

Diogo Gomes Rodrigues

TRACKED AUTONOMOUS VEHICLES MOVING

ON ROUGH TERRAIN

DYNAMIC DRIVE ADJUSTMENT

Dissertação no âmbito do Mestrado Integrado em Engenharia Mecânica na área

de Produção e Projeto, orientada pelo Professor Doutor Carlos Xavier Pais Viegas,

coorientada pelo Professor Doutor Pedro Mariano Simões Neto e apresentada ao

Departamento de Engenharia Mecânica da Faculdade de Ciências e Tecnologia da

Universidade de Coimbra.

September 2022

ii

Tracked Autonomous Vehicles Moving on

Rough Terrain - Dynamic Drive Adjustment

Submitted in Partial Fulfilment of the Requirements for the Degree of Master
in Mechanical Engineering in the speciality of Production and Project

Veículos Autónomos com Lagartas a Operar em

Terrenos Acidentados - Ajuste Dinâmico do Perfil

de Tração e Locomoção

Author

Diogo Gomes Rodrigues

Advisor[s]

Carlos Xavier Pais Viegas
Pedro Mariano Simões Neto

Jury

President
Professor Doctor Miguel Rosa Oliveira Panão
Professor Auxiliar da Universidade de Coimbra

Vowels

Professor Doctor Nuno Miguel Fonseca Ferreira
Professor Coordenador com Agregação do Politécnico de
Coimbra
Professor Doctor Ricardo Nuno Madeira Soares Branco
Professor Auxiliar da Universidade de Coimbra

Advisor
Professor Doctor Carlos Xavier Pais Viegas
Professor Auxiliar Convidado da Universidade de Coimbra

Coimbra, September 2022

ii

Diogo Gomes Rodrigues i

To my parents, Manuel and Margarida.

To my brother, Fábio.

To my family.

To my friends.

Diogo Gomes Rodrigues i

ACKNOWLEDGEMENTS

The completion of this dissertation would not have been possible without the support

of all those who have followed me over the years. To all of them, the greatest gratitude.

I would like to thank my advisors, Professor Doctor Carlos Viegas and Professor

Doctor Pedro Neto, for the support given, the availability to help and their teachings.

I would also like to thank Tiago Gameiro and Tiago Pereira who contributed to the

increase of my knowledge and the realization of the dissertation and also for the availability

they showed from the beginning of the project to the end in helping. Thanks also to Diogo

Valério who showed willingness to help whenever necessary.

I would like to thank my parents and my brother for all the support given to me over

these five years and for always believing in me and encouraging me to move forward, thus

achieving my goals, for all the advice they gave me and for always believing in me.

To conclude, I would also like to thank all my friends who have always supported me

along the journey, with a special thanks to my friend Rita Pinto who helped me a lot to

overcome less good moments and has always supported me throughout the years.

Tracked Autonomous Vehicles Moving on Rough Terrain

ii 2022

 Abstract

Diogo Gomes Rodrigues iii

Abstract

Forest cleaning is of great importance in fighting forest fires, because in addition to

removing fuel for fires, it makes access to land easier for fighting possible fires. Being

uncontrolled fires of great danger to humans, it is necessary to find ways to prevent them

from happening. For this there are fuel management strips along roads, high voltage lines,

around housing clusters and other infrastructure at the urban forestry interface. A major

problem in carrying out forest cleanings is the lack of manpower to allow the cleaning of all

land and places defined as places of high danger for society in the event of fire before the

start of the fire season. With technological developments, the problem of lack of manpower

can be compensated, by using autonomous vehicles, capable of carrying out forest cleanings

and adapting to the terrain.

This work consists of the development of a control algorithm to implement in an

autonomous robot moving in rough terrains. Its objective is the development of an algorithm

capable of detecting deviations in the robot’s trajectory and correcting them, and an

algorithm that allows real-time knowledge of the robot’s yaw value.

This work was developed in virtual environments, using Robot Operating Systems

(ROS) and Python programming language.

Initially, the work consisted of determining the robot’s yaw value and reading this

same value to know the robot’s orientation at each instant. The next step consisted of the

development of an algorithm that, by reading the robot’s orientation data, would correct the

robot’s trajectory so that its movement would be rectilinear, suffering only small deviations,

immediately compensated. Finally, tests were carried out in virtual environments to validate

the work developed. The tests allowed to conclude the best angular velocity of the robot

whenever it was necessary to correct its trajectory, and to obtain the best approximation of

the robot’s orientation data due to the noise caused by the sensors. It also allowed to verify

the trajectory performed by the robot in different virtual environments, comparing the

behavior of the robot with the use of the developed control and the non-use, verifying its

operation.

Tracked Autonomous Vehicles Moving on Rough Terrain

iv 2022

Keywords: Forest Fires, Tracked Autonomous Vehicles, Robot Operating Systems
(ROS), Traction Control, Rough Terrains.

 Contents

Diogo Gomes Rodrigues v

Resumo

A limpeza florestal é muito importante no combate a incêndios florestais, além de

remover combustível para os incêndios, torna o acesso aos terrenos mais fácil para o combate

de eventuais incêndios. Sendo os incêndios não controlados de grande perigo para o ser

humano, é necessário arranjar formas de prevenir que estes aconteçam. Para isso existem

faixas de gestão de combustível ao longo das estradas, linhas de alta tensão, em torno de

aglomerados habitacionais e outras infraestruturas na interface urbano florestal. Um grande

problema na realização das limpezas florestais é a falta de mão de obra, não permitindo a

limpeza de todos os terrenos e locais definidos como locais de alto perigo para a sociedade

em caso de incêndio, antes do início da época de incêndios. Com a evolução tecnológica,

pode compensar-se o problema da falta de mão de obra, recorrendo a veículos autónomos

capazes de realizar limpezas florestais e de se adaptarem ao terreno.

Este trabalho consiste no desenvolvimento de um algoritmo de controlo para

implementar num robô autónomo a mover-se em terrenos acidentados. Tem como objetivo

o desenvolvimento de um algoritmo capaz de detetar desvios na trajetória do robô e fazer a

sua correção e de um algoritmo que permite o saber em tempo real o valor do yaw do robô.

Este trabalho foi desenvolvido em ambiente virtuais, utilizando Robot Operating

System (ROS), a linguagem de programação Python.

Inicialmente, o trabalho consistiu na determinação do valor de yaw do robô e leitura

desse mesmo valor de modo a conhecer a orientação do robô em cada instante. O passo

seguinte consistiu no desenvolvimento de um algoritmo que através da leitura dos dados da

orientação do robô, corrigiria a trajetória do robô de modo que o movimento deste fosse

retilíneo, sofrendo apenas pequenos desvios, imediatamente compensados. Por fim foram

realizados testes em ambientes virtuais de modo a validar o trabalho desenvolvido. Os testes

permitiram concluir a melhor velocidade angular do robô sempre que era necessário corrigir

a sua trajetória, obter a melhor aproximação dos dados da orientação do robô devido ao ruído

dos sensores. Permitiram também verificar a trajetória realizada pelo robô em diferentes

ambientes virtuais, comparando o comportamento do robô com a utilização do controlo e a

não utilização do controlo desenvolvido, verificando o seu funcionamento.

Tracked Autonomous Vehicles Moving on Rough Terrain

vi 2022

Palavras-chave: Incêndios Florestais, Veículos Autónomos de Lagartas, Robot
Operating Systems (ROS), Controlo de Tração, Terrenos
Acidentados.

 Contents

Diogo Gomes Rodrigues vii

Contents

LIST OF FIGURES .. ix

LIST OF TABLES ... xi

LIST OF SYMBOLS AND ACRONYMS/ ABBREVIATIONS xiii

List of Symbols ... xiii
Acronyms/Abbreviations .. xiii

1. INTRODUCTION ... 1
1.1. Motivation ... 1
1.2. Objectives ... 2

1.3. Outline .. 2

2. STATE OF THE ART ... 5
2.1. Tracked vehicles ... 5

2.1.1. Howe & Howe ... 5
2.1.2. Vallfirest .. 5
2.1.3. McConnel .. 6
2.1.4. Bermarthor ... 7

2.1.5. Green Climber ... 8
2.1.6. Comparison between robots .. 9

2.2. Sensors .. 9
2.2.1. RTK GPS ... 9
2.2.2. LiDAR ... 10

2.2.3. Traversability maps ... 11

2.3. Autonomous dynamic drive in rough terrain .. 12

3. METHODOLOGY .. 19
3.1. Ubuntu .. 19

3.1.1. Robot Operating System (ROS) .. 19
3.2. Robot Orientation ... 23

3.2.1. Quaternions .. 23
3.2.2. Euler angles ... 24

3.3. Swift Navigation ... 25
3.3.1. Skylark™ ... 25
3.3.2. Starling® ... 26
3.3.3. Duro Inertial .. 27

4. WORK DEVELOPMENT .. 31
4.1. ROS Topics ... 31
4.2. Operating Mode of the Control Code ... 34

4.3. Calculation of expected final position .. 37
4.3.1. Line equation ... 37
4.3.2. Calculate the final coordinates .. 38

5. VIRTUAL SIMULATIONS AND RESULTS ... 41
5.1. Realized tests .. 41

5.1.1. Angular velocity .. 41
5.1.2. Yaw approximation ... 42
5.1.3. Empty world .. 42

Tracked Autonomous Vehicles Moving on Rough Terrain

viii 2022

5.1.4. Agriculture world .. 42

5.1.5. Inspection world .. 43
5.2. Results .. 45

5.2.1. Angular velocity .. 45
5.2.2. Yaw approximation ... 46
5.2.3. Empty world .. 48

5.2.4. Agriculture world .. 49
5.2.5. Inspection world .. 50

6. CONCLUSIONS ... 53
6.1. Future Work .. 54

7. BIBLIOGRAPHY ... 55

ANNEX A ... 57

ANNEX B ... 59

ANNEX C ... 63

ANNEX D ... 65

 LIST OF FIGURES

Diogo Gomes Rodrigues ix

LIST OF FIGURES

Figure 2.1 - Thermite RS1. Adapted from [2] ... 5

Figure 2.2 - VF Dronster work gradient. Adapted from [3] .. 6

Figure 2.3 - VF Dronster. Adapted from [3] ... 6

Figure 2.4 - ROBOCUT2 RC40. Adapted from [4] .. 7

Figure 2.5 - E-TRAIL. Adapted from[5] ... 7

Figure 2.6 - Green Climber LV400. Adapted from [6] ... 8

Figure 2.7 - RTK GPS. Adapted from [8] ... 10

Figure 2.8 – LiDAR. Adapted from [10] ... 11

Figure 2.9 - Bayesian fusion. Adapted from [11] .. 12

Figure 2.10 - Path tracking results on grass and gravel. Adapted from [12] 13

Figure 2.11 - Vehicle following a desired circular path. Adapted from [13] 14

Figure 2.12 - Scheme of the robotic tracked vehicle uncontrolled movement prevention

system. Adapted from [14] .. 15

Figure 2.13 - Simulation results. Adapted from [14] .. 15

Figure 2.14 - Block diagram representation of the proposed planner. Adapted from [15] . 16

Figure 2.15 - Flow chart showing the working of the proposed planning algorithm.

Adapted from [15] ... 17

Figure 2.16 - Work of the system. Adapted from [15] .. 18

Figure 2.17 – Terrain topography map showing the 3D path followed by the robot under

both the planners over the experimental setup. Adapted from [15] 18

Figure 3.1 - a) Inspection world; b) Agriculture world; c) Empty world 21

Figure 3.2 - a) Turtlebot3, model “waffle_pi”; b) Husky robot .. 21

Figure 3.3 - ROS topics ... 22

Figure 3.4 – Some of Rviz’s available sensors. ... 22

Figure 3.5 - Data demonstration on map. .. 23

Figure 3.6 - Quaternions representation. Adapted from [28]. ... 24

Figure 3.7 - Roll, pitch, and yaw axes. Adapted from [29]. .. 25

Figure 3.8 - Swift Navigation ecosystem. Adapted from [19] .. 25

Figure 3.9 - Skylark™ network. Adapted from [20] ... 26

Figure 3.10 - Flow chart of Starling®. Adapted from[22] .. 27

Figure 3.11 - Duro Inertial. Adapted from [23] ... 27

Tracked Autonomous Vehicles Moving on Rough Terrain

x 2022

Figure 3.12 - Duro Inertial system architecture. Adapted from[24] 28

Figure 3.13 - Swift Console Magnetometer window. Adapted from[25] 29

Figure 3.14 - Swift Console Velocity window. Adapted from[25] 29

Figure 4.1 - ROS topic "imu/data" data. The presented values serve as a mere example. . 32

Figure 4.2 – ROS topic "cmd_vel" data. The presented values serve as mere examples. ... 32

Figure 4.3 - Importing library, data, and functions to code. ... 33

Figure 4.4 – Approximate small variations to the initial yaw. .. 33

Figure 4.5 - Deviation (x) calculation ... 35

Figure 4.6 – Expected robot movement while the code is running, and a deviation is

detected. .. 36

Figure 4.7 - Robot frame. .. 37

Figure 5.1 - Approximately initial position of the robot in each test of location 2. 43

Figure 5.2 - Approximately initial position of the robot in each test of location 3. 44

Figure 5.3 - Approximately initial position of the robot in each test of location 4. 44

Figure 5.4 - Robot's trajectory considering the variation of the angular velocity. 46

Figure 5.5 - Robot's trajectory considering the approximation of the yaw values. 47

Figure 5.6 - Deviation of the robot after approximately 50 meters. 49

Figure 5.7 - Deviation of the robot after the movement, at location 2. 50

Figure 5.8 - Zoom of the final position of the robot, at location 2. 50

Figure 5.9 - Deviation of the robot after the movement, at location 3. 52

Figure 5.10 - Deviation of the robot after the movement, at location 4. 52

Figure 5.11 - Zoom of the final position of the robot, at location 3. 52

Figure 5.12 - Zoom of the final position of the robot, at location 4. 52

 LIST OF TABLES

Diogo Gomes Rodrigues xi

LIST OF TABLES

Table 1 - Comparison between robots ... 9

Table 2 - Average initial robot position for each realized test, at location 1....................... 42

Table 3 - Medium initial position of the robot for each realized test in agriculture world, at

location 2. .. 43

Table 4 - Medium initial position of the robot for each realized test, in the inspection

world, at location 3. ... 45

Table 5 - Medium initial position of the robot for each realized test in the inspection world,

at location 4. .. 45

Table 6 – Average final robot position for each realized test, at location 1. 48

Table 7 - Average final robot position for each realized test, at location 2......................... 50

Table 8 - Average final robot position for each realized test, at location 3......................... 51

Table 9 - Average final robot position for each realized test, at location 4......................... 51

Tracked Autonomous Vehicles Moving on Rough Terrain

xii 2022

LIST OF SYMBOLS AND ACRONYMS/ ABBREVIATIONS

Diogo Gomes Rodrigues xiii

LIST OF SYMBOLS AND ACRONYMS/ ABBREVIATIONS

List of Symbols

ϕ – Roll

ϴ – Pitch

Ψ – Yaw

Acronyms/Abbreviations

ADRC – Active Disturbance Rejection Controller

ANP – Associação Natureza Portugal

CAN – Controller Area Network

FoV – Field of View

GNSS – Global Navigation Satellite System

GPS – Global Positioning System

IMU – Inertial Measurement Unit

INS – Inertial Navigation Solution

LiDAR – Light Detection and Ranging

PID – Proportional Integral Derivative

RTK – Real-Time Kinematic

ROS – Robot Operating System

WWF – World Wide Fund for Nature

Tracked Autonomous Vehicles Moving on Rough Terrain

xiv 2022

 INTRODUCTION

Diogo Gomes Rodrigues 1

1. INTRODUCTION

The use and development of tools are part of the evolution of the human being, that

always worked to use more and better tools for every type of work, making it easier to do.

Fire always threatened human lives, and because of that it was necessary to have some

control over it, but wildfires still represent a huge threat to humans, animals, and every kind

of life because it is impossible to have full control over it, so it is important to have something

that helps avoid wildfires or, in case that happens, that allows better control over those. One

way to have some type of control over it starts with forest cleaning. In the beginning human

beings created tools to facilitate that job that had evolved to be easier to use and more

effectives. The use of vehicles such as trucks, airplanes and helicopters increased the

effectiveness of firefighting, but the loss of lives is inevitable and continues to happen, to

combat this problem it is necessary to increase the use of unmanned vehicles.

Unmanned vehicles allow more effective cleanings of forests and firefighting, safer

and without danger to human lives. These vehicles can move autonomously and adapt to the

type of terrain, allowing a more effective forest cleaning that reduce which risk of forest

fires.

1.1. Motivation

The evolution of technology makes it possible to build or improve tools to make tasks

easier and more effective. The use of autonomous vehicles is growing and brings benefits to

society.

Forest cleaning is very important not only in extinguishing, but also in controlling

forest fires because in addition to removing fire fuel, facilitates firefighting by improving

the access to the forest zones, but the lack of manpower makes it impossible to realize the

cleaning in useful time before the beginning of fire season. There are several cleaning lanes

along roads, high voltage lines, around housing clusters, and other infrastructures at the

forest urban interface but, once again, it is not possible to accomplish this goal because of

the lack of manpower.

Tracked Autonomous Vehicles Moving on Rough Terrain

2 2022

According to a report of 2020 from ANP (Associação Natureza Portugal) in

association with WWF (World Wide Fund for Nature) [1] in the last 30 years, Portugal is

the country with more hectares burned and is the first country in Europe and the fourth in

the world to have lost the largest forest mass since the beginning of XXI century, largely due

to the wildfires that ravage the country every summer. “If we continue with this dynamic,

fires, especially those that affect the rural-urban interface area, will increasingly put people’s

lives at serious risk”. In Europe, Portugal and Spain could become vulnerable to super fires.

That being said, it is very important and beneficial to develop and use autonomous

vehicles, without the need for human monitoring, thus compensating for the lack of

manpower, but to make this possible, autonomous vehicles must be able to automatically

adapt to the terrain they travel on. It is necessary to develop a system of automatic dynamic

drive adjustment to allow the vehicle to overcome the difficulties imposed by rough terrains

and move autonomously with the capacity to maintain the course, regardless of the slope and

type of terrain.

1.2. Objectives

The goal of this thesis work is to develop a generic traction control algorithm for

tracked autonomous vehicles moving on rough terrain. For this, it will be used a tracked

vehicle equipped with several sensors and controllers. The algorithm should be able to:

• Be implemented in any type of tracked or differential drive vehicle;

• Adjust in real time the traction control of the vehicle to improve its movement

as a function of the type and configuration of the terrain;

• Keep a straight line movement, even in rough terrain conditions;

1.3. Outline

This dissertation is divided into seven chapters.

The first chapter is the introduction to the theme of this dissertation and the exposition

of the existing problem that inspired this dissertation.

The second chapter is the state of the art that consists of the research about the existing

robots and articles information about research already done by other authors. This chapter is

 INTRODUCTION

Diogo Gomes Rodrigues 3

divided into three sub-chapters. The first one is a comparison of the tracked vehicles existing

on the market, the second one is about the sensors used and the third one is about the research

on the autonomous dynamic drive in rough terrain.

In the third chapter the methodology is presented. This chapter is divided in three sub-

chapters, the first one about Ubuntu and its functionalities, the second one about Swift

Navigation and its services and the third one is about the robot’s orientation.

The fourth chapter is the work development and is divided into three sub-chapters, the

first one is about the ROS topics and the data provided by them. The second one is about the

operating mode of the control and explains how the control works and the last one is about

the location of the robot, and how it can be determined.

The fifth chapter is divided into two sub-chapters, the first one is about the realized

tests and the environments where the tests were realized and the conditions of each test, and

the second sub-chapter is about the results obtained in each test.

The sixth chapter is the conclusion and relates if the main objectives were

accomplished or not and gives a summary of the approach used during all the work. The sub-

chapter is about the future work that can be made.

Tracked Autonomous Vehicles Moving on Rough Terrain

4 2022

 METHODOLOGY

Diogo Gomes Rodrigues 5

2. STATE OF THE ART

Tracked vehicles are special vehicles designed to move on rough terrain. The use of

tracks augments the contact area with the ground, thus providing an increased, amount of

traction, while reducing the pressure on the ground surface, making it easier for heavy

vehicles to move on soft grounds.

Since the appearance of the first tracked vehicle for agricultural purposes, these have

constantly evolved and today there are tracked vehicles for civilian use or even tracked

autonomous vehicles for forest cleaning or cargo transportation.

This chapter will make an overview of existing unmanned tracked vehicles for forestry

applications. It will then dwell on the sensors used in autonomous vehicles and the

mathematic models used for vehicle control.

2.1. Tracked vehicles

2.1.1. Howe & Howe

Howe & Howe it’s the company that builds tracked vehicles for defense, that requires

a pilot and for civilian use that can be driven by people, as in the case of the Ripsaw F4, or

remote controlled, like the Thermit series of the company.

The Thermite series robots are firefighters’ robots operated by remote belly-pack

controllers and are one of the most capable, durable firefighting robots on the market. The

pilot has access to a real-time video feed, so he can control the robot at a large distance,

enabling its function in extreme conditions without endangering human lives.

Figure 2.1 - Thermite RS1. Adapted from [2]

2.1.2. Vallfirest

Vallfirest is a reference company in the manufacturing of equipment, tools, and

solutions to fight and prevent forest fires. One of the pieces of equipment manufactured by

Tracked Autonomous Vehicles Moving on Rough Terrain

6 2022

them is the VF Dronster, a multipurpose remote-controlled robot, capable of being controlled

up to a distance of 25 meters.

The VF Dronster operates with a 3-cylinder motor with 24,5kW of power and can

work on rough terrains with slopes up until 40 degrees, going up or down, and 30 degrees

going sideways, as shown in figure 2.4.

Figure 2.2 - VF Dronster work gradient. Adapted from [3]

Due to its narrow structure, the VF Dronster can move easily on the terrain, managing

to pass through spaces of 90cm between trees. It can also be equipped with several

attachments that can be used by the operated in case of need.

Figure 2.3 - VF Dronster. Adapted from [3]

2.1.3. McConnel

This United Kingdom company builds a huge amount of types of equipment, including

power arms, remote control technology, rotary and flail mowers, arable machinery, sprayers

and spreaders, pasture and livestock. The remote control technology encompasses several

 METHODOLOGY

Diogo Gomes Rodrigues 7

cut robots, with different dimensions, capacities and sizes, and all can be operated remotely

from a distance up to 150 meters.

One of their robots is the ROBOCUT2 RC40 which operates with a 3 cylinder motor

and 27,5kW of power, and can work on rough terrains with slopes up until 40 degrees, with

the standard tracks, but can be added special tracks with spikes that allow the robot to work

on slopes up until 55 degrees. The ROBOCUT2 RC40 can be seen in figure 2.6.

Figure 2.4 - ROBOCUT2 RC40. Adapted from [4]

2.1.4. Bermarthor

Bermarthor is a company that manufactures, commercializes and repairs all kind of

agricultural and forestry cleaning machines.

This company manufactures the E-TRAIL, which is a 2-speed diesel engine with

approximately 29,8kW that can be operated by remote control up to 150m and can work on

slops with 55 degrees in every direction. The E-TRAIL by Bermarthor can be seen in figure

2.7.

Figure 2.5 - E-TRAIL. Adapted from[5]

Tracked Autonomous Vehicles Moving on Rough Terrain

8 2022

2.1.5. Green Climber

 The company Green Climber builds remoted control slope mowers that can handle

the most difficult tasks. The slope mowers can work on rough terrains with slopes up to 56

degrees and can be operated by remote control from 150m. In this thesis, will be used the

robot LV400 Pro from Green Climber.

The LV400 Pro operates with a 3 cylinders motor with 26,9kW of power and has a

work gradient of 56 degrees at the maximum width and has the dimensions shown in figure

2.6.

Figure 2.6 - Green Climber LV400. Adapted from [6]

 METHODOLOGY

Diogo Gomes Rodrigues 9

2.1.6. Comparison between robots

Table 1 - Comparison between robots

Company Model
Length
[mm]

Width
[mm]

Height
[mm]

Motor
Power
[kW]

Remote
control
Range

[m]

Weight
[kg]

Work
Gradient

[˚]

Howe&Howe
Thermite

RS1
1962 1118 1625

3 cylinder
Diesel

18
300-
500

725 -

Vallfirest VF Dronster 1710 887 1023
3 cylinder

Diesel
24,5 25 850

Up to
30/40*

McConnel
ROBOCUT2

RC40
1960 1310 1120

3 cylinder
Diesel

27,5 150 1150
Up to

40/55**

Bermarthor E-TRAIL 1580 1430 1060
4 cylinder

Diesel
29 150 1100 Up to 55

Green
Climber

LV400 Pro 1860 1570 1110
3 cylinder

Diesel
26,9 150 875 Up to 56

*Front/lateral gradient

**Depending on tracks

2.2. Sensors

There are several types of sensors and cameras on the market, that can be installed on

robots to allow their localization and recognition of the terrain, being able to detect the type

of terrain and its characteristics in the way to adapt is locomotion.

2.2.1. RTK GPS

The RTK (Real Time Kinematic) allows error reduction to just a few centimeters,

reducing the GPS (Global Positioning System) error.

As mentioned by Feng & Wang (2008) at [7], “an RTK system consists of a continuous

operating reference station network and data links between a network server and reference

stations and between the server and user-terminal”.

The RTK accuracy is defined as the degree of conformance of an estimated RTK

position at a given time to a defined reference coordinate value, which is obtained from an

independent approach. The availability, in terms of accuracy, is the percentage of the time

Tracked Autonomous Vehicles Moving on Rough Terrain

10 2022

during which the RTK solutions are available at a certain accuracy using the ambiguity-fixed

and ambiguity-float phase measurements. The availability, in terms of ambiguity resolution,

is the percentage of the time, in which position estimation is based on all the phase

measurements whose integers have been correctly fixed at each epoch, assuming all the

ambiguity-fixed solutions will give required accuracy. The RTK integrity relates to the

confidential level that can be placed in the information provided by the RTK system. The

continuity of the RTK is the availability over a certain operational period and conditions. [7]

Figure 2.7 - RTK GPS. Adapted from [8]

2.2.2. LiDAR

LiDAR (Light Detection and Ranging) sensors are very important and are on the rise

due to the need to make vehicles fully autonomous. As described by Roriz et al. (2021) at

[9] “it can measure distances by simply calculating the round-trip time of a laser pulse

travelled to the target and back”.

The detection range values may change due to sunlight interferences and the target’s

surface reflectivity. The transmitted power of the laser is limited by eye safety regulations

and various factors change the calculated value as the laser’s wavelength, beam diameter,

motion, pulse width and repetition rate for pulsed operations. Currently, LiDAR uses two

wavelengths, 905 nm, and 1550 nm, making possible lights spatial resolution on the order

of 0.1 degrees, which allows for extremely high-resolution 3D representation of objects

around the vehicle. The Field of View (FoV) is the angle at which LiDAR signals are emitted

and it must provide both horizontal and vertical FoV to allow a 3D representation of the

vehicle’s surroundings.[9]

 METHODOLOGY

Diogo Gomes Rodrigues 11

Figure 2.8 – LiDAR. Adapted from [10]

2.2.3. Traversability maps

Traversability maps are very useful when autonomous vehicles are moving on rough

terrains. These maps make it possible to distinguish traversable paths from non-traversable

paths. To create a traversability map can be used several sensors and algorithms.

Sock et al. (2016) [11] used 3D-LiDAR and a camera to generate probabilistic

traversability maps. Their approach estimates traversability of the terrain and build a 2D

probabilistic grid map online using 3D-LiDAR and camera. The detection results by LiDAR

and camera needed to be represented in a form which was both simple and intuitive. It is

used the Bayesian fusion to create the maps produced by LiDAR and camera. The

traversability map with camera follows some steps to map probabilistic pixel value to a dense

grid map using spatially sparse LiDAR. Initially it extracts LiDAR points projected to an

image and transform their coordinates to GPS coordinate. The next step is to triangulate the

points with Delaunay triangulation. After that, it assumes each triangle has a single

probability value and then project the triangle’s centroid to the image and map the

corresponding pixel value to a grid map. The traversability map with LiDAR needs to

convert range data to n × n elevation map, interpolate the elevation map to fill the missing

cells and convert the slope feature probabilistic value. Then it is used Bayesian fusion to

produce the complete traversability map, as shown in figure 2.9. [11]

Tracked Autonomous Vehicles Moving on Rough Terrain

12 2022

Figure 2.9 - Bayesian fusion. Adapted from [11]

2.3. Autonomous dynamic drive in rough terrain

There are several autonomous dynamic drive models with different goals that can be

used on autonomous tracked vehicles.

Those models allow autonomous navigation, enabling problem-solving such as

avoiding obstacles and correcting the trajectory so that the robot can reach its goal, without

requiring human intervention.

Bijo & Pinhas (2019) [12] described the use of an active disturbance rejection

controller (ADRC) to estimate and compensate for the effect of slip in an online manner to

improve the path tracking the performance of autonomous ground vehicles. It is used as a

generalized model, of the many proposed over the years to account for the effect of slip in

autonomous ground vehicles. The generic model proposed by them considers the scaling and

shift produced in the robot states as result of a slip. Their model uses an observer EKF

(extended Kalman filter). The low-level controller uses a simple behavior “go-to-goal”, that

guides the robot to the target point from an initial position and orientation.

The experimental validation considered different types of terrain, such as vinyl

flooring, asphalt, artificial turf, and grass and gravel. For the ADRC implementation

encoders were used on both tracks to obtain the forward and angular velocities. It used a

POZYX positioning system, an ultra-wide band positioning system that uses four anchors

placed on the perimeter of the experimental area along with a tag placed on the robot. Path

following trials were conducted to compare the use of ADRC which provides smooth

 METHODOLOGY

Diogo Gomes Rodrigues 13

corrections and the low-level controller alone (PD) that sub-corrects which results in a jerky

motion. Figure 2.10 shows the improvement obtained by using the ADRC over the PD.

Notably, the path done has more accuracy when is used ADRC architecture instead of the

low-level controller alone.

Figure 2.10 - Path tracking results on grass and gravel. Adapted from [12]

Zou et al. (2018) [13] proposed a novel approach to the dynamic modeling and motion

control of tracked vehicles undergoing skid-steering on horizontal, hard terrain, under

nonholonomic constrains. They proposed a motion control methodology, using the back-

stepping method, based on a modified Proportional-Integral-Derivative (PID) computed-

torque controller. To verify the proposed approach were made simulations that resulted in

high accuracy of the motion-control performance.

The authors did the modeling of tracked vehicles regarding the kinematics, the

nonholonomic constraints of tracked vehicles and the mathematic model.

The kinematics modeling considers two coordinate frames, the vehicle-fixed frame,

and the inertial frame. Also consider the slip angle that is caused by the skid-steering turning

maneuver of the vehicle. The mathematic model has into account the tractive force, the

longitudinal and lateral resistance forces and the turning moment and moment of turning

resistance.

Several systems for localization and navigation were proposed, with the authors opting

to use three bi-axial accelerometers that form an IMU (inertial measurement unit), which

enable the estimation of the pose and the twist of the tracked vehicle. Instead of the regular

Tracked Autonomous Vehicles Moving on Rough Terrain

14 2022

IMU composed of accelerometers and gyroscopes, an accelerometer strap-down was

employed. A modified PID computed-torque controller was designed for this nonlinear

system.

The authors devised an experimental test where the vehicle should follow a circular

path with a 10m radius, at a constant angular velocity of 0,8rad/s. During the test was

possible to verify that due to the significant slip at the initial stage of motion the trajectory

of the tracked vehicle does not converge to the desired path but can follow the desired path

quite closely after a significantly short period, as shown in figure 2.12.

Figure 2.11 - Vehicle following a desired circular path. Adapted from [13]

In manned controlled vehicles the driver decides the optimal turning speed, but in

autonomous vehicles, the speed is decided by the autonomous control system. For tracked

autonomous vehicles, the velocity is an important factor while turning to maintain the desire

path.

Naumov et al. (2019) [14] studied tracked autonomous vehicles’ effectiveness

estimation while turning. Their study considers the relation power-weight on dry ground

roads. The algorithm is represented by them as follows: “when the robotic vehicle is moving,

the angular velocities of the right and left boards are determined. The angular velocities enter

the valuator unit for calculating the theoretical angular velocity of the chassis steering. Next,

go to the divider unit. The actual angular velocity from the sensors is fed into the divider

 METHODOLOGY

Diogo Gomes Rodrigues 15

unit. Next, the comparison with the reference signal and the command to the actuator” and

the structural diagram of the system can be seen in figure 2.13.

Figure 2.12 - Scheme of the robotic tracked vehicle uncontrolled movement prevention system. Adapted
from [14]

After that, they realized some simulations at different speeds with a steering radius of

25 meters. Figure 2.14 shows the path followed by the vehicle during the simulations at

different speeds.

Figure 2.13 - Simulation results. Adapted from [14]

When a goal is defined for the autonomous robot to reach, it is necessary to understand

if the robot can avoid all the obstacles that can be found. In that case, the robot needs to

select the best path on its own, using systems that allow the robot to define what direction it

should take, avoiding obstacles and terrain conditions that it cannot overcome, for that Bijo

Tracked Autonomous Vehicles Moving on Rough Terrain

16 2022

& Pinhas (2019) [15] proposed a method that allows the autonomous system to recognize

the terrain conditions and obstacles and defines the path to follow until reaching the goal.

The proposed architecture uses the D* Lite algorithm working on a 2D grid

representation of the terrain as the high-level planner. The proposed approach for the path

planning algorithm needs to consider the dynamic interactions between the robot and the

terrain by simulating the closed-loop motion of the robot with a low-level controller on a

realistic terrain model inside a physics engine.

To obtain the terrain topology of the robot’s current position and the close cells, the

high-level planner starts with a 2D grid map of the region in which the terrain topology is

initially flat, and then with the help of sensors, like LiDAR it actualizes the grid to include

close obstacles. After knowing the neighboring cells, the robot tries to reach the next cell, if

after a certain time the robot doesn’t move, the next cell is defined as unreachable, and the

robot tries to reach another neighboured cell. Figure 2.15 shows a block diagram and figure

2.16 a flow chart explaining the work of the proposed method.

Figure 2.14 - Block diagram representation of the proposed planner. Adapted from [15]

 METHODOLOGY

Diogo Gomes Rodrigues 17

Figure 2.15 - Flow chart showing the working of the proposed planning algorithm. Adapted from [15]

The low-level plane used continuously monitoring the state of the robot and the

environment through sensors to generate control inputs to ensure stable navigation from the

current state to the next waypoint.

The system uses two different behaviors, the go-to-goal (GTG), and then avoid

obstacle (AO) behaviors. It starts at go-to-goal and stays in it until an obstacle point is

detected at a close distance, when it chances to avoid-obstacle-and-go-to-goal, as shown in

figure 2.17.

Tracked Autonomous Vehicles Moving on Rough Terrain

18 2022

Figure 2.16 - Work of the system. Adapted from [15]

At the experimental validation, the goal was given to the robot, and it is possible to see

in figure 2.18 that were proposed two different paths to the robot. The kinematic planner

proposed the shortest path that failed because the robot was unable to cross the ridge on the

map. While proposed planner, provided with the complete map of the terrain within the

physics engine proposed a longer but feasible path that successfully guided the robot to the

goal. Concluding that the proposed method works and can guide a robot to the desired point

avoiding obstacles and terrain hard conditions.

Figure 2.17 – Terrain topography map showing the 3D path followed by the robot under both the planners
over the experimental setup. Adapted from [15]

 METHODOLOGY

Diogo Gomes Rodrigues 19

3. METHODOLOGY

This chapter introduces the methodology used in this work, such as the operating

system (Ubuntu) of the virtual environment, for performing simulations (ROS), the sensors

applied (Duro Inertial) in the real robot (Green Climber LV 400 Pro) and the concepts used

for the evaluation of the robot’s position (quaternions and Euler angles).

The Ubuntu operating system was used to use ROS and perform simulations that

allowed the developing and the test of algorithms for the vehicle’s traction control. To test

the developed algorithms were installed two different robots and three different virtual

environments where the tests were performed.

After developing the algorithm, a validation phase with the real machine followed,

where a high-precision GNSS (global navigation satellite system) system was used (Duro

Inertial).

3.1. Ubuntu

Ubuntu is a Linux open-source operating system available for free with professional

and community support. It has a built-in firewall and virus protection software making it one

of the most secure operating systems, is fully translated into over 50 languages and includes

essential assistive technologies.

It provides the fastest way from development to deployment on desktop, mobile, server

or cloud. It offers the best development tools and libraries and has the most popular

productivity tools such as Zoom, Microsoft Teams, Telegram, and Discord. It also provides

easier game and artificial intelligence development with NVIDIA GPU supported out the

box hassle-free.[16]

3.1.1. Robot Operating System (ROS)

ROS is an open-source framework that helps researchers and developers build and

reuse code between robotic applications, are a global open-source community of engineers,

developers, and hobbyists who contribute to making robots better, more accessible, and

available to everyone. ROS is powering the future of robotics in industry, in the enterprise,

and for developers.

Tracked Autonomous Vehicles Moving on Rough Terrain

20 2022

ROS is used by some of the biggest names in robotics. It is used across numerous

industries from agriculture to medical devices and even vacuum cleaners and is spreading to

include all kinds of automation and software-defined dynamic use-cases.[17]

3.1.1.1. Why use ROS?

ROS allows developers to easily simulate their robot environment before deployment

in the real world. Tools like Gazebo allow the creation of simulations with countless robotic

platforms. The base code and knowledge can be applied across all robotic platforms, like

drones, robotic arms, mobile bases, etc.

The robots from ROS can speak any language as Python and C++ and it is even

possible to get libraries to allow the use of most other languages or install rosbridge and use

any languages that can speak JSON. There are ROS packages for everything, whether to

compute a trajectory, conduct SLAM algorithms or implement remote control.[17]

3.1.1.2. ROS Gazebo

ROS gazebo is an open-source 3D robotics simulator. Gazebo simulates real-world

physics in a high-fidelity simulation. It helps developers rapidly test algorithms and design

robots using digital environments.

Robotic simulations save a lot of time and money because it allows engineers to test

how robots work without having to deploy or risk such robots in a real environment. It helps

to replicate gravity, friction, torques, and any other real-life conditions that could affect the

robot’s behavior and performance.

Gazebo helps to integrate a multitude of sensors, and it gives the tools to test these

sensors and develop algorithms to best use them. In situations where it is not possible to

access robotic hardware or it is necessary to test hundreds of robots simultaneously, Gazebo

allows such simulations, seemingly and hassle-free.[18]

3.1.1.3. Gazebo simulation

The gazebo has several robots and worlds where the simulations can be performed,

from worlds with a completely flat surface to more complex ones, as shown in figure 3.1.

 METHODOLOGY

Diogo Gomes Rodrigues 21

a) b)

c)

Figure 3.1 - a) Inspection world; b) Agriculture world; c) Empty world

Several robots can be used on gazebo simulations with several configurations that

allow multiple different simulations. It is possible to use robotic arms to manipulate objects,

aerial robots to simulate flights, and different types of ground robots, as shown in figure 3.2.

a) b)

Figure 3.2 - a) Turtlebot3, model “waffle_pi”; b) Husky robot

3.1.1.4. ROS topics

While performing a simulation in Gazebo, there are several data topics, given by the

implemented sensors on the robots which are constantly updated, and accessible, providing

critical data about the robot. The topics available depend on which sensors are implemented

on each robot. For the Husky robot, the available topics are shown in figure 3.3.

Tracked Autonomous Vehicles Moving on Rough Terrain

22 2022

a) b)

Figure 3.3 - ROS topics

3.1.1.5. Rviz

Rviz is a ROS tool that allows the visualization of the robot and the data from the

sensor implemented in it in real-time. It is a highly configurable environment, being possible

to add or remove data information according to needs or availability. The tool is used

simultaneously with the simulations in the Gazebo and provides all the information about

the world of Gazebo simulation. Figure 3.4 it is possible to see some of the sensors that can

be applied to the robot and figure 3.5 shows the tool in action, with some data information

being provided and shown on the map.

Figure 3.4 – Some of Rviz’s available sensors.

 METHODOLOGY

Diogo Gomes Rodrigues 23

Figure 3.5 - Data demonstration on map.

3.2. Robot Orientation

3.2.1. Quaternions

The quaternions were discovered by Sir William Rowan Hamilton and are an extension

of the complex number, a hyper-complex number, and are written as a scalar plus a vector,

as shown in equation 3.1. Its representation can be seen in figure 3.13. [27]

And are denoted as shown in equation 3.2.

 q̇ = 𝑠 + 𝑣 = 𝑠 + 𝑣1𝑖 + 𝑣2𝑗 + 𝑣3𝑘 (3.1)

Where the orthogonal complex numbers are defined as in equation 3.3

 𝑖2 = 𝑗2 = 𝑘2 = 𝑖𝑗𝑘 = −1 (3.3)

The matrix of rotations is given by equation 3.4.

 q̇ = 𝑠 < 𝑣1, 𝑣2, 𝑣3 > (3.2)

Tracked Autonomous Vehicles Moving on Rough Terrain

24 2022

R(𝑠, 𝑣) = [

2(𝑠2 + 𝑣1
2) − 1 2(𝑣1𝑣2 − 𝑠𝑣3) 2(𝑣1𝑣3 + 𝑠𝑣2)

2(𝑣1𝑣2 + 𝑠𝑣3) 2(𝑠2 + 𝑣2
2) − 1 2(𝑣2𝑣3 − 𝑠𝑣1)

2(𝑣1𝑣3 − 𝑠𝑣2) 2(𝑣2𝑣3 + 𝑠𝑣1) 2(𝑠2 + 𝑣3
2) − 1

] (3.4)

Figure 3.6 - Quaternions representation. Adapted from [28].

3.2.2. Euler angles

The Euler angles, roll, pitch, and yaw are angles sequences, relative to a fixed frame

reference, widely used in the description of vehicles behavior. The roll, pitch, and yaw

rotation matrix can be expressed as shown in equation 3.5.

RPY(𝜙, 𝜃, 𝜓) = [

C(𝜙)C(𝜃) −S(𝜙)C(𝜓) + C(𝜙)S(𝜃)S(𝜓) S(𝜙)S(𝜓) + C(𝜙)S(𝜃)C(𝜓)

S(𝜙)C(𝜃) 𝐶(𝜙)C(𝜓) + S(𝜙)S(𝜃)S(𝜓) −C(𝜙)S(𝜓) + S(𝜙)S(𝜃)C(𝜓)

−S(𝜃) C(𝜃)S(𝜓) C(𝜃)C(𝜓)

] (3.5)

Where the letters “C” and “S” mean cos and sin, respectively.

The roll corresponds to the rotation on the x axe, the pitch to the y axe, and the yaw to

the z axe, as shown in figure 3.7.

 METHODOLOGY

Diogo Gomes Rodrigues 25

Figure 3.7 - Roll, pitch, and yaw axes. Adapted from [29].

3.3. Swift Navigation

Swift Navigation offers services (Skylark™), software (Starling®), and hardware

(SwiftPath™, Duro®, Duro Inertial, Piski® Multi, Piski Multi Inertial) for several kinds of

mechanisms, as shown in figure 3.8, allowing precise positioning solutions to deliver proven

performance and high accuracy.

Figure 3.8 - Swift Navigation ecosystem. Adapted from [19]

3.3.1. Skylark™

Skylark™ is a wide area, cloud-based GNSS correction service that provides real-time

high-precision positioning to autonomous vehicles, automotive, mobile, and mass-market

applications. It delivers seamless corrections to continents across the globe. It was built from

the ground-up for autonomy at scale, allowing lane-level positioning, fast convergence

times, and high integrity and availability required by mass-market automotive and

Tracked Autonomous Vehicles Moving on Rough Terrain

26 2022

autonomous applications. It uses observations of hundreds of GNSS reference stations

around the globe to provide real-time atmospheric and other errors affecting GNSS. The

corrected data is available on the internet for the user and can be accessed anywhere within

the Skylark network, the connected users only need to turn on their devices to access to get

the correction stream they need. The Skylark™ network is shown in figure 3.9.[20]

Figure 3.9 - Skylark™ network. Adapted from [20]

3.3.2. Starling®

Starling® is an advanced, high-precision positioning engine designed for automotive,

industrial, and consumer applications that require centimeter or decimeter accuracy using

GNSS and dead reckoning sensor fusion. A flow chart of Starling® is shown in figure 3.10.

It is ideal for mass-market autonomous applications because it works with a variety of

GNSS chipsets and inertial sensors. Its software is written in C++ which makes it possible

to run on a variety of computing platforms. It uses commercially available GNSS receivers

to provide centimeter accuracy and high integrity. It supports the calculation of precise

position, velocity, and time (PVT), and when combined with inertial sensor measurements,

wheel odometry, and other sensors inputs, it can assist with localization, decision, and

control.

Starling® works with multi-frequency, multi-constellation and commercial grade

GNSS measurements engines that when combined with the wide-area Skylark™ cloud-

 METHODOLOGY

Diogo Gomes Rodrigues 27

based GNSS precise positioning service, significantly reduce the cost of high-accuracy

positioning for autonomous applications.[21], [22]

Figure 3.10 - Flow chart of Starling®. Adapted from[22]

3.3.3. Duro Inertial

The Duro Inertial combines the position, velocity and time solution of the Starling®

position engine with the on-board IMU to deliver a continuous and precise positioning

solution, even when the visibility of GNSS is low or none.

It is easy to integrate and supports several interfaces, including RS232, CAN

(controller area network), and Ethernet. The Starter Kit has everything necessary for easy

deployment and is available in an RTK Pack for highly accurate assessment with an IMU.

It has military-grade ruggedness, is packed in an IP67-rated ruggedized enclosure, and

is designed for deployment in rough terrains. The Duro Inertial will be used on the real robot

to provide data about it as can be seen in figure 3.11.[23]

Figure 3.11 - Duro Inertial. Adapted from [23]

The typical architecture of the Duro Inertial system is shown in figure 3.12.

Tracked Autonomous Vehicles Moving on Rough Terrain

28 2022

Figure 3.12 - Duro Inertial system architecture. Adapted from[24]

The Duro Inertial data can be consulted on the Swift Console, which provides data

from the IMU, the Magnetometer, the INS and also the speed and velocity, as shown in

figures 3.13 and 3.14.

 METHODOLOGY

Diogo Gomes Rodrigues 29

Figure 3.13 - Swift Console Magnetometer window. Adapted from[25]

Figure 3.14 - Swift Console Velocity window. Adapted from[25]

The Duro Inertial combines the GNSS, RTK and IMU technologies and has continuous

position outputs even when GNSS is not available, and increased robustness to challenging

GNSS environments.

Tracked Autonomous Vehicles Moving on Rough Terrain

30 2022

The Hardware is future-proof with in-field software upgrades and has intuitive LEDs

for status and diagnostic and flexible and electrically protected ports.

The provided solutions are 100 times more accurate when utilizing RTK technology

in conjunction with GNSS than standard GNSS-only solutions. It can operate in temperatures

that go from -40˚C to 75˚C and can provide position update rate (GNSS + INS (inertial

navigation solution)), measurement (raw data), standard position outputs, and RTK position

outputs up to 10 Hz and has a maximum operating velocity of 515 m/s.[26]

The Duro Inertial can provide the Euler angles that allow knowing the vehicle frame

orientation and it is also possible to use the Euler angles to configure the device frame

orientation to the vehicle frame orientation. For example, a rotation matrix that can be used

to rotate a vector from the device frame to the vehicle frame can be represented

mathematically as follows in equation 3.6.[24]

[

𝑣𝑥−𝑣𝑒ℎ𝑖𝑐𝑙𝑒

𝑣𝑦−𝑣𝑒ℎ𝑖𝑐𝑙𝑒

𝑣𝑧−𝑣𝑒ℎ𝑖𝑐𝑙𝑒

] = [
cos (𝑦𝑎𝑤) −sin (𝑦𝑎𝑤) 0
sin (𝑦𝑎𝑤) cos (𝑦𝑎𝑤) 0

0 0 1

] [
cos (𝑝𝑖𝑡𝑐ℎ) 0 sin (𝑝𝑖𝑡𝑐ℎ)

0 1 0
−sin (𝑝𝑖𝑡𝑐ℎ) 0 cos (𝑦𝑎𝑤)

]

[

1 0 0
 0 cos (𝑝𝑖𝑡𝑐ℎ) −sin (𝑟𝑜𝑙𝑙)
0 sin (𝑟𝑜𝑙𝑙) cos (𝑟𝑜𝑙𝑙)

] ∗ [

𝑣𝑥−𝑑𝑒𝑣𝑖𝑐𝑒

𝑣𝑦−𝑑𝑒𝑣𝑖𝑐𝑒

𝑣𝑧−𝑑𝑒𝑣𝑖𝑐𝑒

]

(3.6)

 WORK DEVELOPMENT

Diogo Gomes Rodrigues 31

4. WORK DEVELOPMENT

This chapter describes the work developed to create the robot control.

For the work development, it was necessary to become familiar with the Python

programming language and the ROS. The Turtlebot3 was installed in ROS to be used in

simulations and code development for the robot control. One of the biggest difficulties in

Gazebo’s simulations is the instability of the robot coordinates, which are constantly

changing even with the robot stopped. Initially, Turtlebot3 was used in a planar world, in

which the control of the robot was developed because although the world has no slopes, the

robot tends not to perform a movement in a straight line.

The control was developed in phases, starting initially with the conversion of the

quaternions into Euler angles, followed by the development of the code that keeps the robot

in a straight line. Once the robot control was developed, it was necessary to perform the

simulation in virtual worlds with real characteristics. For this, it was necessary to install the

Husky robot and the worlds so that any necessary adjustments could be made in the control

code.

The work procedures are described in more detail throughout this chapter.

4.1. ROS Topics

The most important topics, in this case, are the “imu/data” that provide the orientation

of the robot in quaternions (x, y, z, w), the angular velocity (x, y, z) and the linear

acceleration (x, y, z) of the robot, shown at figure 4.1, and the “cmd_vel” that provides the

linear velocity (x, y, z) and the angular velocity (x, y, z) of the robot, shown at figure 4.2.

Tracked Autonomous Vehicles Moving on Rough Terrain

32 2022

Figure 4.1 - ROS topic "imu/data" data. The presented values serve as a mere example.

Figure 4.2 – ROS topic "cmd_vel" data. The presented values serve as mere examples.

From the data provided by these two topics, the most relevant is the orientation of the

robot and the linear velocity.

 The orientation of the robot in quaternions can be transformed in Euler angles (roll,

pitch, and yaw) allowing a much easier understanding of the robot orientation. To achieve

that objective, it was created a python code that can read, in real-time, the values of the

quaternions given by the IMU and transforms, trough equations of the library, the x, y, z,

and w values into Euler angles. A range of values was constructed for the yaw angle. This

means that whenever the yaw value is in an interval of +0.00001 and -0.00001 concerning

the first read value, this yaw value will be considered to be equal to the initial yaw value.

 WORK DEVELOPMENT

Diogo Gomes Rodrigues 33

This strategy was employed to filter the signal noise on the magnetic compass and IMU. The

data provided by the IMU that allows the conversion of the quaternions to Euler angels are

constantly changing and it has 17 decimal places which means that to keep a constant yaw,

without a defined range of values, there is the possibility that once this value changes, the

data provided will never match that value again and so, even if the value is very close to the

initial one, without this approximation the program would assume that it never returned to

its initial value. The defined range of values was chosen trough tests, for the initial

development of the code it started with a different range of values from the one applied at

the end of the code, because once the control was developed it was possible to verify the

influence of this range on the success of the control.

To write the code that allows transforming quaternions into Euler angles is necessary

to have access to the robot’s IMU, so, while writing it is necessary to import that data to use

it. In figure 4.3 is possible to see the command line that does the importation of the data.

Figure 4.3 - Importing library, data, and functions to code.

Once the data from IMU was available to use, it was necessary to define a function

that read, transform and filter the data. Initially, the quaternions values and the path to get

them were defined, after that, through the python function “euler_from_quaternion”,

imported to the code, as shown in figure 4.3, it was possible to transform the quaternions (x,

y, z, w) into Euler angles (roll, pitch, yaw). As soon as the transformation was done, an “if”

function defined the limit to the values of the yaw angle, as shown in figure 4.4.

Figure 4.4 – Approximate small variations to the initial yaw.

Then it was necessary to define a new function that read the values of the Euler angles

and publish them into a new topic, created for this purpose. The robot data of roll, pitch, and

yaw is now available to understand more about the robot’s orientation. The Python

conversion code can be seen in annex A.

Tracked Autonomous Vehicles Moving on Rough Terrain

34 2022

4.2. Operating Mode of the Control Code

Once the code to convert quaternions into Euler angles its done, it is possible to read

and manipulate the values of the angles and know more about the robot orientation. The code

to control the robot is based, essentially, on the control of the yaw values given by the sensors

of the robot and its angular velocity, whenever the yaw values suffer alterations.

 To make sure that the robot is moving in a straight line, ideally, the yaw values should

remain constant, meaning that the robot is not suffering any deviation from its intended path.

If the yaw value suffers any alteration, means that the robot is starting to move in a different

direction than the one intended.

To correct the trajectory, it is necessary to know the distance traveled since the

variation of the yaw was detected. To calculate the traveled distance, it is only necessary to

know the velocity of the robot which is given in the ROS topic “cmd_vel”, the new yaw

value in radians which must be converted to degrees using the equation 4.1 and the time in

seconds since the deviation was detected. The deviation can now be calculated through

equation 4.2. The time calculation is done by the control code, which starts to count at the

moment that a deviation is detected.

yaw[°] = yaw[rad] ×
180

𝜋
 (4.1)

deviation = cos(yaw[°]) × velocity [m/s] × time [s] (4.2)

 Now it is possible to know the deviation value, represented as “deviation” in the figure

4.5.

 WORK DEVELOPMENT

Diogo Gomes Rodrigues 35

Figure 4.5 - Deviation (x) calculation

The calculation of the deviation is also done by the python code and once is done it is

necessary to recover the deviation already suffered. To start the recovery the first step is to

transform the yaw value into negative if it was positive, or into positive if it was negative,

and give the robot an angular velocity, contrary to the deviation movement, making it turn

to the other away and start to move in the opposite direction. Regardless of the yaw of

deviation being positive or negative it starts a new time counting and the yaw value is once

again converted to degrees using equation 4.1, and the recover distance can be calculated by

equation 4.3 until it is equal to the deviation distance.

recover = cos(yaw[°]) × velocity [m/s] × time [s] (4.3)

Once the distance of recovery is equal to the distance of deviation, the yaw value

should now be the initial value again and the angular velocity returns to the value of zero,

causing the robot to return to its initial direction and trajectory.

Tracked Autonomous Vehicles Moving on Rough Terrain

36 2022

Figure 4.6 – Expected robot movement while the code is running, and a deviation is detected.

On an enlarged scale, while the code is working, it is supposed to see the robot being

controlled, as shown in figure 4.6, where the initial position is represented by the letter A

and de initial yaw value is represented by “yaw_i”. At this moment the robot is moving in a

straight line with constant yaw value and velocity. At position B, it was detected a deviation

and at that moment, the yaw value, is represented by “yaw_dev”, and the code already started

calculating the time and converting the yaw from radians into degrees, to get the value of the

deviation. In position C, an angular velocity was given to the robot and a new time is running

to calculate the robot’s recovery. It is also necessary to know the new yaw value, that is

given by the multiplication of the “yaw_dev” by -1. At position D, the yaw value is still the

same as it was at C, but it detected the total recover of the trajectory, so a new yaw value

applies to the robot, being the same as the beginning. The robot keeps moving in a straight

line until it suffers a new deviation, repeating the process while the user doesn’t shut it down.

 WORK DEVELOPMENT

Diogo Gomes Rodrigues 37

The linear velocity of the robot is constant during the entire process and its frame is shown

in figure 4.7. The Python code can be seen in annex B.

Figure 4.7 - Robot frame.

4.3. Calculation of expected final position

The final position of the robot can be estimated in at least two different ways. The first

one is calculating the line equation, for that is only necessary to know the value of the initial

yaw and the robot coordinates (x, y) at the beginning, and if the robot is moving in a straight

line, it should keep is movement trough that line, so the final position, will be a point on that

line. To estimate the final position of the robot in a second way, it is necessary to know the

velocity of the robot, the time it is running, and the initial value of the yaw. After that, it is

possible to know the expected final position.

In both cases, it is possible to do a comparison between the estimated values and the

actual values obtained for both movements, with the control code activated to keep the robot

moving in a straight line and to the uncontrolled movement.

4.3.1. Line equation

The line equation can be obtained by knowing the x and y coordinates, the slope of the

line (m), and one constant value (b), as shown in equation 4.4.

Tracked Autonomous Vehicles Moving on Rough Terrain

38 2022

𝑦 = m𝑥 + b (4.4)

The calculation of the constant slope of the line, m, is done by knowing the initial

value of yaw in degrees and can be done by equation 4.5.

m = tan(yaw[°]) (4.5)

After that, and by knowing the initial coordinates of the robot (x, y) the value of the

constant b can now be calculated, replacing in equation 4.4 the values of x and y by the initial

coordinates of the robot, so the b value is given by the equation 4.6.

b = 𝑦 − m𝑥 (4.6)

When the initial value of yaw is zero, that means that the slope value will be null and

the constant b will be equal to the y coordinate of the robot meaning that the robot is only

moving in the x and z axes, keeping the y value constant from the beginning of the movement

until it stops.

If the robot movement was done in a straight line, at the end of his movement x and y

coordinates should belong to the line, if they don’t belong to it, it means that the robot has

suffered a deviation and ended up moving on a different direction than the initial.

4.3.2. Calculate the final coordinates

To calculate the final coordinates a time count has to be done, that together with the

initial value of yaw and the movement velocity of the robot, can provide the final coordinates

of the robot. The traveled distance on the x and y axes are given by equations 4.7 and 4.8,

respectively.

𝑥𝑓𝑖𝑛𝑎𝑙 = 𝑥𝑖𝑛𝑖𝑡𝑖𝑎𝑙 + cos(yaw[°]) × velocity [m/s] × time [s] (4.7)

𝑦𝑓𝑖𝑛𝑎𝑙 = 𝑦𝑖𝑛𝑖𝑡𝑖𝑎𝑙 + sin(yaw[°]) × velocity [m/s] × time [s] (4.8)

 WORK DEVELOPMENT

Diogo Gomes Rodrigues 39

Then, it is possible to get the expectable values of x and y of the robot at the end of its

trajectory, assuming that the robot was always moving in a straight line. The detection of a

deviation is done by calculating the supposed final coordinates and comparing the obtained

values with the real coordinates of the robot.

Tracked Autonomous Vehicles Moving on Rough Terrain

40 2022

 EXPERIMENTAL TESTS AND RESULTS

Diogo Gomes Rodrigues 41

5. VIRTUAL SIMULATIONS AND RESULTS

This chapter will show the tests performed to validate the created control and the

results obtained in each test, making a comparison between the use and non-use of the control

in the robot’s movement. The tests were carried out on three different maps, with two

different robots. For each position of the robot and velocity, two tests were done, one using

the control and the other one using the “Teleop” (velocity command name, to remotely

control the mobile robot via keyboard, it allows to drive the robot trough the virtual

environment without the need to implement code that gives the robot information about what

to do). Tests were also carried out to determine the angular velocity that would be used

whenever the robot needed to recover its trajectory and also to determine the best

approximation to the yaw values.

A completely flat map was used with the Turtlebot3 waffle_pi robot moving at three

different speeds in each test. The Husky robot was also used to carry out tests on the

“agriculture world”, a map that contain some slight slopes, and “inspection world”, a map

that contains very steep slopes. In these two maps, the tests were also carried out using

different speeds and, in addition, with different initial positions of the robot.

5.1. Realized tests

5.1.1. Angular velocity

Whenever the robot suffers a deviation, to enable recovery, it needs a certain value of

angular velocity, so that it is possible to return to the initial trajectory. As the linear speed of

the robot can change, it was decided to test the angular velocity as a percentage of the liner

velocity of the robot. To determine the best angular velocity, several tests were performed

with different values of angular velocity and with some parameters to consider, such as:

• Recovery should be smooth;

• Recovery should be relatively fast to avoid large deviations from the desired

trajectory;

• Recovery should not induce a new deviation.

Tracked Autonomous Vehicles Moving on Rough Terrain

42 2022

5.1.2. Yaw approximation

Tests were carried out to select the best approximation of the yaw angle value to its

initial value. The need for this approximation stems from the fact that the yaw values contain

17 decimal places and are the transformation of the IMU quaternions, which contains noise

and can cause the robot to move in a circular path after the first deviation is detected, as it is

difficult to obtain the exactly initial yaw value again and thus closing the recovery cycle and

starting the straight line trajectory again. To determine the best approximation, several tests

were performed, increasing one decimal place at each test and it was verified in which of the

situations the robot’s trajectory was more linear.

5.1.3. Empty world

To carry out the tests the robot was placed at the origin of the map, due to the constant

change of values of the robot coordinates, its position is just approximated to the origin

(location 1). The tests were carried out with three different linear speeds, a test with a speed

of 0.11 [m/s], a test with 0.15 [m/s] and a test with the maximum speed of the robot of 0.25

[m/s], being verified by initial coordinates of the robot for each test, to predict the final

position of the robot. For each velocity, the tests were repeated three times, and the average

coordinates, the average initial value of yaw, and the respective velocity can be seen in table

2.

Table 2 - Average initial robot position for each realized test, at location 1.

Location 1
Vx = 0.11 [m/s] Vx = 0.15 [m/s] Vx = 0.25 [m/s]

Code Teleop Code Teleop Code Teleop

x initial -0.000005 -0.000005 -0.000005 0.000005 -0.000005 -0.000005

y initial 0.000001 0.000001 0.000001 0.000001 0.000001 0.000001

yaw initial 0.000004 0.000004 0.000004 0.000008 0.000004 0.000004

5.1.4. Agriculture world

In order to carry out the tests in the agriculture world, the robot was positioned with a

certain yaw value, approximated in each test due to the instability of the simulations, so that

the trajectory it should travel passed through the areas of the map with the greatest slopes

(location 2). Twelve tests were performed, six of them without the use of the control and the

other six with the use of it and were also used at three different speeds, approximately,

0.8053 [m/s], 1.0718 [m/s] and 1.5692 [m/s], for each velocity, the test was repeated twice.

 EXPERIMENTAL TESTS AND RESULTS

Diogo Gomes Rodrigues 43

The initial position of the robot can be seen in figure 5.1, and the blue circle represents the

zone where the robot should stop.

Figure 5.1 - Approximately initial position of the robot in each test of location 2.

The average position of the robot at the beginning of each test can be seen in table 3.

Table 3 - Medium initial position of the robot for each realized test in agriculture world, at location 2.

Location 2
Vx = 0.8053 [m/s] Vx = 1.0718 [m/s] Vx = 1.5692 [m/s]

Code Teleop Code Teleop Code Teleop

x initial 57.0039 57.0039 57.0039 57.0039 57.0039 57.0039

y initial 12.9984 12.9984 12.9986 12.9983 12.9985 12.9985

yaw initial 1.578652 1.578622 1.578632 1.578634 1.578628 1.578647

5.1.5. Inspection world

In the inspection world, were performed test in two different locations on the map. The

first one, with a flattering start and slight slopes and an end with a great slope (location 3).

In this location, twelve tests were performed, six with the use of the control and the rest

without the use of it, being used, as in the agriculture world, at the same three different

speeds, repeating each one twice. The second location (location 4) on the map was an area

with average slopes during the entire route taken by the robot. The testing method was the

Tracked Autonomous Vehicles Moving on Rough Terrain

44 2022

same as in the previous location, twelve tests were carried out under the same conditions. In

both locations, the movement of the robot is, approximately, 40 meters for each test.

The test locations can be seen in figures 5.2 and 5.3, and the blue circle represents the

zone where the robot should stop.

a)

Figure 5.2 - Approximately initial position of the robot in each test of location 3.

Figure 5.3 - Approximately initial position of the robot in each test of location 4.

 EXPERIMENTAL TESTS AND RESULTS

Diogo Gomes Rodrigues 45

The following tables, 4 and 5 show the average initial position of the robot for each

realized test at locations 3 and 4, respectively.

Table 4 - Medium initial position of the robot for each realized test, in the inspection world, at location 3.

Location 3
Vx = 0.8053 [m/s] Vx = 1.0718 [m/s] Vx = 1.5692 [m/s]

Code Teleop Code Teleop Code Teleop

x initial 15.9836 15.9740 15.9762 15.9803 15.9832 15.9728

y initial -10.4949 -10.4594 -10.4630 -10.4619 -10.4630 -10.4158

yaw initial -0.059591 0.008033 -0.072311 0.004628 -0.068076 0.005785

Table 5 - Medium initial position of the robot for each realized test in the inspection world, at location 4.

Location 4
Vx = 0.8053 [m/s] Vx = 1.0718 [m/s] Vx = 1.5692 [m/s]

Code Teleop Code Teleop Code Teleop

x initial -23.0718 -23.0549 -23.0142 -23.0724 -23.1077 -23.0670

y initial -27.4949 -27.5011 -27.5092 -27.4949 -27.5038 -27.5017

yaw initial 0.088506 0.014949 0.042036 0.029483 0.039488 0.030777

5.2. Results

5.2.1. Angular velocity

The obtained results in the tests to determine the angular velocity of the robot can be

seen in figure 5.4, where the trajectory of the robot can be seen depending on the increase of

angular velocity.

It can be noted that for an angular velocity corresponding to 10% of the linear velocity,

the robot recoveries are slightly slow, which may induce large deviations from the desired

trajectory, thus not fulfilling the necessary parameters. For angular velocities of 25% and

30% of the linear velocity, it is possible to verify that some of the recoveries induced new

deviations, which causes a constant change in the trajectory of the robot and does not fulfill

the necessary parameters. From 40% to 70% of the linear velocity, the recoveries are too

fast, inducing new deviations and causing a constant change of direction, which does not

meet the pre-defined parameters. The angular velocity selected to use in the control was 20%

of the linear velocity, which can be seen that the recoveries are relatively fast, not causing

circular trajectories, and are also smooth and without inducing new deviations.

Tracked Autonomous Vehicles Moving on Rough Terrain

46 2022

Figure 5.4 - Robot's trajectory considering the variation of the angular velocity.

5.2.2. Yaw approximation

The obtained results in the approximation of the yaw values to the initial yaw can be

seen in figure 5.5. Each test shows the trajectory made by the robot is possible to distinguish

the most rectilinear ones.

For each performed test, one decimal place was increased to the yaw value to

approximate it to the initial yaw. The objective of these tests was to detect an approximation

 EXPERIMENTAL TESTS AND RESULTS

Diogo Gomes Rodrigues 47

that guarantees a straight line trajectory and that does not make an approximation too large

so that the read value is constantly considered equal to the initial value.

Some good results were obtained that kept the robot’s trajectory in a straight line, one

of them was selected for use in the control, being, the letter “d” represented in figure 5.5,

because it was enough to fulfill the requirements.

Figure 5.5 - Robot's trajectory considering the approximation of the yaw values.

Tracked Autonomous Vehicles Moving on Rough Terrain

48 2022

5.2.3. Empty world

The obtained results in the tests showed a great improvement regarding the use of the

control while the robot was moving.

With the initial coordinates and yaw value, it was possible to determine the expected

position of the robot at the end of its trajectory. After the robot’s movement, the final

coordinates of the robot on the map were read allowing the calculation of the robot’s

deviation. The expected and the real final coordinates can be seen in table 6. At each test,

the robot did a trajectory of approximately 50 meters. At figure 5.6 is possible to see the

average deviation of the robot for each test after the 50 meters trajectory for the use and non-

use (Teleop) of the control. It allows to understand that the robot’s deviation decreases with

the increase of its linear velocity with the non-use of the control. It is also possible to notice

that even with the maximum linear velocity of the robot, the final deviation, after a

movement of 50 meters, is in the order of 4 meters. It can be compared with the movement

performed by the robot with the use of the control, verifying that in this case, regardless of

the robot´s linear velocity, the final deviation is minimal.

Table 6 – Average final robot position for each realized test, at location 1.

Location 1
Vx = 0.11 [m/s] Vx = 0.15 [m/s] Vx = 0.25 [m/s]

Code Teleop Code Teleop Code Teleop

y final -0.0106694 10.07538 0.047632 7.013503 0.1571106 3.650052

y expected 0.0114602 0.0114602 0.011663 0.022980 0.011527 0.011484

 EXPERIMENTAL TESTS AND RESULTS

Diogo Gomes Rodrigues 49

Figure 5.6 - Deviation of the robot after approximately 50 meters.

5.2.4. Agriculture world

The average final position of each test is shown in table 7. It is possible to verify that

the robots move approximately 77 meters in each test with the y-axis, with the smallest

variation being read on the x-axis, allowing us to verify if the robot suffered deviation or if

it managed to control it using the control. It is not possible to analyze the results in the same

way as in the empty world since there are slopes, which do not allow a correct approximation

of the expected final coordinates of the robot through the equation of the line. To circumvent

this problem, Rviz was used, which allows tracing the trajectory of the robot, making it

possible to verify the movement made by the robot and analyze whether or not the trajectory

was in a straight line. The results obtained through Rviz for the 0.8053 [m/s] velocity test

can be seen in figure 5.7, which shows the complete robot’s trajectory, and figure 5.8, which

shows in zoom the final zone of the trajectory and the final position of the robot, where, in

both figures, the green and red dots correspond to the position where the robot should stop

at the end of the trajectory, and the green line corresponds to the trajectory of the robot with

the use of the control and the red one to the non-use of the control. The remaining results are

presented in annex C. Through the analysis of the results, it is possible to verify that there is

an improvement in the trajectory of the robot using the control. The improvement obtained

Tracked Autonomous Vehicles Moving on Rough Terrain

50 2022

makes the movement of the robot more rectilinear and guarantees a final position much

closer to the expected.

Table 7 - Average final robot position for each realized test, at location 2.

Location 2
Vx = 0.8053 [m/s] Vx = 1.0718 [m/s] Vx = 1.5692 [m/s]

Code Teleop Code Teleop Code Teleop

x final 58.2942 57.8994 58.2614 57.3758 56.7408 57.3790

y final 90.5890 90.1814 90.4875 90.3627 90.5192 90.1819

Figure 5.7 - Deviation of the robot after the movement, at location 2.

Figure 5.8 - Zoom of the final position of the robot, at location 2.

5.2.5. Inspection world

The obtained results for the two locations used to realize tests in the inspection world

were analyzed in the same way as the results in the agriculture world results.

The final average position of the robot in each of the locations can be seen in tables 8

and 9, respectively the locations 3 and 4 on the map.

At location 3, it can be noted, in figure 5.9, that the robot maintains a straight line

movement, but at some point, it suffers a deviation, that is not compensated immediately,

due to the large final slope causing a slight deviation in its movement. Although the deviation

is not fully compensated, it is possible to verify, in figure 5.11, that the final position of the

 EXPERIMENTAL TESTS AND RESULTS

Diogo Gomes Rodrigues 51

robot at the end of the approximately 40 meters of movement, is quite close to the expected

position.

In location 4, the deviations suffered during the movement of the robot using the

control are smaller compared to location 3, due to the smaller slopes of the path performed

by the robot. The control worked during all the trajectories to keep the robot’s movement in

a straight line, as is possible to see in figure 5.10, and the robot’s final position is close to

the expected final position, as shown in figure 5.12.

The results obtained shown in figures 5.9, 5.10, 5.11, and 5.12 correspond to the

average of the tests done with a linear velocity of 1.5692 [m/s]. Figures 5.11 and 5.12 show

in zoom the final zone of the trajectory and the final position of the robot, where, in all

figures, the green and red dots correspond to the position where the robot should stop at the

end of the trajectory, and the green line corresponds to the trajectory of the robot with the

use of the control and the red one to the non-use of the control. The remaining tests for each

location can be seen in Annex D.

It is possible to notice that the use of the control increases the stability of the robot’s

trajectory, keeping it with a more rectilinear movement and avoiding large deviations from

the pretended trajectory.

Table 8 - Average final robot position for each realized test, at location 3.

Location 3
Vx = 0.8053 [m/s] Vx = 1.0718 [m/s] Vx = 1.5692 [m/s]

Code Teleop Code Teleop Code Teleop

x final -24.6379 -26.1948 -25.8931 -25.4987 -25.2574 -21.9918

y final -6.8446 -10.2306 -6.8523 -10.2604 -6.8496 -12.3971

Table 9 - Average final robot position for each realized test, at location 4.

Location 4
Vx = 0.8053 [m/s] Vx = 1.0718 [m/s] Vx = 1.5692 [m/s]

Code Teleop Code Teleop Code Teleop

x final 16.0029 15.0731 16.7241 15.9400 16.5101 16.8976

y final -23.3563 -28.1254 -25.2528 -27.8872 -25.3098 -28.0113

Tracked Autonomous Vehicles Moving on Rough Terrain

52 2022

Figure 5.9 - Deviation of the robot after the movement, at location 3.

Figure 5.10 - Deviation of the robot after the movement, at location 4.

Figure 5.11 - Zoom of the final position of the robot, at location 3.

Figure 5.12 - Zoom of the final position of the robot, at location 4.

 CONCLUSIONS

Diogo Gomes Rodrigues 53

6. CONCLUSIONS

The main objective of this dissertation was the development of an algorithm for the

traction control of tracked autonomous vehicles moving on rough terrain.

For the development of the algorithm, it was necessary to understand more about this

type of vehicle and research studies by other authors to know and avoid problems in the

development of the algorithm. It was also necessary to study the sensors used to understand

their characteristics and the data that each one of them could provide. The initial approach

started by thinking of a way to control the velocity of each caterpillar of the robot

independently to vary the velocities of each one to keep the trajectory in a straight line,

realizing later that, with the sensors available on the real robot it would not be possible to

do. It was necessary to move on to a different approach which consisted of analyzing the

IMU data.

The next process consisted of understanding the robot’s orientation, for this it was

necessary to study quaternions to realize that they could be converted into Euler angles,

which were also later studied, allow a better understanding of the robot’s orientation.

After converting the quaternions into Euler angles, it was then possible to start

developing the control. The approach taken varied throughout its development, with several

errors and inefficient approaches being detected, which had to be circumvented and carried

out differently. Initially, the control started by just reading and modifying the Euler angles,

more specifically the yaw of the robot, but it was possible to perceive that this modification

alone could not be as effective as an approach that considers the yaw reading and the

modification of the velocity of the angular velocity of the robot. This approach allowed us

to develop robot control efficiently and to achieve the main objective of this dissertation.

During the development of this dissertation, some problems did not allow the testing

of the control in the real robot (Green Climber LV 400 Pro) as initially planned, but tests

were carried out in virtual environments that allowed to verify the operation of the control,

with virtual robots that despite not being tracked, their operation mode is the same as tracked

vehicles.

The development of this dissertation was quite challenging, mainly because the topics

treated with the development of control, such as python programming and the use of ROS,

are not studied in a mechanical engineering course, thus forcing the learning of these topics

from the beginning. However, the theme of this dissertation is quite interesting and allowed

Tracked Autonomous Vehicles Moving on Rough Terrain

54 2022

for learning new areas, allowing us to notice the development made in the industry and to

realize that some areas of work can be complemented with the use of robots, thus allowing

us to compensate for the lack of manpower.

In short, even not having tested the control in the real robot, the solution obtained

seems to solve the problems of traction control. Considering all the tests carried out in a

virtual environment, it can be concluded that the developed algorithm works, and some

improvements can still be made, but it is already sufficiently capable.

6.1. Future Work

In future work, new functions can be implemented in the robot algorithm, such as:

• Be able to carry out trajectories autonomously;

• Detection and recognition of objects, stopping or circumventing to resume the

trajectory;

• Side slip detection;

• Changing the robot’s speed depends on the type of terrain.

 BIBLIOGRAPHY

Diogo Gomes Rodrigues 55

7. BIBLIOGRAPHY

[1] “UM PLANETA EM CHAMAS PROPOSTA IBÉRICA DA WWF PARA A

PREVENÇÃO DE INCÊNDIOS RURAIS,” 2020, Accessed: Apr. 26, 2022.

[Online]. Available: www.natureza-portugal.org

[2] “Thermite® | Howe & Howe Technologies.”

https://www.howeandhowe.com/civil/thermite (accessed Apr. 06, 2022).

[3] “Escavadoura forestal para manobras de ataque indireto no combate de incêndios

florestais │ Dronster.” https://www.vallfirest.com/pt/escavadoura-forestal-

incendios-florestais (accessed Apr. 06, 2022).

[4] “Remote control technology.” https://www.mcconnel.com/remote-control-

technology/_product/20/robocut2-rc40/ (accessed Apr. 06, 2022).

[5] P. Attrezzi Radiocomandato, “E-TRAIL.”

[6] “REMOTE CONTROLLED SLOPE MOWER PRODUCT BROCHURE WANT

MORE?” [Online]. Available: www.greenclimber.com.au

[7] Y. Feng and J. Wang, “GPS RTK Performance Characteristics and Analysis,” 2008.

[8] “O RTK e suas aplicações » GeoSensori.”

https://www.geosensori.com.br/2019/05/27/o-rtk-e-suas-aplicacoes/ (accessed Apr.

06, 2022).

[9] R. Roriz, J. Cabral, and T. Gomes, “Automotive LiDAR Technology: A Survey,”

IEEE Transactions on Intelligent Transportation Systems, 2021, doi:

10.1109/TITS.2021.3086804.

[10] “Velodyne Lidar anuncia contrato de vendas trianual com a Baidu | Business Wire.”

https://www.businesswire.com/news/home/20201012005638/pt/ (accessed Apr. 06,

2022).

[11] J. Sock, J. Kim, J. Min, and K. Kwak, “Probabilistic traversability map generation

using 3D-LIDAR and camera,” in Proceedings - IEEE International Conference on

Robotics and Automation, Jun. 2016, vol. 2016-June, pp. 5631–5637. doi:

10.1109/ICRA.2016.7487782.

[12] B. Sebastian and P. Ben-Tzvi, “Active disturbance rejection control for handling slip

in tracked vehicle locomotion,” J Mech Robot, vol. 11, no. 2, Apr. 2019, doi:

10.1115/1.4042347.

[13] T. Zou, J. Angeles, and F. Hassani, “Dynamic Modelling and Trajectory Tracking

Control of Unmanned Tracked Vehicles,” 2018.

[14] V. N. Naumov, K. Y. Mashkov, and K. E. Byakov, “Autonomous tracked vehicles

effectiveness estimation,” in IOP Conference Series: Materials Science and

Engineering, Jun. 2019, vol. 534, no. 1. doi: 10.1088/1757-899X/534/1/012006.

[15] B. Sebastian and P. Ben-Tzvi, “Physics-Based Path Planning for Autonomous

Tracked Vehicle in Challenging Terrain,” Journal of Intelligent and Robotic

Systems: Theory and Applications, vol. 95, no. 2, pp. 511–526, Aug. 2019, doi:

10.1007/s10846-018-0851-3.

[16] “Desktop for developers | Ubuntu.” https://ubuntu.com/desktop/developers

(accessed Aug. 24, 2022).

[17] “What is ROS? | Ubuntu.” https://ubuntu.com/robotics/what-is-ros (accessed Aug.

24, 2022).

Tracked Autonomous Vehicles Moving on Rough Terrain

56 2022

[18] “ROS Gazebo: Everything You Need To Know - Robotic Simulation Services.”

https://roboticsimulationservices.com/ros-gazebo-everything-you-need-to-know/

(accessed Aug. 25, 2022).

[19] “Get Started | Swiftnav.” https://www.swiftnav.com/get-started (accessed Aug. 27,

2022).

[20] “BENEFITS • Designed for Autonomy • Skylark”, Accessed: Aug. 30, 2022.

[Online]. Available: www.swiftnav.com

[21] “Starling by Swift is a Receiver-Agnostic Precise Positioning Engine.”

https://www.swiftnav.com/starling-positioning-engine (accessed Aug. 30, 2022).

[22] “ABSOLUTE POSITION, VELOCITY AND TIME”, Accessed: Aug. 30, 2022.

[Online]. Available: www.swiftnav.com

[23] “Duro Inertial Ruggedized GNSS Receiver Ideal for Outdoor Deployments.”

https://www.swiftnav.com/duro-inertial (accessed Aug. 30, 2022).

[24] “Duro Inertial User Manual,” 2022, Accessed: Aug. 30, 2022. [Online]. Available:

https://www.swiftnav.com/latest/duro-user-manual

[25] “Swift Console 4.0 User Manual,” 2022.

[26] “CONTINUOUS AND ROBUST INERTIAL NAVIGATION SYSTEM (INS)

POSITIONING”, Accessed: Aug. 30, 2022. [Online]. Available: www.swiftnav.com

[27] P. C. Robotics, “Vision and Control 123 FUNDAMENTAL ALGORITHMS IN

MATLAB®.” [Online]. Available: www.petercorke.com/RVC

[28] “Visualizing quaternions (4d numbers) with stereographic projection - YouTube.”

https://www.youtube.com/watch?v=d4EgbgTm0Bg (accessed Sep. 01, 2022).

[29] “How to mount Razor IMU on Clearpath Husky Robot - ROS Answers: Open

Source Q&A Forum.” https://answers.ros.org/question/256370/how-to-mount-razor-

imu-on-clearpath-husky-robot/ (accessed Sep. 01, 2022).

 ANNEX A

Diogo Gomes Rodrigues 57

ANNEX A

Python code to convert quaternions into Euler angles.

Tracked Autonomous Vehicles Moving on Rough Terrain

58 2022

 ANNEX B

Diogo Gomes Rodrigues 59

ANNEX B

Python code of the control.

Tracked Autonomous Vehicles Moving on Rough Terrain

60 2022

 ANNEX B

Diogo Gomes Rodrigues 61

Tracked Autonomous Vehicles Moving on Rough Terrain

62 2022

ANNEX

Diogo Gomes Rodrigues 63

ANNEX C

Deviation of the robot at location 2 with the velocity of 1.5692 [m/s] and 1.0718

[m/s],where the red dot and red line correspond to the robot’s final expected position and

trajectory without the control, respectively. And the green dot and green line correspond to

the robot’s final expected position and trajectory without the control, respectively. The zoom

of the final position of each case is also shown.

• 1.5692 [m/s]

• 1.0718 [m/s]

Tracked Autonomous Vehicles Moving on Rough Terrain

64 2022

 ANNEX D

Diogo Gomes Rodrigues 65

ANNEX D

Deviation of the robot at location 3 with the velocity of 1.0718 [m/s] and 0.8053 [m/s],

where the red dot and red line correspond to the robot’s final expected position and trajectory

without the control, respectively. And the green dot and green line correspond to the robot’s

final expected position and trajectory without the control, respectively. The zoom of the final

position of each case is also shown.

• 1.0718 [m/s]

• 0.8053 [m/s]

Tracked Autonomous Vehicles Moving on Rough Terrain

66 2022

Deviation of the robot at location 4 with the velocity of 1.0718 [m/s] where the red dot

and red line correspond to the robot’s final expected position and trajectory without the

control, respectively. And the green dot and green line correspond to the robot’s final

expected position and trajectory without the control, respectively. The zoom of the final

position of each case is also shown.

• 1.0718 [m/s]

