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Abstract

In this thesis, we address the problem of graph identification of linear stochas-
tic networked dynamical systems from the time series data that reflect the state
evolution of a subset of observed nodes in the system – hence, a complemen-
tary subset of nodes lies unobserved or latent. Given these node-level time series
data, the goal is to consistently recover the underlying graph of dependencies
among the nodes in the networked system. We assume partial observability, i.e.,
the time series data of only a subset of nodes comprising the network is avail-
able. We propose a novel feature vector computed from the observed time series
as a statistical descriptor for the coupling between nodes. We formally prove that
these features are linearly separable, that is, there exists a hyperplane (in feature
space) that partitions the set of features associated with connected pairs of nodes
from those associated with disconnected pairs of nodes. This separability prop-
erty allows the use of these features to train a multitude of classifiers in order
to perform graph structure identification. In particular, we choose to train Con-
volutional Neural Networks (CNNs) over these features with a resulting graph
learning algorithm that outperforms state-of-the-art counterparts w.r.t. sample-
complexity, i.e., number of samples required to reach a certain level of accuracy in
the recovery of the graph. While the CNNs are trained over a particular synthetic
network, they generalize well over networked systems with distinct connectivity
patterns (dense or sparse) including real-world networks, and distinct noise-level
regimes. This is an important property as, in general, we might have no informa-
tion about these structural attributes. Finally, the proposed method consistently
learns the graph in a pairwise manner, that is, via inferring whether a particular
pair of nodes is connected or not from their time series (ignoring the time se-
ries from other nodes). This is particularly tailored to large scale systems where
observation of all nodes in the network is unfeasible.

Keywords

Graph Learning, Structure Identification, Artificial Neural Networks, Causal-
-Inference, Partial-Observability.
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Resumo

Nesta tese, abordamos o problema da identificação de grafos de sistemas dinâmi-
cos lineares estocásticos em rede, a partir de dados de séries temporais que re-
fletem a evolução do estado de um subconjunto de nós observados no sistema.
Assim sendo, um subconjunto complementar de nós permanece não observado
ou latente. Dadas essas séries temporais ao nível do nó, o objetivo é recuperar
consistentemente o grafo subjacente relativo às dependências entre os nós no sis-
tema. Assumimos observabilidade parcial, isto é, apenas estão disponíveis um
subconjunto das séries temporais dos nós que compõem a rede. Propomos um
novo vetor de features calculadas a partir das séries temporais observadas, que
agem como um descritor estatístico do acoplamento entre nós. Provamos for-
malmente que essas features são linearmente separáveis, ou seja, existe um hiper-
plano (no espaço de features) que separa o conjunto de features associadas a pares
de nós conectados daquelas associados a pares de nós desconectados. Essa pro-
priedade de separabilidade permite usar essas features para treinar um grande
número de classificadores e efetuar a identificação da estrutura do grafo sub-
jacente. Em particular, optamos por treinar Redes Neuronais Convolucionais
(CNNs) sobre essas features resultando num modelo de aprendizagem que exibe
uma performance, em geral, superior a outros algoritmos state-of-the-art. Esta
performance refere-se à complexidade amostral, isto é, número de amostras da
série temporal necessárias para atingir um certo nível de precisão na recuperação
do grafo. Enquanto as CNNs são treinadas em um grafo sintético específico, elas
generalizam bem para sistemas de rede com padrões de conectividade distintos
(densa ou esparsa), incluindo grafos do mundo real e regimes distintos de nível
de ruído. Esta é uma propriedade importante, pois, em geral, podemos não ter in-
formações sobre esses atributos estruturais. Por fim, o método proposto aprende
consistentemente o grafo de maneira par-a-par, ou seja, inferindo se um determi-
nado par de nós está conectado ou não a partir de suas séries temporais (igno-
rando as séries temporais de outros nós). Isso é particularmente adequado para
sistemas de grande escala, onde a observação de todos os nós da rede é inviável.

Palavras-Chave

Aprendizagem Automática de Grafos, Identificação de Estrutura, Redes Neuron-
ais Artificiais, Inferência Causal, Observabilidade Parcial.
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Chapter 1

Introduction

The current chapter presents a brief motivation for the main scope of this the-
sis, namely, learning the graph of interactions underlying linear networked dy-
namical systems from the observed time series, describes the contributions of
this work and sets the outline for the rest of the thesis. In particular, Section 1.1
presents the main motivation for the problem. Section 1.2 discusses our main
goals and contributions. Section 1.3 lays down the outline for the rest of the the-
sis.

The results were submitted in part for publication and a preprint can be found
at [Machado et al., 2022]. Other results are in preparation.

1.1 Motivation

In the last few years, mathematical models have been increasingly used to sup-
port the public health strategy concerning the mitigation of infectious diseases.
Particularly, in developing response plans for pandemic outbreaks such as new
strains of influenza A and, more recently, for the COVID-19 pandemic. An epi-
demiological model attempts to describe qualitatively the evolution of the frac-
tion of infected individuals across distinct regions of the globe. They allow the
study of spreading dynamics and simulating the effect of preventive measures,
such as vaccination or quarantine.

Networked epidemic models play a critical role in describing the spreading of
infectious diseases. Mobility of infected individuals across communities is one of
the main causes of transmission. These contacts among communities are usually
unknown (or not transparent), i.e., the underlying contact network topology is
unknown. On the other hand, mitigation policies necessarily rely on information
about this contact network. For instance, a possible framework to mitigate virus
propagation is to quarantine a subset of communities (or nodes in the network)
to maximally disconnect the contact network, a paradigm also known as network
dismantling [Braunstein et al., 2016; Ren et al., 2019]. Clearly, this family of mit-
igation strategies rely on concrete knowledge about the underlying network of
contacts.

1



Chapter 1

Therefore, these causal relationships among nodes in the networked system need
to be consistently inferred from the observed evolution of the pandemics – e.g.,
in the form of time-series reflecting the evolution of the number of infected in-
dividuals per community. For large-scale networks, the inference must be per-
formed under partial observability: only a subset of the nodes in the network
is observed. There are several reasons that cause the observability limitation in
large-scale networks such as: (i) [accessibility-limit], some parts of the network
are inaccessible or some interaction sources are unknown; (ii) [probing-limit],
acquiring and storing data capacity may be smaller than the network scale; (iii)
[processing-limit], data-mining complexity may limit the size of data that can be
processed [Santos et al., 2020a].

Learning the graph of interactions underlying networked dynamical systems (un-
der partial observability) is an emergent topic with a lot of interest and many
open questions. It finds applications in epidemics, specially in what concerns
the design of mitigation policies, but it naturally extends to a broad class of net-
worked dynamical systems such as brain activity, as recent evidences show that
the connectivity pattern among distinct active regions of the brain conveys im-
portant information about several forms of motor activities or cognitive disor-
ders [Lehnertz et al., 2020; Oltra et al., 2021]; or even in finance since the dynamics
of stock prices can be affected by interactions between corporations [Bazzi et al.,
2015]. The common element about these examples is that the state-evolution (or
time series data) of some nodes in the networked system is often available, but
the underlying contact network is unknown or not fully known, while critically
impacting the evolution of these systems.

1.2 Research Goals

In this thesis, we focus on linear stochastic networked dynamical systems. We
will assume that the time series of only some nodes in the networked system is
observed or processed. We remark that the framework of partial observability is
necessarily more challenging than the full observability counterpart as the time
series (or state evolution) of the observed nodes is critically impacted by the un-
observed nodes time series. Nevertheless, under this challenging framework, the
main goal is to consistently infer the network structure from the observed time
series data. Fig. 1.1 summarizes the paradigm.

The main contribution of this thesis can be summarized as follows: (i)[New fea-
tures] we propose a novel set of feature vectors computed from the time series
to characterize the connectivity between nodes; (ii)[Separability] this features
are shown to have a special property: they are linearly separable, in that, there
is a hyperplane (in feature space) that consistently stratifies the features stem-
ming from connected pairs and those from disconnected pairs; (iii)[Locality] the
causal inference, i.e., determining whether there is a link between two nodes is
performed only via processing the time series of the two nodes (that is, via ig-
noring the time series of the rest of the network); (iv)[CNN-approach] with the
referred separability property, we can resort to distinct machine learning tools

2
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Dynamical law:
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Networked Dynamical System

Figure 1.1: Graph structure identification under partial observability. The goal is
to devise a mechanism that consistently determines the subgraph structure link-
ing the subset of observed nodes S from the corresponding observed time-series.
These time-series reflect the state-evolution of the observed subset of nodes S
of the networked dynamical system. For simplicity, we illustrate an undirected
graph; however, the paradigm proposed in this thesis successfully applies to di-
rected graphs. The subgraph of interest is the support of the interaction subma-
trix AS supporting the contacts among the observed nodes S .

in order to perform inference and in this thesis we choose to train convolutional
neural networks with a resulting algorithm that exhibits competitive state-of-the-
art performance.

1.3 Outline

Next, we provide an overview of the content of this thesis.

• Chapter 2 describes the main theoretical background components under-
lying the research that was carried out. We briefly discuss on networked
dynamical systems (using primarily epidemiological models as reference);
on network generative models; on Artificial Neural Networks and on the
paradigm of causal inference or graph learning of networked dynamical
systems (possibly under partial observability);

• Chapter 3 presents a concise discussion of related works on graphical mod-
els and dynamical systems. We divide the methods present in the literature
into two distinct groups, depending on whether it is capable of recovering
the structural connectivity of a graph under full-observability or partial-
observability.

3
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• Chapter 4 presents the problem formulation and main theoretical results
that motivate the proposed CNN-based approach for graph learning, in
particular, it is shown that the proposed set of features is linearly separable.
Further, we introduce the methodology employed to perform the numerical
experiments exhibited on the next chapter;

• Chapter 5 validates the consistency of the method and demonstrates via
several numerical experiments the overall superiority of the approach as
compared with other state-of-the-art methods. In particular, it shows that
our CNN-based method is quite robust across networked dynamical sys-
tems with distinct connectivity patterns (densely or sparsely connected);

• Chapter 6 presents final remarks and offers distinct open directions for fu-
ture research.

4



Chapter 2

Background

This chapter entails some of the background that is relevant for the rest of this
thesis. Section 2.1 briefly introduces the main elements of dynamical systems
theory. In Section 2.2, we present deterministic and stochastic epidemiological
models as they represent important examples of networked dynamical systems.
Section 2.3 briefly describes some basic concepts regarding Artificial Neural Net-
works (ANNs) and Convolutional neural networks (CNNs). In Section 2.4, we
briefly discuss some works on parametric inference over epidemiological models
via ANNs. Finally, the last sections introduce some concepts of our main research
topic: Section 2.5 shows an approach to causal inference or graph learning under
full observability, Section 2.6 focus on partial observability and Section 2.7 dis-
cusses on the general ill-posed nature of graph learning.

2.1 Dynamical Systems

Dynamical systems theory is a direct off-spring of calculus developed by Isaac
Newton and Wilhelm von Leibniz in their pursuit to comprehend celestial me-
chanics, namely, in mathematically describing the evolution over time of the po-
sition of celestial bodies. For the most part, the great breakthrough from Newton
and Leibniz (that ripples to this day) was to compactly describe a (dynamical) law
whereby all complexity emerges from, namely, all motion ticks forward with the
arrow of time. The law was in the form of an Ordinary Differential Equation (ODE)
and to describe the evolution of the system meant to find the solutions to these
ODEs. From the XVII century up until early the XX century, the theory revolved
about this particular philosophy, i.e., finding the closed-form solutions to these
ODEs. The modern theory of dynamical systems was born with Henri Poincaré
after realizing that not only this is not, in general, possible, but sometimes it is
not helpful – as the expression for the solution could be too complex. The mod-
ern theory revolves around more qualitative descriptors of the system: what does
the long-term behavior of a dynamical system look like? Does the system slow
down to an equilibrium? Loops indefinitely (limit cycle)? Does it accumulate
onto some compact region of the state-space (attractor)? It is further in light of
this modern view that ODEs yield standard models for natural phenomena: the

5
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idea is that some elements of the qualitative behavior of the ODE models match
observed phenomena – only in rare cases, ODEs provide a precise quantitative
description of nature.

Networked Dynamical Systems represent a subclass of dynamical systems mod-
eling the state evolution of the nodes in a network. In this framework, the state
of the nodes evolves due to their neighboring interactions, i.e., respecting the
underlying sparsity imposed by the network. An example of a networked dy-
namical system is a pandemic where: (i) nodes can be cast as communities (e.g.,
cities, countries, etc.); (ii) connections abstract the possible avenues of interaction
among these communities that foster the spread of a virus; (iii) the state is given
by the fraction of infected individuals over time. Another example is brain activ-
ity where each node may represent a region of the brain and the state evolution
in the form of time series data can be captured by the Functional Magnetic Res-
onance Imaging (FMRI) or Electroencephalogram (EEG) signals. An important
remark is that the topology of the underlying network plays an important role
in the qualitative behavior of these systems. While this is the case, information
about the actual network is often not available directly, but lurks in the observed
time-series associated with the state-evolution of the system. In these settings, the
main goal of this thesis is to resort to ANNs in order to characterize consistently
this causal information from the observed time-series.

2.1.1 Networked Dynamical System

Continuous-time networked dynamical systems can be cast as the solution to
(possibly stochastic) ODEs. An ODE is an equation of the form

ẋ(t) = F (x(t)) , (2.1)

where F : U ⊂ RN −→ RN is the so-called vector-field. A solution to (2.1) is a
curve x : R+ −→ RN fulfilling the identity (2.1) where RN (or an open subset
thereof) is the state-space (the set of all possible states of the system) [Alligood
et al., 2000]. Therefore, a curve x is solution to (2.1) whenever at each point x(t) ∈
U, its tangent vector is given by F(x(t)). Fig. 2.1 graphically illustrates the idea.

Mean Field 

Figure 2.1: Example of a trajectory fitting the vector-field, i.e., of the solution of
an ODE.
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In general, a closed-form solution to the ODE (2.1) cannot be drawn [Strogatz,
1994] and numerical methods are the principal tools to integrate (2.1) and char-
acterize solutions. This subject is also known as numerical integration and it is
described in more detail in Section 2.1.4.

If we model the solution x(t) = (x1(t), x2(t), . . . , xN(t)) as the state of the N
nodes in a network at time t, then, we say that the node j affects (directly) the
node i whenever the vector-field at the node i Fi(x1, x2, . . . , xN) is sensitive to its
jth entry. This implies that ẋi(t) is sensitive to the state xj(t). More compactly,
this is equivalently to saying that the Jacobian matrix DF(x) entails the network
structure of interactions in its support:

[DF(x)]ij ̸= 0 ⇔ j → i. (2.2)

When the underlying network structure exhibits nontrivial sparsity, we refer to (2.1)
as a networked dynamical system. An example is the linear ODE

ẋ(t) = Ax(t) (2.3)

where the support of the matrix A conveys the network structure information. In
the causal identification framework, the main goal is to identify A or the support
of A from observation of the time-series {x (tn)}T

n=1.

2.1.2 Properties of Dynamical Systems and ODEs

In its utmost generality, a dynamical system is a family of maps ϕt : X −→ X
from a state-space X onto itself and indexed by time t ∈ T [Ott, 2002]. ϕt(x)
represents the state of the system at time t provided that its initial state was x ∈
X and fulfils the following properties: (i)[identity] ϕ0(x) = x for all x ∈ X;
(ii)[semigroup] ϕs+t(x) = ϕt (ϕs(x)). The dynamical system ϕ is often referred
to as a flow and it is continuous-time (respectively, a discrete-time) dynamical
system if the cardinality of T is that of R (respectively, is that of N).

More concretely, solutions to ODEs

ẋ(t) = F(x(t)) (2.4)

are necessarily flows ϕt(x), i.e., fulfill the aforementioned group properties, un-
der certain regularity assumptions on F. The space where all possible states of a
system are represented is called state space. The zeros of the vector-field F de-
fine the equilibria of the system, i.e., the points x⋆ ∈ Rd so that x(t) = x⋆. An
equilibrium x⋆ may be locally stable or unstable depending on whether small per-
turbations about x⋆ yield convergence to x⋆ or not. Fig. 2.2 shows an example for
the 1D ODE ẋ = x2 − 1, where x⋆ = −1 represents a globally stable equilibrium
and x⋆ = 1 represents an unstable equilibrium.
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𝑥

ሶ𝑥

Figure 2.2: Example of a phase portrait for the ODE ẋ = x2 − 1.

Definition 2.1 (Lyapunov stability). An equilibrium x∗ is Lyapunov stable if for every
ϵ > 0 there exists a δ > 0 such that if |x − x∗| < δ then

|x(t)− x∗| for all t ≥ 0.

The equilibrium is asymptotically stable if it is Lyapunov stable and there exists η > 0
such that if |x − x∗| < η then

x(t) → x∗ as t → ∞.

In other words, stability of a trajectory indicates that if it starts close to the equi-
librium, stay arbitrarily close for t ≥ 0. The concept of asymptotic stability, means
that nearby trajectories also approach the equilibrium as t → ∞. Lyapunov sta-
bility does not suggest asymptotic stability as nearby solutions could oscillate
around an equilibrium without converge towards it. Additionally, near solutions
approaching the equilibrium does not imply asymptotic stability since trajecto-
ries could take extensive paths before reaching the equilibrium and this would
violate Lyapunov stability [Hunter, 2011].

In the qualitative theory of dynamical systems, we are particularly interested in
the long-term faith of the system. This naturally leads to the notion of attractor: a
compact region in state-space where a large collection of trajectories of the dynam-
ical system accumulates onto. To each attractor A ⊂ Rd, we can associate the set
of all initial conditions B (A) =

{
x0 ∈ Rd : limt→∞ d (ϕt (x0) ,A) = 0

}
that lead

the dynamical system to converge to A, where we have defined

d (x0,A)
∆
= inf

y∈A
||x0 − y||2 . (2.5)

The set B (A) is called the basin of attraction of A [Sayama, 2019]. Fig. 2.3 shows
two examples of attractors: (a) the attractor is the origin of the state-space; (b) the
attractor is the closed dashed curve.
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Figure 2.3: Example of attractors [Ott, 2002].

A critical property of dynamical systems is uniqueness: to each initial condition
x0 ∈ Rd, there is only one solution departing from x0. In other words, if x0 ̸= y0,
then ϕt (x0) ̸= ϕt (y0) for all t ≥ 0.

Two main forms of violation of this condition are: (i)[coalescence] trajectories
coalesce eventually, i.e., ϕt(x0) = ϕt(y0) for some t > 0; (ii)[bifurcation] a tra-
jectory splits in two eventually. The former implies loss of information: given the
current state, we cannot infer the initial states. In particular, one of the main
foundational assumptions of physics (conservation of information) is not consis-
tent with (i). On the other hand, bifurcation violates determinism: given an initial
state, it is not possible to assert its future.

To sum up, the uniqueness property is foundational for dynamical systems and
its off-spring applications. This condition is met, for instance, whenever the
vector-field fulfills some mild regularity assumptions, e.g., it is Lipschitz con-
tinuous (Picard-Lindelöf Theorem).

Definition 2.2 (Lipschitz continuity). Let U be an open set in Rd. A function F:
Rd −→ Rd is Lipschitz continuous over U, if there is a constant L > 0 such that

|F(x)− F(y)| ⩽ L|x − y|

for every x, y ∈ U. The constant L is called the Lipschitz constant of F.

Examples of Lipschitz continuous functions are the continuously differentiable
functions, i.e., the set of functions whose partial derivatives exist and are contin-
uous [Alligood et al., 2000].

Finally, we must refer to a specific class of dynamical systems called monotonous
or order-preserving, that can be found in many biological, physical and econom-
ical dynamical models [Hirsch and Smith, 2006]. Namely, a monotonous flow is
characterized by the following property

u ≤ v and t ≥ 0 =⇒ ϕt(u) ≤ ϕt(v) (2.6)

In other words, the flow map ϕt : Rd −→ Rd preserves the vector order '≤'. Such
monotonous dynamical models exhibit certain restricted long-term behavior. For
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instance, in Rd with the standard vector ordering, there cannot be stable periodic
orbits other than equilibrium. Moreover, the equilibrium of the system is also
typically a global attractor: (almost) all trajectories of the system converge to a
point in the equilibrium.

2.1.3 Considerations on Continuous-Time Dynamical Systems

Generally ODEs that model the transmission of infectious diseases are described
for being continuous in time and having a nonlinear evaluation, as stated in the
following sections. Although, under certain conditions it is possible to represent
a nonlinear dynamic system by a similar and simpler linear system. Also, we
can discretize a dynamical system continuous in time. In this section we present
two concepts of dynamic systems that allow this transformation, and endorse the
approach taken in this thesis.

Simplification of nonlinear dynamics. The Hartman-Grobman theorem allows
the representation of the local phase portrait about certain types of equilibrium in
a nonlinear system by a similar and simpler linear system. This is achievable by
computing the Jacobian matrix of the system at the equilibrium point. Consider
following the differential equation

ẋ = F(x(t)) (2.7)

where F ∈ C1(U, Rn) and U is an open subset of Rn. Assume that x∗ ∈ U is an
equilibrium, that is f (x∗) = 0. The linearized dynamic system associated to 2.7
near x∗ is

ẋ(t) = A(x(t))− Ax∗ (2.8)

where A = DF(x∗) is the derivative of F at x∗. The equilibrium x∗ is said to be hy-
perbolic if the matrix A has no purely imaginary eigenvalue. Dynamical systems
2.7 and 2.8 are designated topologically conjugate at x∗ if there are neighborhoods
X, Y of x∗ in U and a homeomorphism (continuous bijection with a continuous
inverse) h: X → Y mapping the orbits of 2.7 in X into the orbits of 2.7 in Y in a
time-preserving way [Baratchart et al., 2006].

This theorem is particularly compelling to us, not only because it bears a way
of simplifying the underlying dynamics, but also because the Jacobian matrix
contains the causal information for networked dynamical systems. Suppose we
are observation the nodes i, j of a certain network, the node j has an effect on a
node i whenever ẋi depends of the entrance ẋj in ẋi(t) = F(x1(t), x2(t), x3(t), ...),
i.e. j as direct impact on i.

Continuous-time discretization. The previous sections focused on continuous-
time dynamical systems, however discrete-time systems may naturally arise from
the continuous ones. Consider the following Stochastic Differential Equation
(SDE)

dx(t) = Ax(t)dt + db(t). (2.9)
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It can be shown that the time-series samples with sample interval T obeys the law

x(n + 1) = eATx(x) + w(n + 1), (2.10)

and if T is small enough, then the previous law reduces approximately to

x(n + 1) ≈ (I + AT)x(x) + w(n + 1), (2.11)

where the term AT conveys the underlying ground-truth graph of interactions
linking the nodes in the network and {w(n)}t≥0 is a sequence of i.i.d. normal
vectors. In other words, devising inference tools for discrete-time models (which
will be the focus of this thesis) is key for a great class of continuous-time systems.
A similar discretization approach is adopted in [Bento et al., 2010].

2.1.4 Ordinary Differential Equations Solvers

We might be unable to find the solution to general ODEs in closed form. Nu-
merical methods, provided by ODE solvers, are important tools to study these
systems quantitatively. The fundamental idea behind ODE solvers is discretizing
time to obtain a discrete-time system counterpart whose evolution lies as close
as possible to the continuous system. The smaller the step size the better the ap-
proximation of the ODE solution [Press et al., 2007]. Euler’s method represents
one of the most basic forms of discretization: define the sequence of time instants
tn+1 = tn + h and rewrite the ODE ẋ(t) = F(x(t)) as

x(tn+1)− x(tn)

h
= F(x(tn)). (2.12)

Nonetheless, this method is not optimal in the sense that it is prone to numerical
instabilities and only uses derivatives at the beginning of the interval so it’s not
very accurate compared to other methods with the same step-size h. For it to be
accurate we would have to use a very small step size.

The accuracy of a numerical integration method algorithm is dependent on the
round-off error that arises from the maximal round-off error in the computer
number representation, by the product of the integration interval. The trunca-
tion error results from the true integration value subject to a constant round-off
error. This error can be decreased by reducing the step-size which reduces the
truncation error and by using a higher-order integration formula.

A higher-order method takes into account more steps between the integration
interval in order to improve accuracy. Euler’s method is very asymmetric regard-
ing the beginning and end of the interval. For a second-order method, taking an
exploratory step to the midpoint of the interval and then using the value of that
point to compute the actual value of the whole interval yields a more symmet-
ric integration method. This is the idea behind Runge-Kutta method, the sym-
metrization cancels out the first-order error. Therefore, we should not stop in
a second-order method and so we should consider taking more trial steps. The
limiting factor when numerically integrating is the computational effort when
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Figure 2.4: Illustration of the second-order Runge-Kutta.

computing the ODE equation. Since the Runge-Kutta method considers n eval-
uations where n is the integration order, we must find a trade-off between a low
computation effort and truncation error per step h. The most popular method is
the fourth-order Runge-Kutta which considers four evaluations per each step h –
this is the numerical integration method that we adopt in this thesis.

k1 = h f (tn, yn)

k2 = h f (tn +
h
2

, yn +
k1

2
)

k3 = h f (tn +
h
2

, yn +
k2

2
)

k4 = h f (tn + h, yn + k3)

yn+1 = yn +
k1

6
+

k2

3
+

k3

3
+

k4

6

(2.13)

This method can be further improved with an adaptive step size algorithm in
order to achieve better accuracy with less computational cost. Nonetheless, this
adaptive idea cannot be used for the work of this thesis since we want to know the
ODE solution for a given time point so a fixed step size method is required.

Higher order Runge-Kutta methods are suitable for problems where moderate
accuracy is needed and computational efficiency is not an issue. For problems
where high accuracy is required, we should use other methods such as Richard-
son extrapolation or Predictor-corrector. Richardson extrapolation is based on the
idea of extrapolating a computed solution value, to the one that should have been
attained if the step size was way smaller than what it really is. Extrapolating a so-
lution refers to the use of known values to project a value outside of the intended
range of those values. Furthermore, the Predictor-corrector method stores the
computed results and consequently uses those results to extrapolate the solution
one step ahead and so it has a comparatively big overhead [Press et al., 2007].

2.2 Modeling Infectious Diseases

The transmission of infectious diseases through interactions in a population is
very complex, which makes it difficult to understand the large-scale dynamics of
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disease spread without the formal structure of a mathematical model. An epi-
demiological model makes use of the behavior of an infectious individual (mi-
croscopic level) to predict the role of the spreading of a disease throughout the
population (macroscopic level). These models, disregarding type or complexity,
are essentially simplifications of a real-life system, which may contain only some
of the fundamental elements of it as defined by the researcher [Sattenspiel, 2002].

The mathematical modeling of infectious disease is advantageous to test theories
about the spread of the infection such as comparing different diseases in the same
population or vice-versa [London and Yorke, 1973]. Epidemiological methods are
also useful to compare the impact of prevention and control procedures such as
in the work by [Hethcote and Yorke, 1984] that uses models to compare different
control programs for gonorrhea.

In the following subsections we will describe three distinct approaches to model
the spread of infectious diseases. The first approach, called compartmental mod-
els, are deterministic and describe the macroscopic level of a disease spread. The
second method is stochastic and makes use of network models to describe the mi-
croscopic level of the spread. The third technique, based on the complex systems
theory, is a bottom-up approach (describes the microscopic level) which incorpo-
rates the spatial aspects of the spread of an epidemic. These refereed methods,
in contrast to others such as statistical models that learn patterns from the his-
torical time series, allow the representation of the process of infection between
two individuals and, consequently, mathematically describe the evolution of an
epidemics over time of a whole population.

2.2.1 Epidemiological Compartmental Models

The idea behind compartmental modeling was introduced by [Kermack and McK-
endrick, 1927] as the first ODE-based rigorous framework for modeling infec-
tious diseases as it is known today as the Susceptible-Infected-Removed (SIR)
model [Bacaër, 2011].

In this model, the studied population is assigned to one of four classes: S repre-
sents the fraction of the population that is susceptible, I stands for the fraction
of infected individuals and R represents the fraction of recovered individuals.
Within this paradigm, distinct models can be drawn such as Susceptible-Infected-
Susceptible (SIS), SEIR, SEIRS and others [Kretzschmar, 2016].

We would use the SIR terminology to model an infectious disease that offers im-
munity to individuals against reinfection and a SIS terminology for a disease that
does not confer immunity against reinfection. Individuals flow from the suscep-
tible class, to the infected and back to the susceptible class.

𝑆 𝐼 𝑅
Figure 2.5: Flow chart of the SIR model.
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The fundamental element of these models is the rate that expresses the transmis-
sion of the infection according to a mass action incidence, that is, assuming that
the individuals of the population meet each other randomly with the same prob-
ability per time unit. The compartmental model 2.5 is translated into a system of
ODEs

dS
dt

= −βSI

dI
dt

= βSI − γI

dR
dt

= γI

. (2.14)

The parameters β and γ are the infection and recovery rate respectively. β de-
pends on the number of contacts per unit time κ and the transmission rate τ.
Therefore, β = κ·τ

N and γ = 1
D , where N is the number of individuals and D the

infection duration.

An essential element for predicting the evolution of an epidemic is how many
people are infected by an infectious individual for the time he is infected and
able to transmit the disease. That is R0 the basic reproduction number, derived from
R, the reproductive rate [Anderson and May, 1982], which is a good indicator of
the near tendency of the epidemic. If R0 > 1, I exponentially grows; if R0 < 1, I
exponentially decreases.

R0 =
κ · τ

γ
= D · κ · τ. (2.15)

More complex models [He et al., 2020; Mateus et al., 2018] arise from the exten-
sion of the SIR model, namely, by considering additional states or compartments
as illustrated in Figure 2.6. Examples of such compartments are the treated (T),
vaccinated (V), quarantined (Q), hospitalized (H), the deceased (D), etc. Each
transition from one compartment to another requires a rate. Moreover, to make
the models more realistic [Carcione et al., 2020; Vaz and Torres, 2021] other pa-
rameters can be added such as the birth rate and nature and disease related de-
ceased. Other types of extensions of the basic model [Rahmadani and Lee, 2020b]
may consider the existence of multiple strains where different species interact
among them.

Compartmental models have been commonly applied for different infectious dis-
eases for a long time [Brauer, 2017]. These models are not very demanding in
terms of the amount of input to be implemented. In fact they are favored in some
situations such as diseases with a non-negligible rate of fatality. However, com-
partmental models have a downside as they assume that the epidemic process
is deterministic, once the behavior of the infection is entirely determined by its
history and the model rules and that and that the number of individuals belong-
ing to a compartment is a time-differentiable function. Also, they presuppose
that the population being studied is uniform and homogeneously mixing. There-
fore, this approach may not be valid at the beginning of the outbreak when there
are only a few infected and the transmission behavior is not clear [Brauer and
Castillo-Chavez, 2012].
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Figure 2.6: Flowchart of an extended SEIR model for COVID-19 modeling [He
et al., 2020].

2.2.2 Epidemics over Networks

In the previous subsection we described models tailored to study the evolution
of the pandemics over a single population. More general ODE-based compart-
mental models consider instead the spread across distinct communities. The dy-
namics of the SIS model over multiple communities can be given by the standard
ODE model

ẏi(t) =

(
N

∑
j=1

Aijyj(t)

)
(1 − yi(t))− µiyi(t), (2.16)

where yi(t) models the fraction of infected individuals at the community i at time
t ≥ 0; Aij represents the rate that individuals from the community j contact with
individuals in community i; and µi represents the healing rate at the community i.
The term (1 − yi(t)) entails the fraction of healthy (and thus, prone to be infected)
individuals at the community i.

Equation (2.16) can be written in vector form as

ẏ(t) = (Ay(t))⊙ (1 − y(t))− µy(t), (2.17)

where A ∈ RN×N
+ is the matrix of interactions, i.e., the matrix conveying the rates

of infection across communities; ⊙ is the pointwise product between two vectors.
Define Aij = Aij whenever i ̸= j; Aii = Aii − µi; and s(A) = maxi=1,...,N Reλi

(
A
)

as the maximum real part among the eigenvalues of A.

This model was first rigorously studied in [Lajmanovich and Yorke, 1976]. Some
basic properties of this model established in [Lajmanovich and Yorke, 1976] are:
(i) 0 ≤ yi(t) ≤ 1 for all i = 1, 2, . . . , N and all t ≥ 0; (ii) the system y(t) reaches
equilibrium regardless of the initial condition; (iii) If s(A) > 0 then the lim-
iting equilibrium of the system is endemic regardless of the initial conditions,
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i.e., limt→∞ y(t) = y⋆ > 0 for all initial conditions y(0) ∈ [0, 1]N, otherwise,
limt→∞ y(t) = 0.

Point (i) states that yi(t) can be cast as the fraction of infected individuals (as it
remains within [0, 1] for all time); (ii) states that the dynamical system neither
oscillates (there are no limit cycles) nor it exhibits chaotic behavior: the system
stabilizes after a transitory; (iii) says that the matrix of interactions A (along with
the healing rates) determine the long-term faith of the system, namely, whether
the virus persists or dies out. This latter point seems quite universal to networked
dynamical systems in general: the network of interactions strongly determines
the behavior of the system.

Network Generation

A network can be used to represent connections among individuals. They consist
of nodes that may represent individuals, communities, devices, etc. Two nodes
sharing the same edge are considered to directly interact and are referred to as
neighbors. The number of neighbors of a node is specified as the degree D of
that node. Here we present different types of network models. Note that, unless
mentioned otherwise, we refer to networks as unweighted, undirected and with
no selfloops or multi-edges.

The first well-known random network model was proposed by Erdös-Rényi. It
assumes that edges connecting pairs of nodes are drawn independently with a
probability p. For a network on N nodes, we have that Np is the mean degree
of the nodes. In particular, each node has n − 1 possible connections, and the
number of neighbors follows a binomial distribution D ∼ Bin(n − 1, p). As n →
∞, this distribution approximates the Poisson distribution D ≈ P(p). Fig. 2.7
illustrates this network model.

Figure 2.7: Erdös-Rényi Network, N = 80, ⟨λ⟩ = 4 [Okabe and Shudo, 2021].

The Erdös-Rényi random model might not be ideal to capture the structure of cer-
tain real-world heterogeneous networks. In particular, it does not display com-
munity structure (with high probability) and its degree distribution is flat for the
most part.
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A second well-known network proposed by Watts and Strogatz [Watts and Stro-
gatz, 1998] known as small world model, tries to produce more realistic networks.
The process is based on choosing a node and an edge that connects it to its near-
est neighbor. Then with a probability p, we reconnect the current ring to another
chosen uniformly over the entire ring. The process is repeated while moving
clockwise around the ring.

𝑝 = 0 𝑝 = .05

Figure 2.8: Small world networks with different probabilities.

The previous two models are still limited as they generate networks with degree
distributions that do not describe real-world problems. For sexually transmit-
table diseases some individuals have many sexual partners while the rest have a
small number of sexual partners. These are called scale-free networks once they
have heavy-tailed degree distributions that approximately follow a power law
[Luke, 2015].

The model proposed by Barabási-Albert [Barabasi and Albert, 1999] lies on this
idea and follows an iterative growth concept based on preferential attachment;
this means that a few nodes will have a large degree while the rest bear small
degree. The building model starts with a single node without edges and, at each
step, edges are added to the network. Also the probability of connecting to a par-
ticular node is equal to its current degree D, so there’s a tendency to connect to
a node with high degree which creates the preferential property. The random-
ness of this model arises from how the edges are connected to the existing nodes.
Fig. 2.9 (a) illustrates a Barabási-Albert network of size N = 80 and the average
connecting number is ⟨λ⟩ = 4. The histogram (b) shows the distribution of the
nodes degree.

Figure 2.9: Barabási-Albert Network, N = 80, ⟨λ⟩ = 4 [Okabe and Shudo, 2021].
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Finally, there are models for dynamic networks where the current state of the epi-
demic affects the network morphology. The one proposed by [Britton et al., 2011],
nodes may give birth to new nodes until they die and each node is equipped with
a social index given at birth. During its life period a node creates edges to other
nodes, higher social indexes perform this process at a higher rate and also edges
disappear randomly in time.

Other dynamic models may reflect the state of the ongoing epidemic on the net-
work. [Leung et al., 2018] presented a model where susceptible individuals may
distance themselves from infected contacts as the epidemic evolves. Also, indi-
viduals may even replace lost social contacts by searching for new connections.

More on Spreading Models

Previously, we have described some ODE based compartmental epidemic models
along with various methods to generate random networks. In this subsection, we
describe two stochastic epidemic models (not ODE based).

The Reed-Frost Model [Britton, 2018] assumes that the infectivity of each indi-
vidual is constant during the outbreak. It is a discrete-time dynamical process
as infections happen through generations. At the first generation k = 0 one or
more randomly selected individuals become infected, while the remainder are
susceptible. In the next generations, infectious individuals spread the infection
through its network neighbors independently, with a probability of p and then
recover. Immune individuals or infected contacts are not affected. Those who
became infected at generation k will become infectious at generation k + 1 and
this continues until no new infections occur.

The general stochastic epidemic [Nåsell, 2002], often called Markov epidemic,
assumes that individuals infect their neighbors independently at a rate γ and
recover at a different rate µ. At time t = 0, one randomly selected individual is
made infectious while the left becomes susceptible. Infectious individuals have
independent contacts with their susceptible neighbors on the network randomly
according to the Poisson distribution with a rate β. Also each Infected (I) person
remains in that state for a period exponentially distributed with mean 1/γ, i.e.,
I ∼ Exp(γ) until it recovers and develops immunity. Similarly to the Reed-frost
model the epidemic continues until no new infection occurs.

As described, the Reed-Frost model takes place in discrete time, through gener-
ations, while the general stochastic epidemic model occurs in continuous time.
However we could define the Reed-Frost model for a continuous time since it is
how the infection outbreak happens in reality. Still, the concept of generations
is a reasonable approach when there is a long period between exposure to the
infection, followed by a small infectious period.

In both models there is only the possibility for an individual to infect its neigh-
bors on the network which reflects the social proximity entailed by the graph. The
major difference between these two epidemiological models lies in the infection
event. For Reed-Frost models, distinct individuals become infected with inde-
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pendent probabilities, while in general stochastic epidemiological models [Brit-
ton, 2020] these events incur nontrivial correlation. The distribution of the in-
fected individuals on the network denotes the final outbreak, while the final size
is the number of individuals that got infected during the outbreak, illustrated at
[Britton, 2020].

Figure 2.10: Illustration of the infection’s final size in a random social network.

2.2.3 Complex Systems Approach

Differential equations models, presented before, neglect space implications within
the systems and do not contemplate spatial and temporal factors such as variable
population or dynamics. The disregard of the spatial element in the conception of
epidemic models can be solved by using complex systems theory to address the
spatial behavior [Perez and Dragicevic, 2009]. Two bottom-up approaches have
been proposed to deal with this issue.

The first technique, emerged from the Cellular Automata (CA) theory, has been
adopted to model location-specific attributes of susceptible populations along
with stochastic parameters that capture the probabilistic essence of the disease
transmission [Sirakoulis et al., 2000]. CAs [Von Neumann and Burks, 1966] are
models of physical systems, where space and time are discrete and interactions
are local. They have been broadly used as models for complex systems and ap-
plied to several physical problems governed by local interactions [Karafyllidis,
2004; Karafyllidis and Thanailakis, 1997] . A CA comprises a regular uniform n-
dimensional lattice or array as illustrated in Figure 2.11. At each site of the lattice
(cell), a physical quantity takes on values. This physical quantity is the global
state of the CA, and the value of this quantity at each site is its local state. Each
cell is confined to local neighborhood interaction only [Wolfram, 1994].

Nevertheless, the CA model is unable to describe the individual’s movement and
interactions over the transmission space. This is an essential element to consider
especially in highly contagious diseases. Agent-Based Modeling (ABM), a solu-
tion similar to the CA methods, models a system by representing each individual
or agent in that system, and addresses this issue as it has the exceptional capabil-
ity of tracking the movement of a disease and the contacts between individuals
of a social group located in a specific geographic area [Patlolla et al., 2006]. It
allows the study of specific spatial characteristics of the disease transmission as
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Figure 2.11: Distinct types of neighborhood, where the gray cells represent the
size of the contact neighbors.

well as the stochastic nature of the epidemic process. The Agent-Based (AB) con-
cept consists of a population of individual "agents", an environment, and a set
of rules (fixed or mutable). In ABM the actions occur through the agents, which
are simple and self-contained programs that gather information from their sur-
roundings and use it to decide how to act [Heppenstall et al., 2011]. The actions
can be as straightforward as deciding which direction it will move in based on a
simulated perception, or they can be more complex, like looking for other agents
within a certain radius who share specific characteristics and socially interacting
with them. Unexpected aggregate phenomena that emerge from a model’s com-
bination of individual behaviors can be captured by the ABM [Bruch and Atwell,
2015b].

For instance, in the proposed approach [Zhen and Quan-Xing, 2006], the natural
biological process of a disease spreading among people is characterized as well
as the daily behaviors of the individuals in an urban environment. Georeferenced
Geographic Information Systems (GIS) data layers of an urban region are used to
create the model in order to geographically reflect the typical urban landscape. In
addition it was created to contain georeferenced data about population densities,
various land uses, and transportation networks in order to take into considera-
tion some of the aspects that may affect an epidemic in metropolitan conditions.
Figure 2.11 illustrates the AB process of the mentioned method.

Overall this technique brings various advantages since it tracks the disease pro-
gression down to each individual, which allows it to follow individual contacts
in social networks and geographical areas such as universities. Also it is possible
to introduce heterogeneity and diversity of the target population in contrast to
compartmental models [Iranzo and Pérez-González, 2021b]. ABM is able to ex-
plore changes in people’s behavior as a result of the introduction of a particular
intervention [Bruch and Atwell, 2015a].

They also carry some drawbacks in comparison to equation-based approaches.
For more complex models, there is the lack of use of real landscape structures
and integration with geospatial data and GIS to represent the continuous envi-
ronment where the discrete individuals interact. Also, complex ABM involve
innumerable parameters that must be empirically calibrated, yet it is common
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Figure 2.12: Illustration of the AB process for a single time set representing their
daily activities and interactions with the environment [Perez and Dragicevic,
2009].

the scenario where the available data about some of those parameters is not re-
liable. High-fidelity ABM portraits many interactions and dynamic processes
which adds a possible uncertainty around the model results, difficulties the mod-
els interpretation and validation [Hunter et al., 2020], and results or conclusions
drawn from them are hardly to generalize [Iranzo and Pérez-González, 2021a].
Additionally, ABM has a high computational cost.

2.3 Artificial Neural Networks

In this section we present the two artificial neural networks architectures consid-
ered to sort out the graph learning problem. Subsection 2.3.1 details the basics of
ANNs and drawbacks of simple Feed-Forward Neural Networks (FFNNs), and
2.3.2 introduces the core functioning of CNNs.

2.3.1 On the Basics of Artificial Neural Networks

ANNs are a popular machine learning technique which evolved from the idea of
emulating the human brain: (i) neurons receive signals from the dendrites; (ii)
the signal is processed and an output signal might be sent through the axons.
Similarly, an ANN takes inputs from the input layer, weighs them individually
and passes them through a nonlinear activation function in order to produce an
output [Aggarwal, 2018]. Fig. 2.13 shows the comparison between a biological
neural network and an artificial neural network with a single neuron.
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Figure 2.13: Relation between biological and artificial neural networks [Aggar-
wal, 2018].

An ANN is composed of three main components: the node structure, the network
topology and the learning rule [Zou et al., 2008]. Here we focus on FFNNs (also
designated Multi-layer Perceptrons) where each layer feeds its state into the next
layer, from the input towards the output.

The node is the basic processing element in a neural network. The node structure,
illustrated in Fig. 2.13(b), dictates how the information is processed. Its structure
consists of the inputs xi connected to the node, the weights wij that linearly com-
bine the inputs, the activation function f , the bias w0 and the output Oi. The
activation function defines how the weighted sum of the input is transformed
into an output and is chosen based on the modeling problem.
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Figure 2.14: Structure of an artificial neural network node.

The output of the i-th neuron Ni is given mathematically by the following expres-
sion

Oi = f

[
w0 +

n

∑
j=1

wijxj

]
. (2.18)

The network topology is associated with the way the nodes are disposed and
connected. Figure 2.15 shows the general architecture of a multi-layer FFNN.
The nodes are organized into linear arrays, designated layers. The first and last
layers are termed input and output layers, whereas the one in the middle are the
hidden layers.

The learning rule defines how the weights are initialized and adjusted. Learning
is classified into two main categories, supervised and unsupervised learning. The
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Figure 2.15: Architecture of a feed-forward neural network with two hidden lay-
ers and a single output layer.

training of an ANN lies in supervised training, i.e., we need to provide training
data that contains examples of inputs and the expected output. The training set
must incorporate representative samples of the underlying model, otherwise the
trained model will not be reliable. The goal of the training is to minimize the
error function by adjusting the weights connecting the neurons.

Regarding the loss function, the idea is to give a high penalty for wrong predic-
tions and a low penalty otherwise. For regression problems the error function is
generally given by the Mean Squared Error (MSE) between the neural network
output and the real output Yi for a number of N samples

EMSE(W) =
1
N

N

∑
i=1

( fW(Xi)− Yi)
2, (2.19)

where W is the vector of weights of the neural network and Yi is the output asso-
ciated with the input Xi.

For classification problems the cross-entropy loss function may be more appro-
priate. Anyhow, in theory a ANN can be trained equally well by minimizing
either function, considering it is capable of approximating the true posterior dis-
tribution arbitrarily [Golik et al., 2013].

While the error function defines the metric used to improve the model, the pro-
cess responsible for adjusting the error and minimizing the error is called back-
propagation. This algorithm contains two steps: the forward and backward phase.
During the forward phase inputs of the sample are fed to the neural network,
the predicted value is compared to the real output and the derivative of the error
function regarding the output is computed. Amid the backphase, the gradient of
the loss regarding the different weights is learned. Those gradients are needed to
adjust the weights according to a learning rate α as it follows

Wnew = Wold − α

(
∇W E

)
(2.20)

Training algorithms are discussed extensively in the literature, including [Rumel-
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hart et al., 1986] and [Lin and Lee, 1996] for fundamental concepts.

The accuracy of the neural network training is directly linked with the selection
of parameters of the node structure and the network topology. Increasing in-
discriminately the number of neurons and/or the number of intermediate layers
does not guarantee a proper generalization of the ANNs with respect to the sam-
ples of the test subset. Such choices may guide the model to overfit, a condition
in which the network memorizes the responses to the input. In this scenario, the
error of the training process tends to be very low but when the test subset is pre-
sented to the network, the error tends to be very high. Contrastingly, an ANN
with a reduced number of neurons might be not sufficient to extract and store the
features of the problem. In that case, it will not be able to build hypotheses about
the process behavior, which results in underfitting. In this case, the squared error
in both training and test stages are very notable [da Silva et al., 2017].

FFNNs bring various advantages to the machine learning field when comparing
to other traditional techniques: (i) can be used easily without prior knowledge,
(ii) create the required decision function directly through the learning process,
(iii) can be used for many fields and tasks as discrimination, pattern recognition,
empirical modeling, (iv) can represent both linear and nonlinear relationships
[Park and Lek, 2016]. On the other hand, FFNNs require a neuron for each input
and the number of weights may quickly become unmanageable for samples of
large dimensions. It includes too many parameters because it is fully connected:
each node is connected to every other node in the next and the previous layer,
resulting in redundancy and inefficiency. Most importantly, they are not suitable
for some tasks as spatial information is lost when the data is flattened from a
matrix to a vector.

2.3.2 Convolutional Neural Networks

The basic concept behind CNNs is to devise a solution for reducing the number
of parameters allowing a network to be deeper with much less parameters, there-
fore addressing the drawbacks of FFNNs [Aghdam, 2017]. CNNs are a kind of
FFNNs that are able to extract features from data with convolution structures.
Differently from traditional feature extraction methods, such as Scale Invariant
Feature Transform (SIFT) [Lindeberg, 2012] and Local Binary Pattern (LBP) [Aho-
nen et al., 2006], there is no need to extract features manually.

In comparison with the general artificial neural networks, CNNs have various
advantages: (i) each neuron is no longer connected to all neurons of the previous
and next layer which is useful to decrease parameters and accelerate convergence;
(ii) a group of connections can share the same weights, which reduces parame-
ters further; (iii) the pooling layers, described further, can reduce the amount of
data while retaining useful information (data down-sampling), and reduce the
number of parameters by removing trivial features [Li et al., 2021].

CNN is a mathematical construct which consists of alternate layers of convolution
and pooling followed by one or more fully connected layers at the end. In some
cases, a fully connected layer is replaced with a global average pooling layer. The
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first two, convolution and pooling layers, perform feature extraction, whereas
the fully connected layer, maps the extracted features into final output. The mul-
tilayered, hierarchical structure of deep CNNs, allows to extract low, mid, and
high-level features. High-level features (more abstract features) are a combina-
tion of lower and mid-level features. Figure 2.16 illustrates the Operation of a
two-dimensional CNN.
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Figure 2.16: Operation of a two-dimensional CNN.

The convolutional layer has a set of convolutional kernels where each neuron be-
haves like a kernel. The kernel divides the image into small slices, designated
receptive fields. It convolves the data using a particular set of weights by multi-
plying its elements with the corresponding elements of the receptive field [Gün-
ther et al., 2014]. Pooling sums up similar information in the neighborhood of the
receptive field and outputs the dominant response within the local region [Lee
et al., 2016].

2.4 Epidemic Models with Deep Learning

Epidemic models enable the modeling of the spread of infectious diseases, ei-
ther on a macroscopic or microscopic level. It is also well-known that forecasting
the spatial and temporal evolution of an epidemic is currently an active area of
research. Particularly, with the emergence of ANNs which contributed to the ad-
vance of time-series prediction and forecasting. Here we review some works that
combine machine learning techniques and epidemiological causal models. This
hybrid model may be applied to either improve the model parameterization or
to enhance the forecasting of the pandemic.

Methodologies purely based on deep learning do not allow to make use of the
knowledge available in the domain of predictive epidemiology. In addition, these
methods are less suitable when it comes to the interpretability of results, espe-
cially if those predictions support a decision process. Interpretation and explain-
ability of predictions are critical, e.g., in health related activities [McKelvey et al.,
2018].

Reference [Rahmadani and Lee, 2020a] proposed a hybrid deep learning based
epidemic prediction framework for the spread of Covid-19. Their approach uses
an expanded Susceptible-Exposed-Infected-Susceptible (SEIR) model in order to
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capture the disease transmission among distinct populations. Their framework
incorporates deep learning with a meta-population model to obtain a more accu-
rate parametric estimation as illustrated in Fig. 2.17.
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Figure 2.17: Architecture of a feed-forward network with two hidden layers and
a single output layer [Rahmadani and Lee, 2020a].

[Wang et al., 2020] proposed a framework that attempts to solve the problem re-
lated to the lack of data for diseases such as Influenza-Like diseases, with a data
augmentation framework. The data augmentation is performed by generating
synthetic data via ODE-based models such as the SEIR model and then using
deep neural networks to capture the dynamics. The main idea is to tune the pa-
rameters in order to minimize the difference between synthetic and real observed
data.

Other related works that make use of deep learning to find the best parameters
that minimize the gap between real and synthetic data are: (i) [Jo et al., 2020] pro-
posed a forward-inverse neural network for SIR models where the parameters at
each time step are estimated with a time dependent ANN based on the histor-
ical data of COVID-19 in South Korea; (ii) [Farooq and Bazaz, 2020] make use
of a ANN to learn the compartmental parameters through an incremental learn-
ing approach, i.e., the ANNs are used to iteratively approximate the incoming
data which allows to improve the model without having to train it every time the
dataset is updated.

2.5 Causal Inference of Networked Dynamical Sys-
tems

In order to illustrate in a transparent manner the problem of causal inference of
networked dynamical systems, we focus on discrete-time linear stochastic net-
worked dynamical systems given by

yi(n + 1) =
N

∑
j=1

Aijyj(n) + xi(n + 1) (2.21)
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where yi(n) represents the state of the node i at time n; {xi(n)}i,n is zero-mean
and i.i.d spatially (i.e., in the index i) and temporally (i.e., in the index n); A is
a nonnegative matrix with spectral radius ρ(A) < 1 modeling the interaction
among the N nodes. In particular, Aij ̸= 0 means that the state yj(n) of node j
bears a direct impact on the state yi(n + 1) of the node i at time n + 1. In other
words, the support of the interaction matrix A conveys the underlying graph link-
ing the nodes.

One important question is: can we infer A from the observed time-series {y(n)}∞
n=1?

Indeed, we have that

y(n + 1)y(n)⊤ = Ay(n)y(n)⊤ + x(n + 1)y(n)⊤ (2.22)

which yields,

E
[
y(n + 1)y(n)⊤

]
= AE

[
y(n)y(n)⊤

]
, (2.23)

and thus,

A = E
[
y(n + 1)y(n)⊤

] (
E
[
y(n)y(n)⊤

])−1

= R1(n)R−1
0 (n) n→∞−→ R1(R0)

−1,
(2.24)

where R1 = limn→∞ 1/n ∑n
i=1 y(n + 1)y(n)⊤ is the limiting 1-lag correlation ma-

trix and R0 = limn→∞ 1/n ∑∞
i=0 y(n)y(n)⊤ is the limiting correlation matrix. The

matrix-estimator R1R−1
0 is often referred to as Granger estimator. This provides a

transparent scheme to recover the causal relationships from the time-series.

For the discrete-time linear stochastic networked dynamical system (2.21), we are
able to derive in closed form an estimator for the underlying interaction matrix
A. Such a scheme is not unique. For instance, when the interaction matrix A is
symmetric, and the noise is Gaussian with covariance matrix σ2 IN, where IN is
the N × N identity matrix, then we have that

R0(n) = σ2
∞

∑
i=0

A2i, (2.25)

and observing that

R1(n) = AR0(n) = σ2 ∑∞
i=0 A2i+1

R3(n) = A3R0(n) = σ2 ∑∞
i=0 A2i+3 , (2.26)

which yields the relation

R1(n)− R3(n) = σ2A. (2.27)

In other words, the support of A can be inferred via subtracting the 3-lag covari-
ance matrix from the 1-lag moment counterpart. This was proposed and explored
in [Chen et al., 2022] and it turns out to be a relevant result for Theorem 1 in Chap-
ter 3 yielding the separability of the features.
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2.6 Causal Inference of Large-scale Networked Dy-
namical Systems

For large-scale networks, only some nodes in the network can be observed. De-

fine S ∆
= {1, 2, . . . , S}, with S < N, as the set of observable nodes. In other words,

in the large-scale setting, we can only observe {[y(n)]S}
∞
n=1, where

[y(n)]S = (y1(n), y2(n), . . . , yS(n)) (2.28)

collects only the entries of the vector y(n) at the set of observable nodes S . If we
insist in adopting the Granger estimator under this partially observed setting, we
have the following

ÂS = [R1]S ([R0]S)
−1 ̸=

[
R1 (R0)

−1
]
S
= AS , (2.29)

where AS represents the true interaction matrix among the nodes in the observed
set S ; the latter identity follows from the derivation in the previous subsection;
and ÂS is the estimated interaction matrix obtained via Granger and ignoring
the latent part. Even though [R1]S ([R0]S)

−1 ̸=
[

R1 (R0)
−1
]
S

, i.e., part of the in-
formation about the true interaction matrix AS is lost in the partial observability
regime by the latent part of the network, under certain regimes of network con-
nectivity, the underlying network structure is preserved in ÂS in that under an
appropriate thresholding of the entries, we can recover the underlying network
[Santos et al., 2020a].

In this thesis, we explore this causal inference under partial observability via
ANNs, as well: can we train neural networks in order to recover the underly-
ing network structure under partial observability from the observed time-series?
As we will show, the answer is yes, and we provide an efficient mechanism to
extract this structural information.

2.7 Ill-posed Nature of Network Inference

Inferring the interactions and causal relationships among nodes governed by a
networked dynamical system from the observed time-series data is a demanding
task. Various mathematical models have been proposed to address this problem,
however causal inference is far from being a closed issue, particularly for non-
linear dynamic systems [Stepaniants et al., 2020]. In particular, it is typically a
high-dimensional inverse problem that is ill-posed, in general.

Inferring causal relations using the time series data alone may lead to distinct
solutions that accurately reproduce the data. Namely, identical time series can
stem from distinct network topologies, rendering the structure inference an ill-
posed problem, in general, as illustrated in Fig. 2.18.

The solution to this issue generally lies on perturbing the networked dynamical
system and as a result, observing the transient dynamics of relaxation back to
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Figure 2.18: Illustration of the ill-posed nature of network inference. [Stepaniants
et al., 2020].

the original equilibrium, i.e., measure its collective response, in order to infer the
underlying structure, as illustrated in Fig. 2.19.

For instance, [Stepaniants et al., 2020] proposed two methods for nonlinear dy-
namical systems using the idea of perturbing the system: judiciously perturb
Granger Causality (GC) and call Perturbation Cascade Inference (PCI). The first
approach uses the base GC model, however the system is perturbed giving all
nodes of the network random initial conditions and the time series is sampled
from the transient dynamics measurements. PCI is an active inference approach
that learns the distance from every node to the initially perturbed one and applies
that knowledge to rebuild the connectivity of the underlying network.
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Figure 2.19: Illustration of two approaches concerning network inference [Stepa-
niants et al., 2020].
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Related Work

This section respects the structure of the related work reported in the submitted
manuscript [Machado et al., 2022].

The generative process underlying the nature of the time series samples deter-
mines quite critically the method used to infer the graph of interactions from
the observed time series data. For example, if the observed time series samples
follow a Gaussian multivariate distribution and are independent and identically
distributed (i.i.d.), then the Precision matrix (inverse of the covariance matrix)
is a consistent estimator for the network structure. On the other hand, if the
time series reflect the state evolution of a linear stochastic networked dynamical
system (not i.i.d.), then regression (or Granger) is consistent [Geiger et al., 2015;
Matta et al., 2020] and Precision matrix no longer grants structural consistency. If
further, the time series samples are i.i.d. following a ferromagnetic Ising model
distribution, then the correlation matrix is a possible structurally consistent ma-
trix estimator [Montanari and Pereira, 2009], even though, in general, it is a poor
estimator for other networked systems.

Not only the underlying law governing the samples is relevant, but also the ob-
servability of the system. Whether the system is fully or partially observed con-
forms to important information to assert the causal inference method (if any) to
consistently and optimally extract structural information of the networked sys-
tem. Next, we stratify some relevant related works accordingly. Section 3.1 ad-
dresses the methods present in the literature capable of recovering the graph of
interactions under full observability. Section 3.2 reviews the methods capable of
recovering the structural connectivity only when a subset of time series data is
available (partial-observability).

3.1 Full-observability

Graphical Models. These models focus on samples that are i.i.d. and stem from
multivariate distributions. Some relevant and well-known algorithms include
SGS [Spirtes et al., 2000], PC [Spirtes and Glymour, 1991], GES [Chickering, 2003],
and FGS [Ramsey et al., 2016]. These methods are fit to networks of reasonable
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size. Reference [Anandkumar et al., 2012] offers a method for the large-scale net-
work setting via conditional covariance tests. The commonality among all these
works is the demanding structural constraints (revolving around sparsity of con-
nections) to grant the consistency of the methods. In other words, the consistency
of the methods is only granted if the underlying network (object of inference) is
sparse enough. The control over the underlying connectivity of the ambient net-
work in the referred methods is critical, otherwise the inference problem quickly
becomes hard or unfeasible [Bogdanov et al., 2008; Bresler et al., 2014].

Networked dynamical systems. Reference [Mateos et al., 2019] offers a survey
of recent results for full-observability over different models (in particular, lin-
ear models), focused on enforcing sparsity of the underlying network, which
includes linear VAR models such as [Mei and Moura, 2017]. In this line of
work, reference [Pereira et al., 2010] addresses linear stochastic differential equa-
tions (SDEs) via an optimization formulation that primarily enforces sparsity of
the network. Therefore, the performance of the method strongly depends on
the sparsity of the network. The problem is, in fact, addressed over a discrete-
time model (matching the same model adopted in this thesis) obtained from the
continuous-time SDE. Other strategies, such as [Granger, 1969; Segarra et al.,
2017a,b], leverage on spectral properties of the underlying interaction matrix,
namely, via finding signatures in the time series that are closely related with the
spectrum of the interaction matrix in the corresponding generative process. These
methods also rely on the sparsity of the network and are quite sensitive to the
observability of the system: as soon as a subset of the networked system is not
observable, the system provides no guarantees of consistency at all.

3.2 Partial-observability

The framework for graph structure identification in the context of partial ob-
servability (i.e., in the presence of latent variables) is more challenging than the
full-observability counterpart and deserves separate attention. It is important to
highlight that the majority of the works under partial observability belong to the
literature of graphical models – samples are assumed i.i.d and drawn from a joint
probability distribution.

Graphical Models. The techniques frequently rely on Conditional Independence
(CI) tests. Well-known algorithms for causal inference under the presence of la-
tent variables are the FCI [Spirtes et al., 1995] and RFCI [Colombo et al., 2012]. As
in the full-observability scenario, the performance of the methods scales poorly
with the connectivity of the underlying interaction graphs rendering these CI-
based approaches impractical for dense graphs. The methods tend to impose
several structural constraints to design sufficient conditions for structural consis-
tency as directed acyclic property (no loops), long girth [Anandkumar and Val-
luvan, 2013; Anandkumar et al., 2013] and other more technical structural con-
ditions as bottleneck and non-redundancy [Adams et al., 2021; Mastakouri et al.,
2021]. These properties imply that the network should be quite sparse.

Networked dynamical systems. References [Materassi and Salapaka, 2012a,b,
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2015] address linear networked dynamical systems using certain pseudo-metrics
(such as log-coherence distance) computed from the time series samples that are
intended to estimate the distance between nodes in the underlying graph. As
long as the network complies with a number of rigorous sparsity requirements,
such as not allowing undirected cycles (which excludes, e.g., graphs obtained
from the realization of Erdős–Rényi random graph models), it is demonstrated
that some pairs of nodes may be consistently categorized. Reference [Geiger
et al., 2015] offers constraints on the network connectivity and interaction ma-
trix of a linear networked dynamical system to achieve uniqueness of the net-
work connectivity given partially observed time series samples. While it offers
a uniqueness result, that is, that the interaction matrix is uniquely determined
by the partially observed time series data, it does not offer an algorithm with
consistency guarantees to infer the network. Reference [Zhao and Wan, 2022]
addresses specific discrete-time discrete state-space networked dynamical sys-
tems using an Expectation-Maximization based methodology. References [Chan-
drasekaran et al., 2012; Jalali and Sanghavi, 2012; Mei and Moura, 2018] uses
convex optimization-based techniques to regularize the network’s sparsity un-
der partial observability. References [Matta et al., 2020, 2022; Santos et al., 2020b]
prove structural consistency of the Granger (or regression) estimator over various
regimes of network connectivity, including dense networks, over partially ob-
served discrete-time linear stochastic networked dynamical systems. Similar to
[Anandkumar and Valluvan, 2013], these estimators are structurally consistent
in the thermodynamic limit, that is, when the number of nodes scales to infinity,
which fits the framework of large-scale networks. In a recent work, [Chen et al.,
2022] proved that the underlying interaction matrix can be expressed as a linear
combination of covariance matrices (if enough time series samples are available),
under the following regime: (i) the interaction matrix A is symmetric; (ii) the
excitation noise is diagonal and homogeneous, that is, its covariance matrix is a
multiple of the identity matrix. Theorem 1 in [Chen et al., 2022] will be useful to
establish an important result regarding the separability of the features proposed.
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Formal Analysis and Methodology

In this chapter, we lay down the formal analysis for our proposed graph learning
method. In particular, we propose a set of features as statistical descriptors for
the connectivity of the pairs of nodes, i.e., from the time series samples stemming
from each pair, we compute a feature vector for the corresponding pair. We prove
that the set of proposed features is linearly separable, that is, there exists a hyper-
plane that separates the feature vectors associated with connected pairs from the
feature vectors associated with disconnected pairs. This motivates the methodol-
ogy of using these features to train CNNs in order to assert the connectivity of a
pair.

The lemmas and theorems, described here, have been reported in the submitted
manuscript [Machado et al., 2022] and the notation and structure of this section
follow that of the reported manuscript. Further, we include the proofs to the
lemmas and theorems in order to render the thesis self-contained.

Section 4.1 formulates the problem and introduces the notation for the rest of the
chapter. Section 4.2 provides some useful definitions of structural consistency
of matrix-valued estimators and feature-based estimators (sometimes referred to
as tensor-valued estimators). Section 4.3 proves the linear separability of the fea-
tures. Finally, Section 4.4 describes the methodology of our approach to be further
explored in the numerical experiments.

4.1 Problem Formulation

The focus of this thesis will be on linear stochastic networked dynamical sys-
tems. Notwithstanding, the tools developed in the linear framework can be also
useful over a great class of nonlinear networked dynamical systems. Indeed, sev-
eral nonlinear dynamical systems exhibit an approximate linear dynamics when
close to the equilibrium (for those converging to an equilibrium) and graph learn-
ing over this family of nonlinear systems are often dealt with via linearization
about the equilibria under small-noise regimes [Ching and Tam, 2017], or via an
appropriate embedding in higher-dimensional spaces [Mauroy and Goncalves,
2016] in order to yield a linear system. It is also common to consider discrete-
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time dynamics as result of a time discretization process as in [Montanari and
Pereira, 2009], where the time-discretization of solutions to continuous time lin-
ear stochastic differential equations yield the discrete-time linear model (refer to
equation (4.1)) adopted in this thesis. Moreover, graph learning over linear net-
worked dynamical systems is still an active area of research with several open
questions.

Next, we consider the linear networked dynamics given by

y(n + 1) = Ay(n) + x(n + 1), (4.1)

where y(n) = [y1(n) y2(n) . . . yN(n)]
⊤ ∈ RN is a vector that represents the state

of the N-dimensional networked dynamical system at time n, i.e., it collects the
states yi(n) of each node i at time n; x(n) ∼ N

(
0, σ2 IN

)
is the excitation noise

or perturbation associated with the N nodes of the system, with diagonal covari-
ance matrix σ2 IN, where IN is the identity matrix, and it is assumed independent
across time n; A ∈ RN×N

+ refers to the non-negative interaction matrix whose
support represents the underlying graph linking the nodes. We assume that the
dynamical system (4.1) is stable, which translates into assuming ρ(A) < 1, where
ρ(A) stands for the spectral radius of A, i.e., the greatest of the absolute value of
its eigenvalues.

We address the problem of consistently recovering the support of the submatrix
AS, or equivalently, the underlying graph structure of interactions among the
observed nodes in the subset S from the time series represented by the observed

subvector [y(n)]S =
[
ym1(n) ym2(n) . . . ym|S|(n)

]⊤
∈ R|S| over time n, where |S|

is the cardinality of the subset S, as illustrated in Fig. 1.1, in Chapter 1.

Notation: S =
{

m1, m2, . . . , m|S|

}
⊂ {1, 2, . . . , N} is a nonempty subset of indexes

with m1 < m2 < . . . < m|S| and |S| ≤ N and will represent the subset of ob-

served nodes; given a vector y ∈ RN, [y]S =
[
ym1(n) ym2(n) . . . ym|S|(n)

]⊤
is

the subvector obtained from y and indexed by S; we adopt a similar notation for
matrices, namely, given A ∈ RN×N, the matrix AS ∈ R|S|×|S| or [A]S ∈ R|S|×|S| is
defined as the submatrix whose ijth entry is Amimj ; Supp (A) is the support of the
matrix A, i.e., [Supp (A)]ij = 1{Aij ̸=0}; ||y||∞ refers to the L∞-norm that returns

the maximal absolute value across the entries of the vector y ∈ RN; the set of
natural numbers is denoted by N = {0, 1, 2, . . .}.

4.2 Structural Consistency

Next, we introduce important building blocks to the problem of graph learning,
namely, the so-called k-lag covariance matrices that are defined as

Rk(n)
∆
= E

[
y(n + k)y(n)⊤

]
(4.2)
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and are associated with the process (y(n))n∈N. Further, we define their empirical
counterparts given by

R̂k(n)
∆
=

1
n

n−1

∑
ℓ=0

y(ℓ+ k)y(ℓ)⊤. (4.3)

We will also refer to these latter k-lag empirical covariance matrices simply as
k-lag moments.

These covariance matrices entail relevant structural information and when prop-
erly combined can yield a useful methodology for graph learning. In particular,
our feature vectors will be built upon them.

We refer to a matrix-valued estimator as any map whose input is given by the
(observed) time series and the output is given by a matrix, namely,

F(n) : R|S|×n −→ R|S|×|S|

{[y(ℓ)]S}
n−1
ℓ=0 7−→ F (n) , (4.4)

for any given n ∈ N. The core idea is that the ijth entry of the output matrix F (n)

estimates the strength of the link from i to j from n time series samples. For in-
stance, the k-lag moment matrix R̂k(n) ∈ RN×N just introduced in equation (4.3)
or the

[
R̂k(n)

]
S
∈ R|S|×|S| submatrix, in the case of partial-observability, are ex-

amples of matrix-valued estimators as they are matrices computed from the time
series as in equation (4.3).

Given a sequence of random variables Z(n), we say that Z(n) > τ with high prob-
ability (w.h.p.), whenever

P
(

Z(n) > τ
)

n→∞−→ 1. (4.5)

Roughly speaking, if n is large enough, then the probability that Z(n) lies above τ

is close to 1. For the sake of simplicity, we might simply refer to this as “Z(n) > τ
with high probability".

Definition 4.1 (structural consistency of a matrix-valued estimator). A matrix-
valued estimator F(n) is structurally consistent with high probability (w.h.p.), whenever
there exists a threshold τ so that,

P
(
F (n)

ij > τ
)

n→∞−→ 1 ⇐⇒ i → j, (4.6)

i.e., i links to j if and only if the ijth entry of the estimator matrix F (n) lies above the
threshold τ, provided that there is a large enough number of samples n.

In other words, up to a proper threshold τ, and computed with enough time se-
ries samples n, the output matrix F (n) contains full-information about the graph
of interactions in that [Supp(AS)]ij = 1{F (n)

ij >τ
}, for all pairs i ̸= j w.h.p., as illus-

trated in Fig. 4.1.
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Figure 4.1: Illustration of the structural consistency of a matrix-valued estima-
tor ÂS. We depict the entries of the matrix-valued estimator ÂS. Each point in
the abscissa indexes a pair in the network and the indexation is so that connected
pairs lie on the left-hand side (of the red mark) and disconnected pairs lie on the
right. A matrix-valued estimator is structurally consistent when any entry as-
sociated with connected pairs lies above any entry associated with disconnected
pairs. Equivalently, there exists a threshold that consistently separates the entries.

An example of a structurally consistent w.h.p. matrix-valued estimator (under

partial observability) is given by F (n) ∆
= R̂1(n)− R̂3(n) [Chen et al., 2022]. Other

examples of matrix-valued estimators that are provably structurally consistent
under partial observability include:

• Granger
[

R̂1(n)
]

S

([
R̂0(n)

]
S

)−1

• One-lag
[

R̂1(n)
]

S

• Residual
[

R̂1(n)
]

S
−
[

R̂0(n)
]

S

These three matrix-valued estimators are proven to be structurally consistent in
the limit of large networks [Matta et al., 2022], i.e., structural consistency is met
in the limit N −→ ∞.

We should formally refer to the sequence
(

F(n)
)

n∈N
of maps as being structurally

consistent with high probability, as the term "with high probability" introduced
before is defined for a sequence of random variables. However, for simplicity of
notation, we will simply refer to it as “the estimator F(n) is structurally consistent
w.h.p.".

Next, we introduce a tensor-valued estimator which is, formally, any map whose
input is given by the (observed) time series and the output is an order-3 tensor,
as follows

T(n) : R|S|×n −→ R|S|×|S|×K

{[y(ℓ)]S}
n−1
n=0 7−→ T (n) , (4.7)
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where the ijth entry of the order-3 tensor T (n) is a vector T (n)
ij ∈ RK that models a

feature statistical descriptor assigned to the pair ij in the network and that is built
from n time series samples {[y(ℓ)]S}

n−1
ℓ=0 .

Alike the separability of the entries of a matrix-valued estimator yielding its
structural consistency (i.e., the graph of interactions is entailed in the support
of the matrix up to a thresholding), we introduce the concept of (linear) struc-
tural consistency of a tensor-valued estimator which is equivalent to having the
underlying features describing the tensor as linearly separable.

Definition 4.2 (structural consistency of a tensor). A tensor-valued estimator T(n) of
order-3 is linearly structurally consistent with high probability, if there exists an affine
map L : RK → R (or hyperplane) that separates the underlying features associated with
connected pairs from those associated with disconnected pairs w.h.p., that is,

P
(
L(T (n)

ij ) > 0
)

n→∞−→ 1, if ij is connected,

P
(
L(T (n)

ij ) ≤ 0
)

n→∞−→ 1, if ij is disconnected
. (4.8)

Equivalently, one can say that the set of features
{
T (n)

ij

}
ij

is consistently linearly

separable w.h.p. This means in particular, that if we have access to the separating
hyperplane, then we can classify consistently the connectivity of the pairs in the
network. As an example, the estimator T(n) whose ijth entry of the tensor output
T (n) is defined as

T (n)
ij

∆
=

([
R̂D(n)

]
ij

,
[

R̂D+1(n)
]

ij
, . . . ,

[
R̂L(n)

]
ij

)
corresponds to an order-3 tensor-valued estimator. As we will show in the next
section (and it was proved in [Machado et al., 2022]), if D ≤ 1 and L ≥ 3, then it is
linearly structurally consistent w.h.p., i.e., the set of underlying features

{
T (n)

ij

}
is consistently linearly separable w.h.p.

Motivated by this separability property of an order-3 tensor-valued estimator, a
normalized version of these features will be used to train CNNs and success-
fully recover the connectivity pattern of synthetically generated and real-world
networks. The proposed framework is summarized in Fig. 4.2

4.3 Features Separability

The technical results presented in this section, regarding the features separability,
are the key results supporting the proposed CNN-based framework for graph
structure identification of linear networked dynamical systems.

Assumption 1. Let E (n) :=
{

E(n)
1 , E(n)

2 , . . . , E(n)
M

}
be a family of matrix-valued es-

timators such that for some w := (w1, w2, . . . , wM) ∈ RM with w ̸= 0, the linear
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Dynamical law:

Question:

…

Can we consistently recover                                          from the time-series?

Feature-space

Connected

Disconnected

Separation hyperplane

Theorem 1 yields this linear separability

Classification: 
Connected/Disconnected

Figure 4.2: Proposed framework: each feature is computed from the time series
of each pair of nodes in the linear networked dynamical system. Provided that
we have an enough number of time series samples, the set of features produced is
linearly separable, i.e., there exists a hyperplane to partition this set consistently
into features associated with connected pairs and features associated with dis-
connected pairs. These features are used to train CNNs to perform classification.

combination E(n)(w) = ∑M
ℓ=1 wℓE

(n)
ℓ is a structurally consistent w.h.p. matrix-valued

estimator for the dynamics (4.1).

Lemma 1. For each pair ij, with i ̸= j, define the associated feature vector as,

T (n)
ij :=

([
E(n)

1

]
ij

,
[

E(n)
2

]
ij

, . . . ,
[

E(n)
M

]
ij

)
∈ RM. (4.9)

Then, under Assumption 1, the tensor-valued estimator T(n) is linearly structurally con-
sistent w.h.p., or equivalently, the set of features

{
T (n)

ij

}
i ̸=j

⊂ RM is consistently lin-

early separable w.h.p.

Proof. Since E(n)(w) = ∑M
ℓ=1 wℓE

(n)
ℓ is structurally consistent w.h.p. for some w ∈

RM, then there exists a threshold τw so that
[

E(n)(w)
]

ij
> τw across connected

pairs ij and
[

E(n)(w)
]

ij
< τw, otherwise. Therefore, the affine map Lw(x) =

x · w − τw consistently separates the set of features
{
T (n)

ij

}
ij

w.h.p. Indeed,

Lw(T (n)
ij ) = T (n)

ij · w − τw = [E(w)]ij − τw > 0 (4.10)

for a connected pair ij or

Lw(T (n)
ij ) =

[
E(n)(w)

]
ij
− τw < 0, (4.11)
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otherwise. In other words, the hyperplane characterized by the linear map Lw :
RM −→ R separates consistently the pairs ij for all i ̸= j.

Theorem 1. For each pair ij, with i ̸= j, define the associated feature vector as,

T (n)
ij :=

([
R̂D(n)

]
ij

,
[

R̂D+1(n)
]

ij
, . . . ,

[
R̂L(n)

]
ij

)
,

with D ≤ 1 and L ≥ 3, and assume that the interaction matrix A underlying the
dynamics (4.1) is symmetric and the covariance matrix of the noise process (x(n))n∈N is

given by Σx := σ2 IN, for some σ > 0. Then, the set
{
T (n)

ij

}
i ̸=j

⊂ RM is consistently

linearly separable w.h.p.

Proof. Define the vector w ∈ {−1, 0, 1}M so that E(n)(w) = R̂1(n)− R̂3(n), which
is possible since D ≤ 1 and L ≥ 3. According to Theorem 1 in [Chen et al.,
2022], E(n)(w) = R̂1(n) − R̂3(n) is structurally consistent w.h.p. and the result
now follows from the previous Lemma 1.

Remark that to compute the feature T (n)
ij associated with the pair ij and defined

in Theorem 1, we only need to process the time series
{

yi(ℓ), yj(ℓ)
}n
ℓ=0 associated

with this particular pair ij. Namely, note that

T (n)
ij :=

1
n

n−1

∑
ℓ=0

(
yi(ℓ+ D)yj(ℓ), . . . , yi(ℓ+ M)yj(ℓ)

)
,

which only involves the time series of nodes i and j. As such, it is possible to
reconstruct the connectivity pattern in a pairwise manner. This locality property
is not shared with a variety of other estimators. For example, to reconstruct the
ijth entry of the Precision matrix or inverse of the empirical covariance matrix(

R̂0(n)
)−1

, one needs, in general, to first compute the whole covariance matrix

R̂0(n). This implies, in particular, that to estimate the ijth entry of the Precision
matrix, we need to process the time series of the whole network. If the latter is of
a large scale nature, this would be a challenging task on its own.

Definition 4.3 (Identifiability gap for matrix-valued estimators). Given a matrix-
valued estimator F(n), define its identifiability gap as1

Γ
(

F(n)
)

∆
= min

ij : Aij ̸=0
F (n)

ij − max
ij : Aij=0

F (n)
ij , (4.12)

i.e., the gap between the smallest entry of F (n)
ij across connected pairs and the largest

entry of F (n)
ij over disconnected pairs.

1The terminology and definition were borrowed from [Matta et al., 2022] and also used
in [Machado et al., 2022].
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Observe that a matrix-valued estimator F(n) is structurally consistent w.h.p. if
and only if Γ

(
F(n)

)
> 0 w.h.p., or in other words, if and only if connected pairs

are separated from disconnected pairs, in view of the entries of the matrix F (n),
for n large enough, as illustrated in Fig. 4.1. This statistical metric is a relevant pa-
rameter regarding the hardness of the classification. The larger the identifiability
gap, the easier the classification via thresholding of the entries of the matrix F (n)

tends to be.

Similarly, we define the identifiability gap Γ
(

T(n)
)

associated with a tensor-

valued estimator T(n) as the maximum distance among all parallel hyperplanes
that consistently separate the features, as in Fig. 4.2, also referred to as margins.

Definition 4.4 (Identifiability gap for order-3 tensor-valued estimators). We define
the identifiability gap Γ

(
T(n)

)
of a tensor-valued estimator as the distance between the

margins as

Γ
(

T(n)
)

∆
= max

(w,τ1),(w,τ2)∈C

|τ1 − τ2|
||w|| , (4.13)

where C indexes the set of linear maps that consistently separate the features: (w, τ) ∈ C
if and only if the linear map Lw,τ(x) := w · x − τ consistently separates the features.

Lemma 2 states that, if one incorporates further structurally consistent matrix-
valued estimators in the composition of the feature vector, the associated identi-
fiability gap increases.

Lemma 2. Let T(n) be a tensor-valued estimator whose underlying features at each pair
ij are defined as

T (n)
ij :=

([
E(n)

1

]
ij

,
[

E(n)
2

]
ij

, . . . ,
[

E(n)
M

]
ij

)
∈ RM, (4.14)

with identifiability gap Γ(n)
E

∆
= Γ

(
T(n)

)
. Let Â(n) be a matrix-valued estimator with

identifiability gap Γ(n)
A

∆
= Γ

(
Â(n)

)
. If both Â(n) and T(n) are (linearly) structurally

consistent w.h.p., then the tensor-valued estimator T̃(n) defined as

T̃ (n)
ij :=

([
Â(n)

]
ij

,
[

E(n)
1

]
ij

, . . . ,
[

E(n)
M

]
ij

)
∈ RM, (4.15)

exhibits an identifiability gap obeying Γ
(

T̃(n)
)
≥
∣∣∣∣∣∣Γ(n)

∣∣∣∣∣∣
2

w.h.p., with Γ(n) :=
(

Γ(n)
A , Γ(n)

E

)
.

Proof. Let CH (S) denote the convex hull of a set S ⊂ RK, i.e., the smallest convex

set containing S [Hiriart-Urruty and Lemaréchal, 2001]. Define C̃ ∆
=
{
T̃ (n)

ij

}
ij : Aij=1

serving as the set of augmented features associated with connected pairs and

D̃ ∆
=
{
T̃ (n)

ij

}
ij : Aij=0

associated with disconnected pairs. Similarly, define C ∆
={

T (n)
ij

}
ij : Aij=1

and D ∆
=
{
T (n)

ij

}
ij : Aij=0

. Let R be the smallest entry of Â(n) across
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connected pairs and r be the greatest entry of Â(n) across disconnected pairs. We
have that

Γ
(

T̃(n)
)2

= d
(
CH
(
C̃
)

,CH
(
D̃
))2

≥ d (CH (C × [R, ∞ )) ,CH (D × (−∞, r ]))2

≥ d (CH (C) ,CH (D))2 + (R − r)2

=
(

Γ(n)
E

)2
+
(

Γ(n)
Â

)2
=
∣∣∣∣∣∣Γ(n)

∣∣∣∣∣∣2
,

where the first identity conforms to an alternative definition to identifiability gap;
and the first inequality holds in view of the inclusions CH

(
C̃
)
⊂ CH (C × [R, ∞ ))

and CH
(
D̃
)
⊂ CH (D × (−∞, r ]). This concludes the proof.

Lemma 2 asserts that, if further matrix-valued structurally consistent estimators
are incorporated into the feature vector, the identifiability gap increases. This
result further motivates a paradigm that promotes the pursuit for further struc-
turally consistent matrix-valued estimators: (i) characterize these estimators (a
research endeavor on its own); (ii) stack them so to yield an order-3 tensor-
valued estimator; (iii) train nonlinear separation schemes (e.g., Convolutional
Neural Networks) or linear ones (e.g., SVMs with a linear kernel) to perform es-
timation. Aiming to boost sample-complexity performance, nonlinear machine
learning techniques should be preferred over the linear ones.

4.4 Methodology

In order to stratify the pairs of nodes into connected or disconnected from the ob-
served time series, we address the linear separability property of the covariance-
based features

{
T (n)

ij

}
ij

established in Theorem 1, by studying the performance

of trained classifiers, in particular, Support Vector Machines (SVM) with linear
kernel and CNNs. CNNs were chosen over other ANNs architectures because (i)
they are capable of extracting higher-level (more abstract) features and (ii) reduce
the number of parameters by removing less informative features. The training set
is given by

Tr(n)
∆
=
{(

T (n)
ij , 1{Aij ̸=0}

)}
i ̸=j

(4.16)

where we have introduced the normalized feature vectors

T (n)
ij :=

T (n)
ij

maxi ̸=j

∣∣∣∣∣∣T (n)
ij

∣∣∣∣∣∣
∞

, (4.17)

with the unnormalized features given by,

T (n)
ij

∆
=

([
R̂−100(n)

]
ij

,
[

R̂−99(n)
]

ij
, . . . ,

[
R̂100(n)

]
ij

)
.
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In other words, for training, we provide a normalized feature vector T (n)
ij associ-

ated with the pair ij as input to a classifier and the output should be the ground
truth 1{Aij ̸=0}, i.e., whether i links to j or not. We remark that the same data set is
used to train the SVM and the CNN classifiers.

The normalization in the training set is motivated by the following observation.
When we have infinitely many samples, i.e., n = ∞, then

T ∞
ij = σ2

([
RD
]

ij ,
[
RD+1

]
ij , . . . ,

[
RM
]

ij

)
(4.18)

where Rk is the k-lag covariance matrix of the normalized process (y(n)/σ)n∈N,
i.e., the process whose noise is normalized to unit variance. With the proposed
normalization in equation (4.17), the multiplicative factor σ2 is canceled out, which
ideally decreases the role played by the noise-level in the performance of the
trained CNNs. Furthermore, this normalization renders the generalization per-
formance of the trained CNNs robust across structurally distinct graphs.

The trained CNN will ideally assume the value 1 for features associated with
disconnected pairs and 2 over connected pairs. Therefore, as the estimated values
are expected to be close to one of the values of the classes, we simply apply a
threshold at 1.5 and the values closer to each class are classified as belonging to
that class, as illustrated in Fig. 4.3.
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Figure 4.3: CNN thresholding process: entries that are closer to ’1’ are classified
as a disconnected pair whereas those closer to ’2’ are classified as connected.

To generate the matrix A to obtain the time series data {y(ℓ)}n
ℓ=0 following the

dynamics (4.1), given a graph G, the following procedure was considered. Let G
be a given graph without self-loops, i.e., Gii = 0 for all i. Define the interaction
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matrix A as {
Aij = α1

Gij
dmax(G)

, for i ̸= j
Aii = α − ∑k ̸=i Aik, for all i

, (4.19)

where dmax(G) is the maximum in-flow degree of the underlying graph G and
0 < α1 ≤ α < 1 are some constants. In other words, the rows of A sum up to
α < 1 and its support graph is given by G. This is often cast as the Laplacian
rule [Sayed, 2014]. The interaction matrix thus yields a stable networked dynam-
ical system (4.1) and with a support graph of interactions given by G. To gen-
erate G, we considered the realization of random graph models as Erdős–Rényi
random graph models for undirected graphs, binomial random graph models for
directed graphs, and also real-world networks.

Regarding the CNN training process, the data set is partitioned into three data
sets: 70% of the samples are reserved for training, 15% for validation and the re-
maining 15% for testing. The CNN architecture, illustrated in Fig. 4.4, contains
three series of 1D convolution layers that promote the extraction of higher-level
features with ReLU activation function interleaved by max pooling layers which
down sample the parameters. After Max pooling is performed, features are fed
into two fully connected layers which approximate the data to one of the classes.
During training, the weights of the network are updated according to Adam algo-
rithm, an alternative to the classical stochastic gradient descent which computes
individual adaptive learning rates for different parameters from estimates of first
and second moments of the gradients. To evaluate the difference between the cur-
rent estimation value and the ground truth, we adopted the mean squared error
loss function. To achieve the best performing model, the loss function is moni-
tored at each epoch of training and, when the loss function reaches a minimum
(after a number of epochs with no improvement), the training stops. A func-
tionally designated as early stopping. This method allows us to specify a large
number of training epochs and stop training once the model performance stops
improving on a hold out validation dataset. That happens because we use many
epochs, which may lead to overfitting, and few epochs result in underfitting of
the model.
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Figure 4.4: CNN architecture.

In order to achieve the best model, different CNNs are trained over the same
data set (with different runs) and the one with the highest performance on the
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testing set is chosen. The metric adopted is the identifiability gap between the
estimations (or predictions) of disconnected and connected pairs.
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Simulation Results and Validation

In this section, we present the numerical results validating the proposed CNN-
based methodology and we compare our algorithm with other state-of-the-art
graph learning methods. To evaluate the performance of the proposed approach,
we focus on three main metrics: (i) accuracy – represents the likelihood of correct
graph recovery; (ii) identifiability gap – represents the separability between the
two clusters (associated with connected and disconnected pairs); and (iii) clus-
ter variance – attempts to model the tightness of the clusters. These metrics will
be described in detail in the respective sections (some have already been intro-
duced in the previous chapter). These are relevant metrics for classification tasks.
Remark that the main goal of a graph learning algorithm is to recover the under-
lying graph with the least possible amount of time series samples, i.e., to have
the best possible recovery accuracy with the minimal amount of samples. This
goes by saying that the algorithms should minimize sample-complexity. This is of-
ten the case when the underlying algorithm yields a large identifiability gap and
a small cluster variance. Indeed, the large separability between clusters and the
tightness of the clusters render the task of automatic separation of the underlying
features (and thus, consistent classification) easier as illustrated in Fig. 5.1. For
these reasons, we look closely at the dependence of these metrics with respect to
the number of time series samples for the distinct algorithms.

Each metric is plotted against the number of time series samples n. Since we are
recovering the connectivity graph under partial observability, we will assume a
limited number of observable nodes (we set this parameter to |S| = 20 observable
nodes), regardless of the size of the actual graph. We consider 1000 Monte Carlo
runs for each experiment and plot the average of those runs.

The comparison was carried out among the following methods

• The trained CNN over our covariance-based features;

• The trained SVM with a linear kernel over our covariance-based features;

• Granger under partial observability
[

R̂1(n)
]
S

([
R̂0(n)

]
S

)−1
which is struc-

turally consistent [Matta et al., 2020, 2022; Santos et al., 2020b] for distinct
regimes of graph connectivity (dense or sparse);
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Identifiability gap
Identifiability gap

Figure 5.1: Example illustrating the hardness of the classification problem. The
plots depict the output of two matrix-valued estimators: each point in the ab-
scissa represents a pair of nodes in the graph and in the ordinate are the values
assigned by the corresponding estimator to each of these pairs. The pairs are
sorted in the abscissa so that disconnected pairs lie on the left (of 125) and con-
nected pairs lie on the right (for visualization purposes). The red dots represent
the values assigned to disconnected pairs and the green crosses are for connected
pairs. It is harder to automatically set the right threshold to consistently classify
the pairs on the left plot as the identifiability gap is smaller and the clusters are
wider. That is, the estimator on the right will tend to produce better results.

• The one-lag estimator R̂1(n), which is also consistent for several graph con-
nectivity regimes [Matta et al., 2022];

• The R̂1(n)− R̂3(n) that is structurally consistent [Chen et al., 2022] regard-
less of the connectivity pattern.

The choice for the comparison with these particular algorithms is because these
methods are known to be state-of-the-art algorithms over a great range of con-
nectivity (dense or sparse networks) and they are probably consistent under par-
tial observability (our focus) for linear stochastic networked dynamical systems
[Chen et al., 2022; Matta et al., 2022].

Remark that while the SVM provides an automatic classification of the features
(as associated to either connected or disconnected pairs), and the trained CNN
exhibit output values close to either ’1’ or ’2’ (i.e., it provides approximately
an automatic classification for the features) where ′1′ represents the label of dis-
connected pairs and ′2′ represents the label for connected pairs, the latter three
(matrix-valued) estimators require an extra postprocessing of its matrix entries
to be clustered into two groups (a group associated with connected pairs and
a group associated with disconnected pairs) as illustrated in Fig. 5.2. For these
matrix-valued estimators, we apply Gaussian Mixture Model (GMM) over the
sorted entries of the matrix-valued estimators in order to consistently stratify the
pairs into connected or disconnected. This was proposed in [Chen et al., 2022].

The choice of this method is further motivated by the following properties: (i) no
need to specify initial parameters beyond the number of clusters (which are two
in our framework); (ii) stable under clusters of quite distinct sizes (which in our
framework will depend on the graph connectivity); and (iii) capable of fitting
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ellipsoid shapes, formed by the matrix-estimator entries when there is a positive
identifiability gap as presented in Fig. 5.2. There are various methods that fulfill
the first criteria, some of the most used being the hierarchical clustering (both ag-
glomerative and divisive algorithms), K-means or GMM. However, it is known
that hierarchical clustering performs badly when dealing with clusters of differ-
ent sizes and K-means is not engineered to fit ellipsoid shaped data. For these
reasons and motivated by its successful use in [Chen et al., 2022], we have cho-
sen GMM to postprocess the matrix-valued estimators. The GMM algorithm is
implemented by the expectation-maximization algorithm, i.e., it performs max-
imum likelihood estimation in the presence of latent variables, which is ideal
considering the distribution of the entries when the time-series is large enough,
as displayed in Fig. 5.2(b).

(a) N = 200, p = 0.3, n = 5e4

(b) N = 200, p = 0.3, n = 5e5

Figure 5.2: Scatter plots and histograms of the entries of the Granger Estimator
for an undirected realization of the Erdős–Rényi random model with N = 200
nodes and probability of edge drawing p = 0.3. The number of samples is given
by n.
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Random graph models. To generate the underlying graphs of the networked
dynamical systems in order to obtain the time series samples, we resort to the
realization of two well-known random graph models. In particular, an edge at
a pair of nodes ij is placed with probability p. In other words, P

(
Gij = 1

)
= p,

for each pair ij, where Gij ∈ {0, 1} is the ijth entry of the adjacency matrix G rep-
resenting the graph. Further, the entries of G are independent Bernoulli random
variables. To generate undirected graphs, we simply generate the upper trian-
gular part of the matrix G following the random realization just described and
force symmetry, i.e., Gij = Gji (this is known as an Erdős–Rényi model). For di-
rected networks, we perform the experiment over all entries of G (independently)
without enforcing symmetry (this is known as Binomial random graph).

Generative model and training. The time series data is generated following
the discrete-time linear dynamics in equation (4.1) over distinct realizations of
Erdős–Rényi (for undirected graphs) or Binomial (for directed graphs) random
graph models and real-world networks. For the experiments over synthetic in-
teraction graphs, after building the graph as the realization of a random graph
model, we build the interaction matrix A on top of it (i.e., the support of the inter-
action matrix A gives the underlying graph) as discussed around equation (4.19)
in Chapter 3. This is a standard policy to assign weights to a graph that is often re-
ferred to as Laplacian rule [Sayed, 2014]. In what follows, the parameters N and p
stand for the number of nodes and probability of edge/arrow drawing in the ran-
dom graph model. It should be mentioned that the CNN and SVM are trained
over a single realization of an Erdős–Rényi random graph (for undirected net-
works) with p = 0.5 and N = 100. Nevertheless, and as we will demonstrate, the
CNNs generalize well for different graphs (of distinct sizes and connectivity pat-
terns), either synthetically generated or from real-world scenarios. The choice of
the number of nodes N to train the CNN was arbitrary, but the choice p = 0.5 for
the probability of arrow drawing is simply due to its symmetry: it yields a graph
with approximately the same number of connected and disconnected pairs, and
thus, it does not favor dense or sparse networks in the training.

More on training and generalization. Instead of training the CNNs over a single
realization of an Erdős–Rényi random graph model with N = 100 and p = 0.5,
we could have chosen to train them over several networked dynamical systems
generated with distinct random graph models, i.e., generated with distinct N and
p. However, our main goal was to demonstrate the generalization property of the
CNNs: training them over a single synthetic network (generated with N = 100
and p = 0.5) yields remarkable performance across a great range of connectivity
patterns and networks of distinct sizes. This generalization property is particu-
larly important as, in general, we might not know the underlying nature of the
target networked system where we are attempting to perform causal inference.
Additionally, to demonstrate that the CNN-based approach is capable of general-
izing for different levels of noise variance σ2 (i.e., the variance of each entry of the
vector x(n) in the dynamics (4.1)), the value used to generate the training data is
σ = 0.1 while for testing is usually σ = 0.5. We will also show in the next sec-
tion, that the CNNs generalize well across a whole range of noise variance, while
trained with σ = 0.1 (refer to Fig. 5.3).
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Outline. In Section 5.1, we demonstrate the robustness of the CNN-based model
against changes in excitation noise variance in the linear networked dynamical
system. Sections 5.2, 5.3 and 5.4 convey the results comparing the estimators
over distinct realizations of Erdős–Rényi and Binomial graphs regarding the ac-
curacy, identifiability gap and cluster variance, respectively. Section 5.5 shows the
results for two real-world graphs. Section 5.6 presents results suggesting that the
inclusion of structurally consistent matrix-valued estimators in the feature vec-
tors tends to further enhance the performance of the CNN-based approach, i.e.,
improve accuracy with less time series samples. This is particularly motivated
by Lemma 2 in Chapter 3. Finally, Section 5.5 observes that higher order lag-
moment matrices may convey important structural information in a sense to be
made precise. Somehow, this goes against the common wisdom, where it is gen-
erally believed that lower-lag covariance matrices are the critical building blocks
for graph learning.

We remark that the results presented in Figures 5.6(c), 5.8(a), 5.9(a) and 5.22(b)
were already reported in [Machado et al., 2022].

5.1 Robustness against Noise Variance

We start by looking at the stability of the proposed covariance-based feature
vectors approach against a great range of excitation noise variance in the net-
worked dynamical system. This property is in part due to the normalization of
the covariance-based feature vectors, which also scales the entries of the feature
vectors to values between 0 and 1 independently of the network size and connec-
tivity as discussed around equation (4.18) in Chapter 3. Experiments were per-
formed by measuring the accuracy of the trained CNNs and linear SVMs under
the same conditions in terms of the underlying interaction graph but applying
them against different noise variances in the networked dynamical system.

The results displayed in Fig. 5.3 shows that the plots associated with the CNN
and SVM performance are not sensitive to the noise level even though they were
trained with σ = 0.1. Additionally, CNN exhibits better accuracy. This demon-
strates that our proposed method based on the training over covariance-based
features is robust to different levels of noise.

5.2 Accuracy

Let Ĝ(n) be an estimator for the underlying graph computed from n observed
time series samples, i.e., if Ĝij(n) = 1, then, the estimator asserts that there is an
arrow or edge from node i to node j; otherwise, if Ĝij(n) = 0, then it asserts that
there is no arrow from i to j. Let G be the ground-truth graph, i.e., Gij = 1 implies
that there is actually an edge from i to j and if Gij = 0, then there is no direct edge.
If Ĝij(n) = Gij, then the estimator Ĝ predicted consistently the link from node i
to node j from the n observed time series data.
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Figure 5.3: The plots illustrate the stability of the CNN and linear SVM classifiers
trained over the covariance-based features against distinct noise level regimes.
While the CNN and SVM are trained with a time series data under σ = 0.1, the
plots show that they generalize well over other variance regimes. The dashed
plots depict the accuracy as a function of the number of time series samples n for
the trained CNNs, while continuous plots depict the corresponding performance
for the trained SVMs.

We define accuracy of an estimator Ĝ as the percentage of edges or links correctly
classified1 by this estimator, i.e.,

Accuracy ∆
=

∑|S|
i=1 ∑j ̸=i 1{Ĝij(n)=Gij}

|S| (|S| − 1)
× 100%, (5.1)

where |S| is the number of observed nodes. Remark that when the underlying
graph is undirected, then we can simply refer to connected or disconnected pairs
and the accuracy reduces to

Accuracy ∆
=

Cpairs

Tpairs
× 100%, (5.2)

where Cpairs is the number of correctly classified pairs (as connected or not) and
Tpairs = |S| (|S| − 1) /2 is the total number of pairs.

Next, we compare the sample-complexity performance among the considered es-
timators, i.e., the accuracy as a function of the number of time series samples.
The experiments were performed over distinct graphs, with distinct sizes and
connectivity regimes, for undirected and directed graphs. Figures 5.4, 5.6 and 5.8
refer to undirected Erdős–Rényi models whereas 5.5, 5.7 and 5.9 refer to directed
Erdős–Rényi graphs (also known as Binomial random graphs). The parametric

1We exclude self-loops, i.e., links that depart from a node i to itself.
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details of the generative random graph model, namely given by N and p, are
displayed at the top of each figure.

(a)

(c)

(b)

(d)

Figure 5.4: Structure estimation performance of the considered algorithms when
the underlying support graph of interactions is undirected and drawn from an
Erdős–Rényi random graph model with N = 50 for distinct regimes of connec-
tivity captured by the probability of edge drawing p.

(a) (b)

Figure 5.5: Structure estimation performance of the considered algorithms when
the underlying support graph of interactions is directed and drawn from a di-
rected Erdős–Rényi random graph model (a.k.a. Binomial random graph model)
with N = 50 for distinct regimes of connectivity captured by the probability of
edge drawing p.
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(a)

(c)

(b)

(d)

(a)

(c)

(b)

(d)

Figure 5.6: Structure estimation performance of the considered algorithms when
the underlying support graph of interactions is undirected and drawn from an
Erdős–Rényi random graph model with N = 200 for distinct regimes of connec-
tivity captured by the probability of edge drawing p.

(a) (b)

Figure 5.7: Structure estimation performance of the considered algorithms when
the underlying support graph of interactions is directed and drawn from a di-
rected Erdős–Rényi random graph model (a.k.a. Binomial random graph model)
with N = 200 for distinct regimes of connectivity captured by the probability of
edge drawing p.
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(a) (b)

Figure 5.8: Structure estimation performance of the considered algorithms when
the underlying support graph of interactions is undirected and drawn from an
Erdős–Rényi random graph model with N = 300 and N = 500 for distinct
regimes of connectivity captured by the probability of edge drawing p.

(a) (b)

Figure 5.9: Structure estimation performance of the considered algorithms when
the underlying support graph of interactions is directed and drawn from a di-
rected Erdős–Rényi random graph model (a.k.a. Binomial random graph model)
with N = 300 and N = 500 for distinct regimes of connectivity captured by the
probability of edge drawing p.

The results show the overall superiority in sample-complexity performance for
the CNN-based classifier. In every test scenario, the CNN-based approach was
able to consistently recover the connectivity of the observable sub-graph with a
lower number of samples (smaller time-series), when compared with the matrix-
valued estimators and the linear SVM.

5.3 Identifiability Gap

The identifiability gap, introduced in equation (4.12), measures the difference be-
tween the minimum value entry across connected pairs and the maximum value
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entry over connected pairs. As previously mentioned, this statistical metric is an
essential indicator that may provide a preview for the estimator’s performance.
We performed several experiments to depict the dependence of the identifiability
gap with the number of samples n for each of the estimators. We remark that
these experiments are made under the same environment conditions as the accu-
racy experiments, in terms of the Erdős–Rényi parameterization. Note that the
linear SVM automatically classifies the features as belonging to a certain class
(disconnected or connected), therefore it is not included in the following charts.
Also, estimators entries are normalized between ’0’ and ’1’ so the gap between
clusters is measured on the same scale.

Figures 5.10, 5.12 and 5.14 refer to experiments on undirected graphs whereas
5.11, 5.13 and 5.15 refer to experiments on directed graphs. The results obtained
on the dependence of the identifiability gap with the number of samples n are
consistent with the behavior observed in the accuracy charts, namely, estimators
with higher identifiability gap tend to exhibit better accuracy performance. This
confirms the direct relationship between accuracy performance and the size of the
gap between clusters yielded by the estimators. The CNN-based approach which
presented the best accuracy performance (as presented in the previous subsec-
tion) is also the estimator capable of attaining the biggest gap between clusters
with the least amount of time series samples. There is also an important dif-
ference in comparison with the matrix-valued estimators, which exhibit smaller
identifiability gap values. The accuracy of the R̂1(n)− R̂3(n) and R̂1(n) matrix-
valued estimators is consistent with their smaller identifiability gaps exhibited.

(a)

(c)

(b)

(d)
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(a)

(c)

(b)

(d)

Figure 5.10: Identifiability gap as a function of the number of time series samples
for the distinct estimators over undirected graphs with N = 50 and for distinct
regimes of connectivity given by p.

(a) (b)

Figure 5.11: Identifiability gap as a function of the number of time series samples
for the distinct estimators over directed graphs with N = 50 and for distinct
regimes of connectivity given by p.

(a)

(c)

(b)

(d)

Figure 5.12: Identifiability gap as a function of the number of time series samples
for the distinct estimators over undirected graphs with N = 200 and for distinct
regimes of connectivity given by p.
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(a) (b)

Figure 5.13: Identifiability gap as a function of the number of time series samples
for the distinct estimators over directed graphs with N = 200 and for distinct
regimes of connectivity given by p.

(a) (b)

Figure 5.14: Identifiability gap as a function of the number of time series samples
for the distinct estimators over undirected graphs with N = 200 and N = 500.

(a) (b)

Figure 5.15: Identifiability gap as a function of the number of time series samples
for the distinct estimators over directed graphs with N = 200 and N = 500.
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5.4 Clusters Variance

The clusters variance is defined as the average between the empirical variance over
the entries of each cluster (the one for connected pairs of nodes and the one for
disconnected pairs). First, let Â be a matrix-valued estimator, and Âij(n) be the
value assigned to the link from node i to node j by this estimator computed from
n time series samples. We formally define

µc =
∑i ̸=j : i→j Âij(n)

|C|

Cvar =
∑i ̸=j : i→j(Âij(n)− µc)2

|C|

(5.3)

where |C| represents the number of links or arrows in the graph, µc is the mean
of the cluster of connected pairs, Cvar is the variance of the cluster of connected
pairs.

Similarly, we define the cluster of disconnected pairs.

µd =
∑i ̸=j : i ̸→j Âij(n)

|D|

Dvar =
∑i ̸=j : i ̸→j(Âij(n)− µd)

2

|D|

(5.4)

where |D| is the number of disconnected pairs.

Finally, we define the cluster’s variance as the average Cl_var ∆
= (Cvar + Dvar)/2.

The cluster’s variance conforms to a measure of the tightness of the clusters. Sim-
ilarly to the experiments on the identifiability gap, the SVM will not be included
in the following charts, as it automatically classifies the features as belonging to
a certain class (disconnected or connected). The estimator’s entries are also nor-
malized. Further, the experiments were performed under the same conditions in
terms of the underlying random graph.

Figs. 5.16, 5.18 and 5.20 refer to experiments on undirected graphs whereas Fig-
ures 5.17, 5.19 and 5.21 refer to directed graphs. Our results show that matrix-
valued estimators have a slow decrease of the cluster variance and slow conver-
gence with the increase of the number of samples. Still, the R̂1(n)− R̂3(n) esti-
mator has slightly more scattered clusters. Regarding the CNN-based approach
results, overall, it exhibits clusters with greater variance over a reduced number
of samples, but quickly converges to a small or even zero cluster variance. We
remark, that the CNN starts with a higher variance because it is trained to fit
(or rather approximate) one of two classes, therefore with insufficient time-series
samples wrong estimations become more likely which increases this measure,
whereas matrix-valued estimators have the entries overall dispersed as previ-
ously illustrated in Fig. 5.2.
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(a)

(c)

(b)

(d)

Figure 5.16: Clusters variance of undirected graphs generated via the
Erdős–Rényi model with N = 50 and distinct regimes of connectivity given by p.

(a) (b)

Figure 5.17: Clusters variance of directed graphs generated via the Binomial ran-
dom model with N = 50 and distinct regimes of connectivity given by p.
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(a)

(c)

(b)

(d)

Figure 5.18: Clusters variance of undirected graphs generated via the
Erdős–Rényi model with N = 200 and distinct regimes of connectivity given
by p.

(a) (b)

Figure 5.19: Clusters variance of directed graphs generated via the Binomial ran-
dom model with N = 200 and distinct regimes of connectivity given by p.
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(a) (b)

Figure 5.20: Clusters variance of undirected graphs generated via the
Erdős–Rényi model with N = 200 and N = 500.

(a) (b)

Figure 5.21: Clusters variance of directed graphs generated via the Binomial ran-
dom model with N = 200 and N = 500.

5.5 Real-world Networks

In this section, we present results on real-world networks. The main goal is to
demonstrate the generalization property of the method: while the CNNs are
trained over features computed from the time series data of a linear networked
dynamical system with a connectivity pattern given by a single realization of an
Erdős–Rényi with N = 100 and p = 0.5, the method performs well not only over
other realizations of Erdős–Rényi random graphs (with distinct connectivities p
and sizes N), but also over real-world networks. We tested the estimator’s per-
formance on recovering the graph connectivity over real-world networks under
partial observability with the same linear dynamics, obtained from the public
repository [Rossi and Ahmed, 2015].

We tested two real-world graphs of distinct areas. First (a) represents the brain
structural connectivity matrix of a monkey and (b) represents an enzyme bio-
chemical network. Here, we measured sample-complexity performance, i.e., the
accuracy as a function of the number of time series samples n similarly to what

62



Simulation Results and Validation

was done in Section 5.2. The recovery of the graph connectivity is extremely im-
portant, specially for brain networks, as it would describe interactions between
distinct parts of the brain. Note that both the linear SVM and the CNN-based ap-
proaches were trained over a single realization of an Erdős–Rényi random graph
model and applied to these real-world networks. A way of improving these re-
sults would be to specialize the training of the CNNs to examples provided by
each framework (e.g., Brain networks, enzyme networks, etc.), but the main focus
on this thesis was to demonstrate how the method generalizes.

Results show that the CNN-based approach is capable of generalizing well and
outperforms the matrix-based estimators for these graphs, particularly for the
monkey brain network as illustrated in Fig. 5.22. For the enzyme biochemical
network, as illustrated in 5.23, remarkably, the SVM exhibits an overall superior
performance over the CNN.

(a) (b)

Figure 5.22: Structure estimation performance for the brain structural connectiv-
ity matrix of a monkey.

(b)(a)

Figure 5.23: Structure estimation performance for an enzyme biochemical net-
work.

63



Chapter 5

5.6 Incorporation of New Features

Lemma 2, in Chapter 3, asserts that the inclusion of further structurally-consistent
matrix-valued estimators in the feature-vector increases the identifiability gap
(in feature space), i.e., the separability between the clusters of features associated
with connected and disconnected pairs. Given that the Granger estimator is the
one with best performance overall, we test its inclusion in the covariance-based
features, namely, we consider

T (n)
ij

∆
=

([
ÂS
]

ij
,
[

R̂−100(n)
]

ij
, . . . ,

[
R̂100(n)

]
ij

)
where the additional component ÂS

∆
=
[

R̂1(n)
]
S

([
R̂0(n)

]
S

)−1
is the Granger

under partial observability, with only |S| = 20 nodes observed.
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Figure 5.24: Inclusion of the Granger estimator in the feature vector.

Figure 5.24 shows that the inclusion of the Granger estimator in the feature-vector
significantly improves the sample-complexity performance, i.e., it is able to com-
pletely recover the underlying graph connectivity with a lower number of sam-
ples. This motivates the further study of structurally consistent matrix-valued
estimators to build new sets of features with greater separability properties and
thus, yielding better performance.

5.7 High Order Lag-moments also Convey Relevant
Structural Information

While the matrix-valued estimators referred so far (and comprising the bulk of
the literature) are built primarily on low lag-moments, i.e., on covariance matri-
ces R̂k(n) where k is small enough, we illustrate in this section that, remark-

64



Simulation Results and Validation

ably, higher-order lag-moments may convey important information for consis-
tent graph learning from the observed time series samples. To be more con-
crete about the relevance or not of lag-moments, we mean the following: Let
Lw,τ(x) = w · x − τ be a linear map that consistently separates the features{
Tij
}

ij, in that Lw,τ
(
Tij
)
> 0 if the node i links to j and Lw,τ

(
Tij
)
≤ 0, other-

wise. Note that wℓ is the weight assigned to the ℓth lag-moment R̂ℓ(n). Thus, if
the weight vector w underlying the separating linear map Lw,τ assumes high val-
ues at the higher-moment entries of the feature vector, then the higher moments
must be conveying most of the structural information.

To study this question, we look at the linear map obtained by an SVM with linear
Kernel. Fig. 5.25 depicts the weights of the vector w across the lags. This ex-
periment actually confirms that low lag moments like R̂0, R̂1, R̂2 and R̂3, conveys
most of the structural information as the higher weights were concentrated about
these lower lag covariance matrices.

(a) (b)

Figure 5.25: (a) represents the weights attained by the SVM; (b) zooms on the first
three lags.

However, we can inquire whether there are other separating linear maps Lw,τ
which assign larger weights to higher-order lag-moments. For this, we resort
to another linear classifier. We choose to train a Feedforward Neural Network
(FFNN) with linear activation functions. The vector of weights w of the resulting
separating linear map is depicted in 5.26.

Surprisingly, it bestows low weights upon low lag-moments and higher ones over
higher moments. This also illustrates that distinct linear classifiers may display
distinct behavior while exhibiting good performance. For the performance of the
linear SVM and FFNN underlying these experiments, please refer to Fig. 5.27.

In our particular experiment, we recall that the SVM and the FFNN resort to
distinct optimization strategies, the SVM finds the separating maximum-margin
hyperplanes that consistently separate the clusters. On the other hand, the FFNN
finds the linear approximation underlying the true classification function with the
optimization over its weights being governed by the stochastic gradient descent
algorithm.
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Figure 5.26: Weights achieved by the FFNN after training.
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Figure 5.27: Accuracy vs number of time series samples associated with the linear
SVM and the FFNN with linear activation functions trained over the covariance-
based features.
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Concluding Remarks

In this section, we summarize the main contributions of this thesis: we revisit
the chart of proposed goals (presented at the beginning of the semester) to state
clearly what has been accomplished, and we point to future directions of research
in the area of graph learning of networked dynamical systems.

6.1 Contributions

This thesis addressed the problem of learning the graph of interactions from the
observed time series data stemming from linear stochastic networked dynami-
cal systems under partial observability, i.e., the time series data of only a subset
of nodes are available. In particular, we proposed a novel set of feature-vectors
computed from the available time series as statistical descriptors for the connec-
tivity of each pair of nodes. We proved that the set of features is linearly separable
(with high probability), that is, there exists a hyperplane (in feature space) that
separates the features associated with connected pairs of nodes from the features
associated with disconnected pairs of nodes. Therefore, if we have the right sep-
arating hyperplane, we can consistently classify the pairs as connected or not. In
particular, distinct machine learning methods can be trained over these features.
We have chosen to train CNNs over this set of features to obtain a state-of-the-art
causal inference method. The trained CNNs exhibited remarkable generalization:
while trained over a particular synthetic network (obtained via the realization of
an Erdős–Rényi random graph model with N = 100 and p = 0.5) it performs well
over a whole range of connectivity regimes including real-world networks. We
have also observed that, contrary to common wisdom, higher-order lag-moments
can convey important structural information. Some results have been submitted
for publication and other results are in preparation.
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6.2 Proposed vs accomplished goals

In January 2022, we presented the proposal summarized in the Gantt chart, Fig. 6.1,
for the goals to be pursued in the second semester. Next, we state what has been
accomplished, point-by-point.

Task
2022

Feb Mar Apr May Jun Jul

1. Improvement of the methods for
graph learning under partial

observability

2. Validation of the methods

3. Apply the tools developed on real
datasets

4. Analysis of the consistency of the
approach via numerical simulations

5. Formal analysis

6. Write the final report

Figure 6.1: Distribution of the tasks for the second semester of 2022.

Point 1: Improvement of the methods for graph learning under partial observ-
ability. Indeed, a state of the art graph learning method has been proposed. The
algorithm is tailored to the partial observability setting in that the network can
be reconstructed in a pairwise manner, i.e., the algorithm consistently decides
whether there is an arrow or edge at each pair of nodes from observation of only
the time series data of the pair.

Point 2: Validation of the methods. In Chapter 4, we presented an extensive
amount of simulations demonstrating that not only the underlying interaction
graph can be reconstructed from the available time series data, but it exhibits
competitive sample-complexity performance.

Point 3: Apply the results developed on real data sets. In Chapter 4, we pre-
sented results over real-world networks.

Point 4: Analysis of the consistency of the approach via numerical simulations.
As referred in Point 1, extensive simulations demonstrated the structural consis-
tency of the approach, namely, that the graph can be faithfully inferred if suffi-
cient time series data is provided.

Point 5: Formal analysis. In Chapter 3, we presented results that formally proved
the linear separability of the proposed features. Remark that establishing some
form of separability (even if nonlinear) is a necessary condition to grant struc-
tural consistency of the method. Moreover, we proved that the incorporation of
further structurally consistent matrix-valued estimators into the feature vector
tends to enhance the separability properties of the features and thus, improve
the performance of the method. The formal results were submitted for publica-
tion [Machado et al., 2022].
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6.3 Future directions

Several open questions remain. While our causal inference method applies suc-
cessfully to directed graphs, the formal results were established (in Chapter 3)
for undirected graphs and assuming that the covariance matrix of the excitation
noise is diagonal, i.e., a multiple of the identity matrix. Ongoing work is being
pursued towards addressing the directed networks case as well as the colored
noise framework, where the underlying covariance matrix of the noise term x(n)
assumes a more general form.

Further, the feature-vector approach, as a statistical descriptor for the connectiv-
ity of each pair, detoured from the overall graph learning approach in the litera-
ture. The majority of works consider assigning real-value estimates for the cou-
pling strength between nodes. This said, the work developed suggests that new
feature-vectors with perhaps better separability and tightness properties could
be designed. For instance, Lemma 2 suggests that the pursuit for novel matrix-
valued estimators could be useful to build new feature-vectors.

Lastly, the approach proposed applies indirectly to a broad class of nonlinear
systems. In particular, those nonlinear dynamical systems exhibiting the equi-
librium as a global attractor. This is because, at the equilibrium (and with a
small enough noise level) the system behaves approximately as a linear dynam-
ical system. However, methods that leverage directly on the nonlinear form of
the vector-field describing nonlinear networked dynamical systems could exhibit
better performance. In particular, feature-vectors designed specifically for these
systems could boost performance over them.

Proof. Since E(n)(w) = ∑M
ℓ=1 wℓE

(n)
ℓ is structurally consistent w.h.p. for some w ∈

RM, then there exists a threshold τw so that
[

E(n)(w)
]

ij
> τw across connected

pairs ij and
[

E(n)(w)
]

ij
< τw, otherwise. Therefore, the affine map Lw(x) =

x · w − τw consistently separates the set of features
{
T (n)

ij

}
ij

w.h.p. Indeed,

Lw(T (n)
ij ) = T (n)

ij · w − τw = [E(w)]ij − τw > 0 (6.1)

for a connected pair ij or

Lw(T (n)
ij ) =

[
E(n)(w)

]
ij
− τw < 0, (6.2)

otherwise. In other words, the hyperplane characterized by the linear map Lw :
RM −→ R separates consistently the pairs ij for all i ̸= j.

69





References

Jeffrey Adams, Niels Richard Hansen, and Kun Zhang. Identification of partially
observed causal models: Graphical conditions for the linear non-gaussian and
heterogeneous cases. In Advances in Neural Information Processing Systems 34
pre-proceedings (NeurIPS 2021), NeurIPS ’21, 2021.

Charu C. Aggarwal. An introduction to neural networks. In Neural Networks and
Deep Learning, pages 1–52. Springer International Publishing, 2018.

Hamed Habibi Aghdam. Guide to convolutional neural networks. Springer Interna-
tional Publishing, Cham, Switzerland, 1 edition, May 2017.

Timo Ahonen, Abdenour Hadid, and Matti Pietikäinen. Face description with
local binary patterns: application to face recognition. IEEE Transactions on
Pattern Analysis and Machine Intelligence, 28(12):2037–2041, dec 2006. doi:
10.1109/tpami.2006.244.

Kathleen T. Alligood, Tim D. Sauer, and James A. Yorke. Chaos. Textbooks in
Mathematical Sciences. Springer, New York, NY, September 2000.

Animashree Anandkumar and Ragupathyraj Valluvan. Learning loopy graphical
models with latent variables: Efficient methods and guarantees. Ann. Statist.,
41(2):401–435, 04 2013. doi: 10.1214/12-AOS1070.

Animashree Anandkumar, Vincent Y. F. Tan, Furong Huang, and Alan S. Willsky.
High-dimensional gaussian graphical model selection: Walk summability and
local separation criterion. J. Mach. Learn. Res., 13(1):2293–2337, August 2012.

Animashree Anandkumar, Daniel Hsu, Adel Javanmard, and Sham Kakade.
Learning linear bayesian networks with latent variables. In Sanjoy Dasgupta
and David McAllester, editors, Proceedings of the 30th International Conference on
Machine Learning, volume 28 of Proceedings of Machine Learning Research, pages
249–257, Atlanta, Georgia, USA, 17–19 Jun 2013. PMLR.

Roy M. Anderson and Robert M. May. Directly transmitted infections diseases:
Control by vaccination. Science, 215(4536):1053–1060, 1982. doi: 10.1126/
science.7063839.

Nicolas Bacaër. McKendrick and kermack on epidemic modelling (1926–1927).
In A Short History of Mathematical Population Dynamics, pages 89–96. Springer
London, 2011.

71



Chapter 6

Albert-Laszlo Barabasi and Reka Albert. Emergence of scaling in random net-
works. Science, 286(5439):509–512, October 1999.

Laurent Baratchart, Monique Chyba, and Jean-Baptiste Pomet. A grob-
man–hartman theorem for control systems. Journal of Dynamics and Differential
Equations, 19(1):75–107, jul 2006. doi: 10.1007/s10884-006-9014-5.

Marya Bazzi, Mason A. Porter, Stacy Williams, Mark McDonald, Daniel J. Fenn,
and Sam D. Howison. Community detection in temporal multilayer networks,
with an application to correlation networks. 2015. doi: 10.48550/ARXIV.1501.
00040.

José Bento, Morteza Ibrahimi, and Andrea Montanari. Learning networks of
stochastic differential equations. November 2010.

Andrej Bogdanov, Elchanan Mossel, and Salil Vadhan. The complexity of distin-
guishing markov random fields. In Approximation, Randomization and Combi-
natorial Optimization. Algorithms and Techniques, pages 331–342, Berlin, Heidel-
berg, 2008. Springer Berlin Heidelberg.

Fred Brauer. Mathematical epidemiology: Past, present, and future. Infect. Dis.
Model., 2(2):113–127, May 2017.

Fred Brauer and Carlos Castillo-Chavez. Mathematical Models in Population Biology
and Epidemiology. Springer New York, 2012. doi: 10.1007/978-1-4614-1686-9.

Alfredo Braunstein, Luca Dall’Asta, Guilhem Semerjian, and Lenka Zdeborová.
Network dismantling. Proceedings of the National Academy of Sciences, 113(44):
12368–12373, 2016. doi: 10.1073/pnas.1605083113.

Guy Bresler, David Gamarnik, and Devavrat Shah. Hardness of parameter esti-
mation in graphical models. In Proceedings of the 27th International Conference
on Neural Information Processing Systems - Volume 1, NIPS’14, pages 1062–1070,
Cambridge, MA, USA, 2014. MIT Press.

Tom Britton. Basic stochastic transmission models and their inference, 2018.

Tom Britton. Epidemic models on social networks—with inference. Statistica
Neerlandica, 74(3):222–241, February 2020.

Tom Britton, Mathias Lindholm, and Tatyana Turova. A dynamic network in a
dynamic population asymptotic properties. Journal of Applied Probability, 48(4):
1163–1178, 2011.

Elizabeth Bruch and Jon Atwell. Agent-based models in empirical social research.
Sociol. Methods Res., 44(2):186–221, May 2015a.

Elizabeth Bruch and Jon Atwell. Agent-based models in empirical social research.
Sociol. Methods Res., 44(2):186–221, May 2015b.

José M. Carcione, Juan E. Santos, Claudio Bagaini, and Jing Ba. A simulation of
a COVID-19 epidemic based on a deterministic SEIR model. Frontiers in Public
Health, 8, May 2020.

72



References

Venkat Chandrasekaran, Pablo A. Parrilo, and Alan S. Willsky. Latent variable
graphical model selection via convex optimization. Ann. Statist., 40(4):1935–
1967, 08 2012. doi: 10.1214/11-AOS949.

Yupeng Chen, Zhiguo Wang, and Xiaojing Shen. An unbiased symmetric ma-
trix estimator for topology inference under partial observability. IEEE Signal
Processing Letters, 29(02):1257–1261, 2022.

David Maxwell Chickering. Optimal structure identification with greedy
search. J. Mach. Learn. Res., 3(null):507–554, mar 2003. doi: 10.1162/
153244303321897717.

Emily S. C. Ching and H. C. Tam. Reconstructing links in directed networks from
noisy dynamics. Phys. Rev. E, 95:010301, Jan 2017.

Diego Colombo, Marloes H. Maathuis, Markus Kalisch, and Thomas S. Richard-
son. Learning high-dimensional directed acyclic graphs with latent and selec-
tion variables. The Annals of Statistics, 40(1):294–321, 2012.

Ivan Nunes da Silva, Danilo Hernane Spatti, Rogerio Andrade Flauzino,
Luisa Helena Bartocci Liboni, and Silas Franco dos Reis Alves. Artificial
Neural Networks. Springer International Publishing, 2017. doi: 10.1007/
978-3-319-43162-8.

Junaid Farooq and Mohammad Abid Bazaz. A novel adaptive deep learning
model of covid-19 with focus on mortality reduction strategies. Chaos, Solitons
& Fractals, 138:110148, September 2020.

Philipp Geiger, Kun Zhang, Bernhard Schoelkopf, Mingming Gong, and Dominik
Janzing. Causal inference by identification of vector autoregressive processes
with hidden components. In Proceedings of the 32nd International Conference on
Machine Learning, volume 37, pages 1917–1925. PMLR, 07–09 Jul 2015.

Pavel Golik, Patrick Doetsch, and Hermann Ney. Cross-entropy vs. squared error
training: a theoretical and experimental comparison. In Interspeech 2013. ISCA,
August 2013.

C. W. J. Granger. Investigating causal relations by econometric models and cross-
spectral methods. Econometrica, 37(3):424–438, 1969.

Johannes Günther, Patrick M. Pilarski, Gerhard Helfrich, Hao Shen, and Klaus
Diepold. First steps towards an intelligent laser welding architecture using
deep neural networks and reinforcement learning. Procedia Technology, 15:474–
483, 2014. doi: https://doi.org/10.1016/j.protcy.2014.09.007. 2nd International
Conference on System-Integrated Intelligence: Challenges for Product and Pro-
duction Engineering.

Shaobo He, Yuexi Peng, and Kehui Sun. SEIR modeling of the COVID-19 and its
dynamics. Nonlinear Dynamics, 101(3):1667–1680, June 2020.

Alison J. Heppenstall, Andrew T. Crooks, Linda M. See, and Michael Batty, ed-
itors. Agent-based models of geographical systems. Springer, Dordrecht, Nether-
lands, 2012 edition, November 2011.

73



Chapter 6

Herbert W. Hethcote and James Yorke. Gonorrhea transmission dynamics and con-
trol. Lecture Notes in Biomathematics. Springer, Berlin, Germany, 1984 edition,
oct 1984.

Jean-Baptiste Hiriart-Urruty and Claude Lemaréchal. Fundamentals of Convex
Analysis. Grundlehren Text Editions. Springer-Verlag Berlin Heidelberg, 2001.
ISBN 978-3-540-42205-1. doi: 10.1007/978-3-642-56468-0.

M. W. Hirsch and Hal Smith. Chapter 4 monotone dynamical systems. In Hand-
book of Differential Equations: Ordinary Differential Equations, pages 239–357. El-
sevier, 2006.

Elizabeth Hunter, Brian Mac Namee, and John Kelleher. A hybrid agent-based
and equation based model for the spread of infectious diseases. Journal of Arti-
ficial Societies and Social Simulation, 23(4), 2020. doi: 10.18564/jasss.4421.

John K. Hunter. Introduction to dynamical systems. Department of Mathematics,
University of California at Davis, 2011.

Valeriano Iranzo and Saúl Pérez-González. Epidemiological models and COVID-
19: a comparative view. Hist. Philos. Life Sci., 43(3):104, August 2021a.

Valeriano Iranzo and Saúl Pérez-González. Epidemiological models and COVID-
19: a comparative view. Hist. Philos. Life Sci., 43(3):104, August 2021b.

Ali Jalali and Sujay Sanghavi. Learning the dependence graph of time series with
latent factors. In Proceedings of the 29th International Coference on International
Conference on Machine Learning, ICML’12, page 619–626, Madison, WI, USA,
2012. Omnipress. ISBN 9781450312851.

Hyeontae Jo, Hwijae Son, Hyung Ju Hwang, and Se Young Jung. Analysis of
COVID-19 spread in south korea using the SIR model with time-dependent
parameters and deep learning. April 2020.

Ioannis Karafyllidis. Design of a dedicated parallel processor for the prediction
of forest fire spreading using cellular automata and genetic algorithms. Eng.
Appl. Artif. Intell., 17(1):19–36, February 2004.

Ioannis Karafyllidis and Adonios Thanailakis. A model for predicting forest fire
spreading using cellular automata. Ecol. Modell., 99(1):87–97, June 1997.

W. O. Kermack and A. G. McKendrick. A contribution to the mathematical theory
of epidemics. Proc. R. Soc. Lond. A Math. Phys. Sci., 115(772):700–721, August
1927.

M. Kretzschmar. Measurement and modeling: Infectious disease modeling. In
Reference Module in Biomedical Sciences. Elsevier, 2016.

Ana Lajmanovich and James A. Yorke. A deterministic model for gonorrhea in
a nonhomogeneous population. Bellman Prize in Mathematical Biosciences, 28:
221–236, 1976.

74



References

Chen-Yu Lee, Patrick W. Gallagher, and Zhuowen Tu. Generalizing pooling func-
tions in convolutional neural networks: Mixed, gated, and tree. In Arthur Gret-
ton and Christian C. Robert, editors, Proceedings of the 19th International Confer-
ence on Artificial Intelligence and Statistics, volume 51 of Proceedings of Machine
Learning Research, pages 464–472, Cadiz, Spain, 09–11 May 2016. PMLR.

Klaus Lehnertz, Timo Bröhl, and Thorsten Rings. The human organism as an inte-
grated interaction network: Recent conceptual and methodological challenges.
Front. Physiol., 11:598694, December 2020.

Ka Yin Leung, Frank Ball, David Sirl, and Tom Britton. Individual preventive
social distancing during an epidemic may have negative population-level out-
comes. Journal of The Royal Society Interface, 15(145):20180296, August 2018.

Zewen Li, Fan Liu, Wenjie Yang, Shouheng Peng, and Jun Zhou. A survey of
convolutional neural networks: Analysis, applications, and prospects. IEEE
Transactions on Neural Networks and Learning Systems, pages 1–21, 2021. doi:
10.1109/TNNLS.2021.3084827.

Chin-Teng Lin and C. S. George Lee. Neural fuzzy systems: a neuro-fuzzy syner-
gism to intelligent systems. 1996.

Tony Lindeberg. Scale invariant feature transform. Scholarpedia, 7(5):10491, 2012.
doi: 10.4249/scholarpedia.10491.

Wayne P London and James A Yorke. Recurrent outbreaks of measles, chickenpox
and mumps. Am. J. Epidemiol., 98(6):453–468, December 1973.

Douglas A. Luke. Random network models. In A User’s Guide to Network Analysis
in R, pages 147–162. Springer International Publishing, 2015.

Sérgio Machado, Anirudh Sridhar, Paulo Gil, Jorge Henriques, José M. F. Moura,
and Augusto Santos. Recovering the graph underlying networked dynamical
systems: a deep learning approach. ArXiv:2208.04405, 2022. URL https://
arxiv.org/abs/2208.04405.

Atalanti A. Mastakouri, Bernhard Schölkopf, and Dominik Janzing. Necessary
and sufficient conditions for causal feature selection in time series with latent
common causes. In Marina Meila and Tong Zhang, editors, Proceedings of the
38th International Conference on Machine Learning, volume 139 of Proceedings of
Machine Learning Research, pages 7502–7511. PMLR, 18–24 Jul 2021.

Gonzalo Mateos, Santiago Segarra, Antonio G. Marques, and Alejandro Ribeiro.
Connecting the dots: Identifying network structure via graph signal process-
ing. IEEE Signal Processing Magazine, 36(3):16–43, 2019. doi: 10.1109/MSP.2018.
2890143.

Donatello Materassi and Murti V. Salapaka. Network reconstruction of dy-
namical polytrees with unobserved nodes. In Proc. IEEE Conference on De-
cision and Control (CDC), pages 4629–4634, Maui, Hawaii, Dec 2012a. doi:
10.1109/CDC.2012.6426335.

75

https://arxiv.org/abs/2208.04405
https://arxiv.org/abs/2208.04405


Chapter 6

Donatello Materassi and Murti V. Salapaka. On the problem of reconstructing an
unknown topology via locality properties of the Wiener filter. IEEE Transactions
on Automatic Control, 57(7):1765–1777, July 2012b.

Donatello Materassi and Murti V. Salapaka. Identification of network com-
ponents in presence of unobserved nodes. In Proc. IEEE Conference on De-
cision and Control (CDC), pages 1563–1568, Osaka, Japan, Dec 2015. doi:
10.1109/CDC.2015.7402433.

Joaquim P. Mateus, Paulo Rebelo, Silvério Rosa, César M. Silva, and Delfim F. M.
Torres. Optimal control of non-autonomous seirs models with vaccination and
treatment. Discrete and Continuous Dynamical Systems - S, 11(6):1179–1199, 2018.
doi: 10.3934/dcdss.2018067.

Vincenzo Matta, Augusto Santos, and Ali H. Sayed. Graph learning under partial
observability. Proceedings of the IEEE, 108:2049 – 2066, 11 2020. doi: 10.1109/
JPROC.2020.3013432.

Vincenzo Matta, Augusto Santos, and Ali H. Sayed. Graph learning over partially
observed diffusion networks: Role of degree concentration. IEEE Open Journal
of Signal Processing, pages 1–34, 2022. doi: 10.1109/OJSP.2022.3189315.

Alexandre Mauroy and Jorge Goncalves. Linear identification of nonlinear sys-
tems: A lifting technique based on the koopman operator. In 2016 IEEE
55th Conference on Decision and Control (CDC), pages 6500–6505, 2016. doi:
10.1109/CDC.2016.7799269.

T. McKelvey, Muhammad Ahmad, Ankur Teredesai, and Carly Eckert. Inter-
pretable machine learning in healthcare. 08 2018.

Jonathan Mei and Jose M. F. Moura. Signal processing on graphs: Causal mod-
eling of unstructured data. IEEE Transactions on Signal Processing, 65(8):2077–
2092, April 2017. doi: 10.1109/TSP.2016.2634543.

Jonathan Mei and José M. F. Moura. Silvar: Single index latent variable models.
IEEE Transactions on Signal Processing, 66(11):2790–2803, 2018. doi: 10.1109/TSP.
2018.2818075.

Andrea Montanari and José Pereira. Which graphical models are difficult to
learn? In Advances in Neural Information Processing Systems, volume 22, Van-
couver, Canada, 2009.

Ingemar Nåsell. Stochastic models of some endemic infections. Mathematical
Biosciences, 179(1):1–19, July 2002.

Yutaka Okabe and Akira Shudo. Microscopic numerical simulations of epidemic
models on networks. Mathematics, 9(9):932, April 2021.

Javier Oltra, Anna Campabadal, Barbara Segura, Carme Uribe, Maria Jose Marti,
Yaroslau Compta, Francesc Valldeoriola, Nuria Bargallo, Alex Iranzo, and
Carme Junque. Disrupted functional connectivity in PD with probable RBD
and its cognitive correlates. Sci. Rep., 11(1):24351, December 2021.

76



References

Edward Ott. Chaos in Dynamical Systems. Cambridge University Press, August
2002. doi: 10.1017/cbo9780511803260.

Y.-S. Park and S. Lek. Chapter 7 - artificial neural networks: Multilayer perceptron
for ecological modeling. In Ecological Model Types, volume 28 of Developments in
Environmental Modelling, pages 123–140. Elsevier, 2016. doi: https://doi.org/
10.1016/B978-0-444-63623-2.00007-4.

Padmavathi Patlolla, Vandana Gunupudi, Armin R. Mikler, and Roy T. Jacob.
Agent-based simulation tools in computational epidemiology. In Innovative In-
ternet Community Systems, pages 212–223. Springer Berlin Heidelberg, 2006. doi:
10.1007/11553762_21.

José Pereira, Morteza Ibrahimi, and Andrea Montanari. Learning networks of
stochastic differential equations. In J. Lafferty, C. Williams, J. Shawe-Taylor,
R. Zemel, and A. Culotta, editors, Advances in Neural Information Processing Sys-
tems, volume 23. Curran Associates, Inc., 2010.

Liliana Perez and Suzana Dragicevic. An agent-based approach for modeling dy-
namics of contagious disease spread. International Journal of Health Geographics,
8(1):50, 2009. doi: 10.1186/1476-072x-8-50.

William H. Press, Saul A. Teukolsky, William T. Vetterling, and Brian P. Flannery.
Numerical Recipes 3rd Edition. 09 2007.

Firda Rahmadani and Hyunsoo Lee. Hybrid deep learning-based epidemic pre-
diction framework of COVID-19: South korea case. Applied Sciences, 10(23):
8539, November 2020a.

Firda Rahmadani and Hyunsoo Lee. Dynamic model for the epidemiology of di-
arrhea and simulation considering multiple disease carriers. International Jour-
nal of Environmental Research and Public Health, 17(16):5692, August 2020b.

Joseph Ramsey, Madelyn Glymour, Ruben Sanchez-Romero, and Clark Glymour.
A million variables and more: the fast greedy equivalence search algorithm
for learning high-dimensional graphical causal models, with an application to
functional magnetic resonance images. International Journal of Data Science and
Analytics, 3:121–129, 2016.

Xiao-Long Ren, Niels Gleinig, Dirk Helbing, and Nino Antulov-Fantulin. Gener-
alized network dismantling. Proceedings of the National Academy of Sciences, 116
(14):6554–6559, 2019. doi: 10.1073/pnas.1806108116.

Ryan A. Rossi and Nesreen K. Ahmed. The network data repository with in-
teractive graph analytics and visualization. In AAAI, 2015. URL https:
//networkrepository.com.

David E. Rumelhart, Geoffrey E. Hinton, and Ronald J. Williams. Learning rep-
resentations by back-propagating errors. Nature, 323(6088):533–536, oct 1986.
doi: 10.1038/323533a0.

77

https://networkrepository.com
https://networkrepository.com


Chapter 6

Augusto Santos, Vincenzo Matta, and Ali H. Sayed. Local tomography of large
networks under the low-observability regime. IEEE Transactions on Information
Theory, 66(1):587–613, January 2020a.

Augusto Santos, Vincenzo Matta, and Ali H. Sayed. Local tomography of large
networks under the low-observability regime. IEEE Transactions on Information
Theory, 66:587 – 613, 01 2020b. doi: 10.1109/TIT.2019.2945033.

Lisa Sattenspiel. Infectious diseases in the historical archives: a modeling ap-
proach. In Human Biologists in the Archives, pages 234–265. Cambridge Univer-
sity Press, December 2002. doi: 10.1017/cbo9780511542534.012.

Hiroki Sayama. Book: Introduction to the Modeling and Analysis of Complex
Systems, jun 23 2019.

Ali H. Sayed. Adaptation, Learning, and Optimization over Networks. Found.
Trends Mach. Learn., 7(4-5):311–801, 2014. doi: 10.1561/2200000051.

Santiago Segarra, Antonio G. Marques, Gonzalo Mateos, and Alejandro Ribeiro.
Network topology inference from spectral templates. IEEE Transactions on Sig-
nal and Information Processing over Networks, 3(3):467–483, 2017a. doi: 10.1109/
TSIPN.2017.2731051.

Santiago Segarra, Michael T. Schaub, and Ali Jadbabaie. Network inference from
consensus dynamics. In 2017 IEEE 56th Annual Conference on Decision and Con-
trol (CDC), pages 3212–3217, Dec 2017b. doi: 10.1109/CDC.2017.8264130.

G. Ch. Sirakoulis, I. Karafyllidis, and A. Thanailakis. A cellular automaton model
for the effects of population movement and vaccination on epidemic propa-
gation. Ecological Modelling, 133(3):209–223, September 2000. doi: 10.1016/
s0304-3800(00)00294-5.

Peter Spirtes and Clark Glymour. An algorithm for fast recovery of sparse
causal graphs. Social Science Computer Review, 9(1):62–72, 1991. doi: 10.1177/
089443939100900106.

Peter Spirtes, Christopher Meek, and Thomas Richardson. Causal inference in
the presence of latent variables and selection bias. In Proceedings of the Eleventh
Conference on Uncertainty in Artificial Intelligence, page 499–506, San Francisco,
CA, USA, 1995. Morgan Kaufmann Publishers Inc.

Peter Spirtes, Clark Glymour, and Richard Scheines. Causation, Prediction, and
Search. MIT press, 2nd edition, 2000.

George Stepaniants, Bingni W. Brunton, and J. Nathan Kutz. Inferring causal
networks of dynamical systems through transient dynamics and perturbation.
Physical Review E, 102(4), October 2020.

Steven H. Strogatz. Nonlinear dynamics and chaos: With applications to physics,
biology, chemistry and engineering. pages 1–11, Reading, Massachusetts, 1994.
Perseus Books.

78



References

Sandra Vaz and Delfim F. M. Torres. A discrete-time compartmental epidemio-
logical model for COVID-19 with a case study for portugal. Axioms, 10(4):314,
November 2021. doi: 10.3390/axioms10040314.

John Von Neumann and Arthur W. Burks. Theory of Self-reproducing Automata.
Goldstine Printed Materials. University of Illinois Press, 1966.

Lijing Wang, Jiangzhuo Chen, and Madhav Marathe. TDEFSI. ACM Transactions
on Spatial Algorithms and Systems, 6(3):1–39, May 2020.

Duncan J. Watts and Steven H. Strogatz. Collective dynamics of ‘small-world’
networks. Nature, 393(6684):440–442, June 1998.

Stephen Wolfram. Wolfram on Cellular Automata. Addison Wesley, London, Eng-
land, March 1994.

Lu Zhao and Yan Wan. Identifiability and estimation of partially-observed in-
fluence models. IEEE Control Systems Letters, pages 1–1, 2022. doi: 10.1109/
LCSYS.2022.3184958.

Jin Zhen and Liu Quan-Xing. A cellular automata model of epidemics of a het-
erogeneous susceptibility. Chinese Physics, 15(6):1248–1256, May 2006. doi:
10.1088/1009-1963/15/6/019.

Jinming Zou, Yi Han, and Sung-Sau So. Overview of artificial neural networks.
In Methods in Molecular Biology™, pages 14–22. Humana Press, 2008.

79


	Introduction
	Motivation
	Research Goals
	Outline

	Background
	Dynamical Systems
	Networked Dynamical System
	Properties of Dynamical Systems and ODEs
	Considerations on Continuous-Time Dynamical Systems
	Ordinary Differential Equations Solvers

	Modeling Infectious Diseases
	Epidemiological Compartmental Models
	Epidemics over Networks
	Complex Systems Approach

	Artificial Neural Networks
	On the Basics of Artificial Neural Networks
	Convolutional Neural Networks

	Epidemic Models with Deep Learning
	Causal Inference of Networked Dynamical Systems
	Causal Inference of Large-scale Networked Dynamical Systems
	Ill-posed Nature of Network Inference

	Related Work
	Full-observability
	Partial-observability

	Formal Analysis and Methodology
	Problem Formulation
	Structural Consistency
	Features Separability
	Methodology

	Simulation Results and Validation
	Robustness against Noise Variance
	Accuracy
	Identifiability Gap
	Clusters Variance
	Real-world Networks
	Incorporation of New Features
	High Order Lag-moments also Convey Relevant Structural Information

	Concluding Remarks
	Contributions
	Proposed vs accomplished goals
	Future directions


