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Abstract

Object detection is an important and frequently applied task in the areas of medicine,
security and transport, where the solutions provided by machine learning achieve great
results, but are often obtained through heavy computational effort.

To a large extent, the oceans of our planet still remain unexplored. Exploring such a
wide environment would be easier and more efficient using remotes devices, or robots. In
order to use small robotic devices for object detection, one method is to rely on the remote
device to gather data, and then process it inside a cloud computing server. However,
in situations where real-time processing of data is required, cloud computing isn’t the
best path to take, since we will be dealing with a lot of latency, bandwidth shortage, and
energy consumption when sending and receiving data. For these kinds of situations edge
computing is a better option, meaning that, in the same instant, it can obtain data and
process right away. Object detection algorithms are typically run by Graphics Processing
Units (GPUs), and using one in a device with limited power can shorten the autonomy by
a considerable amount.

In this dissertation, we use one of the most well known CNN arquitectures, YOLO
(You Only Look Once), (in this case YOLO v3 Tiny) to detect marine species, comparing
both approaches (cloud and edge computing). To represent data processing done by
the cloud computing approach we run the detection algorithm on a GPU. As for the
edge computing approach we rely on an reconfigurable logic circuit (Field Programmable
Gate Array (FPGA)), which allows us to explore trade-offs between power consumption,
latency, frames per second, and classification metrics. The effectiveness of a pre-processing
that improves the visibility of underwater images is also analyzed and explored: it was
found that filtering contributes the most for CNNs as a data augmentation technique,
rather than improving detection metrics by using it as a pre-processing algorithm. It also
consumes a high amount of energy, most of the times, much more than the detection
operation.

To run the detection algorithm in the FPGA, we used three different frameworks:
PYNQ, FINN and Vitis-AI. Only PYNQ and Vitis-AI were successfully implemented, due
to some limitations of FINN. PYNQ represents an implementation without parallelization
or quantization, achieving 1.88 FPS and spending 3.83 Joule per frame. While Vitis-AI
runs a quantized and parallelized version, achieving 70.05 FPS and 0.31 Joule per frame.
When comparing the results in edge computing with the cloud computing approach, by
using a GPU we achieved 246 FPS and 0.55 Joule per frame. Besides Joules per frame,
the nominal power as well as the idle operational power needs to be taken in consideration.
However, an accurate comparison with a cloud computing approach would require transfer
of data between the edge and cloud device.

Keywords: FPGA, Yolo, Object Detection, Edge Computing, Underwater Image.

iii



iv



Resumo

A detecção de objectos é uma tarefa importante e frequentemente aplicada nas áreas
da medicina, segurança e transporte, onde as soluções fornecidas por machine learning
alcançam grandes resultados, mas são frequentemente obtidas através de um elevado
esforço computacional.

Os oceanos do nosso planeta ainda permanecem, em larga escala, inexplorados. Explo-
rar um ambiente tão vasto seria mais fácil e eficiente utilizando dispositivos remotos, ou
robôs. A fim de utilizar pequenos dispositivos robóticos para detecção de objectos, um
dos métodos é usar o dispositivo remoto para recolher dados, e depois processá-los dentro
de um servidor de cloud computing. No entanto, em situações em que o processamento de
dados em tempo real é importante, cloud computing não é a melhor solução a seguir, uma
vez que iremos lidar com muita latência, falta de largura de banda, e consumo de energia
ao enviar e receber dados. Para este tipo de situações a edge computing é uma melhor
opção, o que significa que, no mesmo instante, podemos obter dados e processá-los de
imediato. Os algoritmos de detecção de objectos são tipicamente executados por Graphics
Processing Units (GPUs), e a sua utilização de um num dispositivo com uma fonte de
energia limitada pode encurtar a autonomia numa quantidade considerável.

Nesta dissertação, utilizamos uma das arquitecturas CNN mais conhecidas, YOLO (You
Only Look Once), (neste caso YOLO v3 Tiny) para detectar espécies marinhas, comparando
ambas as abordagens (cloud e edge computing). Para representar o processamento de
dados feito pela abordagem de cloud computing, executamos o algoritmo de detecção
numa GPU. Quanto à abordagem de edge computing, usamos numa Field Programmable
Logic Gate Array (FPGA), que nos permite explorar diferentes equiĺıbrios entre consumo
energético, latência, frames por segundo, e métricas de classificação. A eficácia de um pré-
processamento que melhore a visibilidade das imagens subaquáticas é também analisada e
explorada: verificou-se que a filtragem contribui mais para as CNNs como técnica de data
augmentation, em vez de melhorar a métrica de detecção utilizando-a como um algoritmo
de pré-processamento. Também consome uma grande quantidade de energia, na maioria
das vezes, muito mais do que a operação de detecção.

Para executar o algoritmo de detecção na FPGA, utilizámos três frameworks diferentes:
PYNQ, FINN e Vitis-AI. Apenas PYNQ e Vitis-AI foram implementadas com sucesso
devido a limitiações da FINN. PYNQ representa uma implementação sem paralelização
ou quantização, atingindo 1,88 FPS e gastando 3,83 Joule por frame. Enquanto Vitis-AI
executa uma versão quantizada e paralelizada, atingindo 70,05 FPS e 0,31 Joule por frame.

Com a GPU foram alcançados 246 FPS e 0,55 Joule por frame. No entanto, uma
comparação precisa com uma abordagem de cloud computing exigiria a transferência de
dados entre os dispositivos de edge e cloud computing. Também é nessecário de ter em
consideração a potência nominal e a potência em peŕıodos de inatividade.

Palavras-chave: FPGA, Yolo, Detecção de objectos, Edge Computing
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Chapter 1

Introduction

1.1 Problem Background

Not too long ago, tasks that were dependant on human interaction, such as the
analysis of x-ray images, or overall environmental data acquisition, have become more
automated, since computer vision algorithms greatly facilitate these types of operations
and partially replace human interaction. Even more recently, the tasks carried out in
the computer vision field are migrating to a new approach, which uses an analogy based
on data instead of the traditional geometry based methods where concepts like shape,
pose, disparity, motion, optical flow, depth, volume and others that describe the structure
of the world, were an essential part of the solution for computer vision problems. The
new data-driven technique makes use of contemporary Deep Neural Networks and more
specifically Convolutional Neural Networks which keep providing more interesting results.
There are also other tasks that have only been made possible with the development of
recent technology, such as the exploration of undiscovered environments like Mars or our
planet’s oceans, using remotely operated robots that require an efficient balance between
autonomy and performance.

Computer vision has always been limited by the hardware it operates on, and balancing
it with efficient energy consumption can be an exciting challenge. For instance, the
company EvoLogics has an autonomous underwater bionic vehicle called BOSS - Manta
Ray [1] built for underwater exploration and monitoring. This robot currently uses a
GPU for the arithmetic calculations required by object detection tasks. The use of a GPU
is questionable in this situation, as in some cases it can be replaced with more energy
efficient hardware.

1.2 Motivation and Scope

The autonomy of a robot is, of course, very important (low autonomy means more
human interaction). So, ideally, we want as much autonomy as possible, and it becomes
important to pay attention to energy consumption and analyze trade-offs between the
quality of the results and the energy consumed by these devices. In this dissertation the
possibility and feasibility, benefits and disadvantages of commissioning an FPGA with the
arithmetic behind object detection is analyzed and tested. It should be noted that the
vast majority of systems that use a GPU also use a CPU and Memory together, and both
of their consumptions will be taken into account. Like all hardware, the work done by the

1



Chapter 1. Introduction 2

CPU, GPU, Memory and the like, can be combined and/or simulated on an FPGA by
customizing the hardware according to the resources available, and exploring whatever
trade-off there is between resources used and results obtained. An FPGA is reconfigurable
hardware that is usually programmed using Hardware Description Languages (HDLs).
However, since developing Convolutional Neural Networks (CNNs) using HDLs to explore
these metrics is a very extensive job, we decided to work around the problem using
frameworks like Python Productivity for Zynq (PYNQ) [2]. This raises the abstraction
level a bit and limits hardware customization to some extent but doesn’t limit as much
the possibilities of what there is to be explored.

Underwater images are usually hindered by radiance propagation. The captured images
in underwater environments are affected by a blue, or some times, more greenish tint.
There are many different types filtering algorithms that make underwater images more
pleasant for human perception, and because humans may help in the classification of marine
species, the studied CNN, in this case YOLOv3-Tiny, may benefit from a pre-processing
filtering of the input data.

1.3 Objectives

The main goal is to promote an energy-saving solution for the use of an accurate object
detection algorithm in small underwater robots.

To accomplish this goal, the following steps were set out:

1. Find a good architecture to use on FPGA which brings good classification metrics
and doesn’t require extensive hardware resources to operate at a good frame rate.

2. Explore various image processing algorithms to improve visibility in underwater
images.

3. Explore the influence and benefits that filtering brings to the chosen architecture
and dataset, and possibility of inserting filtering as a pre-processing for CNN inputs,
or post-processing to use only as a visibility enhancement for human perception.

4. Find a good way to run the chosen architecture on the FPGA without having to use
HDLs, as there are many open-source tools to help increase the level of abstraction
for FPGA programmers.

5. Measure and compare power consumptions, accuracies, quantizations, and frame
rates on the FPGA and GPU, including or excluding filtering, drawing conclusions.

1.4 Related Work

1.4.1 Underwater object detection

The use of CNNs in FPGAs for underwater environments is addressed in [3], but uses
CNNs only for obstacle detection, like rocks, or plants, and not for marine life monitoring
as we intend.

The work described in [4] accelerates a ZYNQ processor for fish detection in underwater
images, which is close to our goal, but uses MobileNet for detection and UNet for



3 1.4. Related Work

underwater image enhancement. Using an encoder/decoder like UNet as a CNN pre-
processing is the same as using extra layers that focus purely on image enhancement.

To train a CNN that improves the visibility of images, it is necessary to have ideal
images, i.e. images just like the original input but with good visibility, possibly filtered by
image processing algorithms. However, UNet is a different case, since it requires a dataset
with mask annotations.

In spite of UNet being famous for it superior results in this matter, we shouldn’t have
much problems relying on traditional image enhancement algorithms, since they tend to
be approximated by the encoder/decoder algorithm. In the work [4] it wasn’t possible to
achieve better energy efficiency than a GPU, but it was still better than a CPU.

A reduced version of YOLOv3 for underwater environments is presented in [5]. It is a
good architecture to use on FPGAs and other devices alike. It can be considered as a
good architecture to use in our work as it greatly reduces the number of FLOPs with little
reduction in other metrics. However, this architecture was not used but kept in mind for
future work, since there is more documentation available for vanilla YOLO architectures.

The studies conducted in [6] and [7] compare the performance of some versions of the
YOLO architecture on the same dataset that we will be using in this dissertation. They
also propose their version of Tiny YOLO (based on version 4), so the work described is
used as a comparison to our results when it comes to model accuracy and speed.

1.4.2 Framework related comparisons

There are several different frameworks for Intelecutal Property (IP, or block of logic
data) generation in FPGAs. These frameworks are often used to generate accelerators.
Sometimes, the accelerator is already given, and needs to be programmed, as it is the case
for VitisAI’s Deep Learning Processing Unit used in [8], or the NVIDIA Deep Learning
Accelerator (NVDLA) used in works like [9].

The most recently used tools for this matter are VitisAI and FINN, developed by
Xilinx. FINN operates on top of PYNQ, a framework to program the zynq7000 processor
present in most of Xilinx boards, with python language. A comparison between these
frameworks is discussed in [8], where it is stated that VitisAI performs slightly better
than FINN, but making custom accelerators outperforms the use of frameworks (at least
for the custom accelerator used in the work [8]). There are several other works including
the FINN framework [10] [11], the same can’t be said about VitisAI since it’s more recent
than FINN. It is stated in [8] that VitisAI provides a more sequential approach than FINN
which is a more fine-grained oriented accelerator in spite of being outperformed. This is
because FINN may be more suited for low powered FPGAs since the HW resources used
depend on the model being accelerated, and quantizations lower than 8 bits are supported.

The work discussed in [12] explains trade-offs between using High Level Synthesis
(HLS) and Overlays where it was found that HLS provides lower power consumption in
comparison with Overlays, but using Overlays provides much faster processing. Using HLS
would suit better this dissertation’s objectives, which stand for prioritizing lower power
consumption. However, since relying only on HLS is still a very extensive job, a better
approach lies on using tools like FINN and VitisAI. Further discussion and explanation
about how they operate are detailed in Chapter 3 and Chapter 4.
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1.5 Key Contributions

The dissertation’s practical contributions are included in the topics below for the
benefit of the interested public or those who wish to further pursue this work.

1. The theoretical explanation can provide a shortcut for someone new to the field to
gain the necessary information to carry on with this work.

2. Problems were discovered in the brakish dataset [13], which is commonly utilized in
state-of-the-art for detection algorithms in underwater environments. These issues
stemmed from a lack of variation in the inputs and were resolved by using data
augmentations.

3. The data augmentations improved detection results and allowed our model to com-
pete with other state-of-the-art models that employ more sophisticated architectures.
Currently, the model with the best mAP in the state of the art [6] for this dataset
is 93.56% with YOLOv4, while 92.40% mAP was reached in this dissertation with
YOLOv3-Tiny.

4. The comparisons between FINN and Vitis-AI are given as a consequence of the
knowledge collected throughout this project. Additionally, there are descriptions of
how these frameworks function that are gathered in one place and are more concise
than those found online.

5. In Vitis-AI, an alternate workflow is encouraged, which avoids the issue where
Darknet is not supported in the Pytorch environment for Vitis-AI.

6. Finally, results for the implementation using the Zynq UltraScale+ MPSoC ZCU104
FPGA [14] are provided. The accelerated version with reconfigurable logic consumes
56.364% less energy than the GPU, utilizes less hardware resources, maintains a
decent mAP of 82.6% , and has a good performance around 70.05 FPS.

1.6 Overview of the Dissertation

Chapter 1 - Introduction for the dissertation, presenting the context, motivation
and objectives of this work, as well as discussion of similar works related with this disser-
tation and contributions that it brings to the community. Chapter 2 - Theoretical
Background, explaining theory behind convolutional neural networks, discussing and
comparing YOLO architectures, and finally explaining filtering algorithms used for under-
water images. Chapter 3 - Frameworks and Design Methodologies contains an
overview of the tools used in this work to run a detection algorithm for YOLOv3-Tiny
in an FPGA. Chapter 4 - Implementation Description and Methods describes
implementation methods in order to make it possible for other people to reproduce similar
results. Chapter 5 - Results and Discussion discusses the results that were obtained
during the fulfillment of the objectives described in section 1.3. Chapter 6 - Conclu-
sion and Future Work: the project’s results, as well as the expectations for future
work, are provided with the goal of continuing the research conducted in this work.



Chapter 2

Theoretical Background

2.1 Convolutional Neural Networks

In this following section we will give an overview of how CNNs operate. For further
details see [15].

When studying the Deep Learning field, it is common to learn about CNNs as it is the
most famous algorithm. CNNs are on the top of their game when it comes to identifying
relevant features on images. Therefore, they’re a widely used in computer vision, for
object detection fields. A CNN is a type of supervised ANN as it requires pre-labeled
inputs for the learning process.

A CNN is first planned and described by an architecture that should be carefully built
and tuned depending on the application. An example architecture is represented in the
figure below:

Figure 2.1: Example architecture from [15].

The architecture approach in CNNs was inspired by the analysis of the complex
sequence of cells present in the visual cortex of animals, more specifically in a cat’s visual
cortex [16].

Usually there are three types of layers, described in detail in the following sections:
the convolutional layer (uses 2D kernel convolution on the image), the pooling layer
(also 2D) and the fully connected layer (1D). So, in the image above we have three
layers (the ReLU is an activation function).

The most common way to build an CNN architecture is to stack convolutional layers
followed by pooling layers, to reduce the number of parameters within the activation
[17]. Inside a convolutional layer, the received input is filtered with kernels which use the

5
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weights of the network as coefficients. In other words, kernels are learnable filters. The
output of a convolutional layer is the output of neurons that are connected to regions of
the input image, through these convolutions done with kernel filtering. These outputs are
interpreted by an activation function represented in the figure (labeled as ReLU layer, the
rectified linear unit function). As any other activation function, it decides the output of
a neuron. It is used to activate the outputs of convolutional and fully connected layers.
With that, we can use more layers on top, or in case we are on the last layer, we can
classify the input, based on the value of our weights. Each of these layers and many other
elements are analyzed in detail in the following sections.

2.1.1 Convolutional Layers

Convolutional Layers are the backbone of a CNN. They are essentially a group of
filters. The layers’ parameters and channel depth determine the dimenson of a set of
learnable channels (neurons) [18]. During the forward pass (training) all channels calculate
the dot product between the kernel and the input, shifting the kernel across the input
by a stride of one (other stride values can be used), as shown in figure 2.2, where the
kernels are the green matrices, inputs are on the left and the outputs are the feature maps
on the right side. The blue matrices represent the input feature map area that is being
multiplied by the kernel. In this example no padding was used, because of this, the feature
map dimension was reduced at the end of the convolutional layer. Using padding also
brings better results when analysing the inputs’ border information. The dimensions of
the feature map are also dependant on the kernel stride, having a higher stride produces
lower dimensions. All of these parameters (stride, channel depth, padding and kernel size)
are very important during practical implementation and define how many features and
parameters we create in a single convolutional layer.

Figure 2.2: Calculations on a convolutional layer [15].

The result of this forward pass operation is a feature map. At every corresponding
location of the input, each feature that is to be extracted will be part of a feature map
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after the convolution with the kernel [19], as shown in figure 2.2, also represented by the
following expression from [19]:

yj = bj +
∑
i

xikij (2.1)

Where yj is the output feature map, and j iterates through the number of channels in the
layer. kij represent the filters’ weights, xi the input features (or pixels) and bi the bias.

At the beginning of training, the kernel values are usually randomly assigned, but this
can vary depending on the weight initialization method that is being used. And then,
during training the weight and bias values are adjusted by the gradients during back
propagation. And with some repetition the kernel improves its values enough to able to
extract significant features.

In networks like the Multi Layer Perceptron (MLP), each neuron of a FC layer links
with all neurons in the following layer. This doesn’t happen in CNNs, because in between
layers only a few connections are made. This way, even though we are learning from a
complex image data, we have lower memory requirements in comparison with other ANNs
because of the selective connections between weights. There are also a set of different
parameters (such as the convolutional layer depth, stride, and kernel size that we talked
before), techniques like max pooling, and the number of layers in the architecture that
control the complexity of the network and have direct impact on the memory usage. Also
in contrast to other ANNs there are no weights between two neurons of adjacent layers,
therefore, adjacent layers share each other’s weights. This makes sense as all weights
operate with all pixels of the input, treating them as a single group of weights will reduce
training time.

2.1.2 Pooling Layers

The pooling layer downsamples the feature maps it receives as input. These inputs are
originated from the convolutional layer output, after going through the activation phase.
There are different kinds of pooling, depending on the situation one type of pooling can
be more effective than other, but essentially all of them shrink the input feature map into
a smaller one, maintaining relevant information. The most common types of pooling are
max, min and global average, for an example see figure 2.3. As the name implies, in the
average pooling, the average of the values is calculated and it replaces the values under
the kernel with the average. Max pooling replaces them with the maximum value and
min polling with the minimum. Parameters like kernel size and stride are also tunable in
this layer.

2.1.3 Activation Function

The main task of an activation function is to map the input to the output, in all kinds
of networks. Given the output of a layer with weights, in this case, the convolutional and
fully connected layers, we can use them in this state as inputs to the activation function
and decide to activate or certain neurons, with reference to a specific input. This decision
is made by calculating the weighted sum of the neurons received from learnable layers,
along with the bias. Other important task done by the activation function is to cause
non-linearity on the input/output maping, in order to learn extra difficult things through
back propagation, thus this also means that this function bust be differentiable. There are
different types of activation functions, being the following types some the most common:
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Figure 2.3: Different kinds of pooling [15].

• Sigmoid: Maps the input into values between zero and one, represented by the
following expression:

f(x)sigm = 1
1+exp−x

• Tanh: Maps the input into values between -1 and 1, represented by the following
expression:

f(x)tanh = expx − exp−x

expx +exp−x

• ReLU: This is the most famous activation function in CNNs, and it is a very simple
one, with low computational load. It maps all values to positive numbers. In
hardware all it needs is a comparator and a multiplexer as shown in figure 2.4. It
can be described by the following expression:

f(x)ReLU = max(0, x)

(a) ReLU block diagram
approach [20]

(b) Graphical representation [21]

Figure 2.4

As we can see, for negative inputs, the output is zero. And for positive inputs, the
output is equal to the input. This can cause some problems in case we have a lot
of negative inputs, the network will ”die” as most of the gradients flowing through
back propagation will not contribute to the learning process (the output will always
be zero). This can be caused by multiple reasons (for example a large bias value).
The following type of activation function introduces a simple fix to this problem.

• Leaky ReLU: This activation function is a improvement to the ReLU, in the special
case where there’s a risk of having many negative values flowing through. Unlike
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the ReLU, it doesn’t ignore the negative values. Instead of having the constant
function f(x) = 0, x < 0 we have a linear function with a parameterized small
slope as shown in the figure 2.5. It can be represented through the following
equation:

f(x)LeakyReLU =

{
x, if x > 0.

mx, otherwise.
(2.2)

Figure 2.5: Leaky ReLU graphical representation [22].

The factor m is usually a very small value (such as 0.001), in order to create a slight
slope.

2.1.4 Fully Connected Layers

Using only convolutional and pooling layers we always end up having 2D data, which
can not be easily classified. By flattening this 2D data into a 1D vector, it can be used as
input in a Fully Connected Layer. These layers work with 1D vectors and are used in
ANNs like MLP. In these layers each neuron is connected to all neurons of the neighbouring
FC layers. Reducing the final number of neurons to equal the number of classes, the class
with higher accumulated value is the predicted one, as it can been seen in figure 2.6.

Figure 2.6: Fully connected layer [15].
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2.1.5 Loss Function

Loss functions, in the vast majority, use the predicted value obtained from the output
layer and the labeled output coming from the dataset (which is why CNNs are a supervised
model) to calculate an error value. The error value is used by an optimizer to adjust
the values of the weights during back propagation, and thus making the network able to
adapt itself to make better decisions. Several types of loss functions exist, but the ones
we will be using in the YOLO architecture are applied a little different than usual, and
will be discussed in more detail in the following section 2.2 since we will be adapting the
position and size of bounding boxes.

2.1.6 Regularization

Obtaining state of art results in CNNs requires some sophistication of the architecture,
and more complex models are more likely to suffer from overfitting. A model is over-fitted
when it doesn’t perform well on unseen data but excels on training data. To detect
overfitting, a testing dataset can be used, and see how the model performs on it, or use
a validation set and notice that the validation loss is a lot higher than the training loss
during the training process. In such case, the model is too complex for the input data,
and the network has too many parameters. The solution lies in adapting the architecture
to have less layers or use regularization methods, some of which are listed below.

Dropout

Dropout consists in randomly eliminating nodes from the neural network at the end of
each training epoch, increasing generalization in the model by allowing it to learn different
sets of independent features, reducing overfitting.

Data Augmentation

Data augmentation is commonly used to solve overfitting or to obtain better results in
an already just-fitted model. If we use data augmentation to solve overfitting, it can be
seen as the other way around to solve the problem, because it lies in adapting the input
data instead of the architecture or the training algorithm, by expanding the size of the
dataset and creating more diverse data. There are many data augmentation methods
usually based on applying different transformations on images such as rotations, resize,
translations, crops, or even filtering.

Batch Normalization

Batch normalization may not have as much influence in regularization as the previous
methods, but it is a common practice and has a lot of impact during CNN training. It
uses a Gaussian Distribution (unit Gaussian to be exact) to ensure the performance of
activation function outputs, as in each activation layer there is a variation in the activation
distribution that defines the internal covariance shift. This shift keeps accumulating every
time the weights are updated via back propagation causing a slower convergence in the
loss function. The output of the activation can be normalized by subtracting the mean
and dividing it by the standard deviation (batch normalization), and this is usually done
as a ”pre-processing” for each convolutional layer. Batch normalization also prevents
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vanishing gradients, decreases training time and decreases the consequences brought by
poor weight initialization.

2.1.7 Optimizer

When training a CNN and any other neural network, the core of their learning process
is the optimization algorithm that is being used to minimize the value of the loss function.
The classical optimization function is the gradient descent, it reaches the local minimum
easily but struggles to reach the global minimum value. The gradient descent updates the
network parameters every training epoch by calculating the negative derivative of the loss
function, allowing it to obtain a valid descending direction from that point.

When using this method, there has to be a condition to decide when to stop, and this
means admitting that it has found the minimum. For this, the optimizer can, for example,
stop the iterative process when the gradient starts to disappear.

Many enhancements were applied to the gradient descent, creating other optimization
algorithms such as AdaDelta, Adagrad and Momentum.

2.1.8 Back Propagation

In the previous section 2.1.5 it was stated that the error value is used by an optimizer
to adjust the values of the weights during back propagation, and thus making the network
able to adapt itself to make better decisions. This process itself is called back propagation,
as it is a technique for changing weight values to account for each error discovered during
learning. Like it was explained in the optimizer section 2.1.7, the gradient of the loss
function with respect to each weight is computed, and the new value of the weight is
updated by adding the value of the gradient, like it is demonstrated in equation 2.1.8,
which represents the gradient descent optimization function (where α is the learning rate,
g is the loss function, wk is the new value of the weight, and wk−1 the old value). However,
since the gradient is computed one layer at a time, iterating backwards from the last layer,
this process is called back propagation.

wk = wk−1 − α∇g(wk−1) (2.3)

CNNs can learn thanks to the back propagation algorithm, which uses the optimizer
and loss function. This method is widely used by many supervised feed forward neural
networks.

2.2 YOLO - You Only Look Once

The first three versions of YOLO were developed by the original creator, and the
following ones were made by other members of the community, the most recent version
is YOLO v7 [23]. The complexity of the network grows in each version, and it becomes
less and less trivial to implement the architecture on an FPGA, and there isn’t much
development regarding this topic starting from YOLOv5 onwards. The evolution from
one version to another will be explained in more detail in the first four versions as they
are the ones that are more commonly used on FPGAs.



Chapter 2. Theoretical Background 12

Yolo v1

Introduction: The first version of YOLO [24] was published in 2016 and became
well-known among other famous architectures for being faster. It is called YOLO - You
Only Look Once because it predicts bounding boxes and associated class probabilities
in only one evaluation. It also had better generalization compared to other state of art
architectures at the time, like R-CNN [25] that uses region proposal techniques to create
possible bounding boxes in an image, before applying a classifier to these boxes. After
classification, bounding boxes are improved, duplicate detections are removed, and the
boxes are given new scores based on additional objects in the scene as a post-processing.
Because each component of these intricate pipelines must be trained separately, they are
slow and challenging to optimize. Other architecture that was compared to YOLO in
the work [24] was deformable parts models (DPM) [26] that employs a sliding window
method, where the classifier is run across the image at evenly spaced intervals. The article
refers and compares a lot these two architectures as they were famous architectures that
had the same finality as YOLO.

Detection: In order to train a YOLO network, the dataset needs to have annotations
about the true location of the object, for each object in each image having the details
about its’ bounding box such as coordinates of the box’s borders (the minimum and
maximum height and width values).
As it is explained on [24], the first step is to divide the input image into an SxS grid. If
the center of the object is inside a certain cell, that cell becomes responsible for detecting
the respective object.
Each grid cell is able to predict numerous bounding boxes for a same object, applying
confidence scores for each box. The objective is to obtain a confidence score to equal the
intersection over union between the true box and the predicted one. So, to predict a box
and a confidence score, it needs to predict 5 values for each box: x, y, w, h, c, where x
and y are the coordinates of the center, w and h are the width and height, and c is the
confidence. Regardless the number of boxes inside a cell, only one set of class probabilities
is predicted for each cell. Then, in order to have the class specific confidence score value
for a certain box, the class probability and the confidence prediction is multiplied.

Figure 2.7: YOLO Detection system [24]
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Figure 2.8: YOLO v1 Architecture[24]

Loss Function: The loss function (represented in figure 2.9) is a combination of
summed squared errors. Parameters λcoord and λnoobj exist to create different weights
for cells with and without objects respectively. Otherwise, cells that have no objects
would overpower the gradient for cells that have objects, making convergence sometimes
impossible during training. The default value of the parameters are λnoobj = 0.5 and
λcoord = 5. Is also important to note that the loss function penalizes classification error
only when an item is present in the grid cell, and it penalizes bounding box coordinate
error only when that predictor is accountable for the ground truth label, i.e. it has
the greatest IOU of any predictor in that grid cell. Needless to say, at each epoch the
parameters of the box (present in the loss function) are adjusted according to the loss
value produced, in order to maximize the IOU.

Figure 2.9: YOLO v1 Loss Function where ”1obj
i denotes if object appears in cell i and

1
obj
ij denotes that the jth bounding box predictor in cell i is responsible for that prediction”

[24].

Issues: As stated in [24], there are several issues with this version of YOLO:

1. Since each grid cell can only predict two boxes and only have one class, YOLO places
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substantial spatial limits on bounding box predictions. As a result, the number of
adjacent items the model can anticipate is constrained.

2. The model finds it difficult to generalize to objects with novel or odd aspect ratios
or configurations since it learns to predict bounding boxes from data.

3. Given that the architecture comprises many downsampling layers from the input
picture, it also employs somewhat coarse characteristics to predict bounding boxes.

4. When training using a loss function that approximates detection performance, errors
in small and big bounding boxes are handled equally. A minor error in a large box
is unimportant, while a minor error in a tiny box has a far bigger impact on IOU
score.

Yolo v2

In the previous topic, a more detailed introduction was made to the yolo architecture,
and now, on the following versions v2, v3 and v4, the discussion will be more centered on the
improvements applied in-between versions. So, lets move on to discuss the improvements
made from yolov1 to yolov2 as known as yolo9000 [27]:

1. Batch Normalization:
The benefits of applying batch normalization have been discussed before in the
previous section 2.1.6, and by adding batch normalization to convolutional layers
in the design, the MAP enhanced (mean average precision) by 2%. It also aided the
model’s regularization, and overall overfitting has been decreased.

2. Higher Resolution Classifier
In YOLO v2, the input size was raised from 224*224 to 448*448. The mean average
precision (MAP) has increased by up to 4% as a result of the image’s larger input
size.

3. Anchor Boxes:
The anchor boxes were introduced in YOLO v2, which is one of the most noticeable
modifications, as they allow one grid cell to detect multiple objects. These anchor
boxes are in charge of predicting the bounding box, using k-means clustering in
order to adapt to a specific dataset. More details about how they’re implemented
can be found at [27].

4. Fine-Grained Features:
In YOLO v1 there were several problems when detecting tiny objects in images.
Although using higher resolution helped, dividing the image in 13*13 grid cells
and adding a passthrough layer that brings features from an earlier layer at 26x26
resolution allowed the recognition of tiny things in a picture while simultaneously
being successful with bigger objects, by concatenating higher with lower resolution
features.

5. Multi-Scale Training:
The model in YOLO v2 is trained using random photos with varied dimensions
ranging from 320*320 to 608*608. As a result, the network can accurately learn
about and predict the objects from different input dimensions.
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6. Darknet 19:
YOLO v2 uses the Darknet 19 architecture, which consists of a softmax layer for
object classification, five max pooling layers, and 19 convolutional layers. Below is a
picture of Darknet 19’s architecture.

Figure 2.10: Darknet 19 architecture [27].

Yolo v3

This version is labeled as an incremental improvement, the improvements are summa-
rized below, for more details refer to [28].

1. Bounding Box Predictions:
The objectness score for each bounding box is now predicted using logistic regression,
outputting 1 if the box overlaps the ground truth object more than the other
bounding boxes. There is also a threshold to ignore bounding boxes that are not
the best, but overlap the ground truth object (working similar to a non-maximum
suppression). By doing so, only one bounding box is assigned for each object.

2. Class Predictions:
Instead of using softamx for classification, YOLOv3 uses logistic regression providing
multi-label classification, allowing one object to have two different labels (for example,
if we are detecting underwater species, we can label a codfish as fish and codfish,
and a crab as a crustacean and crab).

3. Predictions Across Scales:
Following the example from Feature Pyramid Networks [29], YOLOv3 generates
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three bounding boxes for three different scales of the input image, with features
being collected from each prediction, providing a better performance in different
scales. Each prediction is made up of a bounding box, objectness, and 80 class
ratings. Upsampling from preceding layers enables for the extraction of entire
semantic information and finer-grained information from earlier feature maps, a
process similar to that utilized in YOLOv2.

4. Darknet 53:
A new, deeper and more complex feature extractor than the previous Darknet 19
is used in YOLO v3 as its backbone, composed by some shortcut connections and
multiple 1x1 and 3x3 filters.

Figure 2.11: Darknet 53 architecture [28].

Yolo v4

YOLOv4 is a significant improvement of YOLOv3, only published in 2020 and made by
other developers that chose to continue Joseph Redmon’s work in YOLOv3 after Joseph
announced that he wouldn’t be developing any more YOLO versions due to the misuse
of this technology. YOLOv4 achieved much better results at the cost of a more complex
system. The MAP improves around 10% and the frame rate (FPS) improves as much as
12% [30]. The new architecture is represented in figure 2.12. The new architecture is
composed of 4 blocks, listed below. There are more methods enumerated and explained in
the YOLOv4 article [30], used to improve accuracy during and after training called bag of
freebies and bag of specials that are not covered here in detail, as this represents only a
quick overview to understand what kind of improvements could be applied to YOLOv3:

1. Backbone:
It represents the feature extractor based on Darknet 53, CSPDarknet53 (CSP
meaning Cross-Stage-Partial-connections). CSP is used to split the a layer in two
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Figure 2.12: Object detector [30].

partitions, represented in the figure below, where the first partition doesn’t go
through Darknet53’s convolutional layers and the second does. The outputs are
then concatenated providing better gradient back-propagation.

Figure 2.13: CSPDarknet53 diagram from [31].

2. Neck:
The neck represents some additional layers between the backbone and the dense
prediction. The inputs that reach the neck pass through a path aggregation network
(PAN) [32], a spatial attention module (SAM) [33], and spatial pyramid pooling
(SPP) [34] which improve accuracy in the model by concatenating information. The
neck uses modified versions of these methods, represented in the figures 2.14, 2.15
and 2.16.

3. Head:
The head can be a two stage or a one stage detector. One stage detectors only
use the dense predictor, while the two stage detectors use dense followed by sparse
predictors. If we are using the anchor based approach, the dense predictor is based
on architectures like YOLOv3 [28] providing the object detection and classification
utility with bounding boxes, and the sparse predictor based on the R-CNN series
[25][35][36][37][38]. If using an anchor free approach the dense predictor is based
on architectures like CornerNet [39], CenterNet [40] or MatrixNet [41], while the
sparse predictor is based on architectures like RepPoints [42].

Conclusion: Why YOLO v3 - Tiny?

Unlike what was done in the first versions, not much was said about the issues of
newer versions, but they certainly exist. Besides, a new version is not always created with
the sole purpose to solve the problems of the previous one. Often it is enough to have
better results with the changes that were made in the architecture to realize that it solved
some issues, substantially improving the previous version.
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(a) SAM [33][30]

(b) Modified SAM [30]

Figure 2.14: Spatial Attention Module and modified Spatial Attention Module used in
YOLO v4 [30]

(a) PAN [32][30] (b) Modified PAN [30]

Figure 2.15: SAM and Modified PAN used in YOLO v4 [30]

Figure 2.16: Spatial Pyramid Pooling [34]

For all versions there are more modest, reduced versions created in order to reduce
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the computational resources needed to run both training and classification algorithms,
still using the ideas of the main architecture. These versions are often titled ”tiny”, ”fast”
or ”small”, or perhaps designated by other names that translate the same idea.

In this dissertation we focus on using YOLOv3-Tiny architecture, depicted in figure
2.18. The reason why a newer version was not chosen was because newer versions are more
complex and require more hardware resources. Furthermore, the fact that it is an older
version does not mean that it is incapable of bringing satisfactory results. The YOLOv3
as well as the YOLOv3-Tiny were published in 2018 and are good detectors. Just through
what was explained above about YOLOv4, it can be said that there are tremendous
increases in complexity on the newer versions, and the more complex something is, the
less flexible it becomes to adapt, specially when working around challenges arisen from
accelerating it on an FPGA. Because of this, versions higher than version 3 were somewhat
left out. As far as comparing version 3 to version 2, there were some reasons that justified
for using version 3 over version 2:

• When using older versions, one is more likely to encounter difficulties in getting
around the use of outdated tools, or projects made by the community a few years
ago that worked then, and no longer work. Sometimes because certain software
versions, with time, became unavailable to the public.

• The attention given by the community to problem solving usually gravitates more
around recent versions, and therefore it is easier to find support from the community
for solving problems arising in more recent versions. Moreover, newest versions of
software in general are usually compatible with other software launched around the
same time.

• As it can be seen on the YOLO v1, v2 and v3 author’s website [43] when referring
to mAP in the COCO dataset, the YOLOv2-Tiny has 23.7% while YOLOv3-Tiny
has 33.1%, with a 24 FPS drop and a small increase in FLOPs. These values do not
fluctuate much from the ones obtained in [44] which can be seen in figure 2.17.
The YOLOv2-Tiny uses 9 convolutional layers while the YOLOv3-Tiny uses 13,
the number of weights and parameters in YOLOv3-Tiny is lower. YOLOv3-Tiny
architecture proposes better mAP, compensating for the substantial drop in FPS.

• The number of FPS in this dissertation is not a benchmark on which we will be
dependent, since we do not need to have high frame rate, but only to reduce energy
consumption without sacrificing the accuracy of the detections.

That leaves yet another question. Why not use an architectures like the R-CNN series
since it provides better accuracy sacrificing speed, in comparison with YOLO? In spite of
the frame rate not being crucial, it is something that cant be ignored or allowed to be
extremely low. After reading the studies and comparisons done in [45] YOLOv3 was up
to 3 times faster than Mask R-CNN, still being able to provide good accuracy (although
inferior to Mask R-CNN). Again, not only the speed and accuracy are important, but also
the hardware resources needed to operate the detection algorithm and the complexity of
the architecture.
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Figure 2.17: Table taken from [44] comparing the first three versions of YOLO. Previously
it was referred that YOLOv2-Tiny had 9 convolutional layers and YOLOv3-Tiny had 13.
Which is true, the number of layers in this table does not refer to convolutional layers
only, which are known to be more computationally expensive.

Figure 2.18: Architecture of YOLOv3 - Tiny [44].



21 2.3. Image Filtering for Underwater Environments

2.3 Image Filtering for Underwater Environments

The dataset that will be used is the brackish dataset, presented in [13] where is made
a comparison between YOLOv2 and YOLOv3 performances on this dataset. The dataset
is open-source and linked in the article. This was the best dataset found available for
this application case since it has annotations ready for YOLO. Datasets for underwater
species with documented annotations in this format are rare, and the brakish dataset was
the only one found available (and open-source) meeting the required criteria. Underwater
images are usually hindered by radiance propagation, as seen when observing the greenish
tint present in the sample below in figure 2.19.

Figure 2.19: Sample from the brackish dataset [13].

In this dissertation the following image filtering algorithms were tested and compared:

• CLAHE - Contrast-Limited Adaptive Histogram Equalization [46] [47] [48]

• GC - Gamma Correction [49] [50]

• RoWS - Removal of Water Scattering [51]

• RGHS - Shallow-water Image Enhancement Using Relative Global Histogram
Stretching Based on Adaptive Parameter Acquisition [52]

These algorithms don’t focus on correcting greenish tint specifically, but are able
to improve the quality of underwater images in general. Not all images in underwater
environments will be affected in the exact same way as the images from this dataset,
as they always depend on the camera and the surrounding environment. Also, the
methods that were present in most of the SoA articles worked best for the specific set
of figures used during the respective study. The first two methods are classic image
enhancement algorithms: gamma correction and contrast correction. These two don’t
focus on underwater images but change the values of the pixels in order to provide better
human perception. The other two algorithms however focus more on underwater images.
The work [50] on gamma correction topic also talks about an interesting method to
compensate the attenuation of the red channel in underwater images, however this was
not implemented in this dissertation.
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2.3.1 Contrast-Limited Adaptive Histogram Equalization

This image processing function has its roots in medical imaging, initially invented by
Pizer [53], Ketcham et al. [54], and Hummel[55]. It is a contrast enhancement method,
based on histogram equalization, which distributes the image’s frequencies in an equalized
manner. Naturally, it is specially efficient in medical gray images, but it also works well
for colored images. In order to understand better the process, the demonstrations here
will be using the medical images used in the work [46].

(a) Original image (b) Same image after histogram equalization

Figure 2.20: [46].

However figure 2.20 b) is a lot better than the original for human perception,
Histogram Equalization has two main problems:

1. Lack of adaptation to local contrast requirements, as there are some small contrast
differences missing between adjacent regions.

2. Large peaks in unimportant areas like background noise (more noticeable after
applying adaptive histogram equalization).

In order to accomplish better contrast between contextual regions, Adaptive Histogram
Equalization (AHE) can be applied. It consists on dividing an image in a grid of rectangular
contextual regions, and then calculate the optimal contrast for each region. For example,
in an 512x512 image, we can create 64 contextual regions (sized 8x8 each). This will
also create visible region boundaries, and in order to fix this, a bilinear interpolation is
used (more details at [46]). The scheme of interpolation and result of AHE is depicted in
figure 2.21.

After solving the contrast between adjacent regions, the other problem is left unsolved.
It is now even more visible tons of large peaks in background areas (noise). To solve this
problem, Contrast Limited Adaptive Histogram Equalization (CLAHE) is used, which
limits the contrast enhancement on homogeneous areas like the background area. These
homogeneous areas are represented by a large peak in the histogram as many pixels fall
into that area (the majority of the pixels has that value range, since it belongs to the
background). So, by clipping the peak of the histogram and equally distributing the pixels
that were clipped over the whole histogram, these peaks can be largely attenuated. There
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Figure 2.21: Bilinear interpolation scheme on the left side, explained in more detail at
[46]. On the right side, the result of AHE [46].

is a parameter called the contrast factor that defines how much clipping will be done.
Having a low contrast factor means having limited contrast enhancement but clearing
most of the peaks from the background noise. So, having a balanced value for the contrast
factor is important in order to use AHE without having much noise.

Figure 2.22: Histogram clipping with CLAHE [47].

Figure 2.23: (a) Using clip limit of 3; (b) Using clip limit of 10 [46].

2.3.2 Gamma Correction

The gamma correction used was the traditional gamma correction expression [49]:

Iout = cIγin (2.4)
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Iin and Iout are the input and output pixels, c and γ are two parameters that shape
the transformation curve. Using γ > 1 makes the image darker and using γ < 1 makes it
brighter. The most common case is using c = 1. There isn’t much more to discuss about
this topic, since these parameters were tuned accordingly with the type of images present
in the dataset.

2.3.3 Removal of Water Scattering

In most of clear water images, there is always a color channel that has low intensity
at some pixels. But, in more turbid waters, some regions where it should be really dark
are illuminated by particles that are present in the path of light waves, and therefore
radiate energy making dark regions brighter. The low intensities in the dark channel
are mainly due to shadows, colorful objects and dark surfaces. Since natural underwater
images have lots of plants, animals and rocks, these images have dark channels with really
low intensities.

Figure 2.24: Particles in the path of light waves [51]

Mathematically, there is the following expression, where I is the observable intensity,
J is the hindered intensity that needs to be recovered, B is the background light, t is the
transmission function, and x is the center of the local patch being restored [51]:

I(x) = J(x)t(x) +B(1− t(x)) (2.5)

So J is the dark channel that needs to be restored and it can also be represented as [51]:

Jdark = min(min(Jc(y))), cϵ{r, g, b}, yϵΩ(x) (2.6)

Where Ω is the respective patch being processed at center x.
In order to use the dark channel prior restoration method, we need to follow 3 steps:

1. Estimation of Background Light
As it is explained in [51], the background light can be estimated from the input
image by picking the brightest pixels in the dark channel, as they are opaque but
lightened by the background light:

B(RGB) = I(x) (2.7)

Where
x = max(Jdark(i, j)) (2.8)

2. Estimation of the Transmission
Several steps are made in order to estimate the transmission, details at [51]. But for
practical implementations, we apply the following expression:

t̃(x) = 1−minc(minyϵΩ(x)(Ic(y)Bc)) (2.9)
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3. Restoration
Then we can finally take the last step and recover the final radiance:

J(x) = I(x)
B

max(t(x), t0)
+B (2.10)

Where t0 is a constant with the typical value of 0.1.

Figure 2.25: Example of radiance restoration using dark channel prior [56].

2.3.4 Relative Global Histogram Stretching

The whole process described in [52] is based on contrast correction followed by color
correction, as depicted in figure 2.26. The article also covers concepts present in other
image processing algorithms discussed before.

Figure 2.26: Process for performing RGHS. Described in [52]
.

Following the steps shown in the figure:
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1. R-G-B Channel Decomposition
This step only consists on separating the different color channels into three gray
images.

2. Color Equalization on G-B Channels
The 3 color channels are not equally balanced in underwater images. The absorption
of the red channel happens due to bigger wave length, as it is shown in figure 2.27.

Figure 2.27: [52]

Since the presence of the red component of the spectrum is so low, it becomes hard
to compensate, and even if we try to directly interact with the red light component,
the image will over saturate with a red tint like it is shown in figure 2.28.

Figure 2.28: Extreme case scenario of a sample from the brakish dataset over saturated
with a red color, after trying red channel compensation.

So, in order to achieve a good balance between the three color channels, the following
parameters (θg and θb are multiplied with the remaining two color channels (green
and blue):

Gavg =
1

255 ∗MN

M∑
i=1

N∑
j=1

Ig(i, j), θg =
0.5

Gavg

(2.11)

Bavg =
1

255 ∗MN

M∑
i=1

N∑
j=1

Ib(i, j), θb =
0.5

Bavg

(2.12)
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3. Determining Adaptive Stretching Range
This step focuses on obtaining parameters in order to perform the next step. So, in
order to follow up better the whole process we recommend quick read through the
next topic named Relative Global Histogram Stretching.

• Calculation of Imin and Imax:
The ideal would be choosing Imin = 0.1% and Imax = 99.9% since this represents
the region of the histogram that is going to be operated on, and this way we
would be eliminating an equal number of pixels from the two boundaries of
the histogram and removing some extreme pixels. That is, if the histogram
is normally distributed. Which many times is not the case, and therefore the
following equation shows a way to calculate these boundaries:

Imin = S.sort[S.sort.index(a) ∗ 0.1%] (2.13)

Imax = S.sort[−(S.length− S.sort.index(a)) ∗ 0.1%] (2.14)

Where

– S - set of pixels

– S.sort - set of pixels, but sorted in ascending order

– S.sort.index(a) - index of the mode in histogram distribution

– S.sort[x] - pixel in the number x position on the sorted set of pixels

• Calculation of Omin and Omax: Since the image is likely to be overloaded
with green and blue radiance, the calculation of the desired minimum Omin

and maximum Omax intensity levels need to be calculated also in a channel
and image sensitive way.
Omin can be easily obtained using the standard deviation values of the Rayleigh
distribution:

Omin = aλ − σλ (2.15)

Where a is the mode in a channel, and λ indicates the channel, and σλ is the
standard deviation. The minimum value we want for a desired range needs to be
between zero and Iλmin. In order to obtain the Omax, we need to maximize the
haze-free image, which can be obtained like it was discussed before inside the
Removal of Water Scattering topic, finally obtaining the following expression:

Oλmax =
Iλ
ktλ

(2.16)

Where:

– k is an experimental value, for example 1.1 for red and 0.9 for blue and
green channels.

– tλ is obtained using the following expression:

tλ(x) = Nrer(λ)d(x) (2.17)

Where d(x) is the scene-camera distance, and,

Nrer(λ) =


0.80 ∼ 0.85 if λ = 650 ∼ 750µm (red)

0.93 ∼ 0.97 if λ = 490 ∼ 550µm (green)

0.95 ∼ 0.99 if λ = 400 ∼ 490µm (blue)

(2.18)
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4. Relative Global Histogram Stretching
In the majority of shallow water images, the values of red light intensities in
histograms ([50, 150] are distributed differently than the green and blue channels
([70, 210]). So, using the traditional histogram stretching algorithm equally in all
channels will result in inaccurate results since the channels require different amounts
of stretching as they aren’t equally distributed. In order to create a channel sensitive
histogram stretch, the following equation is used, named relative global histogram
stretching [52]:

pout = (pin − Imin)(
Omax −Omin

Imax − Imin

) +Omin (2.19)

Where:

• pin and pout are input and output pixels;

• Imin and Imax delimit the stretching range;

• Omax and Omin delimit the desired stretching range;

5. Bilateral Filter on RGB Channels
After performing the previous operation, we need to apply a bilateral filter to remove
noise from the image.

6. Conversion into CIE-Lab color model
This step converts the image into CIE-Lab color model, and also marks the beginning
of the color correction process. This way we have more parameters (L a and b) to
tune the color with, in order to improve color performance. L adjusts the brightness
[0,100], a adjusts the red and green intensities [-128,127], and b adjusts the blue and
yellow intensities [-128,127].

7. Adaptive Stretching of L, a and b components

To the L component, a linear slide stretching [52] is applied to stretch the range
between 0.1% and 99.9% to [0,100]. The values above 99.9% are set to 100 and
below 0.1% are set to 0. To stretch a and b is used an S model curve [52]. With
this, the color correction is completed, and we can convert back to the RGB model.

8. Conversion into RGB Color Model
In this step we convert the CIE-Lab color model image back into RGB model.

This concludes all the steps for performing Relative Global Histogram Stretching, the
most extensive algorithm regarding underwater image enhancement in this dissertation.
As we will see in Chapter 5, this doesn’t mean it will bring better results than other
filtering algorithms discussed previously. Hence, by understanding the various filtering
processes we came up with something better for our type of images. The efficiency of a
filtering algorithm depends greatly on the type of image we’re dealing with, which depend
on the camera and environment. This realization also came by understanding the results
in Chapter 5.



Chapter 3

Frameworks and Design
Methodologies

3.1 PYNQ - Python Productivity for Zynq

PYNQ, or Python Productivity for Zynq, is an open-source project from Xilinx, with
the purpose to provide Python programmers an user-friendly platform to work on Xilinx
FPGAs with Zynq processors. In order to do so, the Python environment is designed to
run inside a Ubuntu-based filesystem, with a Petalinux kernel, the high level diagram
for the framework is depicted in figure 3.1. The operative system’s image is stored
in an SD card used as a boot on the targeted FPGA. The Python environment can
then be accessed by connecting to the board’s IP address via jupyter-notebook. It runs
on Zynq-7000-based processors, where the Zynq-7000 consists of a dual-core ARM A9
processor. As this processor comes within Xilinx development boards like PYNQ-Z1 and
PYNQ-Z2, it is used in combination with programmable logic (FPGA) that usually works
as an accelerator for Zynq. For this, Xilinx provides Python packages to interact with the
hardware modules by downloading bitsreams to configure the FPGA. These bitstreams
however, are called Overlays and they represent the result of a compiled hardware module
using Vivado. So, in order to develop them it still requires engineers with the expertise to
do so. These Overlays can be called as a python function, thus allowing them to be used
multiple times inside a program. Not to mention, they run on the FPGA, in parallel with
Zynq. A block diagram representing this processing system is depicted in figure 3.2.

Figure 3.1: PYNQ framework diagram [2]

29
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Figure 3.2: Zynq-7000 processing system block diagram [2]

3.2 FINN - Fast, Scalable Quantized Neural Network

Inference on FPGAs

FINN refers to the FINN compiler (which maps Quantized Neural Networks to
FPGA architectures) and the FINN project in general with all the other tools involved
to reproduce the steps represented in the diagram at figure 3.6. There are two approaches
to QNNs: Quantization-Aware Training and Post-Training Quantization. Post-
Training Quantization means that we only quantize the network after training, with
common frameworks like Pytorch or Tensorflow with no quantization during training.
Quantization-Aware Training focuses on training a quantized architecture, using quantized
activation functions, quantized inputs and ouputs and almost everything stated inChapter
2 regarding CNNs, therefore creating a quantized model and weights from scratch. The
following text about the FINN compiler is an aggregated summary of what is presented in
[57], [58] and [59]. In order to follow the work flow discussed below, we recommend taking
a look at figure 3.6. The original documentation present on the website [57] doesn’t fully
explain the whole process, but this knowledge can be complemented by visiting the source
code (linked on the website [57]) and information in FINN related articles [58], [59], [10]
and [11].

3.2.1 Quantization Aware Training and Brevitas Export

Quantization Aware Training

Though Brevitas is a research project and not officially a Xilinx product, it is an
essential step, using it in order to have a quantized FINN-compatible model. Brevitas
[60] is a PyTorch research library for quantization-aware training. Two different types of
quantization are represented in the figure 3.3 where Q represents the quantized domain
and r the continuous domain. In Uniform Quantization we always have the same distances
between quantized values. The quantization concept is depicted in the figure below, during
quantization, unquantized values are mapped into lower precision values.
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Figure 3.3: Uniform (left) vs Non-uniform quantization (right) [61]

Brevitas is loaded with features providing multiple options for quantized neural net-
works, such as selecting between fixed point and floating point activations, bit widths
inside layers, input and output quantizations, and much more. For instance, as it is
done in Pytorch, instead of using torch.nn.conv2d for a convolutional layer, we use brevi-
tas.nn.QuantConv2d for a quantized 2d convolutional layer receiving as input parameters
defining what kind of input, weight, output or bias quantizations we want. The type of
quantization supported is uniform quantization.

Brevitas Export

FINN uses ONNX models as input. ONNX - (Open Neural Network Exchange) is
used by FINN as an intermediate representation for neural networks. The model is first
trained using Pytorch and Brevitas, and then exported to ONNX using FINN python
libraries. It can also be exported as ONNX using other methods, but it won’t produce a
ONNX compatible model with the FINN ModelWrapper. After obtaining the ONNX, the
model is loaded into a ModelWrapper and even though the model was created using FINN
libraries, not every architecture is compatible and can be loaded into the ModelWrapper.
The ModelWrapper is a tool used to analyse and manipulate ONNX models with helper
functions, like setting tensor shapes, data types and initializers. After training a quantized
neural network with brevitas and exporting it to an ONNX model, we can advance to the
network preparation step.

This step is the backbone behind the connection between the ONNX model and
hardware. The model is prepared by the ModelWrapper in order to be ready for several
transformations, that will convert the ONNX nodes into custom nodes that correspond
to FINN’s HLS functions in the further steps. Before the Streamlining Transformations
represented in figure 3.6, we need to run Tidy-up transformations which are also
applied in between steps during the network preparation, as a post-processing routine.
These transformations ensure that nodes have unique names, named tensors, etc.

Streamlining Transformations

The streamlining step consists in erasing floating point operations, with methods
stated in more detail at [62]. Although we already perform quantization aware training,
there are residual floating point operations in the QNN’s forward pass that will increase
the memory footprint and latency on devices that are not optimized for floating point
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operations. So, the QNN needs to be streamlined first, creating some custom nodes in the
ONNX model in addition to the standard nodes it had before. Only after streamlining,
the ONNX can be converted to FINN’s HLS layers.

Convert to HLS Layers

In this step, the streamlined model is converted to a combination of HLS-layers
which represent a combination of HLS and verilog modules. For example, a common
operation on the streamlined model: XNORPopcountMatMul represents the dot product
between matrices (very common specially in CNNs), and in this step it converts to a
MatrixVectorActivation layer, that can be implemented in different modes.

Figure 3.4: Const and Decoupled modes for MatrixVectorActivation layers, where MVAU
is a Matrix Vector Activation Unit [57]

Here, the const mode uses less HW resources but can result in poor allocation decisions
by Vivado HLS and long synthesis times for array shapes that aren’t in a memory friendly
format. While decoupled mode isn’t as used and tested as const mode (hence offering
issues during this step of network preparation) it provides better control over memory
primitives and removes the weight array shapes from HLS synthesis (weights are declared
in .dat files instead of being inside the HLS block). But it requires one more port in the
MVAU, a weight streamer, and a weight FIFO, and since these layers will be widely used,
using decoupled memory mode will create a bigger toll in HW resources. Note that there
was no hardware generation yet, only adaptations in the model in order to transform the
representations inside the ONNX model into HLS layers.

Dataflow Partitioning

Dataflow partitiong step consists in seperating the ONNX graph in two: one containing
HLS layers (further processed in the FINN flow) and one containing non-HLS layers.

Folding

To explain folding we first need to introduce the Matrix–Vector–Threshold Unit
(MVTU), which is the computational core for FINN accelerators. The vast majority
of compute operations in a BNN are conducted in MVTUs, and can be expressed as
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Figure 3.5: Overview of a Matrix Vector Threshold Unit [59]

matrix–vector operations followed by thresholding. An overview of the MVTU architecture
is in figure 3.5.

As stated in [59], each PE (processing element) corresponds to a hardware neuron
and each SIMD (single instruction multiple data) lane acts as a hardware synapse. If we
set up a MVTU with a number of hardware neurons and synapses equal to the number
of neurons and synapses in a BNN layer, this would create a fully parallelized layer. By
scaling this to a whole CNN, the accelerator could classify images with a few clock cycles.
However, this is impossible to achieve for bigger CNNs since amount of hardware resources
on an FPGA is limited, and it is necessary to fold the BNN onto fewer hardware synapses
and neurons.

By selecting PE and SIMD values in the FINN compiler we can adjust how much
folding we want. Setting both values to 1 will create a network with only HLS layers
and maximum folding. In computer architecture branch folding improves perfomance by
predicting certain branches and removing them from the instruction stream. Here, the
PE and SIMD assigned values are input parameters to the layers in the folding step, thus,
selecting parallelism for each layer. More about folding, see [58] and [59].

This way, with the previous HLS layers partitioned during the previous step, and the
new HLS layers, we have a network of only HLS layers, ready to advance to the hardware
build phase.

3.2.2 Hardware Build and Deployment

A model composed only by HLS layers can be processed by the FINN compiler, which
generates a bitfile and a driver, both can be imported by PYNQ running on a Zynq-FPGA
device, thus making use of the designed FPGA accelerator, in this case running the
ONNX model forward pass, which is an adaptation from the previously trained quantized
convolutional neural network.

Driver

The driver’s purpose is basically data transferring. It runs on the Zynq processor,
and it’s responsible for packing the input tensors in the designed format, giving orders to
initiate data transfer using PYNQ APIs, and finally unpacking the output tensors before
transferring them back to the Zynq’s associated DRAM. The first step of the Hardware
Build is making this diver.

Next, we need to create additional nodes for the driver to operate, so in this next step
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FINN inserts DMA engines as ONNX nodes into the flow graph (the ONNX flow graph is
the graphical representation of the ONNX model, obtained through the ModelWrapper).
These engines will be moving data into and out of the accelerator’s DRAM by the driver’s
command. FINN also inserts data width converters between consecutive nodes if required
(in case we need extra bits for intermediate operations, or have different quantizations in
different layers).

Partitioning

In this step FINN separates the ONNX into StreamingDataflowPartitions. Each
partition will become an IP block in the next step, with the respective DMA node inside.
In case no number of partitions is specified, all of the IP blocks are placed under a
single partition. But this is not recommended, since partitioning is an important step to
facilitate compatibility with other FINN versions. To connect the streaming nodes, FINN

Figure 3.6: FINN end to end diagram [57]
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inserts FIFOs in between, where the size of each FIFO and input shape is stated by the
node’s attributes. After connecting all nodes, FINN creates IP blocks for each partition
containing the IP blocks for each layer already connected with each other, since they’re
generated by Vivado HLS using FINN’s transformations libraries. The top level modules
are then stitched and generated in Vivado IPI. We can then create a Vivado project with
the top module and generate the bit file after running synthesis.

3.3 Vitis-AI

With the same purpose as FINN, Vitis-AI creates an overlay for the ARM processor,
working as an accelerator for inference in CNNs. This accelerator is called Deep Learning
Processing Unit (DPU).

3.3.1 Deep Learning Processing Unit

The DPU is a group of parameterizable IP cores, pre-built and stitched together
inside an SD card image, therefore also being inside a linux based operative system,
similar to PYNQ, for FPGA booting. The DPU can be reconfigured to use different
hardware resources inside Vivado, but as soon as the FPGA is booted, it becomes
programmed with these IP cores, the hardware utilization stays fixed, and it becomes
hard to follow resource utilization when configuring the DPU with different models. So it
stays as a parameterizable accelerator, allowing one hardware build to run many different
CNN models. DPU architectures differ from board to board, and Vitis-AI supports a
restricted variety of platforms. In this dissertation we use the Zynq UltraScale+ MPSoC:
DPUCZDX8G which has the high level diagram shown in figures 3.7 and 3.8.

Figure 3.7: High level diagram of DPUCZDX8G [63] (PE stands for Processing engines).

Hardware Resources

Port description, register spaces and the like are described in the respective DPU
product guide [64]. There are different DPU architectures, described in [64], in our case
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Figure 3.8: Example high level diagram of the processing system together with the
programmable logic [63]. In our case we’re not using a camera or external ports except
the SD card.

we’ll be using B4096. The type of architecture is chosen before compiling the project in
Vivado. Changing the HW architecture means changing resource utilization, and with our
configuration, we are using, for each DPU core, the resources in table table 3.1.

LUT Register (R/W 32 bit) BRAM36K DSP
51351 98818 255 710

Table 3.1: Resources used by the DPU, for each DPU core.

As we’ll be using two DPU cores, the overall resource utilization by the accelerator
is twice as the ones stated in table 3.1, with a reference clock frequency for the XRT
(Xilinx Runtime) of 300MHz.

Clocking

There are different clock domains inside the DPU, as shown in figure 3.9.
The register configuration module receives the DPU configuration through AXI interface

(also depicted in figure 3.8). This module can operate at a lower frequency from the
rest of the modules, since these registers aren’t meant to be updated as often, or set to
be the value as m axi clock. The m axi clock is the standard clock running through the
processing system, used for the data controller inside the DPU. The data controller module
schedules data flow between DPU and external memory. The arithmetic calculations
inside the DPU run at a different clock rate, set to be twice the frequency used in the
data controller (in this case, 600MHz).

Vivado IP schematics for clocking are provided in Appendix A.1, where we use
two clock outputs in the clocking wizard for each DPU core. The respective schematic
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Figure 3.9: Clock domains inside the DPU [64].

in the appendix also includes the reset signals, which have to be synchronous with the
clock domains discussed before. The dpu clk wiz module outputs clk dsp1 and clk dsp2
(600MHz) which are twice the frequency value from clk in1 and clk dpu (300MHz). The
missing connections in the CPU and DPU are for master-slave interfaces. Looking closely,
one can notice that the DPU IP is using three cores instead of two, which is only for a
matter of representation since we’re using the schematics from the product guide [64] as
an example. The connections with the processing system via master-slave interfaces are in
Appendix A.2 which also includes an interruption handler module. The recommended
parameters for each module are provided in the product guide [64], but one can freely
change them for different applications.

3.4 Vitis-AI vs FINN

This section provides an overview of differences between FINN and Vitis-AI. For a
quick description of pros and cons of using FINN or Vitis AI, take a look at table 3.2.

Note that Xilinx continues to issue new versions for both Vitis AI and FINN. After an
extensive effort using FINN tools, there weren’t any actual findings that could be used
to draw any inferences. The tools are not yet stable, and only very simple accelerators
were built during the development of this work, for instance, the best achievement was an
accelerator for some FC layers (MLP).

Unfortunately, for more complex architectures like YOLO it requires large amounts of
time and effort to achieve a functional accelerator. Hence, since the DPU from Vitis-AI is
a pre-built accelerator, many issues during the compilation are avoided. Using a DPU
to run a few layers of MLP like architectures would be a great misfit for its hardware
resources. For this reason, a fair comparison between accelerators built with FINN and
Vitis-AI was not achieved in this work.

There was a single work however, where this was made possible [8], where it is stated
that FINN achieved lower resource utilization since it supports 4 bit quantization (Vitis
AI uses 8 bit), however it achieved lower frame rate than Vitis AI, and 8 bit quantization
in FINN overloaded the board’s HW resources. In conclusion, FINN would be better
suited for low power FPGAs with more humble HW resources, and it remains a potential
solution for the objectives stated in section 1.3.

A quick detail about quantization aware training is, that for both Vitis AI and FINN,
only worked correctly when training with CPU, since these quantized training processes
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has to occur inside a docker container, and only CPU compatible dockers were available
for the docker versions required by the respective framework. This became a downside for
FINN that resorted mainly in quantization aware training.

FINN Vitis AI

Concept

Builds an accelerator
for a given model.

Hardware resources vary
from model to model.

The accelerator is already
built, and needs to be

configured with an xmodel.

Deployment
Generates a bitfile
to be loaded as
a PYNQ overlay

Generates a xmodel file
that configures the DPU
to run a certain model

Supported Platforms
Any Zynq devices, including

low power FPGAs like
PYNQ-Z1 and PYNQ-Z2

Supports limited platforms,
usually FPGAs with more HW
resources like Ultrascale+ series

or Alveo boards.

Energy Efficiency

May provide superior
energy efficiency since
it supports low powered
FPGAs and builds

accelerators for specific
case scenarios.

Due to restricted accelerator
architectures, configurations,
and supported platforms, may
provide worse solutions than FINN
when it comes to energy effiency.

Quantization
Widely used with Quantization

Aware training

Widely used with both Quantization
Aware Training and Post Training

Quantization

Ease of use

Requires and engineer with some
experience and expertise to

operate, needs user interaction
in all stages of the workflow defining

when and how parallelization
and quantization occur, and how
to tune all the steps to refine

the model until it generates a bitfile.

The customization of parallelization
and quantization methods is
optional, there is a default

configuration to use as example.
Diving in extensive low level flow
is not required. Easier to use
since it requires less expertise.

Documentation,
Support, and
Community

Released in 2017, the community
is no longer as active as it was,

and devs dont show much
activity. Documentation usually
only provides an overview of the

project. Some tutorials and examples
no longer operate correctly.

Released in 2020, with recent dev
and community activity, many

problem-solving threads in github
issues forums. Widely documented.
Ease of access to low level flow,

All examples/tutorials are
operational.

Frameworks for
model training

Pytorch and Brevitas.
Pytorch, Tensorflow 1.15 and

Tensorflow 2.0. Works better with
Tensorflow 1.15.

Table 3.2: Pros and Cons of using FINN and Vitis AI



Chapter 4

Implementation Description and
Methods

This chapter describes implementation methods in order to make it possible for other
people to reproduce similar results.

4.1 Dataset Preparation

The raw data downloaded from [13] (brakish dataset) needs to be adapted in order to
match the format of the datasets used in our YOLO model.
The images come from captured videos of underwater environments, so we need to extract
the frames using the given source code in order to extract at the exact frame rate as the
developers used, since we’ll be using their annotations purposely made for each extracted
frame.
In order to do so, we need to install ffmpeg software tool [65], used to extract the frames.
To run the dataset’s helper scripts we used python v3.7.0 and the only required package
is ipdb == 0.13.9. After installing the requirements, one needs to follow the steps:

1. Run the python script ”frameExtractor.py” which is inside the directory extracted
from [13], and extract frames for all classes, resulting in 15085 images.

2. After obtaining the frames, the annotations also need to be adapted. The type of
annotations used in this work is YOLO style annotations. There is a yolo annotations
folder, but they need to be addapted. They are in the right format (class, x, y, width,
height). The classes aren’t numbered correctly since they should be labeled whithin
the range of 0 to 5 instead of 1 to 6. And the values of x, y, width and height should
be normalized since we’ll use resize, rotate and filtering type of augmentations (the
size of the image will fluctuate).

4.2 Training algorithm overview

Requirements for the setup at Appendix section B.2. The source code was adapted
from the assignments of deep learning classes issued in this degree. The original code
was made to detect cars from the kitti dataset [66] and used YOLOv3 architecture. The
adaptations consist in changing the input files, fixing outdated libraries, and editing
pre-processing related functions that weren’t working properly. The architecture used, in
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this case, the cfg file for YOLOv3-Tiny, which can be downloaded from the author’s
website [43].

Pre-processing

The pre-processing consists in, during training, applying transformations to the loaded
batch images. Such as:

1. Padding to a square/resizing to a shape varying between 288x288 and 448x448
(when running testing and detection algorithms we use images with size 416x416
only). The shape is chosen randomly between the ones that allow separation in grid
cells, like it was explained in section 2.2

2. Flipping the images horizontally, therefore creating a symmetric image (the images
to be flipped are chosen randomly).

Random flips and resizes can be considered as augmentations to improve accuracy.

Hyper parameters

A detailed description about hyper parameters related to the architecture, such as
kernel sizes, channel depths, strides, padding and activation functions at convolutional
layers, can be found in the Appendix Chapter C.

• Batch Size: 16

• Learning Rate: 0.001

• Weight decay: 0.0005

• Momentum: 0.9

• Epochs: 500

This set of hyper paremeters already comes with the cfg file with the exception of batch
size and the number of epochs. The achieved MAP values on the COCO dataset are
around the same 33% achieved by the author.

4.3 Filtering

Requirements for the setup at Appendix section B.1.
As it was said before, we applied different filtering algorithms on the dataset, producing

some interesting results discussed in Chapter 5. The RoWS, CLAHE and GC filtering
algorithms were adapted from [67]. For CLAHE, the opencv library already has a function
to produce a CLAHE image by giving the tile grid size and clip limit as input parameters.
GC on the other hand, was done by applying directly equation 2.3. Hence, CLAHE
and GC are easily obtained in less than 10 lines of code. As for RoWS and RGHS, they
are more complex and have a mix between opencv and the equations described back in
section 2.3. RGHS is also avilable at [67], but it contains many mistakes in the color
restoration and relative global histogram stretching steps. So, the RGHS algorithm was
fixed by taking advantage of the setup in [67], and re-coding in python the equations in
the article [52].
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4.4 PYNQ

The FPGA will only use the detection algorithm, but just to be safe, we also did run
the testing algorithm in order to be certain that the metrics stayed the same. Since there
is a different operative system and python environment running inside Zynq, the packages’
versions also change. The detection algorithm had to be adapted and several changes
were conducted in order to satisfy all dependencies. The package requirements are at
appendix chapter PYNQ packages - ZCU 104. To run the detection algorithm using
PYNQ and CPU only (in the Zynq processor), we installed PYNQ on the Xilinx product
Zynq UltraScale+ MPSoC ZCU104 Evaluation Kit [14].

4.5 Vitis-Ai Workflow

Vitis-AI provides alternative work flows from the one followed in this work. Figure 4.1
has an overview diagram representing different solutions to program the DPU. Vitis AI also
supports Caffe models. To train the model, the same setup as before for PyTorch training

Figure 4.1: Vitis AI workflow diagram, from vitis AI user guide [63]

was used. The quantization (in our case, post training quantization) and compilation of
the model occurs inside a docker container (for more information visit [63]), however, the
desired DPU architecture needs to be built inside Vivado with source files and instructions
from [64] (this step can be skipped if using the demo image from Vitis AI tutorials [63]).
The docker image comes with different environments for different frameworks (pytorch,
tensorflow, etc). Compilation and quantization scripts should be adapted (in case of using
a custom model) from [68], which are written in python and are easily understood. The
DPU does not support certain operations, and in the case of YOLOv3-Tiny architecture,
there is a max-pooling layer of stride 1 which is not supported. Since it has stride 1, it
doesn’t decrease the number of parameters in between convolutional layers, and can be
just commented out without causing any concern (changing the architecture also means
training the model again from scratch).

The workflow followed in this work however, was:
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1. Training the model with Pytorch, and saving it as a Darknet model.

2. Convert the Darknet model to Tensorflow frozen graph model.

3. Setup the Vitis Ai docker container with compatible DPU architecture and quanti-
zation/compilation scripts.

4. Quantize and compile the model.

5. Create a prototxt file for the custom model (Vitis AI SD card image has scripts
compatible with compiled Caffe models). Send the model files via SCP to the board.

6. Follow examples from Model Zoo compiled models, and write C++ code to build
executable files to run the model in DPU+CPU.

7. Use xdputil tool to measure performance.

It was said before that Vitis AI supports Pytorch, so why the conversion to
tensorflow frozen graph model?

The Vitis AI docker environment for Pytorch is not currently compatible with Darknet
architectures, and many quantization errors ocurr when the quantization script reaches
YOLO Layers (bounding box outputs). The only way around this would be separating the
architecture in two, and run the YOLO layers inside the CPU, since we have two YOLO
output layers in YOLOv3-Tiny (if using YOLOv3 there would be three in total). Therefore
creating a lot of performance loss due to increased latency, by sending and receiving
data between DPU and CPU to run the second part of the model. As a work-around,
there are tutorials for YOLOv4 in [68], that can be addapted to YOLOv3, and all other
versions before YOLOv4, which runs inside the tensorflow 1.15 docker container. Hence,
the conversion to TensorFlow frozen graph model (converted using tensorflow 1.15) is a
required step to keep high performance.

4.6 FINN

Regarding to FINN, since it mostly supports Quantization Aware Training, all the
process is done inside a rootless docker container, and the workflow is pretty much
summarized in the previous chapter. All of the steps in figure 3.6 are done with FINN,
Brevitas and Pytorch frameworks using python language. FINN uses an Vitis HLS library
and the HW generation is done through the command line, not providing a visualization
of IP schematics like it is done in Vitis AI. FINN is a very promising and interesting tool,
but still needs a more stabilized workflow, functioning examples/tutorials, and updated
user guides.
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Results and Discussion

This chapter presents and discusses the results that were obtained during the fulfillment
of the objectives described in section 1.3. The objectives were met in a sequential manner
until reaching the final goal. Therefore, as the first step of finding a good architecture was
already described in chapter 2, and the fourth step of finding good tools to run model
inference in the FPGA was already discussed in chapter 4, the subject of discussion in
this chapter consists of:

1. Acquiring a filtering algorithm that is good for the brakish dataset (section 5.1).

2. Exploring the influence of filtering algorithms on CNNs (section 5.2).

3. Measuring power consumption in the FPGA and the Desktop computer, in both
cases comparing the consumption between CPU, CPU+DPU (for the FPGA) and
CPU+GPU (for the Desktop computer scenario)(section 5.3).

5.1 Filtering

Table 5.1 has low and high quality samples from the brakish dataset, each row with
the result from a filtering algorithm, except for the first row with the original samples.
The low quality of some samples can be caused by many reasons, such as the loss of
camera focus, or environmental changes which produce water turbidity. The hazed effect
of the underwater environment is still present in images with better quality, and becomes
almost unbearable in low quality images. For instance, the low quality image has two
crabs, in front of the box. A human being can hardly tell so, by only looking at the
original images. But this becomes more evident after applying CLAHE.

Since the images from this dataset are captured with a flashlight pointed at the center
of the image, they have increased brightness in the center, and become dark near the
corners. GC was used only to slightly darken the image, using γ = 1.2 (see equation
2.3), this effect is more noticeable in low quality images. GC affects the whole image, so,
using a high γ might cause a growth in the darker areas of the image.

Contrast correction with CLAHE was the most efficient method, using a 8x8 tile grid
size, and a clip limit of 4. But, by using CLAHE to enhance sharpness we are sill lacking
in color correction, as it’s still affected mainly by green radiation.

This green tint didn’t disappear in RoWS, a good reason for this might be that RoWS
(and RGHS aswell) were designed to enhance the quality of underwater images that were
affected by light scattering of sunlight. In this case, these algorithms might not work as
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Filter Better Quality Low Quality

No Filter

GC

CLAHE

GC CLAHE

RoWS

RGHS

Color Restored GC CLAHE

Table 5.1: Table of figures
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well in the brakish dataset, since the image is captured in an environment illuminated by
a flashlight, the science behind light scattering is not exactly the same. RoWS darkened
the image a little and didn’t improve much the image quality. Changing some parameters
such as the radius and ϵ of the guided filter used in the refined transmission, didn’t cause
any noticeable changes in the image.

The light source is very close to the captured objects, so the haze effect and green
color come mainly from the environment’s characteristics, since there isn’t enough space
between the light source and the captured object for a notorious light scattering effect).
Therefore, color restoration in RGHS might be a good solution for green color correction,
after balancing the parameters θg and θb. The RGHS labeled images on table 5.1 are with
the exact values from equations 2.10 and 2.11.

As for Color Restored GC CLAHE, it possesses the original θg divided by a factor of
1.275 (experimental value) in order to compensate the excess presence of green color in the
image, and θb was left as it is. This is a custom made filtering algortihm using CLAHE,
GC and Color Restoration from RGHS, obtained by experimenting CLAHE and GC with
RGHS. The first step is color restoration, with the previously stated modifications on
the parameters θg and θb, to better compensate the green color. There is a noticeable
glowing effect in brighter areas after applying CLAHE. The image is then darkened with
GC γ = 1.6 in order to attenuate this effect, since experimenting with CLAHE’s clip limit
and tile size affected other important characteristics of the image. After GC, CLAHE is
applied.

5.2 Metrics and Augmentation results for YOLOv3-

Tiny

Table 5.2 shows the obtained metrics after training YOLOv3-Tiny with the brackish
dataset, using 500 epochs and 16 images per batch. In spite of the architecture having only
24 layers, optimizer’s steps are small, so the training usually takes between 1 and 2 days.
The mAP only starts hitting values above 85% in the validation set roughly after 300
epochs, so, in an attempt to achieve higher values, the training was done with 500 epochs,
in order give enough time for the optimizer to converge, with the risk of over-training the
model.

While using the brakish dataset, over-training can’t be detected through the provided
testing set, since the images lack variety from the training set. Further in this section this
issue is proven and solved with data augmentations.

The work done at [7] compares architectures of YOLO, introducing a modified version.
But using only 100 epochs and a different optimizer (stochastic gradient descent) with
adaptive learning rate. The new architecture introduced is based on YOLOv4-tiny and
compared with version 3, version 5, and retina net, where the obtained mAP in their own
architecture is 87.88% surpassing YOLOv3 by 8.68%. However, the registered mAP in
the first 100 epochs, on the validation set, in this dissertation’s work, only achieve around
77%, which makes sense since it is still inferior than v3.

One reason for such high mAP with the developed architecture in [7] with only 100
epochs, might be related with the used architecture allowing faster convergence, in spite
of having an adaptive learning rate. Since YOLOv3-Tiny model hits better metrics than
the proposed model at [7] (YOLO-UOD) when it is given a proper amount of epochs to
converge, one can’t conclude right away if YOLO-UOD would still hold the same metrical
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differences by using more epochs.
As for the work done at [6], used 150 epochs and resorted to a freezing / unfreezing

training method. Freezing means selecting which layers are currently on training, for
example in the first 50 epochs freezing certain parts of the network, and change the batch
size when unfreezing. After unfreezing, in [6], the batch size is also of 16 and the otpimizes
is Adam, like in this dissertation. But the comparison of architectures didn’t include
YOLOv3-Tiny. In [6] the architectures used are YOLOv4-tiny, YOLOv4 and a custom
architecture, achieving 80.16% 93.56% and 92.65% mAP respectively.

Since the used GPU and CPU is different from both of these two works [6] and [7], the
comparisons with frame rates are just values for curiosity standards, in this dissertation’s
case the achieved frame rate was 246,39 FPS with YOLOv3-Tiny using RTX-3060 GPU
and i5-12400 CPU.

As for the YOLOv3-Tiny model size, also referred in [6] and [7], is 33,8 MB using
pytorch style models (.pth), and 33,7 MB using Darknet style models (.weights). Which
is bigger than YOLO-v4 Tiny and the custom model in [6], and YOLO-UOD in [7] by
roughly 10MB.

Class AP Precision Recall F1
fish 0.977 0.946 0.984 0.964
small fish 0.606 0.662 0.801 0.725
crab 0.966 0.951 0.988 0.969
shrimp 0.943 0.888 0.9824 0.933
jelly fish 0.837 0.780 0.919 0.844
star fish 0.991 0.981 0.994 0.987

mAP: 0.886

Table 5.2: Testing results with original brackish dataset (mAP values are not in percentage,
therefore ranged between 0 and 1).

The brakish dataset is built from frames taken from videos in only two different places,
both using the same camera angle, recording footages of different species.

This causes poor generalization for the trained models and make them sensible to
small input variations. Which can’t be concluded by using the originally provided testing
set, since this testing set doesn’t possess any variety from the training and validation sets.

It is composed of different images, but obtained from the same videos. A good way
to verify this sensibility to variations in the input, is to slightly change the inputs and
check if there is an accuracy drop. Table 5.3 shows the resulting metrics obtained from
running the testing algorithm on a GC filtered testing set, which only darkens the image
by a tiny bit, as show previously in table 5.1.

With only a small variation in the input pixels, the mAP drops by as much as 14,1%
(noting the accuracy drops on the jellyfish were bigger than the others, this might be
caused by the lack of appearances of jellyfish in the captured videos, and are small in size,
something that algorithms like YOLO usually struggle with). While testing the same
procedure with CLAHE, which causes more radical changes in the image, the obtained
mAP was close to zero (0.044 to be precise). The same goes for other filters that used
CLAHE such as GC CLAHE and the Color Restored GC CLAHE. As for RoWS the
mAP was 0.541 and for RGHS 0.386.

Compatible YOLO-style annotations are rare in underwater datasets, hence, instead
of using a different dataset, the previously filtering algorithms that were explored with
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Class AP Precision Recall F1
fish 0.874 0.667 0.919 0.773
small fish 0.545 0.510 0.783 0.618
crab 0.845 0.842 0.899 0.870
shrimp 0.842 0.739 0.894 0.809
jelly fish 0.476 0.603 0.612 0.608
star fish 0.889 0.834 0.918 0.874

mAP: 0.745

Table 5.3: Testing results on GC filtered dataset, model trained on original brackish
dataset.

the intent to use as a pre-processing method, were used as data augmentations for the
dataset.

Augmentation Results

Using data augmentations improved the mAP to values rivaling the results obtained
in [6], with a simpler architecture. Table 5.4 has average precision values per class and
per filtering method, obtained by using filtered testing sets. The augmentations model
was warmed up with the weights obtained from the previous training with the original
dataset, with also 500 epochs and 16 images per batch.

AP

Unfiltered GC CLAHE GC CLAHE RoWS RGHS
Color Corr.
GC CLAHE

All of them
together

fish 0.961 0.970 0.967 0.971 0.954 0.958 0.979 0.965
small fish 0.740 0.722 0.693 0.682 0.708 0.712 0.714 0.702

crab 0.974 0.971 0.975 0.974 0.981 0.972 0.979 0.972
shrimp 0.956 0.914 0.943 0.945 0.978 0.971 0.916 0.944
jelly fish 0.915 0.891 0.908 0.892 0.918 0.915 0.905 0.900
star fish 0.995 0.997 0.988 0.992 0.997 0.992 0.982 0.991
mAP 0.924 0.911 0.912 0.910 0.923 0.920 0.912 0.913

Table 5.4: Testing results on filtered and unfiltered testing sets, model trained on aug-
mented brackish dataset.

5.3 Energy Consumption

This section reports and compares energy efficiency from different hardware platforms,
and in some cases in different scenarios. The following list serves as a quick introduction
for the subjects to be covered in each of the following sections:

1. Power measurements of Xilinx’s Ultrascale+ ARM processor in section 5.3.1. In
this section the measurements are made with PYNQ libraries which read instant
power values from the board’s power rails at a fast sample rate. This section covers
how the image quality and filtering affect power consumption.

2. Power measurements of Xilinx’s Ultrascale+ ARM processor accelerated with DPU
in section 5.3.2, running YOLOv3 Tiny model inference.
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3. Measurements of a Desktop computer CPU, and CPU accelerated with GPU in
section 5.3.3, running YOLOv3 Tiny detection algorithm.

The power measurements in section 5.3.2 and in section 5.3.3 were done by using
the multimeter UT803 [69] connected via usb to a computer, registering current intensity
values at a sample rate of 1 sample per second. The used voltage for the FPGA was
12V with a power generator. To measure the computer’s power consumption, the same
multimeter was used, by connecting it in series with a power supply cable, therefore
measuring AC current rms values, and using 220V as the standard voltage value. A
diagram of this setup is depiced in figure 5.2.

Figure 5.1: Diagram for Vitis AI power measurement [70].

Figure 5.2: Diagram for computer power measurement [70].

5.3.1 Zynq Ultrascale+ CPU:

Energy values are calculated by integrating the power plot, which is made from discrete
values, therefore using the Simpson’s rule, with the scipy library (scipy.integrate.simps)
[71]. Figure 5.1 and figure 5.2 have power plots with values obtained from readings
from ZCU104’s power rails. These measurements were made when using COCO and
Brakish dataset respectively. COCO has variable input sizes, usually with a few hundreds
of KBs. The frames from the brackish dataset have 9 to 10 KBs providing faster reading,
writing and detection times, therefore consuming less energy.
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The detection phase also represents energy consumption during model inference, using
the same algorithm which can be accelerated by the DPU or GPU, hence, for matters of
comparison between HW platforms, the ARM processor spends an average of 3.84 joules
per frame during model inference at 1.88 FPS (when using the brakish dataset).

Table 5.5 has the power measurements and energy consumed for filtering algorithms
studied in this work. To execute filtering algorithms the processor has to run operations
for each pixel of the image. For more complex algorithms iterating through every pixel of
the image several times. When comparing this process with model inference, the image
only needs one pass through the model to obtain a result, and the model in cause ”only
looks once”, therefore being fast enough so that the higher instant power being consumed
justifies for the much shorter processing time. The most energy efficient filtering algorithm
is CLAHE which spends nearly two times (in joules per frame) the energy spent by the
model inference in figure 5.2.

GC CLAHE GC CLAHE Color Corr. GC CLAHE RoWS RGHS
Joule per Frame 27.861 7.511 30.177 267.861 772.824 738.256

Average Instant Power (W) 12.521 12.534 12.577 12.358 12.356 12.360

Table 5.5: Energy consumption for filtering algorithms in Ultrascale’s Zynq+ processor

Figure 5.3: Energy consumption detecting 100 images from the COCO dataset, using
quad-core ARM Cortex-A53 (zynq+ processor) with PYNQ framework. Resulting in
1603.825 Joule in total, and an average of 16.038 Joule per frame.
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Figure 5.4: Energy consumption detecting 100 images from the brakish dataset, using
quad-core ARM Cortex-A53 (zynq+ processor) with PYNQ framework. Resulting in
945.250 Joule in total, and an average of 9.453 Joule per frame.
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5.3.2 Zynq Ultrascale+ CPU + DPU:

In the DPU acceleration scenario, only one sample of the brakish dataset is used, and
the FPGA runs the forward pass of that image in a loop for 100 seconds. Therefore
only measuring model inference, since the time spent with loading or writing images is
barely noticeable. In the first 100 seconds it runs the model inference, with an average
instant power consumption of 21.938W, and in idle time spends about 17.35W. During
100 seconds it can run 7005 images, which means it has a frame rate of 70.05 FPS, and
therefore 0.313 Joules per frame (calculating 21.938/70.05 since 1 watt is 1 joule per
second).

Figure 5.5: Power plot of quad-core ARM Cortex-A53 processor accelerated with
DPUCZDX8G ISA1 B4096 DPU running YOLOv3-Tiny model inference in loop for
100 seconds.

5.3.3 Desktop CPU and CPU + GPU:

When measuring power consumption in the desktop computer, the detection algorithm
was made to run 1000 different images. The same algorithm was used in PYNQ to obtain
the plots in figure 5.1 and figure 5.2.

For CPU only, it took around 1.98 seconds to load the model and the dataset, and 62.13
seconds to run the detection phase, where the total inference time inside the detection
phase was 59.54 seconds. During the detection phase it spent an average instant power of
141.92W. Resulting in an average of 16.79 FPS and therefore 8.45 Joule per frame.

For CPU accelerated with GPU, it took around 0.98 seconds to load the model and
the dataset, and 20.75 seconds to run the detection phase, where the total inference
time inside the detection phase was 4,05 seconds. During the detection phase it spent
an average instant power of 136.40W. Resulting in an average of 246,91 FPS (counting
inference time only) and therefore 0.55 Joule per frame.
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Figure 5.6: Power plot of i5-12400 CPU running a detection algorithm for YOLOv3-Tiny.

Figure 5.7: Power plot of i5-12400 CPU accelerated with RTX-3060 GPU running a
detection algorithm for YOLOv3-Tiny.
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Conclusion and Future Work

6.1 Conclusion

6.1.1 Choice of architecture

There are many techniques emerging that are increasingly sophisticated to increase the
speed and accuracy of CNNs. People that are interested in the subject tend to incorporate
new discoveries into their work. This is not necessarily a good thing, since we must always
remember to select a CNN architecture that is appropriate for the dataset the network will
train on. If the objective is to detect objects from the COCO dataset, a basic three-layer
CNN will not yield decent results, but it will already be a suitable design for smaller
datasets like MNIST or CIFAR10. The dataset’s complexity should match the complexity
of the architecture.

The YOLOv3 Tiny architecture can only reach 33% mAP on the COCO dataset,
which has a wide range of inputs and 80 classes, but the YOLOv4 architecture can achieve
65.7%, nearly double that of the YOLOv3-Tiny. In other words, with the COCO dataset,
more sophisticated architectures are required to get acceptable metrics. This is not the
case for the Brakish dataset, which has a limited variety of inputs and just six classes. It
is usual for simpler architectures to get high mAP levels when properly configured and
used in the right scenario.

This was one of the work’s conclusions: there is a temptation to constantly utilize the
most recent designs with the most advanced algorithms, but we must remember that for
simpler datasets, a simpler architecture can generate better results than more complicated
architectures. However YOLOv4 and further versions still perform well in almost all
situations, the use of older versions should be more encouraged, since we achieved nearly
the same mAP with YOLOv3-Tiny as other works that focused on the advantage of using
more complex architectures.

6.1.2 Underwater Image Filtering, where does it stand?

There are several reasons to exclude the filtering methodology used in this work as a
pre-processing algorithms:

1. Since the filtering processing power isn’t accelerated, it would take a long time to
run creating a lot of latency and bringing consequences in energy consumption.
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2. The filtering algorithms studied in this dissertation didn’t influence positively the
model as pre-processing algorithms.

3. By analysing Table 5.4 one can conclude that the studied filtering methods don’t
create an advantage when detecting species with the augmented model either.

Because of these reasons, we can look at the studied filtering methods as post-processing
algorithms for better human perception of the obtained results, and of course, as dataset
augmentations.

If the purpose is for better human perception, this post processing could also occur
outside of the edge device, after gathering the data for a cloud device to analyse.

6.1.3 Energy efficiency, did the result match the expectations?

It was said in section 1.4 that this dissertation would be focused on prioritizing low
energy consumption. However we used Vitis-AI which provides high frame rates and
focuses on performance, since it only supports FPGAs designed for high performance
computing, and offers limited amount of architecture configurations for the DPU. The
initial objective would be relying on FINN since it offers endless hardware configurations,
for example, by simply choosing different combinations of folding parameters (PE and
SIMD). However, since FINN was left behind due to technical issues and difficulties,
Vitis-AI was used as an amend.

Leaving this matter aside, the results obtained through Vitis-AI were acceptable since
it provides better energy efficiency than using a GPU, as it is shown in table 6.1. Using
the FPGA results in a performance drop of 71.629% in FPS, energy consumption drop
of 56.364% in Joules per frame, and a mAP drop of 9.8%. These values are considered
a good outcome since the frame rate and mAP are still in a good value range of 70.05
FPS and 82.6% respectively. Consuming 56.364% less energy means having 56.364% more
autonomy if the device is purely focused on detection tasks, which makes a respectable
difference and many underwater robotic devices for marine exploration could benefit from
this study.

Inference Performance and Efficiency

Hardware Platform
FPGA Computer

CPU CPU+DPU CPU CPU+GPU
Frames per Second 1.88 70.05 16.79 246.91
Joules per Frame 3.83 0.31 8.45 0.55

Table 6.1: Summary of measurements for performance and energy efficiency for the
different HW platforms.

A matter that should not be overlooked is the energy consumption in idle time. For idle
times, while using PYNQ, the instant power supply was around 12.3W, and in Vitis-AI
around 17.3W. PYNQ can load and unload bitfiles which can be accelerators developed
by FINN or other frameworks, as long as they have the correct connections to the Zynq
processor being used. This means that using PYNQ overlays would save an even greater
amount of power if we take idle time power consumption into account.
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6.2 Future Work

Before going on to supplementary and extra tasks, there are still improvements that
may be made to this project, such as:

• Explore and compare the results from implementing the custom made architectures
for underwater environments at [5] and [7], since they seem to be a better choice
than YOLOv3-Tiny, using less parameters and less FLOPs.

• Use an accelerator created with the FINN framework, possibly after an updated and
better version is released.

• There are still other DPU architectural configurations to be used in Vitis-AI and
some tools provided by Xilinx to support projects made with Vitis-AI, such as the
Vitis-AI Optimizer and Profiler. With the optimizer one can perform model pruning
and optimize the compiled models, which reduces the number of operations during
model inference. The profiler serves as an monitoring tool for model performance,
to check where it lacks optimization. In this project we only used the compiler
and quantizer. The profiler was also used, but only in order to visualize the results
obtained from tracing model inference.

It is also possible to add custom IP in the Vivado project, this raises the possibility
of having dedicated IP to read images from a camera in real time.

The following interesting additions would be useful, perhaps after the project’s core is
more stable:

• Make use of the encoder/decoder approach to incorporate filtering into the edge
device, which would use CNNs and make it simpler to parallelize the filtering
procedure, since there are tools like FINN and Vitis-AI that can do this for us.

• Using two filter modes that would be selected based on the turbidity of the water
(this is possible with turbidity sensors). When the water is clear, filtering algorithms
such as RoWS or RGHS may produce superior results. In circumstances when the
water is more turbid or visibility is reduced for other reasons, the edge device can
employ the filtering developed in this dissertation (Color Restored GC CLAHE).
This opens up the prospect of investigating the undersea habitat at night, or bigger
depths where the light levels are low.
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Appendix A

Vitis AI IP connections

This chapter contains schematics from the DPU product guide [64], that supplement explanations issued in chapter 4.
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Figure A.1: Schematic from [64], demonstrating clocking and reset related connections between the DPU and CPU.
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Figure A.2: Schematic from [64], demonstrating clocking, reset, interrupts, and dataflow related connections between the DPU and CPU.
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Appendix B

Python Requirements

This chapter contains system requirements for the desktop computer in order to
reproduce similar results from those obtained in this dissertation.

B.1 Filtering

Required packages (python v3.7.0 and pip v22.1):

matplotlib==3.5.2

natsort==8.1.0

numpy==1.21.6

opencv_python==4.5.5.64

scikit_image==0.19.2

scipy==1.7.3

skimage==0.0

xlwt==1.3.0

B.2 Training, testing and detection (desktop)

• Python: Python 3.7.0

• GPU (not a requirement, just to justify the use of torch-cuda version): Geforce
RTX 3060

• Packages:

matplotlib==3.5.2

numpy==1.21.6

opencv_python==4.5.5.64

Pillow==9.2.0

pip==22.1

scikit_image==0.19.2

skimage==0.0

terminaltables==3.1.10

torch==1.8.2+cu111

torchvision==0.9.2+cu111
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tqdm==4.64.0

imgaug==0.4.0



Appendix C

YOLOv3-Tiny Architecture -
configuration file

This chapter contains the configuration file used to train the YOLOv3-Tiny model, it
has detailed information about many of the used hyper parameters. If training for Vitis
AI implementation, comment the maxpooling layer of stride 1.

[net]

# Testing

batch=1

subdivisions=1

# Training

# batch=64

# subdivisions=2

width=416

height=416

channels=3

momentum=0.9

decay=0.0005

angle=0

saturation = 1.5

exposure = 1.5

hue=.1

learning_rate=0.001

burn_in=1000

max_batches = 500200

policy=steps

steps=400000,450000

scales=.1,.1

[convolutional]

batch_normalize=1

filters=16

size=3

stride=1

pad=1

activation=leaky
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[maxpool]

size=2

stride=2

[convolutional]

batch_normalize=1

filters=32

size=3

stride=1

pad=1

activation=leaky

[maxpool]

size=2

stride=2

[convolutional]

batch_normalize=1

filters=64

size=3

stride=1

pad=1

activation=leaky

[maxpool]

size=2

stride=2

[convolutional]

batch_normalize=1

filters=128

size=3

stride=1

pad=1

activation=leaky

[maxpool]

size=2

stride=2

[convolutional]

batch_normalize=1

filters=256

size=3

stride=1

pad=1

activation=leaky

[maxpool]

size=2

stride=2
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[convolutional]

batch_normalize=1

filters=512

size=3

stride=1

pad=1

activation=leaky

[maxpool]

size=2

stride=1

[convolutional]

batch_normalize=1

filters=1024

size=3

stride=1

pad=1

activation=leaky

###########

[convolutional]

batch_normalize=1

filters=256

size=1

stride=1

pad=1

activation=leaky

[convolutional]

batch_normalize=1

filters=512

size=3

stride=1

pad=1

activation=leaky

[convolutional]

size=1

stride=1

pad=1

filters=255

activation=linear

[yolo]

mask = 3,4,5

anchors = 10,14, 23,27, 37,58, 81,82, 135,169, 344,319

classes=80
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num=6

jitter=.3

ignore_thresh = .7

truth_thresh = 1

random=1

[route]

layers = -4

[convolutional]

batch_normalize=1

filters=128

size=1

stride=1

pad=1

activation=leaky

[upsample]

stride=2

[route]

layers = -1, 8

[convolutional]

batch_normalize=1

filters=256

size=3

stride=1

pad=1

activation=leaky

[convolutional]

size=1

stride=1

pad=1

filters=255

activation=linear

[yolo]

mask = 0,1,2

anchors = 10,14, 23,27, 37,58, 81,82, 135,169, 344,319

classes=80

num=6

jitter=.3

ignore_thresh = .7

truth_thresh = 1

random=1



Appendix D

PYNQ packages - ZCU 104

This chapter provides a quick setup for the FPGA Zynq UltraScale+ MPSoC ZCU104
Evaluation Kit when using PYNQ framework. Copy the following list of packages to a
requirements.txt folder and run $pip install -r requirements.txt in the FPGA’s console.
Python version: 3.8.2
Pynq version: 2.7.0
Python packages:

2ping==4.3

alabaster==0.7.12

anyio==3.1.0

argon2-cffi==20.1.0

async-generator==1.10

atomicwrites==1.1.5

attrs==19.3.0

Babel==2.9.1

backcall==0.2.0

beautifulsoup4==4.8.2

bitstring==3.1.9

bleach==3.3.0

blinker==1.4

blosc==1.7.0

brevitas==0.7.1

Brotli==1.0.9

certifi==2019.11.28

cffi==1.14.5

chardet==3.0.4

charset-normalizer==2.0.12

click==8.0.1

cloudpickle==1.3.0

CppHeaderParser==2.7.4

cryptography==2.8

cupshelpers==1.0

cycler==0.10.0

Cython==0.29.24

dash==2.0.0

dash-bootstrap-components==0.13.1

dash-core-components==2.0.0

dash-html-components==2.0.0
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dash-renderer==1.9.1

dash-table==5.0.0

dask==2.8.1+dfsg

dbus-python==1.2.16

decorator==4.4.2

defer==1.0.6

defusedxml==0.7.1

deltasigma==0.2.2

dependencies==2.0.1

distro==1.4.0

distro-info==0.23ubuntu1

dnspython==1.16.0

docker-pycreds==0.4.0

docutils==0.17.1

entrypoints==0.3

et-xmlfile==1.0.1

finn-base==0.0.3

finn-dataset-loading==0.0.5

finn-examples==0.0.4

Flask==2.0.1

Flask-Compress==1.10.1

fonttools==4.33.3

fsspec==0.6.1

future-annotations==1.0.0

gitdb==4.0.9

GitPython==3.1.27

gpg==1.13.1-unknown

gTTS==2.2.3

html5lib==1.0.1

httplib2==0.14.0

idna==2.8

imageio==2.4.1

imagesize==1.2.0

imgaug==0.4.0

importlib-metadata==1.5.0

imutils==0.5.4

install==1.3.5

ipykernel==5.5.5

ipython==7.24.0

ipython_genutils==0.2.0

ipywidgets==7.6.3

itsdangerous==2.0.1

jdcal==1.0

jedi==0.17.2

Jinja2==3.0.1

joblib==1.1.0

json5==0.9.5

jsonschema==3.2.0

jupyter==1.0.0

jupyter-client==6.1.12

jupyter-console==6.4.0



75

jupyter-contrib-core==0.3.3

jupyter-contrib-nbextensions==0.5.1

jupyter-core==4.7.1

jupyter-highlight-selected-word==0.2.0

jupyter-latex-envs==1.4.6

jupyter-nbextensions-configurator==0.4.1

jupyter-server==1.8.0

jupyterlab==3.0.16

jupyterlab-pygments==0.1.2

jupyterlab-server==2.5.2

jupyterlab-widgets==1.0.0

jupyterplot==0.0.3

keyring==18.0.1

kiwisolver==1.0.1

language-selector==0.1

launchpadlib==1.10.13

lazr.restfulclient==0.14.2

lazr.uri==1.0.3

locket==0.2.0

lrcurve==1.1.0

lxml==4.5.0

macaroonbakery==1.3.1

Markdown==3.1.1

MarkupSafe==2.0.1

matplotlib==3.5.2

matplotlib-inline==0.1.2

mistune==0.8.4

mnist==0.2.2

more-itertools==4.2.0

mpmath==1.1.0

nbclassic==0.3.1

nbclient==0.5.3

nbconvert==6.0.7

nbformat==5.1.3

nbsphinx==0.8.7

nbwavedrom==0.2.0

nest-asyncio==1.5.1

netifaces==0.11.0

networkx==2.4

notebook==6.4.0

numexpr==2.7.1

numpy==1.22.3

oauthlib==3.1.0

olefile==0.46

opencv-python==4.5.5.64

openpyxl==3.0.3

packaging==20.3

pandas==1.4.2

pandocfilters==1.4.3

parsec==3.9

parso==0.7.1
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partd==1.0.0

pathtools==0.1.2

patsy==0.5.1

pbr==5.6.0

pexpect==4.8.0

pickleshare==0.7.5

Pillow==9.1.0

pip==22.0.4

pkg_resources==0.0.0

plotly==5.1.0

pluggy==0.13.0

ply==3.11

prometheus-client==0.10.1

promise==2.3

prompt-toolkit==3.0.18

protobuf==3.20.1

psutil==5.8.0

ptyprocess==0.7.0

py==1.8.1

PyAudio==0.2.11

pybind11==2.8.0

pycairo==1.20.1

pycparser==2.19

pycrypto==2.6.1

pycups==1.9.73

pycurl==7.43.0.2

pyeda==0.28.0

Pygments==2.9.0

PyGObject==3.36.0

pygraphviz==1.5

PyJWT==1.7.1

pymacaroons==0.13.0

PyNaCl==1.3.0

pynq==2.7.0

pynq-dpu==1.4.0

pynq-peripherals==0.1.0

pyparsing==2.4.6

pyRFC3339==1.1

pyrsistent==0.17.3

pytest==4.6.9

pytest-sourceorder==0.5.1

python-apt==2.0.0

python-dateutil==2.8.2

pytz==2022.1

PyWavelets==0.5.1

PyYAML==5.3.1

pyzmq==22.1.0

qtconsole==5.1.0

QtPy==1.9.0

requests==2.27.1

requests-unixsocket==0.2.0



77

retrying==1.3.3

rise==5.7.1

roman==3.3

scikit-image==0.16.2

scikit-learn==1.0.2

scipy==1.8.0

seaborn==0.11.2

SecretStorage==2.3.1

Send2Trash==1.5.0

sentry-sdk==1.9.4

setproctitle==1.2.2

setuptools==44.0.0

Shapely==1.8.1.post1

shortuuid==1.0.9

simple-term-menu==1.4.1

simplegeneric==0.8.1

simplejson==3.16.0

six==1.14.0

smmap==5.0.0

sniffio==1.2.0

snowballstemmer==2.1.0

soupsieve==1.9.5

SpeechRecognition==3.8.1

Sphinx==4.2.0

sphinx-rtd-theme==1.0.0

sphinxcontrib-applehelp==1.0.2

sphinxcontrib-devhelp==1.0.2

sphinxcontrib-htmlhelp==2.0.0

sphinxcontrib-jsmath==1.0.1

sphinxcontrib-qthelp==1.0.3

sphinxcontrib-serializinghtml==1.1.5

SQLAlchemy==1.3.12

ssh-import-id==5.10

sympy==1.5.1

systemd-python==234

tables==3.6.1

tenacity==8.0.0

terminado==0.10.0

terminaltables==3.1.10

testpath==0.5.0

testresources==2.0.1

thop==0.0.31.post2005241907

threadpoolctl==3.1.0

tokenize-rt==4.2.1

toolz==0.9.0

torch==1.11.0

torchvision==0.12.0

tornado==6.1

tqdm==4.62.3

traitlets==5.0.5

transitions==0.7.2
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typing_extensions==4.1.1

ubuntu-advantage-tools==20.3

unattended-upgrades==0.1

urllib3==1.26.11

uvloop==0.14.0

voila==0.2.10

voila-gridstack==0.2.0

wadllib==1.3.3

wandb==0.13.1

wcwidth==0.1.8

webencodings==0.5.1

websocket-client==1.0.1

Werkzeug==2.0.1

wheel==0.37.1

widgetsnbextension==3.5.1

wurlitzer==3.0.2

xlrd==1.1.0

xlwt==1.3.0

zipp==1.0.0
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