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Resumo 
 

Objetivo: Em radioterapia, um plano de tratamento otimizado deve garantir 

uma cobertura adequada do volume a tratar (planning target volume – PTV) 

ao mesmo tempo que poupa todos os órgãos de risco (OAR). Como o 

tratamento é, geralmente, fracionado durante um determinado horizonte 

temporal, o replaneamento pode ser um passo importante na criação de um 

plano de tratamento otimizado, garantindo que a informação anatómica do 

paciente é atualizada e considerada durante o tratamento. No entanto, o 

replaneamento também tem desvantagens, devido à necessidade de adquirir 

novas imagens médicas e ao tempo adicional necessário para a criação de 

novos planos de tratamento. Este trabalho compara o uso de um planeamento 

robusto, tendo em conta estruturas auxiliares, com o replaneamento, tendo 

em conta o impacto na cobertura do PTV, poupando simultaneamente os OAR. 

Métodos: Quatro abordagens diferentes de planeamento de tratamento são 

consideradas e comparadas. A abordagem convencional considera apenas a 

informação da tomografia computadorizada (CT) de planeamento, mantendo 

o mesmo plano de tratamento durante todo o tempo de tratamento. É testada 

uma nova abordagem robusta, onde são também tidas em conta 14 estruturas 

auxiliares que representam cenários possíveis para a evolução do PTV na 

criação do plano de tratamento inicial. Uma terceira abordagem considera 

fazer o replaneamento uma vez a meio do tempo total de tratamento. Uma 

quarta abordagem mimetiza o que é normalmente conhecido como o "plano do 

dia". Todos os planos de tratamento foram criados automaticamente 

recorrendo a um algoritmo baseado em sistemas de inferência difusos. Estas 

abordagens foram testadas num caso de cancro de cabeça e pescoço e foram 

comparadas usando simulação de Monte Carlo.  

Resultados: Foi possível gerar automaticamente tratamentos clinicamente 

admissíveis para todas as quatro abordagens consideradas. O PTV obteve 

melhor cobertura com o planeamento robusto do tratamento. 

Conclusões: Foi possível concluir que a abordagem robusta originou melhores 

planos de tratamento do que a abordagem convencional e que pode ser uma 

alternativa competitiva relativamente ao replaneamento durante o período 

temporal em que decorre o tratamento. A cobertura do PTV foi melhorada, 

garantindo as tolerâncias definidas para os OARs. 
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Abstract 
 

Purpose: An optimized radiotherapy treatment plan must guarantee a proper 

coverage of the volume to treat (Planning Target Volume – PTV) while 

sparing all the organs at risk (OAR). As the treatment is usually fractionated 

during a given planning horizon, replanning can be an important step in 

creating an optimized treatment plan, by guaranteeing that the updated 

situation of the patient is being considered. However, replanning has also 

shortcomings, due to the need of acquiring new medical images, and 

additional time needed for creating new treatment plans. This work studies 

how the use of robust planning, taking into account auxiliary structures, 

compares with replanning, considering the impact on PTV coverage while 

maintaining proper OAR sparing. 

Methods: Four different treatment planning approaches are considered and 

compared. The conventional approach considers only the information of the 

planning computed tomography (CT), keeping the same treatment plan 

during the whole treatment time. A new robust approach is tested, where 

fourteen auxiliary structures representing possible scenarios for the PTV 

evolution are also taken into account when creating the initial treatment 

plan. A third approach considers replanning once halfway of the treatment 

time. A fourth approach mimics what is usually known as the “plan of the 

day”. All treatment plans were created automatically by resorting to an 

optimization approach based on fuzzy inference systems. These approaches 

were tested in a head-and-neck cancer case and were compared by Monte 

Carlo simulation.  

Results: It was possible to automatically generate clinically admissible 

treatments for all the four approaches considered. PTV was better covered 

with the robust treatment planning. 

Conclusions: It was possible to conclude that the robust approach originated 

better treatment plans than the conventional approach and it can be a 

competitive alternative to replanning. PTV coverage was improved, while 

properly sparing the OARs. 

 

Key words: radiotherapy, treatment planning optimization, adaptive 

planning, medical physics 
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1. Introduction 

 

According to the global cancer observatory, the number of new cases of 

cancer worldwide in 2020 was almost 19.3 million, 4.4 million of those 

being in Europe [1]. 

Prevention and an early diagnose are good measures to help dealing with 

cancer. According to the global cancer observatory, the 5-year survival rate 

in Sweden, Norway, Denmark, Finland and Iceland averaged 37.81% in 

1970-1974 and 72.7% in 2015-2019 [2]. This was possible due to early 

diagnose, better prevention and due to novel/improved cancer treatments 

developed in the last few years. Many treatments can be provided 

according to the type and stage of the cancer, including radiotherapy, 

chemotherapy, surgery, stem cell transplant, immunotherapy, among 

others. 

Radiation therapy (or radiotherapy) delivers high doses of radiation 

aiming to kill cancer cells by damaging their DNA. Cancer cells divide very 

fast but the cells that are damaged are unable to repair themselves as well 

as healthy cells. Since healthy cells can better repair themselves, the goal 

of the treatment is to deliver enough dose to compromise cancer cells but 

not enough to damage healthy cells beyond repair. This can be achieved 

by delivering radiation daily during several weeks. This fractionation 

aims at malignant cell destruction while preserving healthy tissue.  

Radiotherapy can either use an external radiation source or use an 

internal radiation source (Brachytherapy). Brachytherapy is a method of 

internal radiation therapy in which seeds, ribbons, or capsules containing 

a radiation source are placed in the tumour region. There are several 

techniques for placing brachytherapy including: interstitial, intracavity 

and episcleral brachytherapy. Regarding the implant dose, implants can 

be qualified in three types: low-dose rate, high-dose rate, and permanent 

implants [3]. In external beam radiotherapy a machine is used to deliver 

radiation to the patient, treating a specific part of the body, using charged 

particles. The particle used to treat the intended area is chosen depending 

on the tumour and the type of interaction between the particle and the 

tissues. 

External radiotherapy is delivered with the patient laying on a couch that 

can rotate.  Radiation is generated by a linear accelerator, or linac, placed 

on a gantry that can rotate around a central axis parallel to the couch. 

When the couch is fixed at 0º the beam directions are called coplanar. 

Rotation of the gantry and the couch allows noncoplanar beams 

irradiating the tumour from almost any direction around the patient, 
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except for directions that would cause collisions between the gantry and 

the couch/patient [4]. Figure 1 depicts a linear accelerator. 

Since the radiation is being delivered from different directions towards the 

tumour, it is possible to have a higher dose on the volumes to treat than 

on the surrounding healthy tissues. The main objective of radiotherapy 

treatment planning is thus to be able to calculate a treatment plan that 

irradiates adequately the volumes to treat while, at the same time, spares 

as most as possible all the surrounding organs, keeping their 

functionality. 

 

Figure 1- Linear accelerator [5] 

 

In this work, only external radiotherapy will be considered.  The main 

focus of this work will be Intensity Modulated Radiation Therapy (IMRT), 

where it is possible to modulate the radiation delivered so that it better 

conforms with the volumes that should be treated. 

As the treatment is usually fractionated, being delivered daily during a 

given number of weeks, the volumes to be treated, as well as the volumes 

that correspond to organs that should be spared, are not exactly the same 

during the whole treatment time. Changes in these volumes could be 

accommodated if new medical images were acquired and new treatment 

plans produced. However, this is not always possible, and acquiring new 

medical images during the treatment has also advantages and 

disadvantages, as discussed later on. The impact of changes in the 

volumes to treat and different approaches to take these changes into 

account are the main focus of the work developed. This work will be 
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focused on head-and-neck cancer cases, since one such case was used as a 

proof of concept for the approach developed, as described in section 7. 

The main objective of the work to be developed is to understand the impact 

that changes in the patient throughout the treatment time period can 

bring to the quality of the treatment delivered, namely understand the 

importance of considering the replanning at some stage during the 

treatment. Four different approaches will be compared: 

• Only one treatment is planned, and no other replanning is done 

during the course of treatment. This initial treatment plan is 

calculated considering only the existing structures of interest as 

defined in the planning computed tomography (CT). 

• Only one treatment plan is considered during the course of 

treatment, but this plan is calculated considering not only the 

original structures of interest but also additional structures that 

are created and that represent possible changes to the Planning 

Target Volume (PTV) (it is, in some sense, a robust plan taking into 

consideration different potential scenarios for the PTV). 

• Replanning is performed once during the course of treatment. 

• Replanning is performed more often than the previous approach, 

mimicking the concept of the “plan of the day”. 

 

Computational results considering a head-and-neck cancer case are 

described. 

This thesis is organized as follows. The next section gives a brief overview 

of the existing radiotherapy treatment modalities. In section 3 treatment 

planning and delivery workflow is introduced followed by a more detailed 

description of the radiotherapy treatment planning problems and how 

dose is calculated. On section 5 we explain what fuzzy inference systems 

are and how are they used to automate the treatment planning process. 

On section 6 the uncertainties related to the treatment are described as 

well as the adaptive planning role to mitigate some of these uncertainties. 

Finally on sections 7, 8 and 9 the computational experiments are 

described, and the main results and conclusions are discussed. 
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2. Radiotherapy Treatment Modalities 

 

There are different radiotherapy treatment modalities. In clinical practice, 

standard treatment is done with photons. More recently, protons are also 

being used, taking advantage of their unique properties. Proton beams 

have unique depth-dose characteristics, since protons slow down as they 

penetrate matter, their rate of energy transfer increases with depth, 

coming to an abrupt stop just beyond where energy deposition is maximum 

producing the so-called Bragg peak. By positioning several Bragg peaks 

inside the target volume, excellent tumour irradiation is obtained, and 

adjacent organs at risk are spared [5]. 

In photon beam-based radiotherapy, it is not possible to avoid radiation 

being delivered beyond the target volume. In photon beam radiotherapy 

the most used therapies are 3D conformal radiotherapy (3DCRT) and 

intensity modulated radiation therapy (IMRT). 

Regardless of the treatment modality, a CT scan of the patient is always 

needed to plan the radiotherapy treatment, where all the structures of 

interest are delineated by the medical doctor, namely PTVs and Organs at 

Risk (OARs). 

In 3DCRT the target is irradiated by an array of beams individually 

shaped to conform with the 3D volume of the tumour, representing an 

increase in dose to the tumour and sparing of OARs when compared with 

its 2D counterpart, where x-ray images are used to delineate boundaries 

and a limited number of beams is used resulting in less conformity since 

the beams do not conform with the PTV. Although the shape of the beams 

conforms better with the volume to treat in 3D than in 2DCRT, the 

radiation intensity that is delivered is constant. There is no intensity 

modulation. 

In 1982, IMRT was proposed by Brahme and, since then, this technique 

has been widely used all around the globe [6]. Initially, multi-leaf 

collimators (MLCs) were used in three-dimensional conformal radiation 

therapy (3DCRT) to define fixed field anatomical landmarks [7]. IMRT 

also uses a multi-leaf collimator to modulate the beams [8]. The MLC 

consists of pairs of leaves that can move side by side creating a variety of 

field openings (Figure 2). The leaf position must be accurate to less than a 

millimetre, since small deviations of the leaves can cause dose 

uncertainties of several percent [9]. The movement of the leaves originates 

the segmentation of each beam into a set of smaller imaginary beams with 

independent fluence (intensities), called beamlets, delivering a non-

uniform radiation field to the patient [4], [10]. The main difference 

between 3DCRT and IMRT is that in IMRT it is possible to modulate the  
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Figure 2- Illustration of a multi-leaf collimator [17] 

fluence/intensity of the beam, which allows for a better tumour 

irradiation, and improved organ sparing [11]–[15]. IMRT treatment 

planning has an increased complexity when compared with 3DCRT 

treatment planning, since more decisions have to be made (increased 

degrees of freedom owing to the segmentation of the beams). 

Volumetric modulated arc therapy (VMAT) is one of the most efficient 

radiotherapy methods, especially when accounting for dose delivery [16]. 

In VMAT, the gantry also rotates. However, instead of delivering the 

radiation from defined irradiation directions as step-and-shoot IMRT 

treatments do (radiation is only delivered from these defined directions, 

and radiation is off in all the position transitions), in VMAT the beam is 

always on, defining continuous irradiation arcs. The gantry speed, the 

dose delivery rate and the aperture of the MLC leaves are modulated [18]. 

Even though VMAT usually uses coplanar arcs (the couch is fixed), recent 

studies propose combining the short treatment times offered by VMAT 

[16], with the improved organ sparing from noncoplanar IMRT treatment 

plans [19].  

CyberKnife is an example of a highly noncoplanar IMRT treatment 

modality. This modality also uses a linac with a highly manoeuvrable 

robotic arm, and integrated image guiding system, delivering both photons 

or x-rays. In this modality, the system based on the structures’ contours 

creates a 3D representation of the tumour, defining the orientation of the 

beams based on this representation [20]. 

In the next section, only IMRT step-and-shoot treatments will be 

considered, since this is the focus of this work. 
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3. Treatment Planning and Delivery Workflow 

 
The different treatment modalities share a common treatment workflow. 

A treatment plan requires a treatment CT scan (different from the 

diagnose CT scan) and a medical prescription. In the CT scan all the 

structures, OARs and PTVs must be well mapped (Figure 3). The OARs 

are the organs that may be exposed to radiation, while the PTV represents 

the volume of the known tumour including microscopic spread plus a 

margin around this volume. Other target structures commonly used 

include the gross target volume (GTV), that represents the volume of the 

known tumour and the clinical target volume (CTV) that adds microscopic 

spread to the GTV (Figure 4). Margins around target structures exist to 

compensate for eventual inaccuracies due to organ movement or changes 

in volume (bladder size, for instance) and patient movement. 

 

 

 

Figure 3- Delineated structures in a CT scan on 3 planes (axial, coronal and sagittal). 
In this image it is possible to see several delineated structures, namely two PTVs with 

different dose requirements, the spinal cord, parotids and brainstem. 
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Figure 4- Schematic difference between GTV, CTV and PTV 

All the structures of interest are discretized in voxels. Voxels are 

volumetric pixels where the length and width of each voxel depends on the 

resolution and spacing between the CT images [17]. 

Absorbed dose is the energy deposited per unit of mass of tissue and is 

expressed in Gray (Gy). The medical prescription, defined by the medical 

oncologist, is patient dependent and defines a set of dosimetric goals and 

constraints, for instance, maximum dose deposited in OARs and minimum 

dose deposited in PTVs. The definition of OAR constraints aims at 

preserving the organ functionality. Usually, two different sets of OARs are 

defined: serial and parallel organs. Serial organs are the ones that, if even 

only a small part of the OAR volume is damaged, the OAR functionality is 

jeopardized. In this case, usually the constraints define a maximum dose 

that cannot be surpassed at any voxel. Parallel organs are the ones that 

keep their functionality even if only a small part is damaged. In this case, 

the constraints usually define a mean dose threshold, taking into 

consideration the dose deposited in all the OAR’s voxels. 

Considering IMRT treatments, a treatment is planned when all the 

decisions have been made namely: the set of radiation directions that is 

going to be used (including the position of the couch for non-coplanar 

treatments), the radiation intensities (also known as fluence map) 

associated with each of those directions and the position and movement of 

the multi-leaf collimator leaves that will originate the desired fluence 

maps. 
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Given the complexity of IMRT treatment planning, the planner is assisted 

by a dedicated software, called Treatment Planning System (TPS). In this 

TPS, the planner is asked to define several parameters associated with 

the structures of interest, like lower and upper dosimetric bounds or 

weights. Then, the TPS optimizes a given mathematical model that tries 

to define the treatment plan taking into consideration these defined 

parameters. This mathematical model has a given objective function that 

is usually minimized and shaped by the parameters chosen by the planner. 

This procedure is usually known as inverse planning. After the initial 

treatment plan is defined, the doses absorbed by all the structures of 

interest are calculated. If the dose distribution meets the medical 

prescription the procedure finishes, unless the planner thinks it is still 

possible to improve either OAR sparing or PTV irradiation beyond what 

was defined in the medical prescription. If the calculated doses do not 

comply with the prescription, or the planner is aiming at further 

improvements, one or more parameters are updated, and a new treatment 

plan is calculated. In this lengthy trial-and-error procedure, the planners 

typically resort to their own experience, and the resulting plans may not 

even be the best ones in terms of sparing critical organs or the 

achievement of proper PTV irradiation [21].  

Quality assurance (QA) must be done throughout the entire treatment, 

from the diagnose CT to the delivery of the treatment. Since the focus of 

this work is the treatment plan, only the QA of the plan will be discussed.  

There are many ways by which a given treatment plan is assessed. 

Measures like conformity, homogeneity and coverage are calculated. 

Conformity is defined as the ratio between the PTV and the irradiated 

volume; homogeneity is defined as the uniformity of the dose distribution 

of the PTV; coverage is the ratio of the PTV covered by the isodose surface 

prescribed to the total PTV [17]. To ensure the quality of the treatment 

plan, dose volume histograms (DVH) are also commonly used. DVH shows 

the amount of radiation that a certain structure receives as a function of 

the volume, allowing to analyse and compare different plans and dose 

distribution on each structure (Figure 5). Isodose graphic representation 

is another tool that is used to evaluate the quality of the treatment 

[17][22]. Hotspots (ratio between the maximum dose received by any of the 

voxels in a structure and the prescribed dose above a given threshold) and 

coldspots (ratio between the minimum dose received by any of the voxels 

in a structure and the prescribed dose under a given threshold) must be 

prevented. Hotspots can cause permanent damage to OARs and coldspots 

will allow the tumour to grow and spread [23]. 
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Figure 5- Illustration of a DVH comparing different head-and-neck treatment plans 

 

4. Radiotherapy Treatment Planning 
 

Treatment planning is typically organized in 3 different stages. These 

stages are now detailed. 

 

4.1 Beam angle optimization problem 
 

In IMRT, the beam angle optimization problem (BAO, also known as the 

geometry problem) considers the decisions that have to do with the 

position of the patient and of the irradiation beams. BAO is very important 

since it helps to achieve or improve organ sparing, PTV coverage and it 

directly influences the treatment time. Treatment time is important for 

two different reasons: if treatments take shorter times, more patients can 

be treated, and this can be important in terms of the number of patients 

that a given institution can treat. For each patient, shorter treatment 

times are not only more comfortable, but they also decrease the probability 

of the patient moving, causing the PTV and OARs to change their position 

[17]. 

The geometry problem is divided in two parts: deciding how many 

irradiation beams to use; deciding which angles to use. In clinical practice, 

the number of beams to use is usually defined a priori, considering the 

location of the PTVs, specific characteristics of the patient and the 

experience of the planner and of the institution. The directions (angles) 

are usually chosen by the treatment planner, using a trial-and-error 
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approach that is time consuming, and in most cases are not optimized, 

since TPS do not yet offer good beam angle optimization tools. 

Breedveld et al. shows that, for different cases, noncoplanar angles using 

BAO outperformed coplanar beam angles [24]. 

Rocha et al., tackles this problem offering an alternative continuous 

approach considering noncoplanar beams, obtaining improved results 

when compared to the coplanar equidistant beam angles [25]. 

 

4.2 Intensity/Fluence map optimization problem 
 

The fluence map optimization (FMO) problem consists of finding the 

optimal beamlet intensities (weights) for the previously chosen beam 

angles. There are many mathematical optimization models that address 

this problem, including linear models, non-linear models, mixed integer 

linear models and multiobjective models. In the medical prescription, goal 

dose for tumours, maximum and/or mean dose values for OARs and the 

rest of the body are established. With the evolution of IMRT inverse 

planning systems it is possible to define dose-volume constraints (DVC) 

stating that only a certain fraction of a structure can be exposed to a dose 

value higher (lower) than the upper (lower) threshold. With the definition 

of DVCs it can be easier to better represent the goal of improving tumour 

dose without damaging nearby OARs [26]. 

The dose for each voxel is calculated using the superposition principle, 

where we consider the contribution of each beamlet. A dose matrix, D, is 

obtained from the unitary fluence of each beamlet. It has information on 

the absorbed dose in each voxel, from each beamlet, considering radiation 

intensity equal to 1. In this matrix, each row corresponds to one voxel, and 

each column corresponds to one beamlet. The dose received by voxel i, 𝑑𝑖, 

can be represented as the sum of the contribution of each beamlet, 𝑑𝑖 =

∑ 𝐷𝑖𝑗
𝑁𝑏
𝑗=1 𝜔𝑗, where Nb is the total number of beamlets, 𝜔𝑗 is the intensity of 

the beamlet j and 𝐷𝑖𝑗 represents the elements in the ith row and jth column 

of matrix D (absorbed dose in voxel i from beamlet j, considering beamlet 

j has unitary radiation intensity). The matrix D is a very large matrix, 

since the total number of voxels, Nv, can reach tens of thousands, which 

makes the fluence optimization harder. To minimize the size of the matrix, 

the number of voxels can be decreased, and one of the strategies used is 

known as sampling, where a given number of voxels of certain structures 

will be assembled into one voxel. 

Most models use one objective function that is intended to be minimized. 

We give as an example a model that will be used as the starting point of 

this work, and that considers the minimization of a quadratic objective 

function with no additional constraints. For each and every voxel, the dose 

received is compared with a given threshold. The function will be 
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penalized if there is a difference between the received dose and the 

desired/allowed dose for that voxel. These differences are squared in order 

to obtain a convex problem that is easier and faster to solve. With this 

model, it is possible to allow small dose differences without big 

penalizations but if the deviation is too large it will be greatly penalized. 

This model is represented in Equation 1. 

 

𝑚𝑖𝑛𝜔≥0  ∑ [𝜆𝑖(𝑇𝑖 − ∑ 𝐷𝑖𝑗
𝑁𝑏
𝑗=1 𝜔𝑗)

2

+
+ 𝜆𝑖(∑ 𝐷𝑖𝑗

𝑁𝑏
𝑗=1 𝜔𝑗 − 𝑇𝑖)

2

+
]

𝑁𝑣
𝑖=1  (1) 

 

where 𝑇𝑖 is the desired/allowed dose for voxel i, 𝜆𝑖 and 𝜆𝑖 are the penalties 

of underdose and overdose of the voxel i, and (. )+ = 𝑚𝑎𝑥{0, . } [21]. 

Although the values for the parameters used in this model can be related 

with the dose volume constraints defined by the medical prescription, they 

can be changed and they can be quite different from these goal values, as 

this objective function value has no clinical meaning. The objective of any 

optimization mathematical model that is used in inverse optimization is 

to be able to lead to solutions (optimal solutions of the mathematical 

optimization model used) corresponding to treatment plans that comply 

with the medical prescription. Hence, the models used must be able to 

drive the search for this treatment plan towards interesting regions of the 

searchable solution space. 

 

4.3 Realization Problem 
 

After the intensities are optimized, we have a fluence map that is 

continuous (Figure 6). The next step considers the optimization of the 

movement of the leaves so that the calculated fluence map is delivered. 

This problem is usually known as the realization problem. 
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Figure 6- Fluence map obtained in the end of the optimization process [27] 

The movement of the leaves does not allow the delivery of the continuous 

fluence map calculated. Since the beams are discretized into beamlets, the 

delivered fluences are not exactly the same as the ones that were 

calculated in the fluence map optimization due to the MLC device 

restrictions. So, there is always some loss associated with this 

discretization, as can be seen by the differences between Figures 6 and 7 

that try to depict this situation. Figure 6 displays the optimal fluence 

calculated. This fluence is then discretized (Figure 7) and delivered by the 

movement of the leaves (Figure 8).  

The realization problem has been tackled by many authors using different 

techniques, aiming to obtain deliverable fluence maps as close as possible 

to the optimal ones, minimizing the loss incurred due to this discretization 

[28]–[31]. 

Regarding the movement of the MLC leaves, two different situations can 

be considered: dynamic collimation, where the radiation is on while the 

leaves move, and multiple static collimation or “step-and-shoot” mode, 

where the leaves will open a desired aperture during each segment of 

delivery and radiation is interrupted when the leaves move [17].  

Instead of considering the fluence map and realization problem as 

separate and sequential problems, there is also the option of tackling these 

two problems at once. Direct aperture optimization (DAO) is a method first 

introduced by Shepard et al. [28], whereby using an automated planning 

system, the shape and weights of the apertures are optimized. DAO 

approaches have, as main advantage, the explicit inclusion of the 

discretization that inevitably exists by the movement of the leaves. 

However, these approaches lead to optimization problems of higher 

dimensions, increased degrees of freedom, and that can be harder to solve. 
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Figure 7- Discrete intensity map obtained by discretizing the continuous fluence 
map of Figure 6 [17] 

 

 

 

 

 

 

 

 

 

 

 

 

4.4 Treatment Planning Automation 
 

As already described, treatment planning is still heavily relying on a time-

consuming trial-and-error process, with a result that is highly dependent 

on the planner’s experience and time availability. A planner may need 

hours or even days to reach a high-quality treatment plan, that fulfils the 

medical prescription. Therefore, many efforts have been put in trying to 

make treatment planning partially or fully automated. The automation of 

treatment planning is not a new idea and, looking at the existing 

literature, it is possible to find many works addressing this concern. 

Important advancements were achieved, mainly relying on optimization 

Figure 8- Decomposition of the fluence map in Figure 7. Through the superposition 
of the apertures the fluence map of Figure 7 is obtained [17] 
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approaches for beam angle optimization in IMRT, arc trajectory definition 

for VMAT and FMO. Zhang et al., propose a treatment plan approach for 

lung cancer where the beam angles were selected through a treatment 

plan expert database [32]. Optimization parameters associated with OARs 

can be adjusted throughout the process depending on the objective 

function values of the current solution. Zarepisheh et al., propose a 

treatment planning optimization based on the DVH curves of a reference 

plan, where voxel weights used in the FMO objective function are 

automatically updated by projecting the current dose distribution on the 

Pareto surface of the problem, considering the corresponding gradient 

information (the Pareto surface is defined by all the compromise solutions, 

meaning that it is not possible to improve one goal without worsening 

another one) [33]. Jia et al., propose a treatment plan procedure in an OAR 

3D dose distribution prediction [34]. Instead of having a medical 

prescription guiding the FMO, these predictions are the dosimetric 

references for OAR objectives. The FMO objective function is not 

dynamically updated taken into consideration the current solution 

dosimetric achievements. No beam angle optimization was considered 

[34]. Schipaanboord et al. , propose a fully automated treatment planning 

procedure for robotic radiotherapy [35] and Bijman et al., for MRI-Linac 

(uses magnetic resonance imaging to monitor the target area at the same 

time the treatment is being delivered) applied to rectal cancer [35], [36]. 

The plan generation is based on a previous approach named Erasmus 

iCycle [24]. This method requires that a fixed wish-list is previously 

defined to be used for all the patients with the same tumour location. The 

need to fix a priori all the parameters in the wish-list can be a 

disadvantage for some patients that have specific situations that deviate 

from the most common cases. The selection of beam angles was based on 

an iterative selection process, where one beam is fixed at each iteration. 

Wortel et al., suggest an automated plan via protocol based automatic 

iterative optimization. The authors define a set of treatment templates 

that achieve good results when used with the Pinnacle3 16.2 Auto-

Planning TPS [37]. Cilla et al., compare the new personalized algorithm 

implemented in Pinnacle3 for full planning automation of VMAT prostate 

cancer treatments with the previous mentioned auto-planning tool. Both 

the procedures are based on an a priori defined templates [38]. 

A new fully automated FMO procedure, where all the objective function 

parameters (weights and bounds) are tuned based on fuzzy inference 

systems (FIS) was presented in Dias et al. [39]. With FIS it is possible to 

mimic the human planner reasoning, considering a simple optimization 

model as defined in equation (1). The bounds in equation 1 are initially 

defined according to the medical prescription, while the weights’ values 

are considered equal to 1 except in certain situations (e.g., overlapped 

PTVs). The fuzzy inference mechanism is composed of different sets and 

rules that will iteratively decide how much the bounds and weights must 
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be changed, using common sense rules (if a restriction is violated, the 

bounds and weights are changed until satisfied) [39]. Since this is the 

method that we are going to use for automatic FMO, section 5 describes 

this approach in more detail. 

 

4.5 Dose Calculation 
 

The treatment planning procedure requires dose to be calculated for each 

patient’s voxel at each iteration when inverse optimization is performed. 

There are different ways of calculating the deposited dose. Some are more 

accurate but computationally more demanding (based on Monte Carlo 

simulation), others are faster but not as accurate (pencil beam 

algorithms).  

Both pencil beam and Monte Carlo (MC) algorithms are kernel-based 

algorithms. These algorithms use a kernel to model dose deposition at a 

given point, where a kernel is a model of the energy spread at a given 

point. 

The pencil beam dose calculation technique has as its basis the fact that 

the photon beam hitting the patient is composed of several smaller beams, 

the so-called pencil beams. Pencil kernel is then applied to each of the 

smaller beams giving each a specific dose distribution, which are then 

summed together obtaining the dose map. While pencil beam has similar 

results as Monte Carlo in homogeneous tissues [40],  it has limitations 

with anatomical regions where heterogeneities exist [41]. However, pencil 

beam requires less computation time than Monte Carlo and, therefore, it 

is much faster.  

MC allows computing dose distributions by simulating interactions of a 

large number of rays where the energy released is detected through the 

use of probabilities [40]. Since MC simulates a large number of 

interactions it is computationally demanding, but the results have 

increased precision.  

In clinical practice, most of the times pencil beam dose calculation is used 

in the trial-and-error procedure, but for the final treatment plan the dose 

is calculated using Monte Carlo based algorithms, for increased accuracy 

and better quality control. 
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5. Automated FMO by Fuzzy Inference Systems 

 

Since its proposal, fuzzy sets have been used in multiple fields from 

engineering to medicine, due to its various capabilities such as fuzzy 

optimization, image processing, among others.  

Dias et al. [37] propose the use of fuzzy inference systems (FIS) to mimic 

the planner’s procedure in an automated, efficient, and optimized way due 

to its flexible structure. Fuzzy inference systems allow for the automation 

of the FMO treatment planning, by iteratively changing both weights and 

bounds in (1) based on a reasoning similar to the human planners. 

The algorithm will, in an iterative way, change upper and lower bounds 

trying to achieve PTV coverage while respecting the constraints that 

guarantee proper OAR sparing. If this is not enough, structure weights 

will also be changed in an iterative way. According to Dias et al., changing 

weights first makes it harder to control the behaviour of the optimization 

model [39]. 

In this methodology, the planner can attribute priorities to both OARs and 

PTVs within a certain range, but this is not mandatory. PTV priorities will 

be used to help improving treatment constraints, trying to irradiate the 

PTVs even more than it was defined in these constraints, while OARs with 

higher priority will be further spared. 

Bounds and weights are changed based on common-sense rules, where if 

a given dose constraint is being violated, the respective bound or weights 

will be changed so that the constraint is satisfied. 

Lower and upper bounds are initialized based on the medical prescription. 

Upper and lower bounds are assigned to PTVs while OARs only need 

upper bounds. OARs only have dose volume constraints that consider 

upper bounds, whilst PTVs have usually dose volume constraints that 

consider both upper and lower bounds (it is necessary to guarantee, for 

instance, that 95% of the volume receives at least 95% of the prescribed 

dose but, at the same time, to guarantee that no voxel receives more than 

107% of the prescribed dose). 

In the beginning, all structures can have the same weight equal to 1, 

meaning that every voxel has the same weight regarding the optimization 

process. A different situation occurs when two or more PTVs with different 

defined dosimetric constraints are overlapping, which happens often.  In 

this case, the voxels that belong to the smaller volumes are associated with 

higher weights than the others. If some OARs are harder to spare, for 

instance, they can be associated with higher weight values right from the 

start. These initial values are not very important, as they will be changed 
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automatically by the algorithm, but can have an impact on the total 

computational time needed to reach an admissible plan. 

Fuzzy numbers allow for the mathematical representation of concepts, 

that humans easily understand in natural language, but that are difficult 

to assign to crisp numbers. Fuzzy sets do not have clearly defined 

boundaries, allowing for a certain input to belong to more than one set 

with a given degree of membership.  

The planners’ reasoning can be expressed by a set of simple rules in 

natural language: if, for a certain structure, the deviation between the 

received dose and the prescribed dose is low/medium/large, then the 

respective upper/lower bound should be slightly/medium/greatly 

increased/decreased. The further away the structure of interest is from 

what is desired, the more pronounced the change of the respective 

parameter should be. Fuzzy numbers allow for the mathematical 

representation of these concepts, like low, medium or large. For example, 

a given deviation can belong to both low and medium sets with different 

degrees of membership, that do not need to add up to 1. The membership 

functions allow to define what low, medium and large deviations are (see 

Figure 9 for an example). The percentage of deviation between the 

prescribed/accepted dose and the received dose is the input, while the 

percentage of change in a particular bound is the output. Inputs and 

outputs are connected through fuzzy rules. All rules of the FIS are 

evaluated simultaneously, even if some of them are not in use (are not 

activated). Through a procedure usually known as defuzzification, a final 

and crisp value is obtained from the truncated output fuzzy sets, Figure 

10 [39].  

 

 

 

 

 

 

Figure 9- Input and Output membership functions [39] 
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Figure 10- How to obtain a value from the fuzzy function using defuzzification [39] 

Weights are changed in a similar way as bounds. The fuzzy rules and input 

functions are similar, while the output function is slightly different. It is 

important to limit the change that the algorithm can do to the weights in 

order to enable reaching an admissible solution. Each time the weights are 

changed the bounds are reset and return to their initial values, repeating the 

process until a solution is found. Figure 11 depicts the FIS flowchart. 

In the original version of this approach, after an admissible solution is found, 

the algorithm will be increasingly more demanding, further improving PTV 

coverage. Finally, the algorithm will try to spare OARs beyond the tolerances 

defined. Further improvements to OAR sparing are made while maintaining 

the achieved PTV coverage. 
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Figure 11- FIS Flowchart 
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6. Uncertainties and Adaptive Treatment Planning 
 

The planning CT represents the patient on the day the medical image was 

acquired. However, there is a time lag between this CT being acquired and 

the treatment being initiated. Furthermore, as the treatment is divided 

into a set of daily fractions, the patient’s anatomy changes as the 

treatment progresses, possibly leading to discrepancies between planned 

and delivered dose distributions. These discrepancies can lead to a 

decrease in the probability of tumour control, or increased probability of 

OAR complications.    

According to Sonke et al. there are three types of anatomical changes that 

can induce errors [40]: 

• During the acquisition of the planning CT, the patient is placed in 

a given position that will be replicated during the course of the 

treatment. Although the patient positioning is as accurate as 

possible, and different techniques are used to guarantee this proper 

positioning, it is not possible to eliminate completely this error, and 

there is usually a systematic positional error [42]. 

• The treatment delivery is composed of multiple sessions and the 

patient positioning should remain the same along all the sessions. 

This is not an easy task, since the sessions are done in different 

times, with different personnel, changing the reproducibility 

conditions [43]. Several techniques are used to immobilize the 

patient during the treatment based on the location of the PTV [44]. 

There are also anatomical changes of the patient that can occur 

between different treatment fractions and that are usually 

considered as being random errors. 

• The treatment can also cause gradually increasing changes in the 

structures of interest that contribute to both systematic and 

random errors, due to the treatment effect over both PTVs and 

OARs (the PTV may decrease, the patient can lose weight, for 

instance). 

Patient’s CT is one of the most important data for structure delineation 

and dose calculation. This CT will give important information about organ 

density and structure location. There can be uncertainties considering 

tissue density information that is retrieved from the CT, and that can 

contribute to dose calculation uncertainties, along with random errors due 

to detector response, detector positioning and systematic errors due to the 

detector response [43]. During the treatment delivery, uncertainties like 

patient movement (voluntary and involuntary movements such as 

respiratory movements), structure movement (relative to what was 
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defined in the CT scan), structure size (bladder size changes, for instance) 

and patient positioning can also be present.  

The fractionation of the treatment, and the impact of the dose that is 

delivered, can make the initial planning CT obsolete, in the sense that it 

is no longer representing the current situation of the patient. Patients that 

are doing concomitant chemotherapy treatments, for instance, can lose 

weight. If these changes are pronounced, a replanning is needed: a new 

CT must be acquired, and a treatment replanning takes place.  

Adaptive radiotherapy (ART) was introduced as a method to reduce the 

effects of patient related uncertainties during the course of the treatment, 

achieving better results during the treatment. Adaptative plans can bring 

important advances in treatment quality since the patient and tumour 

evolution are considered during the treatment [45]. 

The PTV and the surrounding organs can change their disposition and/or 

size during treatment, therefore it is important to account for and manage 

these changes. Several authors have studied anatomical modifications 

during radiotherapy. Barker et al. show that, for head and neck cancer 

cases, the GTV decreased 69.5% with asymmetrical shrinkage and with a 

centre of mass displacement of 3.3 mm, while the parotid glands decreased 

0.19 cm3 per day of treatment with a median displacement of 3.1 mm. The 

authors conclude that these changes can have a potential dosimetric 

impact and suggests that adaptive planning can be made based on the 

treatment-related anatomical changes [46]. Hansel et al. work describe a 

right and left parotid glands size decrease of 15.6% and 21.5%, 

respectively, but no GTV reduction [47]. Osorio et al., show that both the 

GTV and parotid glands decreased in volume [48]. The GTV decreased 

25±15% while the parotid glands in the same side of the tumour and in the 

opposite side saw a 17±7% and 5±4% decrease, respectively.  

The average anatomy model (AAM) allows the treatment to be changed 

based on the previous fraction of the treatment. The AAM can be 

estimated based on the planning CT and first few CTs, calculating the 

average deformation vector field or changing the initial planning scan and 

corresponding structures accordingly. The replanning is performed when 

anatomical changes of the patient exceed a certain threshold [49]. 

Scheduled adaptation allows for a specific replan occurrence, either once 

or several times during the treatment. Scheduled adaptation removes the 

existing disadvantage of triggered adaptation since the patient anatomical 

changes are unpredictable, therefore not always able to trigger the 

adaptation process [50].  

The increase of the number of times a replanning is performed converges 

to the concept of the “plan of the day”. In this case, based on a daily CT, 

the treatment can be replanned also daily and immediately before the 
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treatment is delivered. The technique allows for better PTV coverage and 

organ sparing [51]. However, daily replanning comes at a cost, and some 

disadvantages can also be identified. One of the issues is the total 

radiation delivered to the patient due to the increased number of CTs that 

are acquired. This radiation is not, most of the times, accounted for when 

calculating dosage delivery to each structure. Furthermore, whenever a 

CT is acquired, all the volumes of interest must be delineated (which is 

not yet a totally automated procedure), and a new plan must be calculated, 

which takes time. This can have an important impact in the treatment 

delivery workflow, and also on the total number of patients that can be 

treated daily. In this work we are not considering the use of MRI-Linac, 

where it is possible to integrate magnetic resonance imaging machine with 

a linear accelerator. 

 

7. Materials and Methods 
 

7.1 Head and neck cancer case 
 

To compare the different treatment planning approaches, a head-and-neck 

cancer case was used. This case is available in matRad, the open-source 

treatment planning system for academic research that we have used in 

this work. 

Treatment planning for head-and-neck cancer cases is usually a very 

complex procedure, since there are many organs very close to, or even 

overlapping, the volumes to treat. 

In the case considered, four OARs were included in the treatment plan 

optimization (right and left parotids, brainstem, spinal cord), in addition 

to two PTVs with different medical prescriptions that are partially 

overlapping (Figure 12). All the voxels that do not belong to any of these 

structures of interest are assigned to an OAR usually named as Body or 

Skin. This OAR is also important in treatment planning because it has to 

be guaranteed that no hotspots appear in the patient outside the 

structures of interest delineated. OARs like the spinal cord and brainstem 

are serial organs meaning that if some part of these organs is damaged, 

the organ’s functionality will be compromised. Therefore, a maximum dose 

is established for these organs. The parotids are parallel organs, meaning 

that if a small part of the structure is damaged, the organ may keep 

functioning. The tolerance defined for these organs depends on the size of 

the volume irradiated, therefore mean dose is usually the objective type 

considered for these organs. 
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Figure 12- Head-and-neck cancer case from matRad [48] 

For the PTVs, the usual medical prescription determines that a given 

percentage of the volume has to receive at least a given dose. In this case, 

the dose of 95% of the volume (D95) is considered, and this value has to be 

at least 95% of the prescribed dose. If the prescription dose is equal to 

70Gy, for instance, then, D95 should be greater than or equal to 66.5Gy, 

meaning that at least 95% of the PTV volume has to receive at least 66.5 

Gy. In this case, one PTV has a medical prescription of 70Gy (named 

PTV70), the other one of 63 Gy (named PTV63). 

The medical prescription for each of the 7 original structures are described 

in Table 1. 

 

Table 1- Medical prescription for a head-and-neck cancer patient in Gray (Gy) 

Structure Type of constraint Limit 

Brain Stem Maximum dose Lower than 54 

Left Parotid Mean dose Lower than 26  

Right Parotid Mean dose Lower than 26  

Skin Maximum dose Lower than 80  

Spinal Cord Maximum dose Lower than 45  

PTV63 D95 Greater than 59.85  

PTV70 D95 Greater than 66.5 

PTV70 Maximum dose Lower than 74.9  
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7.2 Treatment planning strategies 
 

BAO might play an important role in the final treatment plan quality. 

However, it is a very challenging problem that is seldom addressed in 

clinical practice. Instead, coplanar equispaced beam configurations are 

common in practice. Therefore, we used seven fixed, equidistant coplanar 

angles without optimizing the chosen set. 

Although all the structures of interest are expected to change during 

treatment, in this work a simplification has been assumed and only PTV70 

was considered as being changed during treatment, keeping unaltered all 

the other structures. We decided to only consider the case where the target 

volume decreases in size, which is the majority of cases [46], [48]. No other 

uncertainties are considered, like systematic or random positioning errors. 

The tumour volume (PTV70) was randomly and iteratively changed to 

simulate asymmetrical size decreases during the treatment course. These 

changes were calculated as follows: based on the current PTV70, 

considering small and randomly generated displacements in the x, y and 

z axes relative to its current position, auxiliary structures were created. 

The intersection between the current PTV70 and one of the new auxiliary 

structures gives rise to a new PTV70 that corresponds to an asymmetric 

reduction of the original structure. Figure 13 illustrates this procedure. 

 

 

Figure 13- Generating an auxiliary structure by randomly shifting the PTV70. The 
intersection of the voxels of the original PTV70 and this auxiliary structure results in a 

new randomly generated reduced PTV70 
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Figure 14- Axial, sagittal and coronal images of the head-and-neck cancer case with 14 
auxiliary structures around the PTV70 

In our robust treatment planning approach, 14 additional auxiliary 

structures are considered in the FMO. These structures are copies of the 

PTV70, but in a different position considering shifts in the x, y and z axes:  

one for each quadrant bisector and two for each axis for both positive and 

negative directions. So, all these structures have exactly the same size as 

the original PTV70, as shown in Figure 14. The auxiliary structures were 

considered in the initial treatment plan, even though they are not real, 

they are treated equally as the PTV70. The goal of the inclusion of these 

structures in the optimization loop is to provide information for possible 

evolution of the tumour volume throughout the treatment. This 

methodology might also foster dose homogeneity of the final PTV70. 

Four different approaches for treatment planning are being considered. 

Our first approach consisted in obtaining an admissible plan based only 

on the planning CT. This treatment planning is not accounting for any 

changes that might happen to the PTV70, although the definition of the 

PTV has, on itself, the objective of dealing with some of the existing 

uncertainties. 
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Our second approach, referred to as New approach, also consisted in 

obtaining an admissible plan based only on the planning CT, but 

considering an additional set of auxiliary structures similar to the PTV70 

as explained before. This will change the way in which the fluences are 

optimized and calculated, since it will be necessary to comply with the 

medical prescription in more than one volume.  

To acknowledge the possible improvements of adding replanning even in 

the presence of a robust treatment plan, the previously mentioned method 

was repeated but with the added feature of doing a replanning halfway 

through the treatment. This plan is referred to as Replan. 

Lastly, the same treatment plan is considered but replanning is 

considered as often as a change in the PTV is simulated, mimicking the 

Plan of the day. 

All four approaches used the FIS algorithm to change in an automated 

way bounds and weights of both PTV and OARs in the FMO procedure. 

This automated approach aims to properly irradiate the PTV70 according 

to the defined constraints while attempting proper OAR sparing. At each 

iteration of the algorithm, for every structure, the deviation between the 

current solution and the constraints defined for that structure is 

calculated. When facing uncertainty, trying to improve the dosimetric 

results of a given structure can have unpredictable impacts: focusing on 

improving a structure that will not be exactly the same during the whole 

treatment time can jeopardize the capability of reaching a high-quality 

plan under uncertainty. Moreover, as we are not considering any changes 

in the OARs, it does not make sense to try to spare even more these 

structures, since the improvements that could be obtained could be biased: 

we would be calculating dose in structures that might not correspond to 

their true situation in a real setting. For these reasons, we have focused 

only on reaching clinically admissible plans, with no further 

improvements.  

When replanning, the current PTV70 is considered (the one randomly 

produced in the course of the treatment) as well as the other original 

structures. 

 

7.3 Plan quality assessment  
 

Whenever there is uncertainty, it is not enough to look at the dosimetric 

information considering the original structures of interest defined in the 

planning CT. To assess the performance of the four different approaches, 

we use Monte Carlo simulation for the case considered, taking explicitly 

fractionation into account. The treatment is simulated for a number of 
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iterations, each one of them considering the number of fractions of the 

treatment. During each iteration (that corresponds to one total 

treatment), the PTV70 will randomly change at predetermined fractions. 

For the approaches that consider replanning, FMO is executed, 

considering the current PTV at the moment of the replanning. 

All the dosimetric indicators of interest are then calculated for each 

iteration of the simulation: The dose received by at least 95% of the PTV70 

(D95), mean dose (Dmean) for parotids, and maximum dose (Dmax) for spinal 

cord, brainstem and Skin. These dosimetric indicators are calculated 

considering the dose deposited in each one of the voxels of the respective 

structures during each one of the treatment fractions. 

 

7.4 Computational tests 
 

Our tests were run on an Intel Core i7-8750H 2.2GHz. matRad [52], an 

open-source software that has been developed within the MATLAB 

environment, was used for dose calculation and fluence map optimization. 

It mimics the use of a commercial TPS, but for academic use only (Figure 

12). The main advantage of this tool is that allows, in a very 

straightforward way, new optimization algorithms and strategies to be 

tested, by including new programming code in MATLAB. MATLAB 

version 2018b was used. matRad also provides a library of properly 

anonymized cases that can be used for computational tests. 

The dose matrix Dij, was obtained using matRad’s pencil beam dose 

calculation engine. As previously mentioned, instead of using the built-in 

matRad algorithm to address the FMO, we resorted to the FIS and this 

approach was embedded into matRad. 

A beam angle configuration of 7 equidistant coplanar angles [0 52 103 154 

205 256 307] was considered, meaning that the couch angle will always be 

0. This is the most usual configuration used in the clinical practice for 

similar cases. 

Upper and lower weight penalties were defined in the beginning of the FIS 

FMO algorithm. For the brainstem, the spinal cord and both PTVs, higher 

penalty weights were attributed 𝜆 = 𝜆 = 5, while for the remaining 

structures 𝜆 = 𝜆 = 1. The brainstem, spinal cord and both PTVs were 

attributed a priority of 5 while the rest of the structures had a priority of 

1. When the auxiliary structures are used, they have the same values as 

the PTV70 regarding priority and initial values of bounds and weights. 

Inference mechanisms were created to change upper and lower bounds, to 

change OAR slacks based on OAR priority (greater priority, lower slack) 
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and to change weights when changing bounds is not enough to comply with 

the constraints. The algorithm will first update the upper and lower 

bounds of the structures. If some objectives were not met, bounds are 

updated accordingly. If two iterations of the algorithm are not enough to 

obtain the desired solution, weights are updated. If a feasible solution is 

met, the procedure ends otherwise slacks are created based on structure 

priorities, repeating the previous process. 

For treatment quality assessment, the MC simulations considered 50 

iterations, each with 35 fractions. A random change in the PTV is 

considered every 5 fractions. To avoid having any bias in the results due 

to the random changes generated, all the different approaches were tested 

considering the same sequence of random numbers, so that exactly the 

same PTV70 changes were considered in all the comparisons made. This 

structure will be changed 6 times during the course of each iteration of the 

simulation.  

 

8. Results 
 

The main objective of this study is to test and compare different treatment 

planning approaches, introducing a new approach based on auxiliary 

structures to be used in the initial treatment planning procedure. In this 

section we present the results of the computational experiments made. 

 

8.1 Plan Quality 
 

It was possible to obtain clinically admissible treatment plans considering 

all 50 iterations of the MC simulation for the four different approaches 

tested. It was thus possible to respect both upper and lower bounds defined 

in Table 1, for all the structures. The dosimetric measures for each OAR 

are presented in Figure 15 and for the PTV70 in Figure 16. The dosimetric 

values of all OARs for the Conventional and New approach stay the same 

throughout the treatment since there is not replanning and these volumes 

do not change in the course of the simulated treatment (Table 2). For each 

and every case and for all OARs it was possible to have values below the 

maximum threshold defined. For every case all plans respected the PTV70 

thresholds established in the medical prescription. 
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Figure 16- Dosimetric values for all plans regarding the PTV70 

 

 

Figure 15- Dosimetric values for each OAR for the Replan and Plan of the day 
approaches 
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8.2 Dosimetric comparison between approaches 
 

The plans were evaluated regarding the obtained dosimetric values for 

each structure. For the PTV70, D95 was the considered criteria, for the 

brainstem and spinal cord Dmax was considered and for the parotids Dmean 

was considered.  

Table 2 displays the results obtained for the different approaches. As 

previously mentioned, the algorithm will not further spare the OARs, after 

finding proper PTV70 coverage and fulfilling the OAR threshold.  

The Conventional approach obtained the worst result between the four 

plans regarding PTV70 coverage (D95=67.45±0.09 Gy). On the other hand, 

obtained the best dosage value regarding the right parotid 

(Dmean=19.48±0.0 Gy), side by side with the Replan approach, since the 

mean values obtained are not statistically different. It also obtained one 

of the lowest values, statistically identical to the Replan and Plan of the 

Day approaches regarding the left parotid with Dmean=21.07±0.0 Gy.  

The New approach showed the best results regarding PTV70 coverage 

with D95=68.07 Gy, being identical to the Plan of the Day  It also showed 

the best OAR sparing regarding the brain stem with Dmax=44.55±0.0 Gy, 

alongside the Conventional approach.  

The Replan approach behaved the best for the spinal cord, and the left 

parotid with mean dosimetric values of Dmax=40.15±0.34 Gy and 

Dmean=19.48±0.08 Gy, respectively, being equivalent to the Plan of the 

Day. In terms of PTV70 coverage it was slightly worse (D95=67.82±0.18 

Gy) than the two best approaches, Plan of the day and New approach, 

being the means statistically different.   

The Plan of the day showed, along with the New approach, the best PTV70 

coverage results (D95=68.01±0.16 Gy). It also obtained the best results 

regarding the left parotid sparing, with Dmean=21.03±0.12 Gy, and 

regarding the spinal cord, with Dmax=40.20±0.45 Gy.  
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Table 2- Differences between the 4 plans, for the structures of interest. In green are 
highlighted the best results for each structure. Units are in Gray(Gy). 

 Conventional 
New 

approach Replan Plan of the day 
 

Z 

  Mean 
 

SD 
 

Mean 
 

SD 
 

Mean 
 

SD 
 

Mean  
 

SD 
 

 

PTV70  D95 67.45a 0.09 68.07b 0.09 67.82c 0.18 68.01b 0.16 204.42*** 

Brain 
Stem 

Dmax 

44.71a 
 

0.0 44.55a 
 

0.0 45.01b 
 

0.46 45.26b 
 

0.49 

 

43.86*** 

Spinal 
Cord 

40.70a 
 

0.0 41.01b 
 

0.0 40.15c 
 

0.34 40.20c 
 

0.45 

 

107.14*** 

Left 
Parotid  

Dmean 

21.07a 
 

0.0 22.57b 
 

0.0 21.05a 
 

0.11 21.03a 
 

0.12 

 

4356.84*** 

Right 
Parotid  

19.48a 
 

0.0 20.08b 
 

0.0 19.48a 
 

0.08 19.53c 
 

0.09 

 

1303.01*** 

Note: Means with different letters are significantly different at the level of α <.001 

according to the post-hoc test of Tukey HSD. *** p < .001 

 

Regarding PTV70 coverage, both the New approach and the Plan of the 

day, obtained better coverage when comparing with the Conventional 

approach for every iteration of the simulation. The Replan approach 

obtained better results in 49 out of 50 iterations, as shown in Figure 17. 

When using Monte Carlo simulation, it is important to confirm that the 

number of iterations considered is adequate. This can be done by looking 

at the evolution of variation of some statistic measures, like the mean and 

the standard deviation. It was possible to confirm that 50 iterations were 

indeed sufficient. Figure 18 depicts the evolution of the mean values 

obtained for the dosimetric values in the OARS, as an example. 
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Figure 18- Evolution of the difference in the mean of OARs dosimetric 
measures throughout the simulation 
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Figure 17-It is possible to see the dose difference between the plans for each of the 
50 cases. Both the new approach and the plan of the day behaved similarly for some 

cases, giving the best result when compared with the other approaches. 
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9. Discussion and conclusion 
 

Adaptative approaches have the advantage of using updated patient 

information, namely considering the delineation of all the structures of 

interest, during the course of the treatment to improve treatment quality. 

Replanning is a very important procedure in radiotherapy, usually 

resulting in better dosimetric results when compared to the use of a single 

treatment plan calculated before the beginning of the treatment. 

In this work, a new approach is proposed where new auxiliary structures 

were created and used in the treatment planning procedure. These 

auxiliary structures enable a robust treatment plan to be calculated.  

Four treatment planning approaches were compared, by evaluating how 

each one of them behaves regarding the target volume coverage while 

fulfilling the thresholds of the surrounding organs. All approaches were 

based on an automated FMO algorithm based on a FIS. MC simulation 

was used to compare the different approaches, considering 50 iterations, 

each with 35 fractions, during which the PTV was iteratively changed. It 

was possible to conclude that generating new auxiliary structures around 

the targeted area revealed enhanced PTV70 coverage when compared to 

Conventional plans. The PTV70 dosimetric mean results are not 

statistically different from the Plan of the Day. The approach also got 

improved brainstem sparing. 

Overall, the replanning approaches showed better results in sparing the 

OARs, while improving the PTV70 coverage, which would be expected 

since they can take advantage of the knowledge regarding the decrease in 

the PTV volume. On the other hand, the New approach showed the best 

results improving PTV70 coverage, not statistically different from the 

Plan of the Day, but generally did not show better results at sparing the 

OARs. Moreover, the new approach presents lower standard deviation 

values for PTV70 than the replanning approaches. The New approach and 

the replanning approaches showed improved target coverage compared to 

the Conventional approach which was the main feature in study. The 

results proved to be consistent with the existing literature and 

experiments. 

Although we believe the results and conclusions reached are interesting 

and valuable, it is also important to identify the limitations of this study. 

It is important to mention that only changes to the PTV70 were 

considered, whilst all the other structures were considered unaltered 

during the course of treatment. In a real situation, all the structures suffer 

changes, some of which can even be correlated. Head-and-neck tumour 

cases have many OARs nearby the PTV and, during the treatment, when 



 

34 
 

the PTV diminishes, the tissue around it also moves, moving the 

surrounding OARs nearer to the target area. These changes were not 

replicated in the Monte Carlo simulations performed. Real head-and-neck 

cases also have more OARs that are usually taken into account, depending 

on the PTV and location, like the larynx, eyes, oral cavity, other salivary 

glands, etc. We have only considered 4 OARs. We have also decided to use 

a fixed coplanar beam configuration. Using BAO to obtain an optimized 

set of angles could change the obtained results, particularly when 

considering the possibility of using noncoplanar beam angles. 

Moreover, only one case was considered, as a proof-of-concept for the new 

approach proposed. It would be important to repeat these computational 

tests with a representative set of cases to see if these results are 

generalisable or not. 

In summary, using auxiliary structures to create a robust initial 

treatment plan proved to be a valid approach regarding PTV coverage. 

Replanning more often also showed improved PTV coverage in all cases 

compared to the conventional methodology while maintaining OAR 

sparing specially regarding the left parotid and the spinal cord. The new 

methodology using auxiliary structures proved to be a competitive 

alternative to replanning, avoiding the time-consuming replanning, and 

sparing the patient to further imaging sessions and all the possible 

disadvantages associated with this process.  

As future work it would be interesting to assess the proposed approach 

performance for other cancer cases. Pushing beyond admissibility by using 

the full capacities of the FIS approach would be an important subject as 

well, that could change the results especially regarding OARs. 
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