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Abstract

Optical Coherence Tomography (OCT) is a noninvasive imaging technology used to obtain

cross-sectional images of the retina. Despite being an imaging technique routinely used in

clinical practice, correction of motion artefacts remains one of its major challenges. Involuntary

eye movements during the OCT acquisition create substantial artefacts in the volumetric data

which difficults its interpretation and analysis. Hence, the main goal of this project was to

develop a framework for correcting intra-volume motion artefacts in OCT imaging. For that,

OCT data with simulated motion artefacts from an eye phantom was obtained and used to study

two image registration approaches.

The eye phantom was designed and created with the following structures: the lens (anterior

segment), the vitreous body, and three posterior segment layers (the retina, the choroid, and

the sclera). This eye phantom was used to acquire a synthetic OCT data set consisting of 156

volumes with intra-volume motion artefacts simulated by two external motors. In this set, two

realistic involuntary eye movements were replicated: drifts and microsaccades. Their ampli-

tude and frequency values were within the physiological range (microsaccades with amplitude

between 0.25°and 1°, and frequency of 2 revolutions per minute (RPM); drifts with amplitude

between 0.05°and 0.75°, and frequency between 0.02RPM and 0.08RPM). These volumes were

used to study and compare the performance of two state-of-the-art registration approaches. Both

algorithms were chosen to be intensity-based, in order to keep independence from engineered

features. One of the algorithms used a conventional image processing, pair-wise approach, and

compared pairs of B-scans on a multi-resolution level. The other algorithm used a deep leaning

group-wise approach, which allowed it to preserve the retinal curvature better. Dice score and

the Euclidean distance were used to objectively evaluate the algorithms. The algorithm with

the best performance, the deep learning based model, was tested in a patient database consist-

ing of 146 OCT volumes from 19 patients. The results were further analysed by comparing a

pre-trained model on phantom data with a non pre-trained algorithm. The results showed that
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the pre-training with the phantom OCT data improves the registration results on clinical data.

Overall, the developed eye phantom has shown to be representative of the main human eye

structures allowing the acquisition of OCT data that mimics different involuntary eye move-

ments. The created framework can be used to further improve and validate registration algo-

rithms namely for microsaccades with large amplitudes, which has revealed to be more challeng-

ing in this project. In addition, the pre-trained algorithm showed improvements when compared

to the non pre-trained algorithm, meaning that smaller data sets can be compensated by the

usage of pre-training algorithms on similar registration tasks.

Key-words: Optical Coherence Tomography (OCT); Eye phantom; Involuntary eye move-

ments; Artefacts correction; Deep-learning registration algorithm.
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Resumo

Tomografia de Coerência Óptica (OCT) é a técnica de diagnóstico não invasiva utilizada para

adquirir imagens de cortes transversais da retina. Apesar de ser uma técnica utilizada recor-

rentemente em prática cĺınica, a correção de artefactos do movimento nas imagens adquiridas é

ainda um dos maiores desafios nesta área. Durante a aquisição de imagens de OCT, os movi-

mentos involuntários do olho provocam artefactos substanciais, o que dificulta a interpretação e

análise da informação adquirida. Desta forma, o principal objetivo deste projeto era desenvolver

um algoritmo para corrigir artefactos do movimento para volumes de OCT. Para isso, foram

adquiridos volumes de OCT com simulação de movimentos involuntários do olho, e foram ainda

estudadas duas abordagens de registro de imagens.

O fantoma do olho foi desenvolvido com as principais estruturas do olho humano: a lente

(segmento anterior), o humor v́ıtreo e três camadas posteriores do olho: a retina, a coroide e

a esclera. Este fantoma do olho foi utilizado para adquirir um data set sintético, que consiste

em 156 volumes de OCT com artefactos do movimento simulados por dois motores externos.

Neste data set foram replicados dois movimentos involuntários do olho: drifts e microsaccades.

A sua amplitude e frequência está dentro dos valores fisiológicos (microsaccades com amplitudes

entre 0.25°e 1°, e frequência de 2 revoluções por minuto (RPM); drifts com amplitudes entre

0.05°e 0.75°, e frequência entre 0.02RPM e 0.08RPM). Estes volumes foram utilizados para

estudar e comparar a performance de duas abordagens de registo de imagem. Os dois algoritmos

selecionados são algoritmos de análise de intensidade de imagem, para o registo de imagem ser

independente de estruturas espećıficas. Um dos algoritmos utilizados usa um processamento

de imagem convencional, com abordagem em pares de scans. O outro algoritmo estudado

utiliza uma abordagem deep-learning, com uma abordagem em grupo de scans, o que permitiu

preservar a estrutura da retina. A distância Euclideana e o coeficiente de Dice foram utilizados

como métricas para avaliar os algoritmos. O algoritmo com a melhor performance, o modelo

baseado na abordagem de deep-learning, foi testado num data set de pacientes, que consiste
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em 146 volumes de OCT de 19 pacientes. Os resultados foram analisados comparando um

algoritmo pré-treinado, em volumes adquiridos com o fantoma do olho, com um algoritmo sem

pré-treino. Os resultados mostraram que o algoritmo pré-treinado melhora os resultados em

imagens cĺınicas.

De um modo geral, o fantoma desenvolvido representa as estruturas essenciais do olho hu-

mano, permitindo a aquisição de volumes de OCT que simulam os movimentos involuntários do

olho. O algoritmo criado pode ser utilizado para melhorar e validar diversos algoritmos de registo

de imagem, nomeadamente para microsaccades com maiores amplitudes, que são os movimentos

mais dif́ıceis de corrigir. Para além disso, o algoritmo pré-treinado mostrou melhorias quando

comparado com o algoritmo sem pré-treino, o que significa que data sets com poucos volumes

podem ser melhorados com a utilização de algoritmos pré-treinados em tarefas semelhantes de

registo de imagens.

Palavras-chave: Tomografia de Coerência Óptica (OCT); Fantoma do olho; Movimentos in-

voluntários do olho; Correção de artefactos; Algoritmo de registo de imagem deep-learning.
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Chapter 1

Introduction

In this first chapter, the context and main objectives for this dissertation are stated, as well

as the configuration of the document. Furthermore, the research team involved in this work is

presented.

1.1 Motivation

Optical coherence tomography (OCT) is a noninvasive imaging technique, developed in the

beginning of the 1990s [1]. Despite the fact that OCT technology is mostly used in the oph-

thalmological field, it has also been used in other medical fields, such as cardiovascular and

dermatology [2]. With the introduction of the OCT, it became possible to obtain data from

tissues that were previously inaccessible without performing the conventional histopathology,

which involves tissue extraction and consequent microscopic analysis [3].

OCT is nowadays the gold standard modality for imaging the eye, and can be used to

visualize the retinal layers and other structures of interest, with sufficient detail to quantify their

morphological characteristics [4]. These characteristics can be linked to a number of diseases

and bodily processes. For example, the thickness of specific retinal layers is an important marker

to determine whether the eye is healthy or not. Also, different eye diseases can be identified and

staged through changes in the thickness and shape of the retinal layers. As a consequence, many

retinal diseases, such as glaucoma, the second leading cause of blindness worldwide [5, 6], are

diagnosed based on retinal layers irregularities that can be seen and identified in OCT images [7].

Recent studies [8] show that almost a third of the OCT scans have artefacts. Among the

different factors that can cause artefacts in an OCT of the retina, such as opacities in the

crystalline lens or issues on the acquisition device or protocol, one of the most common is the
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CHAPTER 1. INTRODUCTION

involuntary eye movements during the acquisition time. These artefacts present a problem in

the visualization of the eye structures and, therefore, in the early detection and progression

assessment of retinal diseases. Moreover, healthy subjects can also be wrongly diagnosed with

diseases, which can lead to years of unnecessary treatments that can cause serious adverse

effects [8].

In order to assist the disease diagnosis/staging using OCT scans, it is important to correct

for eye motion artefacts. By correcting these artefacts, scans that were previously discarded due

to the presence of irregularities can be used for ophthalmic care [9]. However, motion correction

is still one of the biggest challenges in OCT imaging.

1.2 Objectives

The aim of this dissertation was to create a framework for motion correction in OCT scans.

To achieve this goal, the work was divided into sequential parts:

• To develop an eye phantom that represents key structures of the human eye, such as the

retinal layers.

• To use the eye phantom to acquire an OCT synthetic motion artifacts data set, replicating

realistic eye motions and including still volumes to use as reference.

• To use the synthetic data to validate and further refine the results of state-of-the-art

algorithms to correct motion artefacts.

– Objectively quantify and compare the algorithms results compared with the ground

truth in synthetic data.

– Assess the results of the algorithm in a real retina OCT data set, comparing the

results when pre-training in synthetic data with the results without pre-training.

The different steps of this project were performed in order to evaluate if using synthetic

data, in pre-training of an algorithm, improves the performance of existent motion correction

algorithms in the literature.
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1.3 Dissertation’s content

This dissertation is organized into six chapters.

1. Introduction: comprises the main goals and objectives of this work, as well as the research

team involved in its development.

2. Theoretical Background: introduces the key topics used in this work. First, there

is a description of the eye anatomy, followed by the involuntary eye movements and an

introduction to the imaging modality used, the OCT. This chapter also contains the state

of the art of eye phantoms and motion correction algorithms.

3. Methods: details the methods used in the different steps of this project. The chapter

begins with the development of the eye model, followed by the OCT data acquisition,

simulating the eye involuntary movements, and validating two state-of-the-art motion cor-

rection algorithms using the synthetic data set and a clinical data set.

4. Results and discussion: presents the results for the different steps of this project.

First, the results from the eye model development, followed by the OCT scans acquisition.

Second, it quantifies the results obtained using the two state-of-the-art motion correction

algorithms. At last, it evaluates the results of the algorithm in a real retina OCT data

set, and compares the results when the algorithm was pre-trained in synthetic data with

the algorithm that was not pre-trained. Through the whole chapter there is a critical

interpretation and discussion of the obtained results. The results are compared with the

main goals of this work and the state of the art, when possible.

5. Conclusion: comprises the general conclusions of this work and the possible future im-

provements and research directions.

1.4 Project team

The research team that contributed to this project is presented in Table 1.1. This project

was a collaboration between the Laboratory for Instrumentation, Biomedical Engineering and

Radiation Physics - University of Coimbra (LIBPhys-UC) and the Biomedical Imaging Group

Rotterdam (BIGR), Department of Radiology & Nuclear Medicine from Erasmus Medical Center

(Erasmus MC) - The Netherlands.
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This project also granted the opportunity to integrate the Erasmus + program, for a three-

month internship at Erasmus University Medical Center, in Rotterdam, The Netherlands.

Table 1.1: Research team involved in this project.

Name Role

Margarida Andrade 1,2 Master student

Pedro Guilherme Vaz 1 Technical supervisor

Danilo Andrade De Jesus 2 Technical supervisor

Luisa Sánchez Brea 2 Technical supervisor

1 Laboratory for Instrumentation, Biomedical Engineering and Radiation Physics (LIBPhys-

UC), Department of Physics, University of Coimbra, Coimbra, Portugal.

2 Biomedical Imaging Group Rotterdam (BIGR), Department of Radiology & Nuclear Medicine,

Erasmus MC, Rotterdam, The Netherlands.
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Chapter 2

Theoretical background

This section describes the theoretical background needed for the development and compre-

hension of this thesis. First, an introduction to the eye anatomy is presented. Second, the

physiological involuntary eye movements are explored. Then, a short reference to the imaging

technique used, the Optical Coherence Tomography (OCT), is provided. Finally, the state of

the art in eye phantoms and algorithms for correction of motion artifacts in OCT imaging is

outlined.

2.1 Anatomy of the eye

The human eye is one of the most complex organs of the body. It is a sensory organ,

where specialized neurons (photoreceptors) receive information in the form of light and convert

it into signals recognizable by the nervous system. The eye has the approximated shape of a

spherical ball. Based on a more accurate measurement, its dimensions are 24.2 mm (transverse)

× 23.7 mm (sagittal) × 24.4 mm (axial), not showing major differences between sexes and age

groups [10]. A sagittal section view of the eye (Figure 2.1) shows the different structures that

conform it. Among these structures, three different layers can be distinguished.

The external layer is formed by the cornea and sclera. The cornea is the entry point of the

light, and it has a protective function against infections and structural damage. The sclera also

has a protective function, maintaining the eye shape and preventing damage, usually caused as

a result of internal and external forces [12]. The intermediate layer is divided into two parts:

the iris and ciliary body (anterior part), and the choroid (posterior part). Finally, the internal

layer corresponds to the retina [11], where the light neurons are situated and the information is

converted into nerve impulses that reach the brain via the optic nerve [12]. In the center of the
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Figure 2.1: Sagittal section of the human eye [11].

retina there is the optic nerve, from where the the major blood vessels of the retina radiate. In

the direction of the visual axis, there is an oval-shaped area, blood vessel-free, the fovea [13].

The human eye has a crystalline lens, located at roughly 3 mm inside the eye, behind the

iris and suspended by ligaments connected to the ciliary body. The principal function of the

crystalline lens is to transmit and focus light onto the retina [14]. The light pathway is depicted

in Figure 2.2. It starts with the light entering the eye via its anterior components, the cornea

and the crystalline lens, until it reaches the retina. Since the light has to reach the retina, the

ocular structures in the visual pathway are transparent. This makes the retina more accessible

through non-invasive image techniques.

Figure 2.2: Visual pathway of the human eye. Adapted from Saey [15].

The neurons in the retina (Figure 2.2) can be divided into six classes: photoreceptors, bipolar

cells, horizontal cells, amacrine cells, ganglion cells, and the Müllerian glia. These different cells
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appear at different depths of the retina, dividing the tissue, with a thickness of roughly 200 µm,

into 10 different layers, as it can be seen in Figure 2.3.

Figure 2.3: Retinal layers [16].

The human retina is supplied by two different blood circulations: the inner retina is sup-

plied by the retinal circulation, and the outer retina is supplied by the choroidal circulation.

Studies have shown that around 80% of all the sensory information is originated in the retina,

highlighting the importance of the retinal function [17]. In virtue of that, and the fact that the

retina has neurons (photoreceptors), the retina can also be referred to as an extension of the

brain [18].

2.2 Involuntary eye movements

The retina is affected by three involuntary movements that occur during eye fixation: tremors,

drifts, and microsaccades (see Figure 2.4). Besides these eye movements, blood pulsation and

respiratory movements play a role in the eye’s dynamics [19].

Tremors occur simultaneously with drifts, and they are movements with very small ampli-

tudes, in the range of a single photoreceptor width (6 µm). Tremors are difficult to record

accurately due to the fact that their frequency and amplitudes are in the noise range of the

recording systems (e.g. OCT systems) [20].

Drifts occur simultaneously with tremors and between microsaccades. Drifts have bigger

amplitudes than tremors, and their focal point can move across a dozen of photoreceptors.
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Although it seems a random motion of the eye, it was discovered that drifts have a compensatory

role in maintaining accurate visual fixation in the absence of microsaccades [20].

Finally, the microsaccades are normally described as fast changes of direction that occur dur-

ing voluntary fixation. These have the biggest amplitudes, carrying the retinal image throughout

several dozens to hundreds of photoreceptors at a frequency of 1-2Hz [21]. Microsaccades are

essential to correct possible displacements in the eye position due to drifts. They tend to move

the target back to the fovea when drifts carry the image away.

Figure 2.4: Representation of involuntary eye movements [22].

Besides the three fixational eye movements, pulsation and respiration can also induce move-

ments. In these last two cases, the eye does a small translation only in the vertical axis, which

did not happened in the previous described movements that were rotational. Although the

pulsation and respiration motions are slow and with small amplitude, there is still distortion in

OCT images.

2.3 Optical Coherence Tomography

Optical Coherence Tomography (OCT) is a non-invasive and non-contact imaging technique

based on low coherence interferometry, that generates cross-sectional images with high resolu-

tion.

The first reported OCT system dates back to 1990 [2], and it had a focus on the ophthal-

mological field. Before that, there were no techniques that allowed the in-depth visualization of
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the retina in a non-invasive way. As a consequence, the clinical application of OCT happened

in a short period of years after its first demonstrations. Since then, the technique evolved and

expanded to several different fields, but it is still mostly used in ophthalmology. OCT enables

the visualization of several areas of the eye, such as the anterior segment, the tissue of the retina,

and the optic nerve, all without performing tissue extraction, as it was done previously [23].

OCT systems have higher axial and lateral resolutions when compared to other medical

imaging methods, such as ultrasound (US) or magnetic resonance imaging (MRI). The lateral

resolution of an OCT is around 15-20 µm [24], and the axial resolution, much higher, is up to 3

µm, depending on the light source. However, the lateral and axial resolution of US and MRI is

between 100 µm to 1 mm. On the contrary, OCT has a penetration depth in tissue of around 1

mm, whereas US has a higher penetration depth of 10 cm and MRI has a penetration depth of

the entire body [25].

The principle behind OCT is light interference. The light from a low-coherence source is

split into two pathways, one to the reference arm and the other to the sample arm. When the

light exits the arm, the beam shape is controlled by optical components. In the reference arm,

the light is reflected by a reference mirror and returns to the interference system, continuing

the same path but from the opposite direction. In the sample arm, the process is similar.

However the light beam is back scattered by the target sample instead of a reference mirror.

Both returning lights recombine at the coupler and form an interference pattern [25].

There are two main OCT technologies, time-domain OCT (TD-OCT), which is not used

anymore, and Fourier-domain OCT (FD-OCT). The FD-OCT can be divided into two categories,

spectral-domain OCT (SD-OCT) and swept-source OCT (SS-OCT) [25]. In both FD-OCT

methods all the light reflections are measured at the same time, which improves the sensitivity

of the detection. Besides that, the reference arm is a static mirror and not a moving one, as it

previously happened in the TD-OCT technology, which speeds up the data acquisition process.

The difference between SD-OCT and SS-OCT is that SD-OCT uses broad bandwidth light

source and a spectrometer for analyzing interferences between the sample and reference beam

using Fourier transform [26]. Contrarily, SS-OCT uses a narrow bandwidth light source, that

can vary between different wavelengths over the time of acquisition. As a consequence, there is

no need to use a spectrometer, since the light is already divided into a single spectral component.

For this reason, SS-OCT enables faster acquisitions leading to less artefacts in scans. Figure 2.5

shows a representation of both systems.

Two orthogonal scanning directions can be identified in an OCT acquisition: fast and slow.
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Figure 2.5: Representation of a SD-OCT (left) and a SS-OCT (right) system [23].

An A-scan is an one-dimensional amplitude scan, where the OCT signal is recorded across the

sample surface. In order to create a B-scan, a two-dimensional scan, it is necessary to perform

several A-scans along a scanning direction (fast axis) to obtain a B-scan. To reconstruct a

three-dimensional OCT volume it is necessary to obtain consecutively several B-scans along the

other scanning direction (slow axis). Figure 2.6 shows how an OCT volume is acquired. The

motions artefacts in OCT imaging are usually between B-scans [27].

Figure 2.6: Schematic representation of OCT acquisition (A-scan, B-scan, and volume) [28].

There is also a different acquisition technique, en face OCT imaging. It produces frontal

images of retinal layers at specific depth, also referred to in the literature as C-scans. This

technique emerged through the development of software and data processing, and derives from

the SD-OCT technique [29].
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2.4 State of the art

2.4.1 Human eye phantoms

Throughout the years, the need for developing eye phantoms to mimic the real tissues and

structures of the human eye has increased. As a consequence, the number of works describing

human eye phantoms has increased in the past few years. Eye phantoms are designed to accom-

plish several objectives, such as instrument optimization, initial system testing, and performance

comparison between different systems [30].

From the literature, the human eye phantoms can be roughly divided into three groups:

tissue phantoms, blood flow phantoms, and mechanical phantoms.

Tissue phantoms

Tissue phantoms, as the one developed by Baxi et al. [31], are commonly used for performance

evaluation of clinical OCT devices. In these phantoms, the main goal is to obtain an image of the

phantom retina as similar as possible to the human retina. It is, therefore, especially important

to replicate as many retinal layers of the eye as possible, with the correct thickness and optical

properties. Some of the most complex eye phantoms have all the retinal layers, others, such as

the one presented by Lee et al. [32], select only the most important ones.

The method of fabrication of these phantoms does not change significantly between studies.

The most common process involves spin coating of polymers, such as Polydimethylsiloxane

(PDMS) [31–35] or Epoxy Resin [36, 37], although PDMS is the most used. By spin coating

the polymer mixture at different speeds it is possible to achieve different layer thickness for the

desired layers [33].

Baxi et al. [31] phantom design replicates the retinal layers as well as the surface topography

of the foveal pit (see Figure 2.7). This phantom was used as an assessment tool, to evaluate and

standardize OCT performance. To replicate all the retinal layers with accuracy, the authors used

thin scattering films of PDMS, fabricated layer by layer. The correct thickness was obtained

using a spin coating protocol. The film thickness is dependent on the rotational speed, which

was selected accordingly to each layer. Nano and microparticles, for example titanium dioxide

(TiO2) and barium sulfate (BaSO4), were embedded in the PDMS mixture to replicate the

retinal layers scaterring (optical) properties. After the fabrication of the last layer, a custom

laser microetching technique, using a fiber laser, was used to cut in a fovea-like structure on the

surface of the layers.
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Figure 2.7: OCT image of the phantom, with all retinal layers replicated, using a spin coating
technique, and the foveal pit, made using a laser microetching technique [31].

In order to use this phantom in an OCT system, the replicated parts were inserted into a

water-filled model. The final result is shown in Figure 2.8.

Figure 2.8: Result phantom, with the replicated retinal eye layers embedded into the commercial
human eye model [31].

There are other phantoms that also replicate the foveal pit, but using a different method, for

example, the phantom made by Lee et al. [33], that can be seen in Figure 2.9. This phantom was

made in three separated stages. In the first stage, the five top layers are replicated, from retinal

nerve fibre layer (RNFL) to outer plexiform layer (OPL), including the foveal pit. The foveal

pit was replicated using a glass mold inside the PDMS layers. The second stage replicates the

layers from the outer nuclear layer (ONL) up to retinal pigment epithelium (RPE). The third

and final stage replicates the choroid layer.

This method of construction was selected because it allowed the foveal pit to be restricted

to the first five layers, making the phantom more realistic to the real human eye. Furthermore,

by separating the bottom layers it is also possible to replicate more diseases states, which are

more frequent in the layers near the RPE [33].
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Figure 2.9: Schematics of the phantom created by Lee et al. [33].

The eye phantom designed by Fogli et al. [35] was made with the primary goal of validating

new surgical procedures. Normally, when the goal is testing surgical techniques, the phantom

used has more mechanical components. However, in this particular case, the phantom replicates

the properties of the eye retinal layers using polymers and pays special attention to the humor

vitreous, with the aim of reproducing the diffusion properties of the natural eye.

The phantom was obtained combining several retinal layers, the sclera, the choroid and the

retina, as represented in the Figure 2.10 (a). These three layers were made using PDMS and

polycaprolactone (PCL), to replicate the mechanical properties of the respective layers. In this

work, the vitreous humor was made of gelatin in water mixed with a polyvinyl alcohol (PVA)

solution at different percentages, which allowed for a more accurate replication of the diffusion

properties of the vitreous humor. The result phantom is shown in Figure 2.10 (b), with the

three retinal layers put together, from sclera to retina, and the vitreous humor on top.
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(a) (b)

Figure 2.10: Eye phantom for ophthalmologic surgeries where (a) is the sketch of the different
layers and (b) is the end-result of the proposed phantom [35].

Blood flow phantoms

Retinal blood vessels are commonly used to study some retinal diseases. To simulate this

type of structure, retinal blood flow phantoms are often used. These phantoms normally do not

focus on the retinal layers as much as the previous, since their main goal is the visualization of

the retinal blood vessels and their irrigation.

The phantom designed by Lee et al. [32] uses microfluidic circulation channels by making

patterns in silicon wafers using a photolithographic process. The structure of the microfluidic

channels was designed by the authors, with the goal of representing the superficial and the deep

retinal vessels. After this, the channels were imprinted into silicon wafers. This is followed by

pouring the mixture of PDMS and TiO2 into each mold. Finally, the phantom is detached from

the mold after the curing process. The overall process is summarized in Figure 2.11.

14



CHAPTER 2. THEORETICAL BACKGROUND

Figure 2.11: Steps to create microfluidic channels [32].

This phantom also replicates some retinal layers, such as the ganglion cell layer (GCL), the

inner plexifrom layer (IPL), and the inner nuclear layer (INL). These layers were obtained using

a mixture of TiO2 and PDMS, as in the previous work [31], and were positioned on top of each

other, creating a multilayer film.

To assemble the whole phantom together, the multilayer film was positioned between the

microfluidic channel layers. There was also the need to incorporate tubes to circulate the blood

mimicking fluid through the system. The final phantom design is presented in Figure 2.12.

Figure 2.12: Blood phantom with retinal layers [32].

The design published by Braaf et al. [38] is a simpler model (Figure 2.13), with the purpose

of calibrating and validating flow measurements. This model has a lens in the front part of

the container as the focusing optics. Regarding the flow of the phantom, it uses a syringe to

pump swine whole blood into the phantom, simulating the blood flow in the retina. Instead of
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replicating the retina layers, a Teflon slab was used to act as homogeneous scatter. Having a

Teflon slab, with a flat surface, allows for a controlled change in the incidence angle of the OCT

beam.

Figure 2.13: Blood flow phantom using a syringe pump [38].

Mechanical phantoms

When the main goal is the instrument calibration, for example, the calibration of an OCT

device, a mechanical phantom is used. The mechanical phantom made by Wang et al. [39] was

produced in order to simulate the structure of the eye and its refractive power, offering a tool

for OCT quality control and calibration. In this phantom, the optical structure of the eye is

replicated using two convex lens, fiber filaments to test the alignment of the OCT scan, and a

microsphere-embedded phantom. This structures can be seen with more detail in Figure 2.14.

The light goes through the first lens and is focused on the back surface of the second one. The

width of the beam of light focused on the second lens is used to test the angular field of view.

To test the lateral and axial resolution of the OCT device, this phantom has a microsphere-

embedded phantom with microspheres of 1µm diameter.

Figure 2.14: Phantom for OCT quality control and calibration [39].
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Mechanic phantoms can also be used for eye surgery simulation. The eye model developed

by Tanaka et al. [34] has the main goal of quantifying the performance of manual and robotic

microcannulation, a surgical procedure which involves drug injection in a retinal vein. This

specific phantom contains a retinal vein model, a force sensor, a sclera model, and a mechanism

that simulates the rotational motion of the eye. The schematic representation of this model,

with all the mentioned components, is shown in Figure 2.15.

Figure 2.15: Eye model for eye surgery simulation [34].

The sclera model is made of natural rubber, simulating the mechanical properties and size

of the human sclera. This part of the phantom has a hole on the top to insert the tools needed

to perfrom microcannulation. The retinal vein model is made of microchannels to simulate

the diameter of the target retinal vein. These channels were produced using PDMS and a

photolithography procedure, as previous phantoms.

2.4.2 OCT motion correction algorithms

One of the biggest challenges in OCT imaging are the artefacts caused by involuntary eye

movements, which can make visualization and quantification of structures unreliable. The cor-

rection of these artefacts is still a hot topic in biomedical engineering [19].

In general, motion correction algorithms can be divided into methods that process all the

image using intensity metrics (intensity-based registration), and methods that use specific struc-

tures in the image to perform the registration (feature-based registration) [19]. There are also

algorithms that combine both approaches. Although intensity-based approaches are more gen-

eral, the point-based approach has lower computational complexity and higher robustness and

accuracy rates [40].

Thanks to the improvements in OCT technology in recent years, in this work, as in most

recent works [41–43], the authors assume that the 2D slices (B-scans) from an OCT volume
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along the fast direction do not have motion artefacts.

Intensity-based registration

One common application of intensity-based registration is to sequentially align the B-scans

of a volume to the previous, motion-free, ones. The work by Cheng et. al [41] applies this

method so that, once an OCT 3D volume is motion-free, several volumes can be aligned using

their en face projections. The first step of this work is to detect the B-scans which have motion

artefacts. Assuming pixels from static regions of the 3D volume present small decorrelation

values whereas pixels from the faster moving regions of the 3D volume yield high decorrelation

values, it is possible to detect the B-scans with movement calculating the decorrelation value for

overlapped B-scans. Each B-scan which was affected by eye movement is aligned (translated)

with the previous B-scan, assumed to be artefact-free. The alignment is calculated minimizing

the difference between the two B-scans analysed. Since a full search in the whole B-scan is time

consuming, this work uses a diamond search strategy [44], which only computes the decorrelation

values for a subset of points.

Although a significant amount of research has focused on developing the registration algo-

rithms for medical imaging, there are fewer examples of open-source and ready-to-apply methods.

With the goal of making an open source and user-friendly application for registration algorithms,

the SimpleElastix software was developed by Martsal et al. [45] as an extension of SimpleITK

that allows the user to configure and run Elastix [46] (a toolbox for image registration) eas-

ily. Elastix and SimpleElastix are highly configurable, enabling different registration strategies.

Among many other medical imaging applications, both Elastix and SimpleElastix have been suc-

cessfully adapted and applied to OCT images [4,47]. These algorithms use an iterative pair-wise

approach, and they treat each 2D registration as a minimization problem. The minimization of

the cost function is made by an iterative optimization method, using a cross-correlation metric.

Most of the OCT registration algorithms are based on the registration of consecutive images,

B-scans, which can lead to errors when inspecting the whole OCT volume. This drawback can

be tackled using group-wise approaches, such as in the work proposed by Ntatsis et al. [48] The

proposed unsupervised learning registration framework corrects motion in the retinal volume by

decomposing the task into multiple group-wise registrations of consecutive B-scans. For each

analysed B-scan, translation in the x and y directions are predicted. The model architecture is

a 3D adaptation of the DenseNet [49] and, similar to [4, 47], the optimized metric is pair-wise

cross-correlation. The network is fully-convolutional, so it can perform inference in the entire
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OCT volume for any number of B-scans. The evaluation metrics showed improvements for all

OCT volumes, although in some cases a number of mis-registrations were observed. Figure

2.16 shows the central slow-axis B-scan of the same volume at different steps of the registration

algorithm. It can be observed how the artifacts are minimized, until the last B-scan which is

almost artefact-free.

Figure 2.16: Central slow axis B-scan correction throughout the recurrent iterations, used in the
algorithm. The numbers on the corner of each scan corresponds to the iteration number [48].

Feature-based registration

The work done by Ricco et al. [9] presents a two-step registration algorithm starting with the

correction of small deformations, as tremors and drifts, followed by abrupt deformations, such

as microsaccades. The proposed method corrects for transverse motion artefacts by registering

the en face OCT to an scanning laser ophtalmoscopy (SLO) image of the retina. Since the main

observable features in 2D retinal images are the vessels, vessel detection is the first step of this

method. This is performed in both SLO and OCT en face images, so that the vasculature can

serve as reference for the registration, using the technique of Periaswamy and Farid [50]. This

is a technique developed for the registration of medical images (not specific for OCT) that show

different pixel intensity throughout the image. Once the OCT en face image is aligned with

the SLO reference image, the microsaccades within the OCT will be corrected by finding the

horizontal shift at each pixel of the OCT en face scan that shows the best correspondence when

aligning with the result from the drifts and tremors corrections and the SLO image. This work

only corrects the horizontal microsaccades, and does not address axial movements. The results

from this method are shown in Figure 2.17.
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Figure 2.17: Results of motion artefact correction. (a) En face image of an uncorrected scan
(b) Result image for correction for tremors and drifts, which still shows discontinuities from
microsaccades (c) Result image after microsaccade correction, which matches the SLO reference
image, shown in (d) [9].

Registration algorithms combining both approaches

Combining both types of registration approach is uncommon in the literature. One of few

examples is the algorithm proposed by Pan et al. [40], which uses both intensity-based an feature-

based techniques to perform a 3D volume registration. The proposed method can be divided

into three steps: preprocessing, feature design and, correspondence detection.

In the preprocessing, seven retinal layers were segmented using a graph search-based method.

After this, the B-scans are flattened to ignore the curvature of the retina in the next steps of the

algorithm. In the feature design step, three different types of structures are detected: surface-

based, intensity-based and vessel-like. The surface-based structure is defined by the difference

between the intensity of voxels, those voxels that are on the surface have a higher intensity than

voxels not on the surface. The intensity-based region is based on the mean intensity value of

each respective layer, so that different mean intensities will describe different retinal layers. The

correspondence detection is made through detection of vessel structures. The vessel-like features

are detected by the different voxels in a horizontal direction of a B-scans. Blood vessels have

a hyper reflective area in the inner retina, and the respective shadows produce hypo reflective

areas in the outer retina, therefore the vessel information can be extracted using a projection

image of an OCT volume.

This method was tested using data from healthy and severely diseased subjects. In Figure

2.18, the results from the normal eyes data set are shown, there is a reference image, without

artefacts, the original image, without correction, and the image after the motion correction. In

Figure 2.19, the results from subjects with lesions are presented, there is also a template image,
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a reference image without artefacts, an image without correction, and a final image after the

algorithm is applied. The results suggest that this algorithm overcomes some problems of other

registration methods and consistently produce high registration accuracy.

Figure 2.18: Results of feature-based 3D registration for an healthy eye where (a) is the reference
image, (b) is the image without correction, and (c) is the corrected image [40].

Figure 2.19: Results of feature-based 3D registration for the data set with subjects that present
several lesions, where (a) is the reference image, (b) is the image without correction, and (c) is
the corrected image [40].
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Chapter 3

Methods

This chapter describes the methods used in the project. First, the design of a human eye

model is described. Second, the data set acquisition is depicted, and lastly, the motion correction

algorithms are presented.

3.1 Human eye phantom

A phantom eye model was developed to acquire OCT scans with simulated eye motions.

Building it allowed the characteristics reproduced in it to be chosen accordingly to the main

goals of this project. This phantom was designed to be a modular piece, which allows small

alterations such as the diameter of the eye, the number of retinal layers or thickness. The model

is also easily reproducible, since all the applied techniques are relatively simple and the material

cost is low. Furthermore, an advantage when comparing to other models is that this model is

non-degradable and does neither accumulate dust nor deformate over time.

In order to get a realistic model, the axial dimension was 24.4 mm, the averaged axial

dimension of a human eye [10]. All other dimensions (23.5 mm (transverse)× 41.6 mm (sagittal))

of the designed phantom do not correspond to the real eye dimensions due to design adaptations.

In Figure 3.1 there is frontal and lateral projection view of the eye phantom with the respective

dimensions.
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(a) (b)

Figure 3.1: Frontal (a) and lateral (b) views of the eye phantom with the respective dimensions.

The mechanical parts were designed with the Autodesk Inventor software [51], and 3D printed

using the Ultimaker 2+. The software Ultimaker Cura [52] was used to slice the phantom parts

made in Autodesk Inventor, converting the STL files (from Autodesk Inventor) into gcode (to

use in the printer).

The material selected to print the phantom parts was the Polylactic Acid (PLA). With

the development of 3D printing, PLA has become one of the most used materials, as it has a

low melting point, presents good layer adhesion, and has high resistance [53]. For this specific

application, a waterproof and watertight material was needed, which was able to hold the water

without absorbing it into the walls, characteristics that the PLA material presented. The PLA

filament used was from Ultimaker B.V., Geldermalsen, The Netherlands, with a density of 1.24

g/cm3, white pearl color, and a printing temperature between 195 °C and 240 °C [54].

The next sub-sections present a description of the 3 parts in which the phantom can be

divided: the anterior segment, the vitreous body, and the posterior segment.

3.1.1 Anterior segment

The anterior part of the phantom was developed using a plano-convex lens, with a focal

distance of 20 mm, that simulates both the cornea and crystalline of the human eye [55, 56].

The selected lens (LA1074-B - N-BK7) was produced by Thorlabs [57], with a back focal distance
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of 17 mm, a diameter of 12.7 mm, and a functional wavelength between 650 and 1050 nm.

Furthermore, this anterior segment of the model needed a support to make the assemble

with the other parts of the phantom. The support was designed to have bolt insertions, needed

to connect the different parts and to accommodate the lens. To prevent the lens from getting

damaged, an O-ring was added inside the support piece. This way the lens does not touch the

PLA support, preventing its coating from getting scratched. Figure 3.2 shows a 3D sketch of

this part of the model.

Figure 3.2: Sketch of the lens support. The lens is represented in blue in the middle of the piece.

3.1.2 The vitreous body

The central part of the model corresponds to the vitreous body, which constitutes the largest

part of the phantom. Similar to the anterior part, the shape of the central part was made to

accommodate bolts to assemble the anterior and posterior segments of the model.

Additionally, water was used to simulate the vitreous humor of the human eye since both

materials have approximately the same refraction index [32]. As a consequence of using water,

it was necessary to seal this part of the model using two O-rings. These were placed in the front

and back of the vitreous body part, to stank the water inside the model without compromising

other components. Figure 3.3 shows a 3D sketch of the vitreous body part. In the front part of

this design it is also possible to see the spot where the O-ring is placed.

3.1.3 Posterior segment

The third, and posterior part of the model corresponds to the retina, choroid, and the sclera.

In the human eye, its layers cover the whole sphere. On the contrary, in the phantom the retinal
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Figure 3.3: Sketch of the central part of the model with the designed space to insert the O-rings.

layers are only in the fundus of the model. This does not represent a problem in comparison

with scans from real patients, since the OCT scan only acquires information in a restricted field

of view.

The human eye has a great number of different retinal layers, however, in this phantom,

the ones reproduced were the retina, the choroid, and the sclera. The retina was reproduced

as a single layer, not taking into account the different scatters in the sub layers of the retina.

This may produce differences in the results obtained when compared to human eye scans, and,

consequently, represent a limitation of the eye phantom.

Following previous works in the literature, the layers were fabricated using a mixture of

PDMS and TiO2 (scattering agent) [58]. These are relatively cheap materials and easy to

maneuver. The different layers were obtained using different percentages of TiO2 in the mixture,

as depicted in Table 3.1. To create the thin layers needed for this application, a spin coating

protocol was used, which allowed to have the same thickness through the whole layer. The

target thickness for each layer and the rotational speed used in the spin coater are also shown

in Table 3.1.

Table 3.1: Characteristics of the three replicated layers - the percentage of TiO2 in PDMS, the
layers thickness and the rotational speed used in the spin coater.

Replicated layer
TiO2 (% in
PDMS) [33]

Thickness
(µm) [31]

Rotational
speed

(RPM) [33]

Retina 0.6 200 500

Choroid 0.025 400 240

Sclera 2.5 700 140
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For each of the three retinal layers, the following protocol was applied:

1. Weight the mass of TiO2 according to the concentrations of the layer.

2. Weight the respective mass of elastomer base (PDMS).

3. Mix the elastomer with the TiO2 homogeneously.

4. Place the mixture into an ultrasonic bath for 1 hour.

5. Add the curing agent with a ratio of 10:1, mix until there are no bubbles present.

6. Pour the mixture into the spin coater at the respective speed for 3 min.

7. Leave the layer to dry off for 24 hours.

Each layer was added on top of the previous one, avoiding the problem of detaching thin

layers and possibly breaking them. Figure 3.4 shows the 3D sketch of the layer support, also

used in the spin coater to produce the layers directly in the model part.

Figure 3.4: Sketch of the support where the layers were made - this support was also placed in
the spin coater.

Figure 3.5 presents the final 3D sketch of the whole eye model, with the 3 modular parts:

the anterior part (white), the intermediate part (blue), and the posterior part with the layers

support (dark gray).
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Figure 3.5: 3D sketch of the whole eye model - the anterior part is represented in white, the
middle part in blue, and the posterior part in dark gray.

3.2 Data acquisition

In this step of the project, a data set with OCT scans obtained using the developed phantom

was built (synthetic OCT data set).

The data set includes static scans of the model, without any movement, as well as moving

scans. The moving scans were obtained with different patterns of movement, replicating different

involuntary eye movements.

3.2.1 OCT system

The scans acquired in this work were obtained using an Optical Coherence Elastography

(OCE) system, based on a swept-source OCT, from Coimbra Institute for Biomedical Imaging

and Translational Research (CIBIT) [59].

In Figure 3.6 there is a schematic of the OCE system used. It consists of a SS-OCT combined

with a piezoelectric actuator, for the dynamic mechanical excitation of the sample, or a 10 MHz

ultrasound A-scan probe (Imasonic, Voray sur L’Ognon, France). This SS-OCT is based on a

swept-source laser (Axsun, Excelitas Technologies Corp., Mississauga, Canada), that emits at a

central wavelength of 1060 nm, with a bandwidth of 110 nm and a repetition rate of 100 kHz. The

laser source also includes a fiber-based Mach-Zehnder interferometer to provide evenly spaced

wavenumbers in the space output. This allows to sample the OCT interferogram linearly and
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use a direct Fourier processing technique.

The light used by the OCT is split into the sample and reference arms. In the sample

arm, the light is delivered and collected from the sample using a optical fiber coupler and a

long working distance microscope objective. In the reference arm, the light is reflected from

a stationary mirror. The optical setup of the sample arm can be changed when the imaging

samples have optical elements.

The OCT scans are acquired in a standard acquisition model: axial A-scans, in the sagittal

plane, cross-sectional B-scans, in the transversal plane, and volumetric acquisitions. In the

acquisition protocol, axial scans are repeated 512 times at a given location, this corresponds to

a scanning time of 5.12 ms for each B-scan. The eye phantom was positioned in position S of

Figure 3.6, in the sample arm box.

Figure 3.6: Schematic representation of the SS-OCE system [59].

Figure 3.7 shows the experimental set-up during the acquisition of an OCT volume. Due

to limitations in the optical setup, specifically the use of a microscope objective, the scans

were obtained using only the layers of the phantom and not the whole model. The use of the

anterior and middle parts of the phantom presented a problem in the visualization of the layers,

due to the refraction of the lens and the large distance from the layers to the OCT objective.

Nevertheless, as can be seen in Section 4.2, the obtained scans have a clear correspondence with

the expected data.

3.2.2 Artefacts replication

The artefacts/movement simulation was made using two different motors. One motor did

rotational movements, simulating drifts and microsaccades, whilst another motor did vertical
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Figure 3.7: Acquisition of one volumetric scan with the phantom layers (posterior segment).

movements, simulating the respiratory movements.

The drifts and microsaccades were simulated using a stepper motor (Zaber RSW-60 rotary

platform) with Arduino Motor Shield Rev 3 [60]. This motor is controlled using a specific library

from Arduino, the Stepper library [61]. In Figure 3.8 there is a schematization of the processes

done in the Arduino to control the stepper motor. The circle represents the stepper motor,

starting at the initial position, the respective arrows represent the two different movements

replicated: first a microsaccade, with a bigger amplitude, then a drift, in the opposite direction

with a smaller amplitude, followed by a microsaccade, in the same direction as the previous drift,

and a final drift in the opposite direction. When replicating these eye involuntary movements,

there was the need to ensure the eye model remained in the field of view of the acquisition. For

this reason, the movement pattern, described before, was used to make sure the model did not

leave the acquisition field.

The second motor was used to simulate the respiratory movements. In this case, the motor

used was a Zaber miniature linear actuator [62]. This was programmed using the Zaber motion

library [63]. This library sent a command to make vertical movements with an amplitude of 50

µm. As happened in the Zaber rotatory platform, the motor was programmed in order to keep

the phantom centered during the whole acquisition. In order to this, the motor did half of the
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Figure 3.8: Flowchart of the Arduino code to control the stepper motor. Red arrows indicate
microsaccades and green arrows indicate drifts.

movement amplitude downwards, followed by the full movement amplitude upwards, and half

of the movement amplitude downwards to make two respiratory movements. This movement

pattern was replicated throughout the whole acquisition time.

Having in mind the real pattern of involuntary eye movements, as shown in Figure 3.9,

patterns of a microsaccade, followed by a drift were simulated. These patterns are represented

in Table 3.2. In order to obtain a random data set, a large range of possible artefacts were

simulated. The simulated movements were randomly chosen within an interval, shown in Table

3.2, representing the physiological movements. The amplitudes and frequencies used to program

the motors were calculated taking into account the displacement of the eye model to the center

of the motor. Moreover, the extra side of the model, with the appearance of an arm, was added

to the middle part of the eye model to connect to the motor. Due to maximum limitations

in the rotational frequency of the motor, the maximum frequency was of 2.4 revolutions per

minute (RPM). For this reason, the speed for the microsaccades is constant, at maximum speed

of 12º/s. The linear actuator was used to simulate the respiratory movements with an amplitude

of 50µm.
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Figure 3.9: Fixation pattern with fast microsaccades interrupted by drifts [64].

Table 3.2: Movement pattern used in the Arduino software to replicate the involuntary eye
movements.

M
o
v
e
m
e
n
t
p
a
tt
e
rn

1º Microsaccade

Duration of 25 ms – constant

Speed of 12º/s – constant

Movement amplitude between 0,25º and 1º - randomly selected

2 º Drift

Duration between 0,5 s and 1,5 s – randomly selected

Speed between 0,1º/s and 0,5º/s – randomly selected

Movement amplitude dependent on speed and movement duration ( 0,05º and 0,75º)

3.2.3 Data set description

Synthetic data set

Using the movement pattern described in Table 3.2, 5 types of acquisitions were designed

to compose the data set. First, there were static scans, acquired with the phantom in a static

position. These scans are artefact-free and were used as reference volumes to evaluate the

algorithms’ performance. Second, there were scans acquired with only one type of movement,

either microsaccades or drifts, throughout the whole acquisition time, with repetitive movements.

Third, there were scans acquired with the movement pattern from Table 3.2, that means these

scans will have, at least, one drift and one microsaccade during one acquisition. Fourth, scans

were acquired in which the movement started after initializing the acquisition. This means that

the first part of the volume was static and the second part had either a microsaccade and a drift

or just one of them.

At last, there were scans acquired with non-physiological movements. That means that
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the movement pattern was the same as the pattern from Table 3.2, however the movement

amplitudes and duration used were larger (amplitudes up to 12°and duration up to 3 s), to

simulate extreme movements.

Table 3.3 has the number of volumes acquired for each type of movement simulation. In total,

the data set has 156 volumes with artefacts from the simulation of eye involuntary movements.

These volumes were the volumes this work aimed to correct.

Table 3.3: Data set description with number of volumes acquired for each type of movement
simulated.

Data set type Num. of volumes

Static volumes 9

Volumes with repetitive movements 20

Volumes with the movement pattern 96

Volumes where the movement pattern starts after the acquisition 10

Volumes with extreme movements 30

Clinical data set

The clinical OCT data set, used in this work for post-training evaluation of the deep-learning

algorithm, was the data set used in the work from Ntatsis et al. [48]. This data set was acquired

at Centro Hospitalar São João using Spectralis S2000 Spectral Domain OCT from Heidelberg

Engineering. It consists of 37 eyes of 19 subjects, with 4 volumes per eye, making a total of 146

volumes (two volumes were excluded due to different acquisition resolution).

3.3 OCT motion correction

The next step in this work was to correct the previously acquired scans. In order to do

this, two algorithms were used: a general purpose conventional registration algorithm (Sim-

pleElastix [45]), and a group-based deep-learning algorithm, previously published by Ntatsis et

al. [48]. Both chosen approaches are intensity-based methods, removing the need for engineered

features.
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3.3.1 Preprocessing

The raw information from the OCT volumes was preprocessed, at an initial phase. The first

step was a data centring of the data. Following this, the DC components and low frequencies

were removed using an interferogram. As part of this preprocessing stage, there was also the

need to correct pixel displacements, due to the OCT scanning process of the system used. When

acquiring the OCT volumes, there was an acquisition of a background volume. This volume was

subtracted to the phantom OCT volumes, in order to remove the background noise. The final

step of the preprocess was the data normalization. The values were normalized between 0 and

255. The processes preformed in this stage are schematized in Figure 3.10.

Figure 3.10: Flowchart of the preprocessing steps.

3.3.2 Conventional registration

As described in the state of the art (section 2.4), the SimpleElastix software, developed by

Martsal et al. [45], was used to correct the movement artefacts in the data set. This framework

was made for intensity-based registration of medical images, and it is an extension of SimpleITK

[65], an open source image analysis toolkit.

This registration algorithm involves two input images: a fixed image, artefact-free, and a

moving image, with motion artefacts. Mathematically, the moving image is deformed to match

the fixed imaged, by finding the transformation coordinates necessary to do that. The goal is

to correct the motion artefacts present in the moving image.

In an OCT volume, each B-scan was registered in a sequential way. That is, a total of N − 1

pair-wise 2D registrations are performed, with N the number of B-scans in the volume. We can

denote Bn each original B-scan of the volume (n in [1..N ]), and Rm each registered scan of the

registered volume (m in [2..N ], since the first B-scan is not registered). The fixed and moving
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images are updated at each iteration, starting with the first pair of B-scans of the volume (B1

and B2, respectively). Once this first pair is registered, the fixed image for the next iteration

will be the registered moving image (R2). As a consequence, the scans registration is based

on the previously registered scan. Finally, the next moving image will be the next B-scan of

the original (unregistered) volume (B3). Figure 3.11 represents the processes involved in the

registration using SimpleElastix.

Figure 3.11: Flowchart of the registration process using SimpleElastix [45].

To configure SimpleElastix, there is the need to define the parameter map. This is a collection

of key-value pairs that configure the components of the registration, and any settings they might

require, automatically. Only input images and output options need to be specified separated. In

order to configure the registration process to the specific OCT scans obtained, it was necessary

to test different parameters used to perform the registration, in order to obtain the best possible

result.

In the SimpleElastix documentation [45], the parameters, which have the most influence in

the performance of the registration, are outlined. Using a multi-resolution registration, that

uses a 2D translation, improves the chances of finding the optimal solution. To find the optimal

translation, the sampler, which is responsible for finding the location to evaluate in the input

images, needs to be defined. The image sampler, was random coordinate, which means that
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each pixel of the image has the same probability of being chose, and a pixel may be chosen

more than once. The number of resolutions is one of the parameters that can be altered. In

general 4 is sufficient however if the fixed imaged is quite different from the moving image, as

happens in some scans, this number can be increased to 5. The number of spatial samples

defines the number of pixels analysed in each image. The maximum number of iterations is the

number of iterations done analysing the image pixels before delivering the registered result. For

moving images with major differences to the fixed image, this number needs to be increased.

Finally, one of the most important parameters to define is the type of correction that will be

applied to the images. Translation transform enables only corrections in the x and y axis, while

Euler transform corrects also rotations. Since the data set included both type of movements it

is expected that the registration using Euler transform will produce better results. However,

since the rotation movements are small, it is interesting to see if Translation transform is able

to correct them. Table 3.4 shows the parameters used, and its respective values.

Table 3.4: Different parameters used for the parameter map in SimpleElastix registration.

Parameters Transform
Nº of

resolutions

Maximum nº

of iterations

Nº of spatial

samples

v1 Euler 4 128 1024

v2 Euler 5 256 2048

v3 Translation 4 128 1024

v4 Translation 5 256 2048

3.3.3 Deep-learning registration

The second registration approach explored in this work was an unsupervised deep-learning al-

gorithm, previously described by Ntatsis et al. [48]. When compared to conventional approaches,

such as SimpleElastix, a deep-learning algorithm performs the registration in a shorter period of

time. The deep-learning model learns its parameters from the data, which did not happen using

SimpleElastix. Additionally, the deep-learning model is group-wise, it uses groups of different

sizes, although not the complete volume at the same time, whereas the conventional algorithm

is pair-wise, uses only pairs of images.

The OCT volumes, with dimensions of 512 × 512 × 473, were used as input to train the

algorithm. Based on the work from Ntatsis et al. [48], the volumes were splitted into individual
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fast axis B-scan images. Each B-scan was then resized to a dimension of 384 × 384 pixels.

Then, each volume, with 473 fast axis B-scans, was divided into sub-volumes with 144 fast axis

B-scans each. These changes were made to match the algorithm required input size.

The motion artefacts, present in the OCT volumes, are corrected using a group-wise regis-

tration procedure, within a group of adjacent fast axis B-scans. The algorithm output is the

equivalent motion-corrected group of adjacent fast axis B-scans.

The algorithm framework, from Ntatsis et al. [48], consists of four main components:

• a trainable model, which is a 3D adaptation of the DenseNet architecture [49] - this model

produces a pair of translation parameters for each input fast-axis B-scan;

• a cumulative summation operation, along the two translation directions, applied to the

output translation parameters from the trainable model - this makes the network to learn

relative translations;

• a zero-mean operation, along each translation direction - this addresses the illposedness of

the group-wise registration problem;

• a spatial transformation module, which receives the initial unregistered group, with the

translation parameters, and outputs the registered group via bicubic interpolation.

In Figure 3.12, there is a flowchart representing all the steps to train this network: the first

steps correspond to the data set adaptation, that was necessary in order to use the volumes as

input for the network, and the last steps correspond to the deep-learning algorithm framework

[48].

The algorithm was trained in an unsupervised way, through the maximization of the mean

pair-wise cross-correlation of the registered group. Although this model, due to its fully-

convolutional design, can be used for any number of B-scans, it was trained with the same 144

B-scans, as done by Ntatsis et al. [48], in order to perform comparisons between the obtained

results.

The optimization problem of deep-learning algorithms rose with the increase number of

new algorithms in the literature [66]. The most common optimization technique is parameter

optimization, different parameters are used to obtain an optimized algorithm. However, in

the last years, a data-centric approaches started to be applied [67]. In this, different types of

data sets are used as input of an algorithm. Then, by analysing the results, it is possible to

see which data set version is better suited for each algorithm. Data-centric practices outline
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Figure 3.12: Flowchart of the registration process using the deep-learning registration algorithm.

the importance of having a good data set because without it even the best algorithms cannot

perform well. With this practice the goal is to obtain a better data set, by systematically change

or enhance the data set used to improve the model performance.

This work presents, in a first stage, a data-centric approach where five different data sets

were used to see which data set produced the best training results. The characterization of each

data set is shown in Table 3.5. For the training of the algorithm, each data set was divided into

three groups: a train set, with 80% of the data; a validation set, with 10% of the data; and,

finally, a test set, with 10% of the data.

In a second stage, having selected the best data set version, there was a parameter optimiza-

tion, a model-centric approach. The parameters used in each version are shown in Table 3.6.

These parameters were selected based on the values used in the work from Ntatsis et al. [48].

After using the best data set from Table 3.5 with the best parameters from Table 3.6, the best

trained model was obtained. The performance of this model was tested using a clinical data set

of OCT volumes with artifacts. These results were compared with the ones obtained by Ntatsis

et al. [48] where the same framework was trained and evaluated only using the physiological

data set.

3.3.4 Application on retinal OCT data

At last, the best model developed in this work, was retrained with the clinical OCT volumes,

starting with a pre-train model, obtained with the phantom OCT volumes. This technique is

referred to as transfer learning, where a model which was trained on one task, in this case the
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Table 3.5: Characterization of the different data sets used for the deep-learning algorithm train-
ing.

Data
set

version
Num. volumes Data order Load strategy

1 100*

Random order of
volumes with 144
B-scans from the
final part of the

volume

Load all the data
set to the gpu in

the start

2 100*

Random order of
volumes divided
into sub-volumes
with 144 B-scans
each – using the
whole volume

Load all the data
set to the gpu in

the start

3 136*

Random order
volumes with 144
B-scans from the
whole volume

with 10 volumes
with extreme
movements

Load all the data
set to the gpu in

the start

4 381

Random order
volumes with 144
B-scans from the
whole volume

Load to gpu in
each epoch

5 466

Random order
volumes with 144
B-scans from the
whole volume
with extreme
movements

Load to gpu in
each epoch

* These versions had a limited amount of volumes due to GPU memory limitations, from
the computer used. Versions 4 and 5 corrected this issue by loading the data to gpu in each
epoch.
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Table 3.6: Characterization of the different parameters used in different training versions of the
deep-learning algorithm, with the data set selected previously.

Parametrization
version

Group
size

Batch size
Augmentation

flag
Epochs

1 4 8 False 15

2 4 8 True 15 + 15**

3 8 8 False 15

4 8 8 True 15 + 15**

** In these versions, the network was pre-trained. This means that the first 15 epochs correspond to
the epochs from the train from version 1 and version 3 respectively.

synthetic OCT data set, is then used to re-train on a second task, the clinical OCT data set.

Transfer learning allows a rapid model optimization and improved performance when training

the second task. This technique is normally used when there is a limited amount of training

data [68].

Using this technique, the goal was to assess if by using a pre-trained model, the results can be

improved and, consequently, the addition of synthetic data to real OCT data set is an advantage

when working with deep-learning algorithms, specially to correct motion artefacts.

3.3.5 Algorithms evaluation

The acquired data set contained static volumes, which were artefact-free. Having these type

of volumes allowed to use comparative metrics, such as the Euclidean distance and the Dice score.

In addition to that, using these metrics, it was possible to evaluate the performed registration

in comparison to an artefact-free B-scan. In order to allow for a comparison between the two

different registration algorithms, the evaluation metrics used were the same in the two cases.

Two different quantitative metrics were implemented to evaluate the output results: Eu-

clidean distance and Sørensen–Dice coefficient. Besides this, the registered volumes were quali-

tatively analysed. For the qualitative metrics, a fast axis B-scan (artefact-free) was compared to

the registered B-scan, for the registered volumes from the conventional registration algorithm.

This results were discussed in Section 4.3.1. For the deep-learning algorithm registered volumes,

a B-scan from a static volume was overlapped on a B-scan after the registration process and the

visual results were discussed in Section 4.3.2.

The Euclidean distance is the most commonly used metric to find the difference between

both images [69]. It calculates the square root of the sum of the absolute differences between
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two feature points as follows:

Euclidean distance =
√
(
∑

(ui − vi)2) (3.1)

where ui and vi represent the feature points, from two different images, and i between 0 and

144, the number of columns of the analysed B-scans.

To perform this operation it was used the public application programming interface SciPy [70].

All the B-scans from each volume were analysed. In each B-scan, the selected feature points were

the pixels from each column with the higher intensity. For this specific registration problem, the

lower the Euclidean distance, the better the performed registration. In a perfect registration

the value should be 0.

The Sørensen–Dice coefficient can be used to evaluate the similarity between two images.

This coefficient is calculated using the ratio of the overlapped regions between two binary images

as follows:

Dice score =
2 |A| ∩ |B|
|A|+ |B|

(3.2)

where A and B are the two analysed images. Before calculating the Dice score, the intensities

in the analysed volumes were normalized between 0 to 1, and the intensities above 0.2 were

labelled as 0 and the rest as 1.

As opposed to the synthetic data set, the clinical data set did not have a ground truth,

or reference scan. For this reason, the application of the deep-learning model in clinical OCT

data could not be quantified using the previously metrics. As a consequence, the mean pair-

wise cross-correlation, previously used as well in the work from Ntatsis et al. [48], was used to

determine the quality of the registration.

The mean pair-wise cross-correlation is calculated for two different images, I1 and I2, using

Equation 3.3:

CC(I1, I2) = − 1

n

∑
x,y

1

σ1σ2
(I1(x, y)− µ1)(I2(x, y)− µ2) (3.3)

where n is the total number of pixels, µ is the mean intensity and σ is the standard deviation

of each of the two images.
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Chapter 4

Results and Discussion

The results presented in this chapter follow the same order of the methods presented in

Chapter 3. First, it presents the results from the development of the eye model. Second, it

shows the data set acquired with the eye model, represented by an example B-scan for each

type of movement replicated. Next, it presents the quantitative and qualitative evaluation of

the obtained results using the registration algorithms. Finally, it shows a comparison between

the results from previous studies, using clinical OCT data, and the results obtained with this

data set. This is done in order to achieve the goal of understanding if by using a pre-trained

model to correct OCT scans, the results are improved when comparing with a non pre-trained

model. Throughout the chapter there is a critical analysis of the results, and, when possible,

they are compared to existing works in the literature.

4.1 Development of the eye model

Using the 3D sketches previously shown in Section 3.1, and produced using Autodesk Inventor

Software, the mechanical parts of the model were 3D printed. Figure 4.1 shows the 3D printing

process.

Taking into account the specifications of this project, refered in Section 3.1, there was the

need to test the plastic material before printing the final designs. From the literature, it is

known that the chosen material, PLA, has waterproof and watertight characteristics, however

the material was tested before printing the final designs.

Since 3D printing is characterized by layer deposition of the material, it was necessary to

test the pieces watertight and waterproof capacities. The eye model was filled with water and

left for 5 days in order to check its properties. No leaks were found during that period. After
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that period, the eye model was opened and it was still full of water. The 3D printing parameters

used for the final phantom model are shown in Table 4.1.

Figure 4.1: Illustration of the 3D printing process using Ultimaker 2+.

Table 4.1: 3D printing parameters.

Printing temperature 200 °C

Build plate temperature 60 °C

Wall thickness 2 mm

Infill 40 %

The eye model was developed in different stages. The final result, shown in Figure 4.2, is

a modular piece, made of three parts. Being a modular piece allows the model to be altered,

e.g to simulate eye diseases, which is an advantage compared to other phantoms presented in

the literature [31,38]. Moreover, the developed phantom is non-degradable. This means that it

can be used for long periods of time (weeks/months) without the need to substitute any part,

this is also an advantage. An assessment of the phantom properties along time, to ensure good

performance and determine its life time, is out of scope of this project. Nevertheless, these tasks

could be done in future work.

44



CHAPTER 4. RESULTS AND DISCUSSION

Figure 4.2: Frontal (left) and lateral (right) view of the final eye model.

4.1.1 Posterior segment

As described in Section 3.1.3, the layers, in the posterior segment, were replicated using a

spin coating protocol. The key steps of the protocol used to produce the posterior segment

layers are shown in the next Figure 4.3.

(a) (b) (c) (d)

Figure 4.3: Key steps of the spin coating protocol to produce the retinal layers (a) Mixture of
the elastomer base with TiO2; (b) Ultrasonic bath for 1 hour; (c) Pour the mixture into the spin
coater for 3 minutes; (d) End result layers.

The first step (Figure 4.3 (a)) was to mix the elastomer base with TiO2. The mixture

presents a beige color due to the use of TiO2, as scattering agent. The central layer, the choroid,

is the layer with the less percentage of TiO2, and therefore this is the mixture with the lighter

tone. In the next step, the ultrasonic bath is used to make sure the mixture is homogeneous

(Figure 4.3 (b)). This step prevents the concentration of the scattering agent in large particles.

Finally, the mixture is poured into the spin coater (Figure 4.3 (c)). To use the correct amount

45



CHAPTER 4. RESULTS AND DISCUSSION

of mixture, to prevent waste of the materials used, the mixture was dropped using a syringe.

The end final retinal phantoms, with the 3 different layers in each piece, are presented in Figure

4.3 (d).

However, the reproduced layers may present a limitation for this phantom. In this model,

only three layers of the human eye were reproduced, in particular, the retina was reproduced

as a single layer. The human retina, as seen in Section 2.1, is a complex tissue that can be

subdivided into 10 different layers, where each one of these layers has a thickness between 13

and 102 µm [71]. Since the anatomical thickness of individual retinal layers is small (up to 18

µm [72]), it was challenging to effectively measure the correct mass of TiO2, for the production

of each layer, and the risk of producing an uneven layers was high. Moreover, it was not possible

to produce, nor replicate, the thinner retinal layers because of the limited maximum speed of the

spin-coater device. For these reasons, the replicated retina, in this eye phantom, was considered

as a single layer in the phantom. As a consequence, the type of data expected is simpler than

the data from real retinas, where all the sub layers are present, which is also the function of a

phantom, to have simple and controlled data.

4.2 Data set description

As described in Section 3.2.1, the OCT system that was used in this work has a long working

distance microscope objective. Therefore, it was necessary to change the optical distance of the

OCT system to acquire images of the back of the phantom. Since that was not possible, the

data set, described in Section 3.2.3, and shown in the next sections, was acquired using only the

last part of the developed phantom, the posterior segment layers.

The simulated movements were in the range of real involuntary eye movements and the values

used in each acquisition were generated randomly. In total, 156 volumes with movement artefacts

were acquired. For each acquired volume, the amplitudes and frequencies of the microsaccades

and drifts were stored. These values are presented in the intervals in Table 4.2.

Figure 4.4 shows a B-scan from a static volume and the respective replicated layers. From

top to bottom, this Figure shows the first replicated layer, the retina, followed by the choroid,

with the least concentration of scattering agent, and, lastly, the sclera. Visually there is not a

significant difference between the concentration of scattering agent in the first layer to the third

layer.
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Table 4.2: Interval range of the amplitudes and frequencies, of microsaccades and drifts, for each
data set type (for volumes with repetitive movements and extreme movements there is only one
type of movement simulated).

Data set type
Microsaccade
amplitude (°)

Microsaccade
frequency
(RPM)

Drift
amplitude

(°)

Drift
frequency
(RPM)

Volumes with
repetitive move-
ments

0.08 - 1.20 0.25 - 2 - -

Volumes with
the movement
pattern

0.40 - 0.98 2 0.07 - 0.69 0.02 - 0.08

Volumes where
the movement
pattern starts
after the acquisi-
tion

0.33 - 0.96 2 0.12 - 0.38 0.04 - 0.08

Volumes with ex-
treme movements

4.00 - 12.00 1 - 2 - -

Figure 4.4: B-scan with the replicated layers.

In Figure 4.5, there is a representation of each type of scan available in this data set. All

images show are B-scans from the slow axis, where the movement artefacts are visible.
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Figure 4.5: Data set overview, slow axis B-scans - (1) Static B-scan; (2) B-scan with repetitive
movements; (3) B-scan with the movement pattern; (4) B-scan where the movement starts after
the start of the acquisition; (5) B-scan with extreme movements.

As explained before, the volumes were acquired using only the posterior segment part of

the model. This allowed the visualization of the three layers reproduced, however the contrast

between layers is highly reduced. When comparing a B-scan from a human eye with a B-scan

from the model developed there are some important differences, specially in the layers contrast,

as can be seen in Figure 4.6.

Figure 4.6: B-scan acquired from a human eye (left) [73] and from the developed model (right).

The difference between contrasts can be explained due to several reasons. Firstly, the OCT

systems used are different, the volumes obtained in this work were not acquired using a com-
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mercial OCT. Secondly, the image postprocessing is also different, there are multiple different

techniques, including contrast enhancement strategies that could have been applied to the real

OCT scan.

Lastly, the interface is different. In the acquisition with a human eye, the first interface

is between vitreous humor (refractive index between 1.334 and 1.337 [74]) and the first retina

layer (refractive index between 1.330 and 1.370 [75]). However, in the developed model, the

first interface is between air (refractive index of 1.00) and the first phantom layer, since it was

not possible to acquire scans with the whole developed phantom. When calculating the ratio of

reflected intensity, using Equation R =
(
n1−n2
n1+n2

)2
, where n1 and n2 are the respective refractive

indexes of the two structures, for the B-scan with the human eye the value is R = 0.000029

and from the phantom B-scan is R = 0.022182 (for the refractive indexes in intervals the value

used was the mean value). Analysing these values, the phantom B-scan has a higher reflectance,

which can explain the high intensity in the first interface. The high intensity of the first layers

makes the visualization of the other layers difficult, even with the image in logarithmic scale.

When comparing the two different B-scans, it is also noticeable that the human eye layers

have a bigger curvature than the scan from the eye model. This happens due to the technique

used to produce the different layers. The spin coater produced thin homogeneous layers, however,

the curvature of the layers produced was not a parameter monitored and therefore the layers do

not replicate the real curvature of the human eye.

4.3 OCT Motion correction

This section presents the results and discussion of the motion correction algorithms that

were tested to correct for the simulated eye movements.

4.3.1 Conventional registration

This section presents the registration results using SimpleElastix. Tables 4.3 and 4.4 show

the results for both the Euclidean distance and Dice score, respectively, for four different versions

of parameters using the SimpleElastix registration, shown in Table 3.4. The test set used for

the SimpleElastix is the same test set used to test the deep-learning trained models (10% of the

OCT volumes acquired with movement artefacts), in the next Section. Using the same data set

allowed to make comparisons between the results obtained. Since the results do not follow a

normal distribution, the statistical measures used to evaluate the metrics were the median and
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Table 4.3: Descriptive statistics for Euclidean distance, for the conventional registration algo-
rithm, SimpleElastix, in pixels.

Euclidean Distance

SimpleElastix
Median IQR

v1 0.36 0.16

v2 0.32 0.11

v3 0.59 2.85

v4 0.42 0.51

interquartile range (IQR). To obtain a better visualization of the obtained results, the Euclidean

distance and Dice score box-plots of each the analysed versions are shown in Figures 4.7 and 4.8.

In these Figures, the green lines inside the boxes represents the median value, and the bullet

points represent outliers.

Figure 4.7: Box-plot representation for Euclidean distance, for the conventional registration
algorithm, SimpleElastix.

Figure 4.8: Box-plot representation for Dice score, for the conventional registration algorithm,
SimpleElastix.
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Table 4.4: Descriptive statistics for Dice score for the conventional registration algorithm, Sim-
pleElastix, in pixels.

Dice Score

SimpleElastix
Median IQR

v1 0.9924 0.0019

v2 0.9924 0.0018

v3 0.9891 0.0071

v4 0.9901 0.0039

Regarding the Euclidean distance, the best results occur for version 2. Although the median

values can be considered similar for all the different versions, the interquartile interval present

the smallest value for version 2. This means that the distribution of results is more stable than in

the other versions. When analysing the box-plot, in Figure 4.7, version 2 also presents the best

representation of results. This representation shows that version 3 is clearly the worst version,

with a wide range of results.

The Dice score median results are also very similar between the different versions, moreover,

for version 1 and 2 the median is the same. Therefore, the best version was determined analysing

the interquartile interval, which has the smallest value for version 2. The box-plot representation,

in Figure 4.8, validates the conclusions made before. The results from version 1 and 2 are very

similar, however version 2 has less outliers, and therefore is considered the best version.

In Figures 4.9, 4.10 and 4.11, some examples of the registered scans using SimpleElastix are

shown. Each Figure has, on the left, the fast axis B-scan, on the center, the uncorrected slow

axis B-scan, and on the right the registered slow axis B-scan. There is one example for each

type of movement present in the data set. Only the results from version 2 are shown, since this

is the best version.

Figure 4.9 shows the registration output for a volume that was acquired with the movement

pattern, described in Section 3.2.2, during the whole acquisition time. For this type of artefact,

the artefacts are mostly corrected, visually the B-scan only present a slight artefact, represented

with the red arrow. However, it is clear, when comparing to the fast axis B-scan, that the

registered B-scan loses the curvature of the retinal layers.

Figure 4.10 shows the registration output for a volume that was acquired with the movement

pattern, described in Section 3.2.2, but as opposed to what happened in the previous Figure,

the movements only start after the beginning of the acquisition. In the registered B-scan there
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Figure 4.9: SimpleElastix output, from a volume acquired with the movement pattern - fast axis
B-scan (left), unregistered slow axis B-scan (center), registered slow axis B-scan (right).

are still some visible artefacts that were not totally corrected. These artefacts appear to be

microsaccades, since it occurs twice in the B-scan, represented with red arrows, and it is a short

duration artefact. Therefore, for this type of movement the registration was not as successful as

it was for the previous movements, and these volumes can be considered as the most challenging

volumes to correct.

Figure 4.10: SimpleElastix output, from a volume acquired with the movement pattern after
the acquisition starts - fast axis B-scan (left), unregistered slow axis B-scan (center), registered
slow axis B-scan (right).

At last, Figure 4.11 shows the registration results for a volume acquired with repetitive

movements, as described in Section 3.2.2. In this registered B-scan, the artefacts seem to have

been attenuated in amplitude, however, there are still some artefacts visible. This means that

the registration is not as successful as it was for the first type of movements. Despite this, the

artefacts are reduced, in terms of amplitude, in a significant way.
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Figure 4.11: SimpleElastix output, from a volume acquired with repetitive movements - fast
axis B-scan (left), unregistered slow axis B-scan (center), registered slow axis B-scan (right).

4.3.2 Deep-learning registration

This section outlines the different results based on the deep-learning algorithm developed by

Ntatis et al. [48]. First, different data sets were used for training the the algorithm which led to

different trained models and, therefore, different registration results.

Table 4.5 shows the Euclidean distance for the five different versions obtained using the data-

centric approach (see Section 3.3.3), followed by Table 4.6, which shows the Dice score results

for the same trained models. As happened in the previous Section (Section 4.3.1), these results

do not follow a normal distribution, and therefore the statistics analysed were the median and

interquartile range (IQR). In Figures 4.12 and 4.13 there is a box-plot representation. The green

line represented in each box is the median, and the bullet points are outliers.

Table 4.5: Descriptive statistics for Euclidean distance, using the data-centric approach, in
pixels.

Euclidean Distance

Models
Median IQR

Data set v1 4.59 0.25

Data set v2 4.65 0.28

Data set v3 5.08 1.98

Data set v4 4.54 0.04

Data set v5 1.77 1.67
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Table 4.6: Descriptive statistics for Dice score, using the data-centric approach, in pixels.

Dice Score

Models
Median IQR

Data set v1 0.9815 0.0100

Data set v2 0.9845 0.0159

Data set v3 0.9774 0.0042

Data set v4 0.9904 0.0083

Data set v5 0.9735 0.0094

Figure 4.12: Box-plot representation for Euclidean distance, using the data-centric approach.

Figure 4.13: Box-plot representation for Dice score, using the data-centric approach.

On a first analysis of Table 4.5, the best version is Data set 5, where the minimum value for

the Euclidean distance is significantly lower than the other results. However, when analysing

Table 4.6, with the Dice score results, Data set 5 presents the worst results. Due to the dis-

crepancy between the two metrics, and the substantial difference in the Euclidean distance for

Data set 5, the registration volumes were observed. In Figure 4.14, it is possible to see that the
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registered B-scan, from Data set 5, has all the artefacts, which means that the correction was

not done properly in this version. The registered B-scan was overlapped with a reference B-scan

(represented in red).

The training and validation curves from Data set 5, represented in Figure 4.15, show that

the training did not happened. The metric used to evaluate learning in this algorithm is a loss

function, and therefore the goal is to minimize the loss function over the training. In Data set

5, that does not happen, which implies that there was no model training and, therefore, the

results obtained with Data set 5 are not valid. The reason behind this is not due to the loading

strategy, which is the same as Data set 4, where it did not produce errors. The hypothesis behind

this result is that the extreme movements, introduced in the training data set of Data set 5,

degrades the registration. When analysing the training plot from Data set 3, where the data

set also contained extreme movements, (see Figure 4.25), the training curve does not present

the expected tendency. Therefore, the inclusion of extreme movements in the training data set

of the motion correction algorithm may deteriorate the registration results. After excluding the

results from Data set 5, there was the need to evaluate the remaining four versions, regarding

the data-centric approach.

Figure 4.14: Original B-scan, with artefacts compared with a registered B-scan, from Data set
5.

When analysing the median results for the remaining 4 versions (Data set 1-4), the best

result, for the Euclidean distance and Dice score, is Data set 4. For the Euclidean distance,
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Figure 4.15: Training and validation curve of Data set 5.

this version also has the the smallest interquartile interval, which shows the small variability of

results. For the Dice score, although the interquartile interval is not the smallest for Data set

4, the median result is the best of the remaining models.

In the box-plot representations, in Figures 4.12 and 4.13, as expected from the results, Data

set 4 has the best results for the Euclidean distance. In the representation, this version has the

smallest distribution of results, as expected. For the Dice score, Data set 4 has the best median

result, although this version has a bigger interquartile interval. Analysing both metrics, from

the different registration versions, Data set 4 is the best registration model, consequently, this

is the data set used in the model training for the parameter optimization, in the next step of

this project.

Figures 4.16, 4.17 and 4.18 present the visualization of the registration results for the four

versions obtained with the data-centric approach. Each Figure is from one different type of

movement present in the data set. The registered B-scans have a static B-scan, a reference

image (represented in red), overlapped, in order to perform better comparisons of the obtained

results. There are no major differences between the three type of movements analysed. For all

the different movements, the registered B-scan from Data set 4 is the scan which showed the

best registration results. In this version, the retinal layers from the registered scan are almost

perfectly aligned with the reference retinal layers, and the motion artefacts are removed. All

B-scans shown are slow axis B-scans.
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Figure 4.16: Registration results for a volume acquired with the movement pattern, for the four
different versions of data set trained models, using different data sets.

Figure 4.17: Registration results for a volume acquired with the movement pattern, that starts
after the start of the acquisition, for the four different versions of data set trained models, using
different data sets.
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Figure 4.18: Registration results for a volume acquired with repetitive movements, for the four
different versions of data set trained models, using different data sets.

The second approach (model-centric) used was based on parameter optimization. This ap-

proach was used to understand if different parameters would lead to better registration results.

The different parameters used are shown in Table 3.6. Table 4.7 shows the Euclidean distance

for the four different versions analysed, followed by Table 4.8, which shows the Dice score results

for the same trained models. The respective box-plot representations are shown in Figures 4.19

and 4.20.

Table 4.7: Descriptive statistics for Euclidean distance, using the parameter optimization ap-
proach, in pixels.

Euclidean Distance

Models
Median IQR

Parametrization v1 6.75 3.36

Parametrization v2 4.82 1.00

Parametrization v3 4.39 0.04

Parametrization v4 4.22 0.27
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Table 4.8: Descriptive statistics for Dice score, using the parameter optimization approach, in
pixels.

Dice Score

Models
Median IQR

Parametrization v1 0.9735 0.0037

Parametrization v2 0.9778 0.0078

Parametrization v3 0.9881 0.0081

Parametrization v4 0.9890 0.0048

Figure 4.19: Box-plot representation for Euclidean distance, using the model-centric approach.

Figure 4.20: Box-plot representation for Dice score, using the model-centric approach.

The results from Parametrization 1 are, significantly, worse, when compared to the results

from the data-centric approach, and therefore did not present any improvement on the results

obtained. When analysing the remaining versions, Parametrization 2 has worse results than
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Parametrization 3 and 4. These last two versions do not present major differences. For the

Euclidean distance, the median is better for Parametrization 4, however, the interquartile in-

terval is bigger for this version. When analysing the results from the Dice score, specially the

visualization, in Figure 4.20, there are hardly any differences between this versions. The trained

model from Parametrization 4 was selected as the best for the smaller interquartile interval for

the Euclidean distance.

The Figures 4.21, 4.22, and 4.23 show the registration results for the four different versions

analysed. There is one example B-scan for each of the three different movements present in the

data set used. Volumes where the movement starts after the start of the acquisition (Figure

4.22) proved to be more difficult to correct. The registered B-scans (represented in a gray scale)

are overlapped with a static B-scan (represented in red). As expected from the metric results, for

all the different type of movements, Parametrization 1 and 2 had the worst registration results.

These versions correct some movement artefacts, however the retinal layers suffer deformation in

these versions. Analysing the results from Parametrization 3 and 4, the results seem better for

Parametrization 3. In this version, not only the artefacts are corrected, but the correspondence

between the registered B-scan and static scan is the best from all the analysed versions.

Figure 4.21: Registration results for a volume acquired with the movement pattern, for the
four different versions of parametrization models, using different parameters when training the
algorithm.
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Figure 4.22: Registration results for a volume acquired with the movement pattern, that starts
after the start of the acquisition, for the four different versions of parametrization models, using
different parameters when training the algorithm.

Figure 4.23: Registration results for a volume acquired with repetitive movements, for the
four different versions of parametrization models, using different parameters when training the
algorithm.

When comparing the best version from the data-centric approach (Data set 4) with the best
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version from the model-centric approach (Parametrization 3), the last presents better results

for the Euclidean distance, however for the Dice score, Data set 4 has better results, although

the difference between results is small. As a conclusion, the best trained model was obtained

with the Data set 4 and Parametrization 3. This trained model was the model used to obtain

the next registered B-scans, Figure 4.24, where there is a fast axis B-scan (artefact-free) and

a comparison, for each type of movement, between the initial B-scan, with artefacts and the

registered B-scan, output of the trained model.
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Figure 4.24: Registration results, for the best trained model, for the three different types of
movements - (a) Fast axis B-scan, (b) Original (uncorrected) slow axis B-scan, (c) Registered
slow axis B-scan.

In general, all the different types of movements show reasonable results for the best registra-

tion model. The left images represent the fast axis B-scan for all the volumes analysed. The two

right images show the slow axis B-scans (before and after the registration) from the volumes,

from top to bottom, acquired with the movement pattern, acquired with the movement pattern

starting after the start of the acquisition and acquired with repetitive movements. For these

registered B-scans, the volumes also maintain the layer structure.

The learning and validation curves for the nine different models trained are presented in

Figure 4.25, including Data set 5, which was previously discussed. The training curves were

plotted with the same intervals for the mean cross-correlation, expect for Data set 3 (Figure

4.25 (c)) and Data set 5 (Figure 4.25 (e)), which had training curves with values out of the

normal interval for the other trained models.

The best trained model, with Data set 4 and Parametrization 3, has its training curves

represented in Figure 4.25 (h). In this representation, the learning curves show the learning

performance of the algorithm over the training epochs. In this case, the goal is to minimize the

loss function over training. Both training and valid loss curves decrease to a point of stability,

and with a small gap between curves, which indicates a good fit for this trained model.
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(a) (b)

(c) (d)

(e) (f)

Figure 4.25: Training and validation curves for the different trained models - (a) to (e) Data set
1 - 5 and (f) to (i) Parametrization 1 - 4.
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(g) (h)

(i)

Figure 4.25: Training and validation curves for the different trained models - (a) to (e) Data set
1 - 5 and (f) to (i) Parametrization 1 - 4.
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4.3.3 Comparison between registration approaches

The first major difference between the two strategies used was the registration time. Using

SimpleElastix the registration took about 30 minutes per volume, 63.5 hours for all the volumes

registered, whereas the deep-learning algorithm took around 24 hours to perform the model

training, and just a few minutes to run the model for the test set. Furthermore, using the

deep-learning model, the model learns the data in which is trained on, specially important in

optical imaging.

When analysing the results obtained with the two approaches, there are some differences.

The registration results from SimpleElastix depend strongly on the type of movements to be

corrected. Some of the largest amplitude movements, that create larger artefacts, were more

difficult to correct. In addition to that, the curvature of the interfaces was altered by the

registration algorithm.

On the contrary, the registration results from the deep-learning model show no major differ-

ences between the correction of the different types of artefacts, the majority of artefacts present

in the acquired data set are successfully corrected. These registered B-scans also maintain the

curvature of the retinal layers, which did not happen in the results from SimpleElastix, this may

happen as a consequence of the group-wise approach used in the deep-learning algorithm.

Figure 4.26, shows side-by-side a registered B-scan obtained using SimpleElastix (Figure 4.26

(a)) and a registered B-scan using the deep-learning algorithm (Figure 4.26 (b)). The registered

B-scan from SimpleElastix was cropped, in the area analysed in the deep-learning B-scan and

to its dimensions as well. In this B-scan from SimpleElastix it is possible to see some artefacts

which are not corrected, indicated with the red arrow.
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(a) (b)

Figure 4.26: Registered slow axis B-scan - (a) Registered B-scan using SimpleElastix; (b) Reg-
istered B-scan using the deep-learning algorithm.

4.3.4 Application on retinal OCT data

In the last part of the project, the Parametrization 3 model (the best trained model obtained

previously) was re-trained in clinical OCT data. This model was used as pre-train for a model

trained in clinical OCT data.

Table 4.9 shows the cross-correlation values on the clinical OCT test set. The results are

presented for the model trained on clinical OCT test set (1), for the model trained on the

phantom OCT test set (2) and for the model pre-trained on the phantom OCT test set and

trained on the clinical OCT test set (3). This means that the network weights do not start at 0,

as happened in the models without pre-training, the training weights for this model start with

the values calculated for the best model trained in OCT synthetic data.

Analysing Table 4.9, it is possible to see that the algorithm trained in OCT data acquired

with the eye model had the worst performance among the three models. Even though it is the

worst result from the three, the algorithm trained in eye model OCT volumes still corrects part

of the motion artefacts that clinical OCT volumes present. When comparing the metrics results,

the pre-trained model presented better results than the non pre-trained model.
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Table 4.9: Mean cross-correlation results for the different algorithms.

Mean cross-correlation

(1) Algorithm trained in clinical OCT data -0.8079

(2) Algorithm trained in the synthetic OCT data set -0.7167

(3) Algorithm trained in clinical OCT data and pre-trained
-0.8473

in the synthetic OCT data set

Visually there are almost no differences between the three models, as shown in Figure 4.27.

The first B-scan, is a slow axis uncorrected B-scan, followed by the registered B-scan from the

algorithm trained in clinical OCT data, the registered B-scan from the algorithm trained in

the synthetic data set, and at last, the registered B-scan from the algorithm pre-trained in the

synthetic data set and trained in the clinical data set. Although the differences are small, it is

possible to see that the registered B-scan obtained with the model trained in the synthetic data

set (third B-scan) still presents some artefacts, specially visible in the last retinal layer. Between

the registered B-scan from the non-pre trained algorithm (second B-scan) and the registered B-

scan from the pre-trained algorithm (fourth B-scan) the differences are even smaller. There are

small irregularities at the end of the second B-scan, which are corrected in the B-scan from

the pre-trained algorithm. As a conclusion, even though there are just small differences, the

pre-trained algorithm shows improvements when compared to the non pre-trained algorithm.
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Figure 4.27: Registration results for the three different algorithms - from left to right, slow axis
unregistered B-scan, slow axis registered B-scan, for the algorithm trained in clinical OCT data,
slow axis registered B-scan, for the algorithm trained in synthetic data, and slow axis registered
B-scan, for algorithm pre-trained in synthetic data.

69



CHAPTER 4. RESULTS AND DISCUSSION

70



Chapter 5

Conclusions

The correction of motion artefacts is still one of the major challenges in ophthalmic imaging,

namely in OCT. Some of the aspects that make OCT motion correction so difficult are the

lack of a ground truth, the heterogeneity of data sets (due to differences among individual

retinas, but also to hardware/software differences in the commercial devices), and the scarcity

of representative data.

This project aimed to present an automatic approach for OCT intra-volume motion correc-

tion. To that end, an eye phantom was designed and created. The eye model was developed

successfully, with key representative eye structures. This model was then used to acquire OCT

scans. These scans were representative of realistic involuntary eye movements, imitating the

artefacts that can be seen in clinical data. Then, these artificial scans, with known motion

parameters and ground truth, were used to objectively evaluate two state-of-the-art algorithms

for motion correction. Both algorithms were chosen to be intensity-based, in order to keep inde-

pendence from engineered features. One of the algorithms used a conventional image processing,

pair-wise approach, and compared pairs of B-scans on a multi-resolution level. The other algo-

rithm used a group-wise approach, which allowed it to preserve the retinal curvature better. A

limitation of conventional group-wise approaches is the computation time. However, the chosen

algorithm used deep learning to overcome this limitation. Lastly, the deep learning algorithm

was evaluated in clinical OCT data. The results were compared with and without pre-training

in synthetic data, and the results showed that the pre-training improves the registration results.

The work developed during this project tackled some difficulties. During the development

of the eye model, the main challenge was to connect the different parts without obstructing

the acquisition field. This was solved by using an hallow design, with the use of O-rings. In

addition, the eye phantom replicates only three layers in the posterior eye segment, which is
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a much more complex structure. However, the replication of the smallest structures, such as

the retinal layers, was difficult due to the used technique. Some hindrances appeared also after

obtaining the scans from the phantom. The main difficulty was to preprocess the phantom

B-scans in a correct way so that these could resemble retinal OCT images and be used in the

registration algorithms. This was linked to the high contrast the phantom OCT scans presented,

that made the visualization of the different replicated layers harder than anticipated.

When analysing the registration results, both approaches presented a satisfactory result.

Most of the artefacts were corrected, although, it was noticeable through the various registered

B-scans that the artefacts with bigger amplitudes (microsaccades) were the most challenging to

correct. In addition, the volumes where the movement started after the acquisition, also proved

to be the most difficult to correct.

The use of a pre-trained model was able to improve the results previously obtained by

those published in the literature [48]. It is known that pre-training improves results in several

applications, however the importance of pre-training in real data or synthetic is not known.

Therefore, this is a promising result, where the use of synthetic data as pre-training improved

the registration results of clinical data. However, further studies in this approach are needed to

understand the importance of a pre-train in the different data sets.

5.1 Future work

While this was not a limitation for our application, the eye model developed in this work

does not represent all the structures in a real human eye, and could be further improved. Apart

from the structures replicated in this work, the eye vessels could be reproduced in a future work.

This would add an interesting characteristic to the model, since it would allow the simulation

of the eye blood circulation. Additionally, the retinal layers and fovea pit could be reproduced,

improving the similarity between the model and the human eye.

The developed eye model was only used to acquire OCT scans in the OCT system described

in Section 3.2.1. Using the model in several commercial OCT devices would allow comparisons

between devices. Furthermore, it would provide insight of the behaviour of the registration

algorithms when data with different post-processing methods is used.

The results of this work show that the artefacts with bigger amplitudes are harder to correct.

In future works this problem can be addressed using an improved data set, for example using a

larger data set through data augmentation. Besides, different techniques of model optimization
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can be tested to see whether there are improvements in the results or not.

The comparison between a conventional registration algorithm and a deep-learning algo-

rithm, approached in this work, can be further analysed with different data sets. Although this

work shows that both algorithms present a good registration result, it could be interesting to see

the algorithms performance in data sets with pathological images. This could lead to important

conclusions on the behaviour of the algorithms for a bigger range of clinical patients, not only

focused on B-scans from the retinal layers.

Finally, the importance of pre-trained algorithms for image registration is a relatively new

research question. The result from this work shows that there is some improvement when using

a pre-trained model. However, there are some different options that could be further explored.

Future works could focus on the amount of eye phantom data needed to have a positive impact

in OCT registration, the use of larger data sets could improve the final results.
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