dataset [22], of SURF-based methods, such as SurfCNN [23], SURF-LSTM [24], and
purely CNN methods, such as PosetNet [25], Directional PoseNet [26] and Contex-
ualNet [13]. The results were transcribed from the work reported in [24] and [13].

In table 4.1, we can observe that the best-fitted model for most scenarios is Contex-
tualNet.

34

State-of-the-art

4.4 ContextualNet

Our proposed ContextualNet model consists of a GoogLeNet backbone [14], 2 LSTM
layers, and two separate fully connected layers, connected as depicted in figure 4.9.
In figure 4.8 we can visualize how ContextualNet compares precisely with the original
PoseNet, which consists solely of the CNN backbone and fully connected layers.

Figure 4.8: Map with predicted poses as depicted in [13]. Comparison of estimated
position and orientation by our Contextual model and PoseNet with ground truth.

The original ContextualNet architecture is depicted in figure 4.9. The feature vector
generated by the GoogLeNet backbone is input to the first LSTM layer. The first
LSTM layer contains 512 hidden cells, while the second layer contains 50. The second
LSTM layer is connected to 2 separate fully connected layers used for estimating
the robot pose, P.

35

Chapter 4

Figure 4.9: Model’s architecture as depicted in [13].

GoogLeNet

GoogLeNet [14] is a 22 layers-deep network, winner of the ImageNet Large-Scale
Visual Recognition Challenge 2014 (ILSVRC14), which contained several innova-
tions which helped achieve high accuracy. The architecture of GoogleNet is shown
in figures 4.11 (first layers, including input) and 4.10 (last layers, including output)
- we split the image due to its size.

36

State-of-the-art

Figure 4.10: Last layers of GoogLeNet architecture, as depicted in [14]. The bottom
"DepthConcat" block is the top "DepthConcat" block of the figure 4.11.

37

Chapter 4

Figure 4.11: First layers of GoogLeNet architecture, as depicted in [14]. The top
"DepthConcat" block is the bottom "DepthConcat" block of the figure 4.10.

38

State-of-the-art

GoogLeNet is a network formed by several combined "Inception Modules" which is
a "network consisting of modules of the above type stacked upon each other, with
occasional max-pooling layers with stride 2 to halve the resolution of the grid." ([14],
page 4).

Figure 4.12: Inception blocks as depicted in [14].

In the Inception module, "1x1 convolutions are used to compute reductions before
the expensive 3x3 and 5x5 convolutions. Besides being used as reductions, they also
include the use of rectified linear activation making them dual-purpose" ([14], page
4).

The design follows the practical intuition that visual information should be processed
at various scales and then aggregated so that the next stage can abstract features
from the different scales simultaneously. In addition, the improved use of compu-
tational resources allows for increasing the width of each stage and the number of
stages without getting into computational difficulties.

4.4.1 Model output - pose representation and loss Function

Given a sequence of images, ContextualNet outputs a pose P, which consists of
location coordinates (p ∈ R3) and orientation (q ∈ R4) angles. The angles are
represented as quaternions.

Quaternions

In the original article, orientation is represented by quaternions. The general form
to express quaternions is:

q = s+ xi+ yj + zk s, x, y, z ∈ R (4.1)

39

Chapter 4

with i, j and k being imaginary numbers such as:

i2 = j2 = k2 = ijk = −1 (4.2)

i, j, and k imaginary numbers could be used to represent three cartesian unit vectors
i, j, and i, j, and k imaginary numbers could be used to represent three cartesian
unit vectors i, j, and k with the same properties of imaginary numbers, such that
i2=j2=k2=-1.

Figure 4.13: Representation of cartesian unit vectors i, j, and k, as depicted in
https://www.3dgep.com/understanding-quaternions/.

A quaternion q is said to be a normalized quaternion when ||q|| = 1, which corre-
sponds to

√
s2 + x2 + y2 + z2=1.

Loss function

In the original ContextualNet article, the following loss function is utilized:

lossi = ||p̂i − pi||+ β ∗ ||q̂i −
qi

||qi||
|| (4.3)

(p̂, q̂) are the predicted robot poses and (p, q) are the true value. β is a parameter
that keeps the same scale’s penalty values for location and rotation errors. In the
original article, β = 250.

40

https://www.3dgep.com/understanding-quaternions/

State-of-the-art

4.5 State-of-the-art Object Detectors

As discussed in the section 4.3, CNNs are state-of-the-art in image feature extraction.
They can process millions of images at speeds and accuracy no other algorithms
could achieve. Furthermore, CNNs compose the most complex part of the image-
based pose prediction models by processing and extracting features from the images.
Therefore, they have a significant impact on the model performance.

As observed in the section 4.3, ContextualNet is the most accurate model with a
GoogLeNet backbone. GoogLeNet is an object detector utilized in ContextualNet
for image feature extraction.

In the last few years, several object detectors algorithms have achieved better results
than GoogLeNet. It would have been interesting to study the effect these improved
CNNs would have on ContextualNet’s performance. Unfortunately, due to several
issues throughout this project, it was not possible to perform research regarding this
topic. Therefore, this research will have to be conducted in future works.

To select the best CNN backbone, we looked at the current state-of-the-art for
Object Detection and Classification. CNN backbones that have been trained in this
domain will be suited for indoor localization, and we can take their features and use
them to predict the image x,y coordinates, and orientation.

After reading about the state-of-the-art and learning more about the subject, the
following state-of-the-art methods were selected as candidates to be used in future
work: YOLO[39], Sparse R-CNN[17], EfficientDet, [19] and YOLOR[20].

Some criteria that will define the final choice for a CNN backbone alternative to
GoogLeNet are:

• Speed - Considering that our mobile app needs to update our location every
1-2 seconds (for user-friendliness purposes) and that the image processing time
needs to be relatively small, the CNN needs to be able to operate in real-time.

• Precision - We need a CNN that achieves the best possible results. We need
our features to be accurate.

• Computational cost - Available computing resources are not vast, so this is
something to be considered.

YOLO (You Only Look Once)

YOLO is a one-stage object detector and classification network which looks at the
entire image at once and only once — hence the name You Only Look Once —
which allows it to capture the context of detected objects.

41

Chapter 4

Figure 4.14: Scaled-Yolov4 achieves new state-of-the-art capable of achieving 55.5%
AP on COCO dataset as depicted in [15].

Figure 4.15: "Our system models detection as a regression problem. It divides the
image into an S × S grid and for each grid cell predicts B bounding boxes, confidence
for those boxes, and C class probabilities. These predictions are encoded as an S ×
S × (B * 5 + C) tensor." ([2], page 2).

The cells are then agglomerated according to their classes and confidence scores to
generate the whole output bounding boxes.

In Scaled-Yolo [15], YOLOv4 is upgraded by improving the Darknet CNN backbone
using the Cross Stage Partial approach (CSP) [16]. According to the original article

42

State-of-the-art

[16], the "main purpose of designing CSPNet is to enable this architecture to achieve
a richer gradient combination while reducing the amount of computation. This aim
is achieved by partitioning feature map of the base layer into two parts and then
merging them through a proposed cross-stage hierarchy.".

Figure 4.16: Left: DenseNet and Right: Cross Stage Partial DenseNet (CSP-
DenseNet). "CSPNet separates feature map of the base layer into two part, one
part will go through a dense block and a transition layer; the other one part is then
combined with transmitted feature map to the next stage.". ([16], page 3).

This reduces CSP-Darknet53 computational cost by 50% compared to Darknet53.
There are also scaled-up and scaled-down architectures (with different convolutional
layer sizes) developed to give users other options according to their accuracy/speed
requirements.

Sparse R-CNN

Sparse R-CNN speeds up exponentially by eliminating the need to calculate ob-
jectness scores for all possible bounding boxes and their locations by limiting the
number of total possible bounding boxes to N.

In figure 4.17 we can see a comparison between different object detection approaches
and we can observe that Sparse R-CNN has much fewer parameters.

Figure 4.17: "Comparisons of different object detection pipelines. (a) In dense
detectors, HWk object candidates enumerate on all image grids, e.g. RetinaNet. (b)
In dense-to-sparse detectors, they select a small set of N candidates from dense HWk
object candidates, and then extract image features within corresponding regions
by pooling operation, e.g. Faster R-CNN [37]. (c) Our proposed Sparse R-CNN,
directly provides a small set of N learned object proposals. Here N « HWk." ([17],
page 1).

After these proposal boxes are obtained from the image, they are mapped into a
proposed feature vector, which is expected to encode the rich instance characteristics.

43

Chapter 4

Figure 4.18: "An overview of Sparse R-CNN pipeline. The input includes an image,
a set of proposal boxes and proposal features, where the latter two are learnable
parameters. The backbone extracts feature map, each proposal box and proposal
feature are fed into its exclusive dynamic head to generate object feature, and finally
outputs classification and location" ([17], page 3).

Both proposal boxes and features are randomly initialized and optimized with other
parameters in the whole network.

EfficientDet

To understand EfficientDet we need to first know about Feature Pyramid Network.

Features at different scales contribute differently to the final output prediction. Fea-
ture Pyramid Networks were created to address this issue. A Feature Pyramid Net-
work (FPN) [18] takes a single-scale image as input and outputs proportionally sized
feature maps at multiple levels in a fully convolutional fashion, independently of the
backbone used by CNN. A scheme of FPN is depicted in figure 4.19.

44

State-of-the-art

Figure 4.19: "(a) Using an image pyramid to build a feature pyramid. Features
are computed on each of the image scales independently, which is slow. (b) Recent
detection systems have opted to use only single scale features for faster detection. (c)
An alternative is to reuse the pyramidal feature hierarchy computed by a ConvNet as
if it were a featurized image pyramid. (d) Our proposed Feature Pyramid Network
(FPN) is fast like (b) and (c), but more accurate. In this figure, feature maps are
indicate by blue outlines and thicker outlines denote semantically stronger features.".
([18], page 1).

EfficientDet employs a weighted bi-directional feature pyramid network (BiFPN)
with adjustable weights to learn the importance of different input features while
repeatedly applying top-down and bottom-up multi-scale feature fusion which al-
lows it to understand which scales work better in each situation and have higher
performance. A representation of EfficientDet’s architecture is depicted in 4.20.

Figure 4.20: "EfficientDet architecture – It employs EfficientNet [39] as the backbone
network, BiFPN as the feature network, and shared class/box prediction network.
Both BiFPN layers and class/box net layers are repeated multiple times based on
different resource constraints" ([19], page 5).

.

45

Chapter 4

YOLOR (You Only Learn One Representation)

Humans can learn and understand the physical world based on vision, hearing, tactile
(explicit knowledge), and experience (implicit knowledge). Therefore, humans can
effectively process entirely new data using abundant experience from prior learning
gained through regular learning and stored in the brain.

But what is explicit and implicit knowledge in neural neural networks? According
to the original article [20], "the knowledge that directly correspond to observation
as explicit knowledge. As for the knowledge that is implicit in the model and has
nothing to do with observation, we call it as implicit knowledge." ([20]).

Not to be confused with YOLO (You Only Look Once), YOLOR [20] is proposed
as "a unified network to encode implicit knowledge and explicit knowledge together,
just like the human brain can learn knowledge from normal learning as well as
subconsciousness learning. The unified network can generate a unified representation
to simultaneously serve various tasks" ([20]).

Figure 4.21: One representation with explicit knowledge and implicit knowledge for
serving multiple tasks as depicted as in [20].

To train the proposed unified networks, explicit and implicit knowledge are used
together to model the error term and guide the multi-purpose network training
process.

Object detectors comparison

Best model configuration Backbone FPS AP
YOLOv4-P7 CSP-P7 17/16 55.5%

EfficientDet-D7x EfficientNet-B7 6.5 55.1%
Sparse R-CNN ResNeXt-101-DCN 19 51.5%

YOLOR YOLOR shared backbone 30 55.4%

Table 4.2: Comparison of the best configuration for each algorithm, according to
[15] and [17]. Evaluated run time on NVIDIA Tesla V100 GPU.

46

Chapter 5

Approach

5.1 Requirements

Requirements are the features, properties, and restrictions expected for specific soft-
ware. They are divided into functional and non-functional requirements, described
in the following.

5.1.1 Functional requirements

As the name implies, functional requirements describe what our system should do.
Therefore, in this section the functional requirements to be implemented during the
internship are presented.

The main objective is to create an augmented reality mobile application that allows
the user to know their location on a particular floor of a building and guide them
to their destination. This mobile application will send the images collected by the
smartphone camera to a server, which will input them into a machine learning
model to obtain a pose prediction. But, first, we must clarify that we will limit
the environment to a single floor of Critical Software office space due to the robotic
agent’s limitations and time constraints.

The mobile application must be able to guide the user to reach their destination
(FR-3). We do not plan to create a fully functional product; instead, we only want
to create a minimalist prototype that serves as a proof of concept.

For our mobile application to predict the user’s location, we must develop a model
to use the images from the smartphone camera as input to predict the user’s pose.
(FR-2).

Moreover, to train this model, we must collect a dataset from the Critical Software
office space consisting of images associated with its pose (FR-1). Additionally, we
would like to program the robotic agent completely autonomously (FR-4). How-
ever, we had to drop this feature due to time constraints and other more critical
requirements. So instead, our robotic agent is remote-controlled.

47

Chapter 5

The high-level requirements described above are represented in the table below.
Each requirement is given a priority value of:

• High - mandatory requirement.

• Moderate - adds a lot of value to the final prototype, but it is not mandatory.

• Low - the requirement adds some weight to the final prototype, but it is not
mandatory.

Table 5.1: High-level functional requirements.

ID NAME PRIORITY DESCRIPTION Implemented
FR-1 Dataset col-

lection
High Collection of images

to build an image
dataset, where each
image is associated
with a pose.

✓

FR-2 Image-based
pose predic-
tion model

High The machine learn-
ing model must
be able to predict
the pose of images
captured from the
building’s floor.

✓

FR-3 Mobile appli-
cation

High The mobile applica-
tion must be able
to guide the user to
reach their destina-
tion.

✓

FR-4 Robotic auto-
exploration

Low Implementation of
an algorithm to
enable the robotic
agent to explore the
environment and
collect our dataset
autonomously.

✗

48

Approach

Dataset collection

Our main objective in this stage was to construct a dataset consisting of images (FR-
1.1) associated with poses (location coordinates (FR-1.2) and orientation (FR-
1.3)). Ideally, we would be able to associate images with this information. However,
due to unforeseen predicaments, we were forced to abandon the orientation part and
stick only to location coordinates. In alternative to our model being able to predict
the orientation angle, which would allow the application to provide orientation in
any smartphone, we manually calibrated the application using a compass.

Firstly, we implemented the mapping algorithm Google Cartographer (https://
google-cartographer-ros.readthedocs.io/en/latest/ - a better algorithm than
the one used in the prototype testing in section 3) to associate images with location
coordinates (FR-1.4).

Secondly, we wanted to utilize the Environment Sensor Module data to get an orien-
tation relative to the magnetic North to associate images with orientation (FR-1.5).

Table 5.2: Functional requirements related to FR-1:Dataset collection.

ID NAME PRIORITY DESCRIPTION Implemented
FR-1.1 Dataset col-

lection
High Collection of an im-

age dataset.
✓

FR-1.2 Associate lo-
cation coordi-
nates with im-
ages

Medium Each image must be
associated with lo-
cation coordinates.

✓

FR-1.3 Associate ori-
entation with
images

Low Each image must be
associated with ori-
entation.

✗

FR-1.4 Google Car-
tographer
implementa-
tion

Medium Implementation of
the Google Cartog-
rapher algorithm.

✓

FR-1.5 Associate ori-
entation with
images

Low Utilization of the
Environment Sensor
Module to extrac-
tion an orientation
angle relative to the
North Pole.

✗

49

https://google-cartographer-ros.readthedocs.io/en/latest/
https://google-cartographer-ros.readthedocs.io/en/latest/

Chapter 5

Image-based pose prediction model

The image-based pose prediction model corresponds to the exploratory component
of this internship. However, developing an indoor position and mobile navigation
application is our primary objective and must be accomplished before proceeding
with more experimental and less critical procedures.

Therefore, the most critical requirement related to FR-2 is the creation of a baseline
model (FR-2.1). To validate our baseline model, we will need to validate it in two
datasets:

• 7-Scenes dataset (FR-2.3) - The original paper of ContextualNet tested its
performance in the 7-Scenes dataset [22]. An exemplary implementation of
the ContextualNet is expected to have a similar result as the original.

• Our datasets (FR-2.4) - Our robot is going to collect images of building
floors (CSW office spaces, which will act as our testing environments) and
associate them with coordinates and orientation. We must test our model
performance on these datasets before proceeding further(FR-3.3).

Another optional requirement is related to the improvement of the original Contex-
tualNet architecture and consists of:

• substitution of original GoogleNet backbone by YOLOR (best candidate as
described in section 4.5)

• LSTMs for structured feature correlation (as described in [26])

These methodologies were incrementally tried, and we used the best combination
for our final model (FR-2.5). However, this requirement was dropped due to more
pressing matters.

50

Approach

Table 5.3: Functional requirements related to FR-2:Image-based location.

ID NAME PRIORITY DESCRIPTION Implemented
FR-2.1 Implementation

of a baseline
model

High Creation of a base-
line model based on
the ContextualNet
architecture.

✓

FR-2.2 7-Scenes
dataset model
validation

High Our model must be
able to perform ac-
cordingly in the 7-
Scenes dataset.

✓

FR-2.3 Our datasets
model valida-
tion

High Our model must
be able to perform
accordingly in the
datasets collected
by our robot.

✓

FR-2.4 Baseline
model im-
provement

Low Experimentation
with different
methodologies in
order to improve
the baseline model.

✗

51

Chapter 5

Mobile application

The main objective of our internship is the development of a mobile app. We do not
plan to create a fully functional product; instead, we only want to create a minimalist
prototype that serves as a proof of concept. This prototype mobile application will
have the following functionalities:

• (FR-3.1) - allow the user to specify the building they are in.

• (FR-3.2) - allow the user to choose the destination.

• (FR-3.3) - must integrate with the pose prediction model.

• (FR-3.4) - display the building floor plant.

• (FR-3.5) - calculate the shortest path from the user’s current position to the
destination and display it.

• (FR-3.6) - get user orientation and display it.

To use our location prediction model, we must develop a server that will be responsi-
ble for using our model and integrating it with our mobile application ((FR-3.7)).
For example, given a model predicted user position and a destination, the server
calculates the shortest path from the user’s current position to the destination and
returns it to the mobile application (FR-3.8).

52

Approach

Table 5.4: Functional requirements related to FR-3:Mobile application.

ID NAME PRIORITY DESCRIPTION Implemented
FR-3.1 Building se-

lection
Low Our mobile app

must allow users to
specify the building
they are in.

✓

FR-3.2 Destination
selection

Medium Our mobile app
must to allow the
user to select its
dest2ination.

✓

FR-3.3 Prediction
model inte-
gration

High Our mobile app
must to be able
to use the location
prediction model
to predict the user
location and orien-
tation.

✓

FR-3.4 Building floor
plant

Medium Our mobile app
must show the
building floor plant
with the user loca-
tion.

✓

FR-3.5 Path display High The mobile appli-
cation must display
the path calculated
by the server.

✓

FR-3.6 User orienta-
tion display

Medium The mobile appli-
cation must display
the path calculated
by the server.

✓

FR-3.7 Server imple-
mentation

High Responsible to
receive the user’s
camera captures,
forward the model’s
predictions, and
return the pose
prediction to the
mobile application.

✓

FR-3.8 Calculate
shortest path

High The server must
calculate the short-
est path to the
destination based
on the map of the
building’s floor, the
location predicted
by the model, and
the destination
predicted by the
user. It then must
return to the mobile
application.

✓

53

Chapter 5

Robotic auto-exploration

Ideally, we want a robotic agent to autonomously explore the environment and
collect our dataset, which would incredibly simply be our system set up in a new
environment. However, we could not implement this step due to time constraints and
delays in more critical issues. This requires the implementation of a self-exploration
algorithm (FR-4.1) to enable autonomous exploration and image collection.

Table 5.5: Functional requirements related to FR-4:Robotic auto-exploration.

ID NAME PRIORITY DESCRIPTION Implemented
FR-4.1 Robotic auto-

exploration
Low Implementation of a

self-exploration al-
gorithm to enable
autonomous explo-
ration and image
collection.

✗

54

Approach

5.1.2 Non-functional requirements

Non-functional requirements define constraints (or goals) on how the system will do
so and include everything that is not related to the functional aspects of the software
system. In this section, the non-functional requirements that must be present in the
system are presented.

The first non-functional requirement (NFR-1) refers to the need for compatibility of
the navigation and exploration modules implemented with ROS since these modules
must work on the Jetson Nano, which serves as our agent’s computational unit.

The second non-functional requirement (NFR-2) is related to our internship’s pri-
mary objective - to propose a more accessible and cheaper alternative to beacon-
emitter signals. Therefore, our robot robotic should need the minimum setup for it
to run in a new environment - it would only be necessary to put our robot inside
the building floor to be explored and turn it on, with the minimum setup required
for it to run. Unfortunately, in this project, this goal was not achieved because we
had to drop the robotic auto-exploration requirement (FR-4) and add the manual
calibration of the application using a compass (FR-3.3).

The third non-functional requirement (NFR-3) is related to the fact that our robot
will use exclusively the laser scan data (and never the images captured by the cam-
era) for navigation and exploration purposes. This is because laser scan data is
more reliable and less susceptible to environmental changes (for example, images
are affected by illumination factors, such as time of day). However, we also did not
want to increase the system complexity, which was a compromise given time and
resource constraints.

The fourth non-functional requirement (NFR-4) is that the application must give
the user clear directions to their destination. It should be easy for users to follow
the app instructions to reach their goals.

The fifth non-functional requirement (NFR-5) is that the software must be capable
of rendering our application. Since heavy computation is performed on the smart-
phone, the only condition is the smartphone’s operating system being compatible
with the application software.

The sixth non-functional requirement (NFR-6) is that the application must peri-
odically consult the server to update the user location and correct any navigation
errors (once every 3 seconds). This is the reason why, in section 4.5 we included
Speed as one of the requirements for a future CNN backbone.

55

Chapter 5

Table 5.6: Non-functional requirements.

ID NAME DESCRIPTION Implemented
NFR-1 ROS compatibil-

ity
The navigation and explo-
ration modules must be
implemented or compati-
ble with ROS.

✓

NFR-2 Robot minimum
setup

The robot robotic should
need the minimum setup
for it to run in a new en-
vironment.

✗

NFR-3 Navigation just
with laser scan
data

Our agent will navi-
gate solely using the
laser scan data, as a
compromise between per-
formance/complexity.

✓

NFR-4 Clear directions The application must give
the user clear directions to
their destination.

✓

NFR-5 Smartphone The user smartphone must
be capable of render our
application.

✓

NFR-6 Server real-time
operation

Server must be able to out-
put pose predictions and
calculate the path every 3
seconds.

✓

56

Approach

5.2 Work methodologies

Two types of meetings are held to keep track of work and ensure all objectives are
achieved: weekly meetings with the Eng. Rui Lopes and monthly meetings with
both advisors. An assessment of the work is carried out, and adjustments are made
if necessary. In the monthly meetings, the participants are Professor Carlos Lisboa
Bento, Eng. Rui Lopes and the author. In these sessions, the work developed and
the difficulties encountered are discussed, and the next steps are planned, taking
into account the supervisor’s feedback and making any adjustments to the work
planning.

5.3 Risk analysis

Any software project is likely to encounter difficulties that, when they occur, can
harm the final product or even prevent its completion and force the modification of
development plans. These potential difficulties are risks and must be identified early
so that ways to mitigate them and reduce their effects on the project’s performance
can be planned. To facilitate its analysis, risks have associated attributes such as
the expected impact, the probability of happening, and the time window in which
they can occur. The impact of a risk is the effect that risk has on the project’s
success criteria. It is divided into:

1. High when it prevents reaching the success criteria

2. Medium when it is possible to get the success criteria but with great difficulties

3. Low when the success criteria are attainable without great difficulties

The probability of a risk happening is divided into:

1. High when the probability of happening is over 70% probability of occurring

2. Medium when the probability is between 70% and 40%

3. Low when the probability is less than 40%

The time window of risk corresponds to the period from identifying the risk to when
it is necessary to deal with it. It is divided into:

1. Large when it is estimated that the risk will occur in an interval greater than
three months

2. Medium when the window is between 3 months and one month

3. Short if the time window is less than one month

The identified risks, as well as their attributes and mitigation plan, are presented in
the following tables.

57

Chapter 5

Table 5.7: Risk 1 - Destruction/Damaging of JetRacer robot or peripheral devices.

RISK JetRacer is a very fragile device, manually assem-
bled with several different components. Therefore,
there is a risk of destruction/damage to the Je-
tRacer robot or peripheral devices due to an acci-
dent, resulting in the device’s inability to continue
functioning correctly.

IMPACT Medium
PROBABILITY Medium
Temporal Window Short
Mitigation plan Testing of the robot only on ground-level floors,

and only at non business hours.

Table 5.8: Risk 2 - Indoor positioning/orientation model not working.

RISK While the algorithm has worked on other projects,
there is no guarantee it will perform well on the
collected dataset.

IMPACT High
PROBABILITY Low
Temporal Window Short
Mitigation plan Investigation and implementations of alternative

models more suitable for the tasks at hand.

Table 5.9: Risk 3 - Augmented reality application not being a helpful user to navigate
indoors.

RISK While other works focus more on developing
image-based pose prediction algorithms, this
project’s objective is to implement an indoor nav-
igation system in an actual test environment.
Therefore, there might be unforeseen issues that
condition our system performance.

IMPACT High
PROBABILITY Medium
Temporal Window Medium
Mitigation plan Building several different prototypes with different

approaches and choosing the one with the best re-
sults.

58

Approach

Table 5.10: Risk 4 - Tasks not completed within deadlines.

RISK Development of high-complexity features can
cause tasks to not be completed within deadlines.

IMPACT High
PROBABILITY Medium
Temporal Window Long
Mitigation plan Monthly review of the task planning and estima-

tion of necessary time. Adjust approach to achieve
goals within deadlines.

Table 5.11: Risk 5 - Lack of mobile app development experience leads to performance
issues.

RISK Lack of mobile app development experience leads
to performance issues

IMPACT High
PROBABILITY Medium
Temporal Window Long
Mitigation plan Enrich theoretical knowledge on the subject.

Table 5.12: Risk 6 - Lack of familiarity with ROS leads to delays.

RISK Lack of familiarity with ROS leads to delays and
the risk of missing deadlines.

IMPACT Medium
PROBABILITY High
Temporal Window Long
Mitigation plan Enrich theoretical knowledge on the subject. Pri-

oritize the most critical requirements

59

Chapter 5

5.4 Technical specifications

This section presents components diagrams to help plan the software architecture.

This system consists of three distinct sections:

1. Data collection - Robotic agent responsible for constructing a dataset with
images associated with poses.

2. Image-based pose prediction model - Machine learning model trained on that
dataset to predict poses.

3. Mobile application - Mobile application responsible for handling user interac-
tion; Server responsible for path calculation and use of pose prediction model.

5.4.1 Data collection

Figure 5.1: Component diagram of the Data Collection component. In the center,
we have the robotic agent (JetRacer AI Kit), which communicates with three devices
- a laser scanner (RPLIDAR A2) and a camera (pre-installed on JetRacer).

JetRacer AI Kit is the basis of the robotic agent, and it communicates with the
other devices:

• Camera - Pre-installed with JetRacer. Communication is done via a Jupiter
Notebook.

• Laser Scanner - RPLIDAR A2. Communication is done via ROS (Robotic
Operating System).

This robotic agent is responsible for constructing a dataset of images associated with
location coordinates.

In a first step, the remote-controlled robotic agent will explore and map the environ-
ment. Unfortunately, due to how Google Cartographer works, using a pre-available
map in a traditional format (such as a building plant) is impossible.

In the second step, we utilize the produced map to associate images with location
coordinates. The map allows all coordinates to have the same reference point -
photos from the same place on different time instances will have similar location
coordinates (differences derived from scanning error).

60

Approach

5.4.2 Image-based pose prediction model

Figure 5.2: Original ContextualNet Model as depicted in [13].

Our image-based pose prediction model is based on ContextualNet [13]. It receives
a sequence of images and predicts a pose.

We will use the dataset built by the dataset collection robotic agent to train our
model. Therefore, while the original article outputs a full pose (location coordinates
and orientation), our model only outputs location coordinates.

61

Chapter 5

5.4.3 Mobile application

Figure 5.3: Component diagram of the mobile application system’s architecture.

In figure 5.3 we find the component diagram of the user mobile application system,
composed of two main modules - the mobile application and the server.

The mobile application handles all communication between the user and the system.
At the same time, the server manages the building plants and models, uses the pose
prediction model to predict user positions, and calculates the user path.

This is how the different components interact with each other:

• The building selector sub-module allows the user the select the building they
are in. This information is transmitted to the server’s component Building
manager.

• The building manager receives the information from the building selector
and returns to the mobile application the building’s floor plant.

and the map display sub-module is responsible for displaying the building floor
plant and calculating the shortest path from the current user position to its final
destination. Finally, the camera capture module will display for the user the recent
images being captured for the camera and send these images regularly to the User
Navigation module.

The services module comprises two subparts - the building floor plants storage sub-
module and the predictor sub-module.

The first one is responsible for storing machine learning models and plants of a
different building. According to the facility selected by the user, this sub-module
will select other machine learning models (trained explicitly for that building) and
floor plants. We will then send the floor plants to the mobile app (to display in the
map display sub-module) and tell the predictor sub-module which machine learning
model will be used.

62

Approach

This second part - the predictor module - consists of two subparts - an image storage
sub-module which stores the most recent images captured by the user (and deletes
old photos), and the machine learning sub-module, which uses these images (and the
building selected by the user) to output a coordinates and orientation prediction.

5.4.4 Components integration

5.4.5 System workflow

This system workflow is divided into three phases:

1. Image dataset collection - In this phase, we used a robotic agent to collect
images and associate them with a pose (location coordinates). The location
of the automated agent is calculated using the LIDAR device.

2. Pose prediction model implementation - In this phase, we implement and
train a machine learning model using the previously built dataset of images
associated with a pose.

3. Mobile application development - After obtaining our prediction model,
we deploy it to a server to use in our mobile application to predict the user’s
pose.

The first step is the creation of the dataset of the environment’s images associated
with position coordinates (an x,y position). This phase consists of two steps:

• Environment mapping - In the first step, we use the laser scanner device to
create a map using the Google Cartographer mapping algorithm.

• Dataset collection - Using the previously built map, we can collect images and
associate them with coordinates. These coordinates all have the same reference
point, defined by the mapping algorithm. The map also allows collecting
images at different instances while keeping the same reference point.

In the second step, we train the model of our algorithm with the dataset of our envi-
ronment’s images. Finally, we split the photos into distinct train and test sequences
and used them to select the best model.

Finally, we deploy this machine learning model to predict the user’s coordinates
in our mobile application system. We also used the map generated by the Google
Cartographer mapping algorithm as a plant to help the user navigate.

5.4.6 Components introduced error

These different phases introduce several sources of error in the final model. There-
fore, to reduce the system’s total error, it is necessary to measure each phase’s error

63

Chapter 5

and reduce it. The following sections discuss how we measure each phase error and
the steps taken to reduce it. Finally, we perform tests to determine the system’s
total error.

64

Approach

Figure 5.4: Phase 1 - Our Cartographer ROS uses sensor data to map the envi-
ronment and predict the robotic agent’s pose. The closer these predicted values are
to their real values, the less error is generated from this step. Phase 2 - Using the
previously constructed image dataset to train a pose prediction model. The more
precise this model, the less error it has. Phase 3 - After training our prediction
model, we deploy it to a server to be used in our mobile application. Due to the
difference between our dataset images and the user smartphone images, there is al-
ways some error generated from this step.

We will analyze the generated error in each phase and work on ways to reduce it.

5.4.7 Project limitations and constraints

Due to the software and hardware utilized, this project presents several limitations
that will have to be addressed in future work, which include:

• Only works on one floor - Due to our prototype limitations and time con-
straint, we limited the scope of our system to a single floor of the Critical
Software building.

• Very susceptible to dynamic scenarios - This solution works better in a
static environment. The pose prediction model assumes that the environment
does not change, but it does. Drastic environmental changes can affect the
model’s performance because it was trained in a different environment from
what it currently looks like. A solution to handle dynamic environments will
have to be found in future projects.

65

Chapter 5

5.4.8 Planning

In this section, the main tasks performed during the first semester are detailed here.
We created this Gantt diagram so that a plan can be easily formulated and to make
analyzing and adapting tasks (depending on the work done in each timeline) easier.
The initial diagram and the final diagram for the first semester are presented below.

Figure 5.5: The first semester planned work schedule.

Figure 5.6: First semester actual work schedule.

The initial tasks remained unaltered. Initially, I started by learning about the
company policies and more about the project, and the requirements were defined.

Using ROS to integrate RPLIDAR and the JetRacer AI Kit was necessary. Due to
the unfamiliarity with this framework, it is essential to allocate some time to study
it properly.

Two prototypes were built - one cardboard and another with 3D printed pieces.
Unfortunately, the first one was too fragile and unstable, which forced us to design
a better-suited one.

Both of these parts were smoother than expected, and also, because some exam
dates were pushed forwards due to COVID, more time was spent on research plus
the state-of-the-art, which took more time than anticipated.

The initial diagram and the final diagram for the second semester are presented
below.

66

Approach

Figure 5.7: The second semester planned work schedule.

Figure 5.8: The second semester actual work schedule.

This significant delay in FR-1 is due to the materialization of the risks 1 (Destruc-
tion/Damaging of JetRacer robot or peripheral devices) and 6 (Lack of familiarity
with ROS leads to delays):

• Destruction/Damaging of JetRacer robot or peripheral devices - We ended up
replacing the RPLIDAR A2, our laser scanner device, because it was damaged.
While it significantly reduced our mapping error, it consumed some time. Ad-
ditionally, in the final stages of the project, the robotic agent stopped working.
It took some time to figure out what was wrong, and in the end, we discovered
that one of the servo motors had broken down. After replacing it, we resumed
our dataset collection phase.

• Lack of familiarity with ROS leads to delays - In the first semester, we be-
lieved that Cartographer ROS and RPLIDAR A2 would be able to provide
both location and orientation. However, a more in-depth analysis concluded
that only location data was available, which forced us to come up with an
alternative solution using the Environment Sensor module, which introduced
more complexity to our system.

This significant delay in FR-1 consumed too much time and eliminated any time we
had for FR-4 and the optional requirements of FR-2. Unfortunately, therefore, we
were not able to proceed with their requirements.

The other tasks were not so affected and were implemented and tested while com-
ponents ordering and other functions for FR-1 were on standby.

67

Chapter 5

68

Chapter 6

Implementation

6.1 Image Dataset Collection

We need a dataset of the environment’s images associated with the location co-
ordinates to train our pose prediction model. A remote-controlled robotic agent
performs this process.

Two different processes were utilized to obtain location coordinates (x, y) and orien-
tation (θ), which will be described in the sections below. Unfortunately, we were not
successful in obtaining the images’ orientation angles, forcing us to devise an alter-
native solution: both the orientation retrieving process and the alternative solution,
which will be depicted below.

6.1.1 Localization

To obtain the localization of our robotic , we utilized a mapping algorithm called
Google Cartographer [10], which uses laser scans from our RPLIDAR A2 to map
and predict the position of our robotic agent. We integrate the software and the
LIDAR communicated using ROS (Robot Operating System). LIDAR data can be
affected by reflective3 and transparent surfaces.

The reason we utilized this technology was that Critical Software already had these
components in its possession, which greatly reduced research and acquisition time.
CSW had in its possession a RPLIDAR A2 [5] and a JetRacer AI Kit [5].

Localization stages

When collecting our images and associating them with x,y location coordinates,
we want to make sure all these coordinates have the same reference point so that
pictures in the exact location inside the building have similar coordinates values. To
achieve this goal, the image dataset collection process has two distinction steps:

1. Map construction - In this first stage, we will transverse our environment

69

Chapter 6

(in our case, the ground floor of Critical Software building A in Coimbra) to
map it. This map has an origin point that will serve as a reference point for
the image position values. We can use the origin point with other metadata
to get any point’s x,y position, with the origin point defined as (0, 0).

2. Image dataset collection - In this next step, we use our previously built map
to position our robotic agent automatically - the same place in the building at
different time instances should generate approximated coordinates. Our map’s
reference point always ensures that images from other time instances on the
exact location have similar coordinates values.

Figure 6.1: Example of a map computed by Google Cartographer using laser scan
data. The white cells represent open space (rooms, corridors, and others), black
cells represent occupied space (walls, chairs, structural beams, for example), and
grey cells represent unknown or uncertain space (unexplored regions).

6.1.2 Orientation

Orientation is the angle the robotic agent currently faces relative to the North Pole.
In this project, we planned to use our Environment sensor module’s accelerome-
ter and magnetometer to create a compass heading, which would be the cardinal
directions used for navigation and geographic orientation.

70

Implementation

Orientation original solution

To obtain a compass heading - the orientation of the robotic agent in relation to the
north magnetic pole - we followed the formulas described in [40], which describes
how we can convert accelerometer and magnetometer values into a tilt2-compensated
compass heading.

A magnetometer is a device that measures a magnetic field or magnetic dipole
moment. A compass is one such device that measures the direction of an ambient
magnetic field, in this case, the Earth’s magnetic field. If a compass were sitting
in the local horizontal plane, then the roll and pitch angles would be zero, and the
heading would be calculated as:

Heading = arcTan(Y h/Xh) (6.1)

where Xh and Yh represent the Earth’s horizontal magnetic field components; as
the compass is rotated, the compass heading would sweep 0° to 360°, referenced to
the magnetic north.

However, if the compass is tilted, the tilt angles (roll and pitch) and all three mag-
netic field components (X, Y, Z) must be used to calculate the heading. The formula
required to calculate the compass heading is defined as:

Xh = Xnormalized ∗ cos(pitch) + Y ∗ sin(roll) ∗ sin(pitch)− Z ∗ cos(roll) ∗ sin(pitch)
Y h = Ynormalized ∗ cos(roll) + Z ∗ sin(roll)

(6.2)

where
Xnormalized = X − (Xmax −Xmin)/2

Ynormalized = Y − (Ymax − Ymin)/2
(6.3)

where Xmax, Ymax, Xmin and Ymin are the biggest and smallest values of the mag-
netometer X and Y reading values (This last equation is done to offset the magne-
tometer’s inclination effect on the reading values).

Lastly, to calculate the compass heading angle, we apply the following formula:

|θ| =



180− arcTan(Y h/Xh) if Xh < 0

−arcTan(Y h/Xh) if Xh > 0, Y h < 0

360− arcTan(Y h/Xh) if Xh > 0, Y h > 0

90 if Xh = 0, Y h < 0

270 if Xh = 0, Y h > 0

Any acceleration will affect the tilt or accelerometer outputs and result in heading
errors. For example, the robotic agent makes a turn or accelerates. In that case,
that will cause the tilt sensors to experience additional forces in addition to gravity,
and the compass heading will be in error.

We programmed the car to stop every 3 seconds to combat this acceleration effect
and measure the accelerometer and magnetometer values. Then, at the end of the

71

Chapter 6

image collection process, we calculate the angle using the sensor’s data and associate
them with the images.

Orientation of original solution results

We were not able to collect quality data from the Environment Sensor Module. Even
when the sensor was still and not moving, it gave erratic values. The most likely
cause was the magnetic fields generated by the robotic agent’s electric engines.

6.1.3 Orientation proposed alternatives

Due to the issues found in the initially proposed solution for retrieving the image
orientation, we were forced to come up with alternative solutions:

• Trajectory inferred orientation - Using the location coordinates (x,y) pro-
vided by Google Cartographer, we could derive an orientation angle through-
out the time. This solution could provide orientation for the application on
all smartphones.

• Map orientation calibration - Using a smartphone compass and 2 points
manually chosen in the map, we can calibrate the map and then use the
smartphone compass to get an orientation. This solution would not allow us
to associate images with direction, so our model could not provide orientation.
This means orientation information would be limited to smartphones equipped
with a compass.

72

Implementation

6.2 Location and orientation prediction Model

As stated in section 4.3, the best model to accomplish our objectives given our
requirements is the ContextualNet ([13]). Unfortunately, we were unable to find a
pre-implemented model. Therefore we implemented this model using PyTorch. This
process consisted of a few steps:

1. Model implementation (according to specifications in the original article).

2. Model validation in the 7-Scenes Dataset [22]. This dataset consists of RGB-D
camera images and contains sequences in different scenarios. It is used in [25],
[13] and [26] to validate and compare their results and is composed of several
image sequences in different scenarios. However, due to time constraints, we
are validating our model in solely one scene - "chess". Therefore, we tested
other parameters and configurations to obtain the best possible configuration.

3. Model training and evaluation in the dataset of our test environment - ground
floor of CSW office building in Coimbra. (collected as described in 6.1). We
will use the best parameter configuration obtained in the 7-Scenes dataset
model validation.

4. Model evaluation in images captured from a smartphone camera. This step
will give us a sense of the performance of our final mobile application.

Model implementation

As mentioned before, we could not find an implemented version of Contextual-
Net. Therefore, one was implemented from scratch. Fortunately, we found a
GoogleNet implementation and Places weights on https://github.com/nemoxb/
PoseNet-PyTorch, reducing our implementation effort. All code was implemented
on the PyTorch framework.

Some notes about the model extracted from the original article:

• GoogLeNet’s input image size is 224 × 224 × 3.

• GoogleNet’s last fully connected layer is modified to generate a feature vector
of size 2048 instead of 1024. The first LSTM layer uses this feature vector as
input.

• The weights of the CNN layers were initialized with the weights trained on the
Places dataset (as indicated in [41]).

• The first LSTM layer contains 512 hidden cells while the second layer contains
50. The second LSTM layer is connected to 2 separate fully connected layers
with a many-to-one configuration.

• The sequence size of the LSTM layers was set to 3 - 3 images inputted into
our model to obtain a pose.

73

https://github.com/nemoxb/PoseNet-PyTorch
https://github.com/nemoxb/PoseNet-PyTorch

Chapter 6

• The training process consists of two steps - In the first step, the weights of the
GoogleNet are fine-tuned, and the weights of the LSTM layers are frozen. In
the second step, we only optimize the weights of the LSTM layers and freeze
the weights of GoogleNet.

• The weights of the LSTM layers were initialized using a glorot uniform distri-
bution.

• In this article, it was utilized the Adam [42] optimizer with the following
parameters - ϵ = 10−̂8, β1 = 0.9, and β2 = 0.999.

Some implementation details are missing from the article that can impact the model
performance, specifically the applied regularization techniques. For example, while
we can infer from the article that both dropout and weight decay were applied to
this model, we are only given the weight decay value - 10−8. It is also not explicitly
said what other forms of regularization are used in addition to dropout and weight.

6.2.1 Model validation in the 7-Scenes Dataset

The 7-scenes dataset [22] is composed of tracked RGB-D camera frames in different
scenarios. All scenes were recorded from a handheld Kinect RGB-D camera at
640×480 resolution, and the predicted poses from the Kinect are considered the
"ground truth". In addition, there are predefined training and test sequences to
train and test different algorithms and compare them.

Each sequence consists of 500-1000 frames, with each frame associated with three
files:

• Color - frame-XXXXXX.color.png . It consists of RGB images.

• Depth - frame-XXXXXX.depth.png (depth in millimeters). It consists of the
distance of the points in the image to the camera (NOT used in this project).

• Pose - frame-XXXXXX.pose.txt (camera-to-world, 4×4 matrix in homoge-
neous coordinates). It consists of a matrix encoding the translation and rota-
tion of the camera in relation to the origin point.

In this project, we only utilized the RGB images and the homogeneous coordinates
matrices (to extract the poses).

As explained in this lecture of the course of Computer Science at Colombia Univer-
sity (https://www.cs.columbia.edu/~allen/F19/NOTES/homogeneous_matrices.
pdf), homogenous coordinates are a mathematical expression of a set of rotations
and translations encoded into a 4x4 matrix. Homogeneous coordinates matrices are
useful in computer graphics to transform a point from a certain point of view into
a topic from a different point of view.

A homogenous transformation matrix H is defined as

H = Translation(x1, y1, z1) ∗Rotationx(x2) ∗Rotationy(y2) ∗Rotationz(z2) (6.4)

74

https://www.cs.columbia.edu/~allen/F19/NOTES/homogeneous_matrices.pdf
https://www.cs.columbia.edu/~allen/F19/NOTES/homogeneous_matrices.pdf

Implementation

where x1, y1, z1 are the translation components along the x,y,z axis and x2, y2, z2
are the rotation components along the x,y,z axis.

More specifically, each component formula is defined as

Translation(x1, y1, z1) =


1 0 0 x1

0 1 0 y1
0 0 1 z1
0 0 0 1



Rotationx(x2) =


1 0 0 0
0 cos(x2) −sin(x2) 0
0 sin(x2) cos(x2) 0
0 0 0 1



Rotationy(y2) =


cos(y2) 0 sin(y2) 0

0 1 0 0
−sin(y2) 0 cos(y2) 0

0 0 0 1



Rotationz(z2) =


cos(z2) −sin(z2) 0 0
sin(z2) cos(z2) 0 0

0 0 1 0
0 0 0 1


It is necessary to retrieve the position and orientation from these matrices:

• The position is obtained directly from the matrices - the right-hand 3 × 1
column describes its position.

• The upper left 3 × 3 matrix represents the object’s orientation. However,
the conversion is a bit more tricky. Therefore, we utilized the Python library
Pyquaternion (https://pypi.org/project/pyquaternion/), which converts the
matrices into quaternions.

6.2.2 Model validation in the collected dataset

Utilizing the dataset collected by our robotic agent and the parameters used for the
7-scene dataset validation, we intend to train our model to be used in the Critical
Software office space.

To have more accurate results, we collected image sequences using a smartphone.
More details and the results are presented in section 7.3.

75

Chapter 6

6.3 Mobile Application System

Figure 6.2: Component diagram of the mobile application system’s architecture.

In this section, we will discuss the implementation of the mobile application system.

Our mobile application was developed using Flutter (https://flutter.dev/), an
open-source framework developed by Google that allows building applications for
Android and IOS from a single codebase.

Our server, a lightweight web application framework, was implemented in Python
using the Flask library (https://pypi.org/project/Flask/).

6.3.1 Mobile Application

In figure 6.3 we can see a screenshot of a working prototype of our mobile app. This
is how the different parts interact:

• Building selector - On the top, we have a scroll-down button where the
user selects the building they are in (at this moment, it only has one working
option). After choosing an alternative, the mobile app requests the building
plant’s server.

• Camera preview - This component captures images and sends them to the
image manager. It also displays the video feed to the user.

• Map display - Displays the building plant and shows some interesting points
on top (points manually set on the configuration file). After the user has
touched a point in the map (setting it as the destination), the mobile app
will send images (stored in the image manager) every 3 seconds to the server
to return the user position and path to the destination. In the case of a
mobile phone with a compass, it displays the orientation with a blue arrow.
Otherwise, the arrow is removed.

76

https://flutter.dev/
https://pypi.org/project/Flask/

Implementation

Figure 6.3: Example of use of the mobile application.

6.3.2 Server

The server comprises two components - the Building manager and the User naviga-
tion.

The Building manager is responsible for managing the building plants and the mod-
els. According to the option selected in the Mobile App’s Building Selector, this
component provides the correct building plant for the Mobile App’s Map display
and the right building plant and prediction model for the User Navigation Model.

The User Navigation module is responsible for two things:

1. Calculating the user position - By using the image sequences provided by the
Image Manager and the prediction model supplied by the Building Manager,
the server calculates the user position.

2. Calculating the path - Given the previously calculated position, the destination

77

Chapter 6

selected by the user, and the map provided by the Building Manager, we
calculate the path. We then return it to our mobile app.

To calculate our path, the server implements the A* algorithm (https://pypi.
org/project/pathfinding/). We chose this algorithm because it was the fastest
readily available option and satisfied our requirements.

A*

A* Star [43] was created as part of the Shakey project (https://www.sri.com/
hoi/shakey-the-robot/). A* Star works to find a path from the start to the
destination.

Figure 6.4: In a 2D Grid, obstacles are represented by dark cells, and the free path is
represented by white cells. For example, A* Star is an algorithm to find a path from
the user to its destination. Our mobile application uses the Dataset Collection’s
generated map as a 2D grid for the A* algorithm.

At each step, A* picks the node according to a value f , with f = g + h. We define
g and h as:

• g - the movement cost to move from the starting point to a given square on
the grid, following the path generated to get there.

• h - also known as a heuristic, this is the estimated movement cost to move
from that given square on the grid to the final destination. There can be many
ways to calculate this heuristic.

At each step, it picks the node/cell having the lowest f and processes that node/cell.

The algorithm works as follows:

• We initialize the Open list - List of possible next steps. The first element is
our starting points, with f = 0.

78

https://pypi.org/project/pathfinding/
https://pypi.org/project/pathfinding/
https://www.sri.com/hoi/shakey-the-robot/
https://www.sri.com/hoi/shakey-the-robot/

Implementation

• We initialize the Closed list - Already analyzed points.

• While the open list is not empty:

– Find the node with the smallest f on the open list, call it q.

– Remove q from the open list.

– Analyse q ’s eight children (neighboring points) and set their parents to
q.

– For each child:

∗ If the child is the goal, stop searching.
∗ Else, compute g and h to obtain f.
∗ If a node with the same position as the child is in the OPEN list and

has a lower f, skip this child.
∗ If a node with the same position as the child is in the CLOSED list,

which has a lower f, skip this successor. Otherwise, add the node to
the open list.

– push q on the closed list.

To calculate the heuristic, the implementation we utilize uses the Manhattan dis-
tance.

79

Chapter 6

80

Chapter 7

Results

In this chapter, we describe and present the results on the tests performed for all
phases - pose quality of the dataset, pose prediction model accuracy, and mobile
application performance.

7.1 Dataset

7.1.1 Localization

Evaluation methods

After obtaining our map and collecting our image dataset, we evaluate the predicted
pose values with the actual coordinates. Ideally, we would mark a path the robotic
agent would follow and compare the predicted trajectory pose values with the actual
trajectory pose values. Unfortunately, that is impossible because the test environ-
ment is a Critical Software office space used by other employees and may not be
damaged. Instead, we will follow the same procedure as described in [21] - we define
a set of evaluation points spread across the map, from which we know the actual
world coordinates, and compare the predicted points by our robotic agent.

The original RPLIDAR A2 device presented a crack and had some bad connections
issues, but it mostly performed well and was utilized in the earlier experiments.
Later, we ordered a brand new RPLIDAR A2 laser scanner and repeated the exper-
iments.

81

Chapter 7

Figure 7.1: Left - Set of points defined in the test environment (Critical Software
building’s ground floor) as evaluation points. Right - Point D marked in building
floor.

Old RPLIDAR results

Figure 7.2: Best results obtained with old LIDAR device - average error of 1.622
m and a variance of 0.590 m.

After testing several different configurations for Cartographer on our original RPL-
IDAR A2, our best result was an average error of 1.622 m and a variance of
0.590m. However, some glass walls and doors were not detected in this environ-
ment, affecting the final location prediction.

82

Results

New RPLIDAR results

Figure 7.3: Results obtained with the new LIDAR device - average error of 0.830
m and a variance of 0.238 m - using the same configuration as in the old LIDAR
device.

After acquiring a new RPLIDAR A2 device, we tested the same Cartographer pa-
rameters at the same points. Again, we achieved much better results - an average
error of 0.830 m and a variance of 0.238 m.

Figure 7.4: Left: In the test environment of the article, [21], Google Cartographer
algorithm was able to achieve an average error of less than 10 cm. However, we must
point out that the environment does not contain reflective or transparent surfaces
and is more simple. Right: As we can observe, the CSW text environment is much
more complex, with lots of chairs, tables, and reflective and transparent surfaces.

In the article [21] the Google Cartographer algorithm achieved an average error of
less than 10 cm, a result better than we reached. However, it must be noted that our
environment is much more complex - the testing environment of [21] is a warehouse
filled with boxes. In contrast, our testing environment is an office space with many
objects that can either move positions or reflect or not the laser, such as chairs, glass
walls, and doors. All these factors affecting the algorithm precision (environments
as depicted in figure 7.4).

83

Chapter 7

7.1.2 Orientation

As previously discussed in section 6.1.2, an alternative to the original solution based
on the Environment Sensors module data is:

• Trajectory inferred orientation - Using the location coordinates (x,y) pro-
vided by Google Cartographer, we could derive an orientation angle through-
out the time. This solution could provide orientation for the application on
all smartphones.

• Map orientation calibration - Using a smartphone compass and 2 points
manually chosen in the map, we can calibrate the map and then use the
smartphone compass to get an orientation. This solution would not allow us
to associate images with direction, so our model could not provide orientation.
This means orientation information would be limited to smartphones equipped
with a compass.

Trajectory inferred orientation

We performed some tests to determine if we could utilize the trajectory to infer the
angles.

Using a similar approach to the mapping approach, we defined some pair points
(whose coordinates were known), from which we can derivate two orientation angles
(all angles are anti-clockwise):

• Real angle - Angle derived from the points actual coordinates.

• Calculated angle - Angle derived from the point coordinates calculated by the
Google Cartographer mapping algorithm.

We tested this orientation method in the best possible scenario - points separated
by a long distance, where the coordinates values error would be reduced.

Figure 7.5: Green lines are the real angles, and red lines are the predicted angles.
The line’s direction is from their respective point A to point B. Here are the errors
for the different pair points - Left: 8.49º; Center: 12.46º; Right: 6.19º.

84

Results

Considering the magnitude of the errors, we cannot use this solution. These values
happen in the best scenario - pairs of distant points - and we can expect that closer
pair points would have more significant error values. If we trained our model using
these values, it would not provide good results.

Map orientation calibration

Using the coordinates of the real point, we can draw a line on the map and get an
orientation value of the line.

Figure 7.6: We can calibrate our map using a calculated offset using two marked
points and a compass. For example, the angle of line A->B is 160º, and the compass
heading (angle to the magnetic north) is 33º (anti-clockwise). With these two values,
we get an offset of 127º.

Afterward, we used a compass to measure the line orientation according to the
magnetic north. Using these two angles, we calculate an offset, passed on to the
mobile app using a configuration file, which we provide to the mobile application
through a configuration file.

Even though this solution limits the orientation information to mobile phones with a
compass, it is the only option that can provide good results. Therefore, we proceeded
with this solution.

7.1.3 Generated dataset

We generated four sequences of images (collected at 2Hz) associated with location
coordinates (x,y):

85

Chapter 7

• Train sequences (4978 images):

– Sequence 0 - 1570 images

– Sequence 1 - 1617 images

– Sequence 2 - 1791 images

• Sequence test - 1611 images

86

Results

7.2 Location and orientation prediction Model

To overcome these knowledge gaps and improve our model results, we performed
several different experiences to obtain the best parameters:

• Dropout rate and Weight decay - The article does not specify all regu-
larization methods and parameters. Therefore, we experimented with several
dropout and weight decay values to select the best ones.

• β - By changing the parameter β, we expect to obtain a better compromise
between position/orientation accuracy.

7.2.1 7-scenes validation - Experiments results

For training our model, we followed the instructions as depicted in the original
article:

• Due to time constraints, we only tested on scenario "chess" of the 7-scenes
dataset.

• We used the same training/testing sequences, indicated as in the 7-Scenes
dataset documentation.

• We used a batch size of 64.

• In the first stage, We start by freezing the GoogLeNet backbone and training
the LSTM layers. Then, we freeze the LSTM layers in the second stage and
train the backbone. We repeat this process three times.

• We utilized the Adam optimizer with the same parameters as the original
article [13].

• Another change we implemented to the training procedure was using the
Plateau detection [44]. This method reduces the learning rate by a factor
/alpha when detecting that a specific metric has stopped improving and can
improve the model performance. In our case, we have defined the learning
rate to decrease by ten after the model failed to reduce the training error by
10% after ten iterations. After detecting the second plateau, we switch the
layers being frozen. This process effectively means that we start with an initial
learning rate of 10−4 and then decrease it to 10−5 when detecting a plateau.

In this experiment, we will determine the best values for the following parameters:

• Dropout rate

• L1 penalty

• Weight decay

87

Chapter 7

• β

ContextualNet accuracy uses the median position/orientation error as the perfor-
mance measure to compare our algorithm implementation with the original article.

In each table, we underlined the parameters that provided the best results.

7-scenes validation - Experiments results - L1 penalty

We started by determining the best l1 penalty value while keeping the following
parameters static:

• Dropout rate = 0.5

• Weight decay = 10−8

• β = 250

Table 7.1: Prediction model experiment table 1 - L1 penalty.

ID L1 penalty Validation error Median posi-
tion/orientation errors

(m/º)

Original
article

- - 0.15 / 6.12

0 0 4489 0.215 / 6.678

1 10−3 6931 0.257 / 6.618

2 10−4 3713 0.247 / 6.224

3 10−5 4362 0.279 / 6.644

4 10−6 1545 0.271 / 6.412

7-scenes validation - Experiments results - Weight decay

We started by determining the best weight decay value while keeping the following
parameters static:

• L1 penalty = 0

• Dropout rate = 0.5

• β = 250

88

Results

Table 7.2: Prediction model experiment table 2 - Weight decay.

ID Weight decay Validation error Median posi-
tion/orientation errors

(m/º)

Original
article

10−8 - 0.15 / 6.12

5 0 5350 0.257 / 7.157

6 10−7 6544 0.258 / 6.889

0 10−8 4489 0.215 / 6.678

7 10−9 4364 0.308 / 6.821

8 10−10 4384 0.267 / 6.487

9 10−11 4642 0.245 / 6.706

We found the best weight decay value from the experiments is 10−8.

Experiments results - Dropout rate

We started by determining the best dropout rate value while keeping the following
parameters static:

• L1 penalty = 0

• Weight decay = 10−8

• β = 250

Table 7.3: Prediction model experiment table 3 - Dropout rate.

ID Dropout rate Validation error Median posi-
tion/orientation errors

(m/º)

Original
article

- - 0.15 / 6.12

10 0.4 4209 0.245 / 7.149

0 0.5 4489 0.215 / 6.678

11 0.6 4384 0.275 / 7.346

89

Chapter 7

From the experiments, we found that the best dropout rate is 0.5.

7-scenes validation - Experiments results - β

Finally, we experimented with decreasing β, which decreases the orientation loss
error. We expected this to reduce the position error, approximating our algorithm
results to the original ones. We kept the following static parameters:

• L1 penalty = 0

• Weight decay = 10−8

• Dropout rate = 0.5

ID Beta Validation error Median posi-
tion/orientation errors

(m/º)

Original
article

250 - 0.15 / 6.12

12 50 1091 0.233 / 7.187

13 100 2548 0.235 / 7.292

14 150 3372 0.291 / 7.568

15 200 3712 0.267 / 7.046

0 250 4489 0.215 / 6.678

7.2.2 7-scenes validation - Experiments results - final param-
eters

After all these experiments, we obtained the following parameter values:

• L1 penalty = 0

• Weight decay = 10−8

• Dropout rate = 0.5

• β = 250

Our final model obtains a median position/orientation error of 0.215m / 6.678º.
Compared to the original article’s results of 0.15m / 6.12º, we can observe that our
model is significantly worse.

90

Results

As stated before, there was no pre-available implementation of ContextualNet, and it
was necessary to create our own according to the information provided in the original
article. Therefore, the most likely reason for our model’s lack of performance is the
omission of some implementation detail. We did experiment with some parameters
to find the best combination to overcome this issue, but our model still is not as
good as the original one.

However, our model’s performance (0.215m / 6.678º) is comparable to the original
one (0.15m / 6.12º). Therefore, due to lack of time and more critical issues, we
consider our model validated in the 7-Scenes data.

91

Chapter 7

7.3 Mobile Application System

Our mobile app operates at the required speed, updating the path and user position
every 3 seconds.

In the case of a mobile phone with a compass, it displays the orientation with a blue
arrow. Otherwise, we remove the arrow.

In this next part, we will analyze the prediction model’s performance and how it
affects the whole user experience.

7.3.1 Prediction model validation - Experiment process

We collected video sequences on the same evaluation points defined for the mapping
evaluation process to get a sense of the model’s performance in real test environ-
ments. We associate the difference between the actual evaluation points and the
predicted coordinates as the model’s error in the test environment.

These image sequences represent real sequences of images collected from users’
smartphones. Therefore, we consider the results of these images a measure of our
system in a real environment.

Figure 7.7: We used the same points defined in the mapping process because we
know the actual coordinates. We recorded a video sequence that ended on the
marked points and extracted images from these videos to evaluate the prediction.

92

Results

Figure 7.8: Captured images using a mobile phone camera for point A. Before
inputting them into the model, they are resized and cropped into 320x240 dimensions
(the exact dimensions utilized in the mobile application).

We must clarify that we did not use these evaluation points in the model training
phase.

7.3.2 Prediction model validation - Model training process

As a result of our dataset collection phase, we generated four sequences of images
(collected at 2Hz) associated with location coordinates (x,y):

• Train sequences (4978 images):

– Sequence 0 - 1570 images

– Sequence 1 - 1617 images

– Sequence 2 - 1791 images

• Sequence test - 1611 images

Our robotic agent generated these pictures, and they are the only images utilized in
our model training. The smartphone’s photos are only used to validate our model.

We followed the same training procedure in the model validation on the 7-Scenes
dataset in section 6.2. Additionally, due to lack of time and other more critical mat-
ters, we solely utilized the parameters obtained during the model’s validation on the
7-Scenes dataset. While the images are different and additional experiments could
improve the results, we observed throughout the experiments for the model’s vali-
dation that the performance difference is not too big, and we disregard it to address
other critical issues. However, future work might benefit from further experiments
on the model tuning phase.

93

Chapter 7

7.3.3 Prediction model validation - Experiment results

With the training/validation image sequences and the evaluation points image se-
quences, we obtain the following results:

Dataset Average/variance of position errors (m)

Robotic agent’s validation images 0.686 / 2.123

Evaluation points’ image sequences 7.924 / 8.957

We can observe that we obtain very different results on the two image sets. More
importantly, we get bad results on the evaluation points’ image sequences - an
average positioning error of 7.924m and a variance of 8.957m, which means
we cannot be used our system in a real environment.

The considerable difference between the performance of the two image sets indicates
that the likely cause for our system’s poor performance is too much difference be-
tween our robotic agent’s images and the evaluation points’ image sequences. As
a result, our model cannot learn from the robotic agent’s images to predict image
poses in a real environment.

Figure 7.9: Captured images using the robotic agent.

94

Results

Figure 7.10: Captured images using a mobile phone camera (the images were
cropped to be the same dimension as utilized on the mobile application).

As we can visualize in figures 7.9 and 7.10, the images present a number of differ-
ences:

• The robotic agent is very small; it has only around 20cm in height, much
shorter than any human user would hold its smartphone.

• The smartphone’s images are much blurry and present rotation.

• The robotic agent travels at a very stable speed and smooth rotation, while a
user trajectory is much more erratic.

• The robotic agent’s images present a distortion called Fish eye, which results
in images becoming more curved around the edges. An example is shown in
figure 7.11.

95

Chapter 7

Figure 7.11: Example of Fish eye. The metal beam on the right is in reality straight.

These results indicate that the main focus of a future project is the improvement
of the dataset collection phase, which includes the use of a prototype able to more
accurately reproduce a user’s smartphone point of view. Additional data augmenta-
tion techniques might also be applied, such as blurring and rotation, and correction
of the Fish eye distortion.

7.3.4 Mobile application performance

Due to our prediction’s model poor performance, the calculated user position has a
significant margin of error. This ultimately leads to a path of inferior quality that
does not help the user reach its destination.

Regarding using the smartphone’s compass to obtain user orientation, practical tests
have revealed that the compass fails to provide proper user orientation. The reason is
that when we place the compass horizontally, it works well. However, the compass
does not work well when we put it vertically, which is the normal position when
utilizing the app.

96

Chapter 8

Conclusion

During this internship at Critical Software, the main goal was to design and imple-
ment an Indoor Positioning System using Computer Vision and Augmented Reality
Techniques. Therefore, the objectives were:

1. Collect an image dataset using a robotic agent (based on JetRacer AI Kit [4])
and associate each image with x,y coordinates, and orientation angle.

2. Define a Deep Learning architecture and train an ML model that will use the
images as input and output the user’s pose.

3. Develop an augmented reality mobile application using this ML model to locate
the user inside the building floor.

During the first semester, we studied the current state-of-the-art mapping algorithms
and object detection and classification models. In addition, we studied past solutions
for image-based indoor positioning systems. We also familiarized ourselves with the
ROS framework and developed a prototype to map the environment using LIDAR
data.

During the second semester, we collected a dataset of images associated with lo-
calization coordinates. Then, we used this dataset to train our prediction model.
Furthermore, we also collected smartphone image sequences to validate our model
and assess its performance for user navigation. Finally, we deployed our prediction
model in our indoor positioning system.

This project had many challenges, and we had to work with different technologies
for the project’s steps. Some challenges include learning how to work with ROS
(Robot Operating System) and the 3D printer for constructing the robotic agent,
using the PyTorch framework to implement the prediction model, and using the
Flutter programming to develop our mobile application. This diversity of challenges
introduced me (the author, Eduardo Guerra) to many different technologies and
made this project an exciting challenge.

This project’s main goal was not achieved - the implemented mobile application
does not perform well in a real test environment. Additionally, there was a failure

97

Chapter 8

to obtain the robotic agent’s orientation angle, which led to adopting an alternative,
less ideal solution.

Even though our project was not able to succeed in its final objective - the tests
reveal the mobile application is unable to perform in a real scenario - at the end we
were able to identify tasks to be developed in future work to improve on this work:

• Ground-truth trajectory - Due to the limitations imposed by Critical Soft-
ware’s office space, we could only mark a set of points as the ground truth.
However, in future work and in a more appropriate environment, we would be
able to define a trajectory (lines on the ground), which could more precisely
define our dataset and prediction model’s performance.

• More suitable robotic agent - Our robotic agent is very short (only around
20cm), compromising the machine learning model’s training. In addition, we
cannot ignore the difference in perspectives between the robotic agent’s and a
smartphone’s point of view.

• A precise orientation retrieving sensor module - A failure of this project was not
considering how complex it would be to extract the direction of a robotic agent
on the move. A proper solution will have to be researched and implemented
in future work.

We believe that identifying these issues provides helpful insight for future image-
based indoor positioning systems and constitutes a main contribution of this work.
This project was an enriching experience that increased my knowledge in various
areas.

98

References

[1] Ian Goodfellow, Yoshua Bengio, and Aaron Courville. Deep learning. Adaptive
computation and machine learning. The MIT Press, Cambridge, Massachusetts,
2016.

[2] Joseph Redmon, Santosh Divvala, Ross Girshick, and Ali Farhadi. You Only
Look Once: Unified, Real-Time Object Detection. In 2016 IEEE Conference on
Computer Vision and Pattern Recognition (CVPR), pages 779–788, Las Vegas,
NV, USA, June 2016. IEEE.

[3] Shaoqing Ren, Kaiming He, Ross Girshick, and Jian Sun. Faster R-CNN:
Towards Real-Time Object Detection with Region Proposal Networks, January
2016. Number: arXiv:1506.01497 arXiv:1506.01497 [cs].

[4] Waveshare. Bworld robot control software. https://www.waveshare.com/
wiki/JetRacer_AI_Kit.

[5] Slamtec. Rplidar a2. https://www.slamtec.com/en/lidar/a2.

[6] Waveshare. Environment sensors module for jetson nano. https://www.
waveshare.com/environment-sensor-for-jetson-nano.htm.

[7] Xuan Sang Le, Luc Fabresse, Noury Bouraqadi, and Guillaume Lozenguez.
Evaluation of Out-of-the-Box ROS 2D SLAMs for Autonomous Exploration of
Unknown Indoor Environments. In Zhiyong Chen, Alexandre Mendes, Yamin
Yan, and Shifeng Chen, editors, Intelligent Robotics and Applications, volume
10985, pages 283–296. Springer International Publishing, Cham, 2018. Series
Title: Lecture Notes in Computer Science.

[8] Stefan Kohlbrecher, Oskar von Stryk, Johannes Meyer, and Uwe Klingauf. A
flexible and scalable SLAM system with full 3D motion estimation. In 2011
IEEE International Symposium on Safety, Security, and Rescue Robotics, pages
155–160, Kyoto, Japan, November 2011. IEEE.

[9] Giorgio Grisetti, Cyrill Stachniss, and Wolfram Burgard. Improved Techniques
for Grid Mapping With Rao-Blackwellized Particle Filters. IEEE Transactions
on Robotics, 23(1):34–46, February 2007.

[10] google. Cartographer. https://google-cartographer-ros.readthedocs.
io/en/latest/, 2022.

99

https://www.waveshare.com/wiki/JetRacer_AI_Kit
https://www.waveshare.com/wiki/JetRacer_AI_Kit
https://www.slamtec.com/en/lidar/a2
https://www.waveshare.com/environment-sensor-for-jetson-nano.htm
https://www.waveshare.com/environment-sensor-for-jetson-nano.htm
https://google-cartographer-ros.readthedocs.io/en/latest/
https://google-cartographer-ros.readthedocs.io/en/latest/

Chapter 8

[11] Rauf Yagfarov, Mikhail Ivanou, and Ilya Afanasyev. Map Comparison of
Lidar-based 2D SLAM Algorithms Using Precise Ground Truth. In 2018
15th International Conference on Control, Automation, Robotics and Vision
(ICARCV), pages 1979–1983, Singapore, November 2018. IEEE.

[12] Herbert Bay, Andreas Ess, Tinne Tuytelaars, and Luc Van Gool. Speeded-
Up Robust Features (SURF). Computer Vision and Image Understanding,
110(3):346–359, June 2008.

[13] Mitesh Patel, Brendan Emery, and Yan-Ying Chen. ContextualNet: Exploiting
Contextual Information Using LSTMs to Improve Image-Based Localization.
In 2018 IEEE International Conference on Robotics and Automation (ICRA),
pages 1–7, Brisbane, QLD, May 2018. IEEE.

[14] Christian Szegedy, Wei Liu, Yangqing Jia, Pierre Sermanet, Scott Reed,
Dragomir Anguelov, Dumitru Erhan, Vincent Vanhoucke, and Andrew Rabi-
novich. Going deeper with convolutions. In 2015 IEEE Conference on Computer
Vision and Pattern Recognition (CVPR), pages 1–9, Boston, MA, USA, June
2015. IEEE.

[15] Chien-Yao Wang, Alexey Bochkovskiy, and Hong-Yuan Mark Liao. Scaled-
YOLOv4: Scaling Cross Stage Partial Network, February 2021. Number:
arXiv:2011.08036 arXiv:2011.08036 [cs].

[16] Chien-Yao Wang, Hong-Yuan Mark Liao, Yueh-Hua Wu, Ping-Yang Chen, Jun-
Wei Hsieh, and I-Hau Yeh. CSPNet: A New Backbone that can Enhance Learn-
ing Capability of CNN. In 2020 IEEE/CVF Conference on Computer Vision
and Pattern Recognition Workshops (CVPRW), pages 1571–1580, Seattle, WA,
USA, June 2020. IEEE.

[17] Peize Sun, Rufeng Zhang, Yi Jiang, Tao Kong, Chenfeng Xu, Wei Zhan,
Masayoshi Tomizuka, Lei Li, Zehuan Yuan, Changhu Wang, and Ping Luo.
Sparse R-CNN: End-to-End Object Detection with Learnable Proposals. In
2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition
(CVPR), pages 14449–14458, Nashville, TN, USA, June 2021. IEEE.

[18] Tsung-Yi Lin, Piotr Dollar, Ross Girshick, Kaiming He, Bharath Hariharan,
and Serge Belongie. Feature Pyramid Networks for Object Detection. In 2017
IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pages
936–944, Honolulu, HI, July 2017. IEEE.

[19] Mingxing Tan, Ruoming Pang, and Quoc V. Le. EfficientDet: Scalable and
Efficient Object Detection. In 2020 IEEE/CVF Conference on Computer Vision
and Pattern Recognition (CVPR), pages 10778–10787, Seattle, WA, USA, June
2020. IEEE.

[20] Chien-Yao Wang, I.-Hau Yeh, and Hong-Yuan Mark Liao. You Only Learn
One Representation: Unified Network for Multiple Tasks, May 2021. Number:
arXiv:2105.04206 arXiv:2105.04206 [cs].

100

References

[21] Qin Zou, Qin Sun, Long Chen, Bu Nie, and Qingquan Li. A Comparative
Analysis of LiDAR SLAM-Based Indoor Navigation for Autonomous Vehicles.
IEEE Transactions on Intelligent Transportation Systems, pages 1–15, 2021.

[22] Jamie Shotton, Ben Glocker, Christopher Zach, Shahram Izadi, Antonio Crim-
inisi, and Andrew Fitzgibbon. Scene Coordinate Regression Forests for Cam-
era Relocalization in RGB-D Images. In 2013 IEEE Conference on Computer
Vision and Pattern Recognition, pages 2930–2937, Portland, OR, USA, June
2013. IEEE.

[23] Ahmed M. Elmoogy, Xiaodai Dong, Tao Lu, Robert Westendorp, and
Kishore Reddy Tarimala. SurfCNN: A Descriptor Accelerated Convolutional
Neural Network for Image-Based Indoor Localization. IEEE Access, 8:59750–
59759, 2020.

[24] Ahmed Elmoogy, Xiaodai Dong, Tao Lu, Robert Westendorp, and Kishore
Reddy. SURF-LSTM: A Descriptor Enhanced Recurrent Neural Network For
Indoor Localization. In 2020 IEEE 92nd Vehicular Technology Conference
(VTC2020-Fall), pages 1–5, Victoria, BC, Canada, November 2020. IEEE.

[25] Alex Kendall, Matthew Grimes, and Roberto Cipolla. PoseNet: A Convolu-
tional Network for Real-Time 6-DOF Camera Relocalization. In 2015 IEEE
International Conference on Computer Vision (ICCV), pages 2938–2946, San-
tiago, Chile, December 2015. IEEE.

[26] F. Walch, C. Hazirbas, L. Leal-Taixe, T. Sattler, S. Hilsenbeck, and D. Cremers.
Image-Based Localization Using LSTMs for Structured Feature Correlation. In
2017 IEEE International Conference on Computer Vision (ICCV), pages 627–
637, Venice, October 2017. IEEE.

[27] Jonathan Huang, Vivek Rathod, Chen Sun, Menglong Zhu, Anoop Korattikara,
Alireza Fathi, Ian Fischer, Zbigniew Wojna, Yang Song, Sergio Guadarrama,
and Kevin Murphy. Speed/Accuracy Trade-Offs for Modern Convolutional Ob-
ject Detectors. In 2017 IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), pages 3296–3297, Honolulu, HI, July 2017. IEEE.

[28] Sepp Hochreiter and Jürgen Schmidhuber. Long Short-Term Memory. Neural
Computation, 9(8):1735–1780, November 1997.

[29] R. T. H. Collis. Lidar. Appl. Opt., 9(8):1782–1788, August 1970. Publisher:
Optica Publishing Group.

[30] ROS. Ros. https://www.ros.org/.

[31] Stefan Kohlbrecher. Hector slam. http://wiki.ros.org/hector_slam, 2022.

[32] Brian Gerkey. Gmapping. http://wiki.ros.org/gmapping, 2022.

[33] B. Yamauchi. A frontier-based approach for autonomous exploration.
In Proceedings 1997 IEEE International Symposium on Computational
Intelligence in Robotics and Automation CIRA’97. ’Towards New
Computational Principles for Robotics and Automation’, pages 146–151,
Monterey, CA, USA, 1997. IEEE Comput. Soc. Press.

101

https://www.ros.org/
http://wiki.ros.org/hector_slam
http://wiki.ros.org/gmapping

Chapter 8

[34] Xuexi Zhang, Jiajun Lai, Dongliang Xu, Huaijun Li, and Minyue Fu. 2D
Lidar-Based SLAM and Path Planning for Indoor Rescue Using Mobile Robots.
Journal of Advanced Transportation, 2020:1–14, November 2020.

[35] Wolfgang Hess, Damon Kohler, Holger Rapp, and Daniel Andor. Real-time loop
closure in 2d lidar slam. In 2016 IEEE International Conference on Robotics
and Automation (ICRA), pages 1271–1278, 2016.

[36] X Fan, Y Wang, and Z Zhang. An evaluation of Lidar-based 2D SLAM
techniques with an exploration mode. Journal of Physics: Conference Series,
1905(1):012021, May 2021.

[37] Boney Labinghisa and Dong Myung Lee. A Deep Learning based Scene Recog-
nition Algorithm for Indoor Localization. In 2021 International Conference
on Artificial Intelligence in Information and Communication (ICAIIC), pages
167–170, Jeju Island, Korea (South), April 2021. IEEE.

[38] Shaopeng Liu and Guohui Tian. An Indoor Scene Classification Method for
Service Robot Based on CNN Feature. Journal of Robotics, 2019:1–12, April
2019.

[39] Alexey Bochkovskiy, Chien-Yao Wang, and Hong-Yuan Mark Liao. YOLOv4:
Optimal Speed and Accuracy of Object Detection, April 2020. Number:
arXiv:2004.10934 arXiv:2004.10934 [cs, eess].

[40] M.J. Caruso. Applications of magnetic sensors for low cost compass sys-
tems. In IEEE 2000. Position Location and Navigation Symposium (Cat.
No.00CH37062), pages 177–184, San Diego, CA, USA, 2000. IEEE.

[41] Bolei Zhou, Agata Lapedriza, Jianxiong Xiao, Antonio Torralba, and Aude
Oliva. Learning deep features for scene recognition using places database.
Advances in Neural Information Processing Systems (NIPS) 27, page 487–495,
2014.

[42] Diederik P. Kingma and Jimmy Ba. Adam: A Method for Stochastic Opti-
mization, January 2017. Number: arXiv:1412.6980 arXiv:1412.6980 [cs].

[43] Peter E. Hart, Nils J. Nilsson, and Bertram Raphael. A formal basis for the
heuristic determination of minimum cost paths. IEEE Transactions on Systems
Science and Cybernetics, 4(2):100–107, July 1968.

[44] Kye-Hyeon Kim, Sanghoon Hong, Byungseok Roh, Yeongjae Cheon, and Minje
Park. PVANET: Deep but Lightweight Neural Networks for Real-time Object
Detection, September 2016. Number: arXiv:1608.08021 arXiv:1608.08021 [cs].

102

	List of Figures
	List of Tables
	Introduction
	Context
	Objectives and success criteria
	Our solution
	Document structure

	Prior knowledge
	Deep Learning
	Transfer Learning
	Regularization
	Dropout
	Parameter norm regularization

	Convolutional Neural Networks (CNN)
	Convolutional Layer
	Activation function
	Pooling layer
	Top layers

	One-stage vs Two-stage Object Detectors
	Long Short-Term Neural Networks
	Recurrent Neural Networks
	Long Short-Term Neural Networks - a subclass of RNN

	Prototype
	First semester
	Robotic Operating System (ROS)
	JetRacer AI Kit
	RPLIDAR A2
	Work done in the first semester

	Second semester
	Environment Sensors Module
	Work done in the second semester

	State-of-the-art
	Robotic Auto-exploration
	Mapping Algorithm
	Frontier-based Exploration
	Hector SLAM
	Gmapping
	Cartographer
	Mapping algorithm comparison

	Image-based Pose Prediction
	Local feature detectors
	Convolution Neural Networks (CNN)
	Comparison

	ContextualNet
	Model output - pose representation and loss Function

	State-of-the-art Object Detectors

	Approach
	Requirements
	Functional requirements
	Non-functional requirements

	Work methodologies
	Risk analysis
	Technical specifications
	Data collection
	Image-based pose prediction model
	Mobile application
	Components integration
	System workflow
	Components introduced error
	Project limitations and constraints
	Planning

	Implementation
	Image Dataset Collection
	Localization
	Orientation
	Orientation proposed alternatives

	Location and orientation prediction Model
	Model validation in the 7-Scenes Dataset
	Model validation in the collected dataset

	Mobile Application System
	Mobile Application
	Server

	Results
	Dataset
	Localization
	Orientation
	Generated dataset

	Location and orientation prediction Model
	7-scenes validation - Experiments results
	7-scenes validation - Experiments results - final parameters

	Mobile Application System
	Prediction model validation - Experiment process
	Prediction model validation - Model training process
	Prediction model validation - Experiment results
	Mobile application performance

	Conclusion
	References

