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Resumo 
 A Esclerose Múltipla (EM) é a doença mais comum da matéria branca do sistema 

nervoso central nos humanos. É caracterizada por lesões onde ocorre desmielinização e por 

um estado inflamatório permanente; estas condições podem estar acompanhadas de atrofia 

quer da matéria cinzenta, quer da matéria branca. O gold standard para o diagnóstico e 

monitorização da EM é a Imagiologia por Ressonância Magnética estrutural (IRM); no 

entanto, esta é uma técnica à qual faltam sensibilidade e especificidade para a identificação 

dos processos patológicos em EM. Portanto, técnicas de IRM não convencionais, como a 

Imagiologia por Ressonância Magnética de Difusão (IRM de difusão) podem contribuir para 

a compreensão de alterações a um nível microestrutural. 

 A Imagiologia por Tensor de Difusão (em inglês, Diffusion-Tensor Imaging, ou DTI) é 

uma técnica que modela dados de IRM de difusão e que já existe há muitos anos. É 

amplamente usada quer em modelos de investigação quer na prática clínica, tanto pela sua 

simplicidade como pela sua facilidade de uso. No entanto, a DTI não apresenta uma 

especificidade suficiente para permitir a distinção de processos patológicos como 

desmielinização e perda axonal a um nível microestrutural. Assim, ferramentas inovadoras 

como a Imagiologia por Dispersão da Orientação e Densidade de Neurites (em inglês, 

Neurite Orientation Dispersion and Density Imaging, ou NODDI) foram desenvolvidas para 

colmatar algumas falhas da DTI. O uso do modelo de NODDI permite a diferenciação entre 

perda dendrítica e axonal e redução na arborização dendrítica ou aumento dos processos 

de dispersão, que são mecanismos que integram um único parâmetro em DTI. 

 Esta tese de mestrado pretende investigar diferenças a nível dos vóxeis (voxel-wise) 

em parâmetros derivados quer de DTI quer de NODDI, em doentes de EM e controlos 

saudáveis emparelhados demograficamente; para além disto, também foram consideradas 

médias de métricas de difusão em tecidos de interesse (matéria branca, matéria branca 

aparentemente normal e lesões, no cérebro) para investigar as diferenças entre grupos. Por 

fim, foram feitas correlações entre as métricas de DTI e NODDI e testes cognitivos e 

neuropsicológicos para avaliar o efeito das alterações em métricas de difusão na 

incapacidade cognitiva e física característica em doentes com EM. 

 A análise voxel-wise em DTI e NODDI mostrou diferenças consideráveis entre 

doentes e controlos saudáveis; isto também foi observado na análise estatística dos valores 

médios em tecidos de interesse. Estes resultados suportam a noção de que métricas de 

difusão estão alteradas, mesmo em fases iniciais de EM, e ajudam a perceber quais os 
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processos patológicos subjacentes à da evolução da doença. Um resultado interessante foi 

o aumento da densidade de neurites em lesões, que é algo pouco reportado na literatura. 

Por fim, as correlações entre métricas de difusão e resultados dos testes cognitivos e 

neuropsicológicos revelaram que tanto os parâmetros obtidos através de DTI como os 

obtidos a partir de NODDI podem ajudar a explicar a deficiência cognitiva e física em EM. 

 Para concluir, este trabalho ajudou a provar que a IRM de difusão é uma ferramenta 

valiosa na avaliação da EM, e os resultados aqui apresentados foram um passo na direção 

da compreensão de como é que as métricas de difusão estão relacionadas quer com a 

evolução da doença, quer com a incapacidade observada em EM. 

Palavras-chave 

Esclerose Múltipla, Imagiologia por Ressonância Magnética, Imagiologia por Ressonância 

Magnética de Difusão, Imagiologia por Tensor de Difusão, Imagiologia por Dispersão da 

Orientação e Densidade de Neurites 
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Abstract 
 Multiple Sclerosis (MS) is the most common white matter (WM) disease.  It is 

characterised by demyelinating lesions, and a permanent inflammatory state; these can be 

accompanied by both grey and white matter atrophy and neurodegeneration. The gold 

standard in diagnosing and monitoring MS is the structural Magnetic Resonance Imaging 

(MRI), which has been proven as a technique that lacks specificity and sensitivity for MS 

pathological processes. Hence, unconventional MRI techniques such as Diffusion-Weighted 

Imaging (DWI) can aid in giving clues to understand what is happening at a microstructural 

level. 

 Diffusion Tensor Imaging (DTI) is a technique used to model DWI data that has been 

around for many years. It is widely used in both research and clinical routine, due to its 

simplicity and ease of use. However, DTI is not always adequate to analyse this type of data 

since it does not have enough specificity to distinguish pathological processes such as 

demyelination and axonal loss at a microstructural level. Consequently, novel tools such as 

Neurite Orientation Dispersion and Density Imaging (NODDI) have been developed to tackle 

DTI’s flaws. NODDI allows to distinguish axonal and dendritic loss from reduced dendritic 

arborisation and increase in sprawling processes, which are mechanisms that are accounted 

for in a single parameter in DTI. 

 This master thesis attempts to investigate voxel-wise differences in DTI and NODDI-

derived parameters, in MS patients and matched healthy controls; average diffusion metrics 

in tissues of interest (WM, normal appearing WM and lesions of the brain) were also 

considered, to further assess differences between groups. DTI and NODDI metrics were then 

correlated with cognitive and neuropsychological tests, in anatomical regions of interest, to 

evaluate the effect of alterations in diffusion metrics in cognitive and physical disability in 

MS patients. 

 Both DTI and NODDI voxel-wise analysis showed considerable discrepancies 

between MS patients and healthy controls; this was also seen in the statistical analysis of 

mean values in tissues of interest. These results support the notion that diffusion metrics 

are altered, even in early MS, and help to understand its underlying pathological 

mechanisms. An intriguing result was the increased average neurite density found in 

lesions, which, to our knowledge, has only been reported in one study. Finally, correlations 

between diffusion metrics and cognitive and neuropsychological scores showed that both 
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DTI and NODDI-derived parameters can help to explain cognitive and physical impairment 

in MS. 

 In conclusion, this work helped to prove that DWI is a valuable tool in the evaluation 

of MS, and its results gave a few steps into better understanding how diffusion metrics are 

related to MS evolution and disability. 

Keywords 

Multiple Sclerosis, Magnetic Resonance Imaging, Diffusion-Weighted Imaging, Diffusion 

Tensor Imaging, Neurite Orientation Dispersion and Density Imaging 
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1. Introduction 

1.1. Motivation 

 Multiple Sclerosis (MS) is an autoimmune, inflammatory, and neurological disease 

that targets the Central Nervous System (CNS), being characterised by the destruction of 

both myelin and axons, leading to neurodegeneration and neurologic disability in several 

domains, such as the visual, motor, and cognitive, with a degree that depends on the 

disease’s phenotype (Enzinger & Fazekas, 2015; Goldenberg, 2012).  

 MS is one of the world’s most common white matter diseases, affecting 

approximately 2.8 million people in the whole world, with a worldwide prevalence of about 

35.9 in 100000 people (2020 data), and women are twice more likely to be diagnosed with 

MS than men. In fact, it is estimated that a diagnosis of MS is made every five minutes 

(Walton et al., 2020).  

The aetiology of this disease is not well established, but it may be due to genetic 

susceptibility, and then triggered by environmental factors such as a virus (particularly the 

Epstein-Barr virus) or others (for example, low vitamin D levels) (Goldenberg, 2012).  Most 

patients are diagnosed in early stages of their life (between 20 and 40 years of age) (Garg & 

Smith, 2015; Klineova & Lublin, 2018; Oh et al., 2018), when they are usually the most 

productive and starting families; this will impact their quality of life, their families and 

society in general. There are treatments that can aid in the reduction of disability and in the 

increase of life expectancy in MS patients, but a cure is yet to be found, as is its precise 

aetiology (Walton et al., 2020). 

 Studies have already shown that a prompt treatment upon diagnosis slows down 

the progression of the disease, reduces disability, extends lifetime expectancy, which is 

decreased by approximately ten years in MS (Oh et al., 2018), and overall provides a better 

quality of life. Magnetic Resonance Imaging (MRI) has become the most important imaging 

tool when diagnosing and monitoring MS. In clinical environments, conventional MRI such 

as anatomical T1 and T2-weighted sequences are the most widely used; however, these 

techniques fail to show the full extent of the processes underlying the establishment and 

progression of MS and lack specificity. Thus, unconventional techniques such as Diffusion-

Weighted Imaging (DWI) have risen to try and overcome these obstacles. Using Diffusion 

Tensor Imaging (DTI) and Neurite Orientation Dispersion and Density Imaging (NODDI) as 

ways to model DWI data, it is possible to identify subtle microstructural differences 
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between both normal appearing brain tissue (NABT) and lesions, and normal brain tissues. 

It is also possible to establish relationships between variations in meaningful diffusion 

metrics and cognitive dysfunction and disability progression (Enzinger et al., 2015). 

Developing such imaging biomarkers is crucial to reliably assess disease progression to 

better adjust interventions. 

1.2. Proposed Approach  

 This work’s focus is to understand how water diffusion properties in the brain are 

altered in MS patients and interpret them considering their biological meaning and their 

role in structural connectivity. Hence, the proposed approach is to extract DWI metrics by 

modelling data with DTI and NODDI, analyse how they differ between early MS patients and 

age and gender-matched healthy controls, and finally to correlate them with cognitive and 

neuropsychological assessments. 

 A 3T MRI system was used to obtain the DWI data, with a multi-shell protocol and 

three b-values, which allowed the use of both NODDI and DTI models of DWI. Structural 

data was also acquired on the same session to better localise microstructural diffusion 

differences and to determine lesions’ locations, namely a T1-weighted MP2RAGE and a T2-

weighted FLAIR image. Using voxel-wise statistical analysis, the differences between groups 

were assessed, in tissues of interest such as the normal appearing white matter and MS 

lesions. Lastly, neuropsychological evaluation of the MS patients provided measures for 

cognitive and neuropsychological scores that were correlated with NODDI and DTI metrics, 

in different anatomical regions of the brain and in tissues of interest. 

 This approach allowed to understand how diffusion is altered even in early MS, and 

how that could be a clue as to whether this variation is in lesioned tissue or in apparently 

normal tissue, where there are no visible lesions on standard structural images. Water 

diffusion properties further provide information on structural connectivity, and how its 

disruption is linked to microstructural changes. 

1.3. Objectives and Original Contributions 

 Studies in this field often focus on conventional DWI models, such as DTI. NODDI is 

a relatively recent technique that lately has been receiving attention for its ability to discern 

microstructural alterations not sensed by DTI. Coupling that with the fact that DTI is an 

extremely simple model relying on assumptions that often do not correspond to the reality 

of water displacement in the brain, and that it has serious limitations, it led to the objective 



 

3 
 
 

of employing NODDI as a tool to overcome these problems in DWI data processing. Still, DTI 

remains important, since, as a simple model, is widely used in both research and clinical 

environments and provides sufficient information for initial suggestions on demyelination 

and other MS progression processes. Thus, this thesis also set to compare DTI and NODDI 

metrics extracted from the same data in MS patients. Furthermore, the statistical analysis is 

usually based on regions of interest and/or tract-based analysis. Few studies report voxel-

wise statistical analysis with as much detail as the one presented here (Spano et al., 2018), 

and not in the same conditions. 

 Most of the studies reported until today use data from MS patients with a long 

disease duration or use small cohorts of patients (By et al., 2017; Chen et al., 2021; Collorone 

et al., 2020; Hagiwara et al., 2019; Mustafi et al., 2019; Schneider et al., 2017; Spano et al., 

2018).  There is a lack of studies investigating changes in early MS, since even the results 

reported for shorter disease durations (de Santis et al., 2019; Granberg et al., 2017) still are 

not for MS patients with a diagnosis as recent as the ones who participated in this work.  

 Knowing all of what was described above, this thesis’ objectives can be summarised 

in the following: i) extract DTI and NODDI parameters from two different groups (recently 

diagnosed MS patients and matched healthy controls); ii) analyse voxel-wise differences 

between groups in tissues of interest and in the whole brain; iii) analyse differences in 

average values of the parameters in tissues of interest, between groups; iv) correlate the 

extracted microstructural metrics in regions of interest defined in an anatomical atlas and 

in tissues of interest (normal appearing white matter (NAWM) and MS lesions) with 

previously defined neuropsychological and cognitive scores. 

 This thesis describes my contributions in this work, ranging from data acquisition, 

to processing and analysing the collected data by using and integrating different softwares 

into customised processing and analysis pipelines, which were optimised and adapted to 

the objectives of the thesis, to interpretation and discussion of the results.  

 This thesis was integrated in the project “Biomuscle”, supported by Fundação para 

a Ciência e Tecnologia, with reference PTDC/MEC-NEU/31973/2017.  

1.4. Thesis Outline 

This thesis has seven main sections (Introduction, Background and Literature 

Review, Methods, Results, Discussion, Limitations and Conclusion). The first section is 

intended to give a brief introduction of the topic and the work. The second has the objective 
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of explaining the foundations of this work, what has been done so far in this field, and the 

principles of each technique that was considered of importance for this thesis. The third 

section presents the methods used in this work (participants, MRI acquisition, analysis of 

DWI data), whose results are presented in the fourth section. The fifth section is the one 

where results are discussed and interpreted in the light of was shown in section two, and in 

this context. The sixth section addresses the limitations underlying this research, which 

should be taken into consideration when analysing and interpreting the results. Finally, the 

seventh section concludes this master’s thesis, with the take home messages and 

suggestions for future work. After these main sections, there is a final section, Annexes, 

which depicts supplementary figures and tables. 

1.5. Thesis Outputs 

 The work from this master thesis resulted in an abstract submitted to the peer-

reviewed international conference of the European Committee for Treatment and Research 

in Multiple Sclerosis 2022 (ECTRIMS), under the topic 27: MRI & PET, cited below. 

Maria Caranova, Júlia Freire Soares, Ana Cláudia Lima, Lívia Sousa, Miguel Castelo-Branco, 

Sónia Batista, João Valente Duarte (2022). Probing brain microstructural connectivity in 

patients with early Multiple Sclerosis using diffusion weighted MRI. 38th Congress of 

European Committee for Treatment and Research in Multiple Sclerosis - ECTRIMS 2022. 
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2. Background and Literature Review 

2.1. Multiple Sclerosis 

2.1.1. Pathogenesis 

Being a multifocal white matter disease, MS is provoked by degeneration in white 

matter (WM). The pathogenesis of this disease entails an immune attack against CNS 

antigens, which is mediated through myelin-reactive T-cells and possibly, B-cells; myelin 

specific T-cells will cause demyelination, and oligodendrocyte and axonal loss. There is 

some self-tolerance of the CNS and myelin against autoimmune myelin attacks, which is 

thought to be lost due to environmental factors, such as a viral infection, leading to 

demyelination (Garg & Smith, 2015). Demyelination consists in the loss of myelin with 

preservation of axons, due to damage in myelin sheaths. Axons that have been demyelinated 

tend to atrophy and degenerate, and thus axonal loss and/or injury is also present in later 

stages of MS, paving the way to the onset of disability (Love, 2006). Axonal damage can be 

due to demyelination, but it can also be a concurrent process, and not a consequence, 

namely in grey matter. In fact, axons can maintain their ability to conduct electric impulses, 

even after demyelination. Still, long term demyelination leads to axonal injury and even 

atrophy, as mentioned before (Haines et al., 2011). Although the exact mechanisms of 

myelin and axonal damage are not completely understood, it is known that T-cells play a 

major role in the pathogenesis of MS. The attack on CNS leads to the persistent activation of 

peripheral autoreactive T-cells, which migrate across the blood-brain barrier. Once in the 

CNS, these T-cells can be reactivated, triggering an inflammatory response that leads to 

myelin damage; this results in a permanent inflammatory state (Garg & Smith, 2015). 

Even though it is not considered as an inherited disease, there is a genetic 

component linked to susceptibility to MS, since there can be more than one case in the same 

family; this genetic component is further supported by linkage analysis studies, which have 

shown that loci such as the major histocompatibility complex HLA DR15/DQ6 allele are risk 

factors for the development of MS (Garg & Smith, 2015). 

 The pathological hallmark of MS is its lesions, or plaques, which are focal areas of 

demyelination with variable degrees of inflammation. The inflammatory infiltrates consist 

of T-lymphocytes, B-cells, activated macrophages and microglia, and plasma cells. These 

lesions can be divided into active, chronic or remyelinated. Active lesions are more common 
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in the relapsing-remitting form of the disease and are characterised as having active 

demyelination and inflammation. Chronic lesions are associated with the progressive stage 

of MS and are related to an absence of inflammation and a higher degree of myelin injury. 

Finally, remyelinated plaques are seen within or at the margins of active lesions and contain 

myelinated axons; these are common to all stages of MS (Dobson & Giovannoni, 2019; Garg 

& Smith, 2015). Remyelination is often present in early MS and is driven by the 

reappearance of oligodendrocytes in active lesions, which will lead to a neuroprotective 

effect on axons. However, this process is thought to be transient and these remyelinated 

plaques can be a target for another period of demyelination (Patrikios et al., 2006). 

 In summary, MS presents multifocal demyelination plaques, mainly in 

periventricular WM, optic nerves, brainstem, cerebellum, and spinal cord. Besides 

demyelination, MS may also lead to neurologic disability due to gliosis and axonal damage 

(Costa Sousa, 2015). 

2.1.2. Clinical features  

There is no single histological difference between different MS phenotypes; while 

there have been identified different clinical subtypes of the disease, the pathological 

changes form a continuum. This means that patients can gradually evolve from one form of 

MS to another over time, typically years (Dobson & Giovannoni, 2019). 

 Since myelin damage is the main pathological characteristic of MS, the clinical 

features of this disease are intrinsically related to demyelination. Because myelin becomes 

compromised, impulse conduction through the axon is either slowed or stops entirely in 

regions of demyelination (lesions), resulting in clinical symptoms that depend on the 

lesions’ location (Kocsis et al., 2008). Symptoms of MS include spasticity, sensory 

disturbances, unilateral numbness, trigeminal neuralgia, optic neuritis, incontinence, 

constipation, fatigue, and sexual dysfunction (Goldenberg, 2012). 
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 There are four main phenotypes of MS (represented in Fig. 1):  relapsing-remitting 

MS (RRMS), primary progressive MS (PPMS), secondary progressive MS (SPMS), and 

progressive-relapsing MS (PRMS). The distinction between these forms of MS is based on 

their manifestations: in RRMS, there is a clear exacerbation of symptoms, followed by a 

remission period with little increase in disability levels; in PPMS, there is a worsening of the 

disease since its onset, with the absence of relapses and remission periods; in SPMS, there 

may or may not exist relapses and remission periods, but there is a progressive worsening 

of the disease from the beginning; in PRMS, there is progression of the disease from the 

early stages, with intermittent worsening of symptoms, and no remission periods 

(Goldenberg, 2012). There can also be identified a subtype of relapsing MS, which is known 

as benign MS, and it leads to the accumulation of little to no disabilities in patients over time 

(Filippi & Rocca, 2011). 

 Even though there are well-established MS phenotypes, most of patients with an MS 

diagnosis present a clinically isolated syndrome (CIS), which can evolve into either RRMS 

or SPMS, if there is disease progression between relapses. On the other hand, it is also 

possible to have a radiologically isolated syndrome (RIS), if the patient has lesions on an 

image but shows no clinical symptoms (Filippi & Rocca, 2011). 

 The type of MS of a patient must be re-evaluated in the disease time course, since 

one can evolve into the other; once MS is diagnosed, the phenotype needs to be specified, as 

well as if the disease is active or not, and progressive or not (Thompson et al., 2018). 

2.1.3. Diagnosis 

 The diagnosis of MS is based on clinical findings, which are supported by magnetic 

resonance imaging (MRI) of the brain and spinal cord, and laboratory biochemical analysis 

Fig. 1 The four types of MS. Each plateau shows a remission period, while peaks mean outbursts of MS. Note that PPMS shows 
neither, which is indicative of a progressive disease (Lisa, 2017). 
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of the cerebrospinal fluid (CSF) (Filippi & Rocca, 2011; Goldenberg, 2012). This process can 

be difficult, mainly due to the heterogeneous clinical and imaging manifestations of MS, and 

to the fact that there is no single characteristic or a specific diagnostic test that immediately 

identifies this condition (Thompson et al., 2018). 

 The McDonald criteria from the International Panel on Diagnosis of Multiple 

Sclerosis establishes criteria for the diagnosis of MS, offering a trade-off between sensitivity 

and specificity. These criteria are the space dissemination criterion (dissemination in space 

- DIS), the time dissemination criterion (dissemination in time - DIT) and the inflammatory 

criterion. The first establishes that there must be two or more different lesions in the WM 

of the CNS. The second says that there must be two or more episodes of active disease that 

must be confirmed by MRI scans, at least three months after the last episodes or MRI scans. 

The last criterion instals that there needs to be a chronic inflammation of the CNS, which is 

evaluated by analysing the CSF; this criterion may replace the DIS if it is not met 

(Goldenberg, 2012). Even though the 2010 McDonald criteria are widely used, they should 

not be applied in some situations, and were revised in 2017 by Thompson et al., establishing 

the 2017 McDonald criteria (Thompson et al., 2018). For a full diagnosis of MS, both the DIS 

and DIT criteria must be fulfilled, there cannot be an alternative diagnosis, and lesions must 

be identified in MRI scans, on both dual-echo sequences and post-contrast T1-weighted 

images (Filippi & Rocca, 2011). 

Patients with MS, even in the early phases of the disease, might show signs of 

cognitive impairment in aspects such as memory, attention, verbal fluency, visual 

perception, and a slowed processing of information (Sousa et al., 2018). There are many 

clinical tests performed on MS patients to assess their cognitive status and describe both 

the severity and the progression of MS, and it is possible to correlate them with MRI metrics 

(Costa Sousa, 2015).  Some of them are briefly described below: 

• Expanded Disability Status Scale (EDSS) is a scale ranging from 0 (normal 

neurological status) to 10 (death due to MS) that may change throughout the 

progression of the disease according to the patient’s physical impairment 

evolution (Kurtzke, 1983; Meyer-Moock et al., 2014); 

• Modified Fatigue Impact Scale (MFIS) is a self-reported questionnaire that 

assesses the impact and severity of fatigue on the daily lives of patients with 

MS (Fisk et al., 1994; Gomes, 2011); the scores range from 0 to 84, with 

higher scores meaning more fatigue (Novo et al., 2018); 
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• Symbol Digit Modalities Test (SDMT) is a written/oral task that measures 

cognitive processing speed. Since higher scores mean more correct answers 

to the test’s questions, they are linked to higher processing speeds (Sousa et 

al., 2018); 

• California Verbal Learning Test (CVLT) is an oral task that assesses auditory 

and verbal memory (Sousa et al., 2018). Its evaluation relies on a total recall 

score, which ranges from 0 to 80; higher scores indicate a better auditory 

and verbal memory (Stegen et al., 2010); 

• Brief Visuospatial Memory Test (BVMT) is a visual and written task that 

measures visuospatial learning and memory abilities (Sousa et al., 2018); 

scores range from 0 to 36, with higher scores indicating better test 

performance by the subject (Benedict et al., 2020). 

• Reading the Mind in the Eyes (RME) assesses subtle cognitive (dys)function 

through identification of the mental state of other people through 

photographs of their eyes (Baron-Cohen et al., 2001). Scores range from 0 to 

36, with higher scores representing higher cognitive ability (Chalah et al., 

2017). 

Other tests not illustrated here include, for example, the Multiple Sclerosis 

Functional Composite (MSFC), which assesses the degree of (physical and cognitive) 

impairment in MS (Meyer-Moock et al., 2014). 

2.2. MRI – basic principles 

 MRI’s basic principle is the phenomenon of nuclear magnetic resonance (NMR), 

which is then applied to the imaging field. NMR is based on the interaction of magnetic fields 

with nuclei that have a magnetic moment. Some nuclei such as the Hydrogen nucleus have 

non-zero individual nuclear moments, also known as spins, that precess at a specific 

frequency that depends on the intensity of the external static magnetic field (de Figueiredo 

et al., 2011). This relationship is described by the Larmor Equation, where 𝑤0 is the 

precessing frequency, or Larmor frequency, 𝐵0 is the intensity of the magnetic field, and the 

proportionality factor is the gyromagnetic constant: 

  𝑤0 = 𝛾𝐵0    Equation 1  (Chan et al., 2019)  

When there is a static external magnetic field 𝐵0, the spins form a net magnetization 

vector (Fig. 2 A), which points to the direction of the vector that represents the magnetic 

field, since most of the spins are aligned with the direction of 𝐵0. If a radiofrequency (RF) 
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pulse at the Larmor frequency is applied to the system, the spins will absorb this energy and 

the net magnetization vector will flip by a certain angle in relation to 𝐵0, leaving its 

equilibrium state (Fig. 2 B). The net magnetization vector can then be divided into two 

components: the longitudinal and the transverse component; the first one has a direction 

parallel to 𝐵0, while the second has a direction perpendicular to 𝐵0. Both the components 

are precessing, according to the precession of the spins and therefore the net magnetization 

vector, but the MRI signal comes from the precession of the transversal component around 

the receiver coil. This movement induces current in that coil, according to the Faraday’s law 

of induction, creating an electric signal that can be read by the MRI system’s hardware (Fig. 

2 C) (de Figueiredo et al., 2011).  

 

When the RF pulse stops, the tendency is for the net magnetization vector to go back 

to its equilibrium state, thus decaying the MRI signal (Fig. 2 C). This decay can be due to two 

main processes: loss of energy to the surrounding media or loss of phase coherence between 

spins. The first process is a spin-lattice interaction and is characterised by a time constant 

called T1, being described as a T1 relaxation. In this case, the longitudinal component of the 

net magnetization vector recovers its full length by growing back along the direction of 𝐵0, 

via release of energy to the environment. The second process can either happen by spin-

spin interactions, and in that case, it is characterised by the time constant T2, being defined 

as the T2 relaxation, or by inhomogeneities in the external magnetic field, which is 

characterised by the time constant T2* and considered a T2* relaxation. In both T2 and T2* 

Fig. 2 Schematics of the creation of an MRI signal: A) The net magnetization vector is initially aligned with 
the direction of the external magnetic field (z axis); B) The net magnetization vector flips to the xy plane 
when a 90º RF pulse is applied; C) The two components of the magnetization vector precess around the z 
axis; the movement of the transversal component induces current in the RF receiver coil, creating the signal 
that decays over time, with the dephasing of spins. Adapted from (Cleary & Guimarães, 2014). 

A B 
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relaxations, the transverse component of the net magnetization vector decreases in its 

magnitude, leading to a decay in the MRI signal (de Figueiredo et al., 2011). These processes 

are represented by the graphical illustration in Fig. 3. 

 

The difference between these types of relaxation is what gives the image contrast, 

and it can be controlled by the MR pulse sequence used. This sequence can be seen as an 

ensemble of sequences of RF pulses, magnetic field gradient pulses, signal sampling, and 

time periods between pulses. The RF pulses are responsible for the excitation of the spins, 

as described above. The magnetic field gradients can spatially encode the MRI signal, by 

using frequency and phase information, and allow the selection of a slice and single voxels 

within a slice to be imaged (de Figueiredo et al., 2011). 

In the human body, the abundance of Hydrogen and its proper gyromagnetic 

constant make the Hydrogen nucleus the most used for MRI (de Figueiredo et al., 2011). 

2.2.1. Use of Conventional MRI in MS 

Since conventional MRI is widely used for the diagnosis of MS, it is important to 

know how lesions present themselves on a scan. The most common areas of WM lesions in 

MS are periventricular, juxtacortical and infratentorial, and the corpus callosum (Filippi & 

Agosta, 2010). The presentation of this damage on an image will depend on the kind of 

sequence and weighting used (Ceccarelli et al., 2012; Filippi & Agosta, 2010; Filippi & Rocca, 

2011), and can either be focal or diffuse, and be found on the WM and the grey matter (GM) 

Fig. 3 Representation of the decay of the MRI signal due to T1 effects (recovery of the longitudinal component) and 
T2/T2* effects (decay in the transverse component). The horizontal axis represents time while the vertical represents 
the magnitude of the net magnetization vector (de Figueiredo et al., 2011). 
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(Pagani et al., 2020). Contrarily to WM injury, GM damage is present in later stages of the 

disease and is due to axonal damage (Jehna et al., 2013). 

 MS lesions are found as heterogeneous, varying in the composition of the 

inflammatory infiltrate, the substrate that is damaged, and the degree of injury; this 

variation has been observed intra- and inter-individually, in different lesions, and at 

different stages of MS (Rahmanzadeh et al., 2021). Even though normal appearing brain 

tissue (NABT), such as normal appearing white matter (NAWM), which is apparently 

normal in imaging yet can show signs of microstructural damage, presents normal intensity 

in MRI scans such as T2-weighted images, it is relevant to investigate its properties in the 

monitoring of MS, since it can be related to development of lesions (Costa Sousa, 2015). 

 In a dual-echo fluid-attenuated inversion-recovery (FLAIR) sequence (T2-weighted 

images), WM lesions appear as focal areas of hyperintensity (Fig. 4 A), compared to the 

normal brain tissue; however, this hyperintensity lacks specificity, i.e., it is not possible to 

distinguish demyelination from inflammation (for example) solely by looking at these 

images. On the other hand, findings in T1-weighted images without contrast agents show 

very hypointense WM lesions (Fig. 4 B) which are commonly called “black holes” and are 

related to more serious tissue damage (Ceccarelli et al., 2012) and often chronic lesions 

(Costa Sousa, 2015). If a contrast agent such as Gadolinium is used on a T1-weighted image 

(Fig. 4 C), active and inactive WM lesions can be distinguished, since this agent only enters 

cells when the blood-brain barrier is compromised, i.e., it has an increase in permeability; 

this means that enhanced lesions represent areas of ongoing inflammation (Ceccarelli et al., 

2012). Furthermore, the demyelination present in acute MS lesions can lead to axonal injury 

and later axonal degeneration, which will reflect in an atrophy in WM (Gajamange et al., 

2018). 
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The detection of GM damage is difficult using conventional MRI (Ceccarelli et al., 

2012; Filippi & Agosta, 2010), and the uncovering of these lesions needs a multimodal 

approach, which couples a sequence sensitive to T2 prolongation and a 3D T1-weighted 

image. GM atrophy can act as a marker for neurodegeneration in MS, but the mechanisms 

behind that process are not known. Besides atrophy, both GM diffuse damage and excessive 

GM iron may be present in patients with MS (Ceccarelli et al., 2012). Even though WM 

lesions are a main characteristic of MS patients, the WM lesion load only partially correlates 

with symptoms in MS. In fact, GM damage can better justify the disability often present in 

MS patients (Jehna et al., 2013). 

 Finally, spinal cord lesions can be found in patients with MS. The most common is 

spinal cord atrophy, which is present in all MS subtypes, and correlates with disease status, 

being independent from brain damage. This atrophy can act as a biomarker, but its utility is 

limited due to the presence of edema and the fact that it may not be relevant in MS when 

compared to the variability seen in normal populations (Ceccarelli et al., 2012). 

 Because conventional MRI lacks sensitivity, there are unconventional MRI 

techniques that are useful in the diagnosis, evaluation, and monitoring of MS. This 

sensitivity influences the detection of some lesions, such as grey matter lesions and diffuse 

changes in NABT (Ceccarelli et al., 2012). 

Fig. 4 Axial A) T2-weighted, B) T1-weighted and C) gadolinium-enhanced T1-
weighted MR images of the brain of a patient with MS. There are lesions (arrows) 
that present as hyperintense on the T2-weighted scan (A), hypointense on the T1-
weighted scan (B) and as enhanced on the enhanced T1-weighted scan (C) (Filippi 
& Rocca, 2011). 
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2.3. Unconventional MRI Techniques in MS – 

Diffusion-Weighted imaging (DWI) 

 Conventional MRI fails to provide information about the processes behind 

microstructural changes in MS (Mustafi et al., 2019). Thus, more complex MRI techniques 

can aid in the detection of lesions in the WM, GM, and spinal cord. However, even though 

these techniques have higher sensitivity and specificity, they still may not account for 

specific processes such as inflammation, demyelination, axonal loss, and gliosis (Ceccarelli 

et al., 2012). 

2.3.1. Physics of DWI 

 The use of DWI allows microstructure probing, by evaluating diffusion properties, 

which are influenced by the type of tissue and its state (Mustafi et al., 2019). It is non-

invasive, has high sensitivity to water movement, uses the existing MRI equipment, and does 

not require contrast agents or tracers (Soares et al., 2013). 

DWI is an unconventional MRI technique based on the diffusion of water molecules 

inside tissues. This diffusion has a Brownian motion, which means that there is a random 

movement of water molecules, with no preferred direction. The measurement of this 

diffusion will then reflect the water molecules displacement, when allowed to move in a 

certain period (de Figueiredo et al., 2011; Enzinger & Fazekas, 2015). 

 The DWI signal is obtained by using Stejkal and Tanner’s method. Firstly, a 90º pulse 

(known as first diffusion sensitising gradient lobe) is used to dephase the stationary water 

spins. A second pulse of 180º refocuses the spins, compensating phase variations due to 

magnetic field inhomogeneities. Then, another 90º pulse (second diffusion sensitising 

gradient lobe) is used to rephase the spins by the same amount they were dephased. If the 

water spins move (diffusion), the second lobe will not be able to rephase them the same 

amount they were dephased; thus, there will be a signal attenuation, proportional to the 

degree of water diffusion. The direction of the applied lobes is the diffusion-sensitising 

direction, affecting spins in that direction only; if one is scanning an anisotropic tissue, 

where diffusion is not equal in all directions, more than one sensitising direction is needed. 

This method is mostly combined with spin-echo echo-planar imaging (EPI), taking 

advantage of a fast acquisition, with fast sampling rates (de Figueiredo et al., 2011). 
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 The amount of diffusion weighting is controlled by a parameter called b-value, that 

accounts for gradient magnitude, duration, and time between lobes, as described in 

Equation 2, where γ is the gyromagnetic ratio, G is the strength of the diffusion-sensitising 

gradients, δ is the duration of the gradient pulse and Δ the time between those gradients. 

The units of this b-value are s/mm2 (de Figueiredo et al., 2011): 

𝑏 =  𝛾2𝐺2𝛿2(∆ −
𝛿

3
)    Equation 2 (de Figueiredo et al., 2011) 

A common EPI-DWI protocol requires three orthogonal scans with diffusion 

sensitization in each main gradient direction, averaging them into a final image. It usually 

uses two b-values, and its choice must rely on a compromise, since higher b-values lead to 

more diffusion weighting and increased contrast, but the signal-to-noise ratio decreases (de 

Figueiredo et al., 2011). 

 In summary, DWI should be performed using high b-values along at least six non-

collinear diffusion encoding directions and one minimally T2-weighted image with low b-

values. The standard b-value for DWI in clinical practice is 1000 s/mm2 (Soares et al., 2013). 

2.3.2. The use of DWI in MS 

 In biological tissues, water molecules cannot diffuse freely, since they interact with 

structures; this means that the amount of water displacement can decrease, and diffusion 

can be restricted. Taking this into account, it is more meaningful to measure an apparent 

diffusion coefficient, instead of raw diffusion quantities (de Figueiredo et al., 2011). More 

specifically, water movement in the brain is restricted by both axons and myelin. Thus, if 

myelin is present and axonal membranes are intact, there is not diffusion in all directions, 

i.e., the diffusion is anisotropic rather than isotropic. In fact, there should not exist 

movement in the perpendicular direction to the longitudinal axis of the axon, which is where 

myelin and membranes are present (Aung et al., 2013; de Figueiredo et al., 2011). Because 

there is a demyelination process in MS, it is expected that in MS patients the level of 

anisotropy is lower when compared to controls, and isotropy levels are higher (Aung et al., 

2013). 

2.4. DWI processing  

2.4.1. Pre-processing (artefacts) 

 As with other MRI techniques, DWI is prone to artefacts from various sources. These 

commonly are the system hardware, pulse sequence, type of acquisition and motion. The 
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two main artefacts that are intrinsic to DWI are image distortions due to eddy currents and 

motion (Soares et al., 2013). 

 Eddy currents arise from the fact that the gradients used in DWI are longer and 

stronger than those used in other weighted MRIs; these gradients induce currents in the 

MRI scanner by interfering with the magnetic field. The problem with eddy currents is that 

they are not constant, which means that they can vary with the diffusion gradient, leading 

to a misregistration between successive images (Soares et al., 2013). 

 Motion can either be due to macroscopical processes such as head motion, cardiac 

pulse and breathing, or due to microscopic processes like phase shifts induced by the 

diffusion of water molecules. This artefact is influenced by the magnitude and duration of 

the gradients and can be corrected by using pre-processing steps. Furthermore, patients are 

advised to be as still as possible, to reduce this problem. Its influence on the data can be 

diminished by decreasing scan time as well, which can be achieved by controlling the pulse 

sequence. The most used sequence in this case is the single-shot EPI, but it leads to other 

artefacts related to its characteristics and DWI properties. On the other hand, the use of 

shorter readout times increases the signal-to-noise ratio and decreases sensitivity to 

motion, susceptibility to geometric artefacts and blurring; this can be achieved by using 

phased-array head coils, which enables parallel imaging (Soares et al., 2013). 

 Another artefact is the vibration effect: because of the gradients applied in DWI, 

there can be low-frequency mechanical resonances of the MR system, leading to small brain 

tissue movements. If they happen in the direction of the diffusion-encoded gradient, phase 

offsets will occur, inducing signal dropouts in DWI images (Soares et al., 2013). 

 Finally, DWI is also prone to the T2 shine-through artefact, where there can be some 

T2 contributions to the image. This happens because DWI uses a long repetition time (TR) 

and a short echo time (TE), as do T2-weighted images. This artefact can be attenuated by 

using two b-values, where one is equal to zero, to acquire a T2-weighted scan; then, the 

diffusion image is divided by the b=0 image (de Figueiredo et al., 2011). 

The main problem with the existence of artefacts in DWI is that they will lead to 

erroneous estimations for the diffusion tensor, resulting in wrong parameter values that 

mean errors in fibre orientation and length estimation (Soares et al., 2013). The reduction 

of the influence of artefacts in DWI is achieved through pre-processing steps to correct for 

the effects of all sources of noise described above. 
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2.4.2. Diffusion-Tensor Imaging  

Diffusion-Tensor Imaging is the simplest way of analysing data from DWI images, 

allowing the evaluation of the integrity of WM tracts in specific neuronal circuits, using 

tractography (Ceccarelli et al., 2012). It assumes that the movement of water molecules 

follows a 3D Gaussian distribution, which can be characterised using a diffusion tensor (DT), 

and DT metrics are sensitive to changes in the WM, and in the NAWM, such as demyelination 

(Schneider et al., 2017). In fact, the use of DTI probability maps allows for topographical 

distribution of WM injury to be revealed, assessing NAWM damage regionally. This means 

that the examination of the topological organisation of specific neuronal circuits is possible, 

by determining structural connectivity, whose abnormalities contribute to cognitive 

impairment in MS patients (Ceccarelli et al., 2012). 

The principle of this technique is the DT, which models diffusion in a single voxel, by 

computing a tensor per voxel. It is the 3x3 matrix represented in Fig. 5 A, and is 

characterised by three eigenvectors, representing an ellipsoid in three dimensions (Fig. 5 

B), whose volume describes the mean diffusivity (MD) and whose eccentricity represents 

fractional anisotropy (FA) (Aung et al., 2013; de Figueiredo et al., 2011). In isotropic media, 

it is enough to describe water displacement with a parameter that does not depend on fibre 

orientation, such as MD. However, when movement is anisotropic and the measured 

diffusivity depends on fibre orientation, MD is not enough to characterise water movement; 

that is why FA is needed in this case (Basser & Jones, 2002). 

 

Fig. 5 A) The Diffusion Tensor; D is the diffusion coefficient, which determines how easily one particle can move 
in that given direction (de Figueiredo et al., 2011); B) The diffusion ellipsoid; 𝜆1, 𝜆2 and 𝜆3 are the three DT’s 
eigenvalues, while 𝜀1, 𝜀2 and 𝜀3 are the eigenvectors  (Rane, 2009). 

A B 



 

18 
 
 

 FA is a parameter that describes the fraction of water molecules that move along 

the orientation of the axon fibre (preferred direction), ranging from 0 (isotropy) to 1 

(infinite anisotropy) and is estimated by Equation 3. MD is described by Equation 4; it may 

not be directly assessed, but it is implicit in another metric, the apparent diffusion 

coefficient (ADC), which accounts for the fact that diffusion rates may only be apparent, due 

to the existence of physical barriers that restrict the movement of water (Aung et al., 2013; 

de Figueiredo et al., 2011). ADC is computed by using Equation 5, where 𝑆0 and 𝑆1 are the 

signal intensity for a b-value of zero (𝑏0) and a b-value different than zero (𝑏1), respectively 

(de Figueiredo et al., 2011). 

𝐹𝐴 =  
√(𝐷𝑥𝑥−𝐷𝑦𝑦)2+(𝐷𝑦𝑦−𝐷𝑧𝑧)2+(𝐷𝑧𝑧−𝐷𝑥𝑥)2

√2(𝐷𝑥𝑥
2 +𝐷𝑦𝑦

2 +𝐷𝑧𝑧
2 )

  Equation 3 (de Figueiredo et al., 2011) 

𝑀𝐷 =
𝐷𝑥𝑥+ 𝐷𝑦𝑦+ 𝐷𝑧𝑧

3
     Equation 4 (de Figueiredo et al., 2011) 

𝐴𝐷𝐶 = ln (

𝑆1
𝑆0

𝑏1−𝑏0
)     Equation 5 (de Figueiredo et al., 2011) 

To be able to construct a DT, the diffusion-weighted images need to be acquired with 

at least six different gradient directions, since there are six unknown parameters in the DT; 

this is because it uses a 3D Gaussian distribution, which has six parameters (Descoteaux, 

2015). Apart from the six gradient directions, there is the need to acquire an additional scan, 

with b=0, which means there should be a minimum of 7 acquisitions, so that diffusion 

directions can be calculated in anisotropic media (de Figueiredo et al., 2011).  

Using the eigenvalues from the DT, it is possible to characterise the direction of 

diffusion. Radial diffusivity (RD) is the average of the two shortest eigenvalues and 

characterises diffusion in a perpendicular direction of the long axis of the axonal tract, 

representing diffusion to myelin. Axial diffusivity (AD) is the largest eigenvalue and 

characterises diffusion in a parallel direction to the axonal tract, having a greater value than 

RD in normal conditions. While the eigenvalues represent the magnitude of diffusion in each 

direction, the associated eigenvectors describe that direction. The discrimination of the 

direction of diffusion allows for anatomical structural entities to be considered (Aung et al., 

2013; de Figueiredo et al., 2011). 

DTI parameters can be used in the construction of lesion probability maps, which 

reveal associations between specific neurologic and cognitive deficits with lesion 

accumulation in different regions, and in tract-based spatial statistics (TBSS), which can 
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identify areas where reduced FA in WM tracts predicts cognitive impairment (when there 

is an overlap between cognitively relevant tracts and areas of high probability for lesions) 

(Ceccarelli et al., 2012). TBSS is based on the mapping of diffusion indices that are 

normalised to a stereotaxic space, and statistical tests are then applied to assess the 

significance of differences between populations. Analysis can also be performed based on 

regions of interest, by delineating them and determining a diffusion index average for each 

region, per subject (Costa Sousa, 2015). 

DTI has limitations, mainly due to the fact that the measures are voxel-based, such 

as: when fibres branch or crossover, the assumption that one long axis represents the fibre 

orientation within the diffusion ellipsoid may not be valid; areas where at least two 

heterogeneous fibre populations pass within the same voxel may appear to be hypointense 

on DWI; in areas of tissue partial volume where WM and GM or WM and CSF are in the same 

voxel, there is diffusion bias, affecting anisotropy (Aung et al., 2013); anisotropy is prone to 

regional variations due to partial volume effects and noise (F. C. Yeh et al., 2019); the 

computed metrics are affected in a similar way by changes in the microstructure and 

changes in the orientational organisation, reducing the interpretability of the results; and 

the Gaussian model used does not perfectly describe the water displacement (Schneider et 

al., 2017). 

The use of high angular resolution diffusion imaging (HARDI) can help overcome 

these limitations, thus allowing to perform tractography, which is a great application of DTI, 

with a more robust approach and providing new anisotropy measures. HARDI uses non-DTI 

reconstruction methods and typically relies on spherical sampling, having three acquisition 

strategies that depend on the number of measurements and the b-value(s) (Descoteaux, 

2015). 

2.4.2.1. Use of DTI in MS – what to expect 

The DT is highly affected by the tissue’s structure; its geometry depends on axonal 

density, amount of (de)myelination, the fibre’s diameter, and the directions of the WM fibres 

within the same voxel (Goldberg-Zimring et al., 2005). When there is a disruption of the 

organisation of axonal fibres, there is a decrease in restriction of water diffusion, resulting 

in reduced FA and increased ADC values (inversely, low ADC values represent a well-

organised structure) (Aung et al., 2013; F. C. Yeh et al., 2019); this happens because water 

diffusion is restricted in WM by axons (myelinated and demyelinated) but in MS, damage to 

these structures alter their permeability and water diffusion becomes less restricted 
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(Goldberg-Zimring et al., 2005) . Thus, anisotropy parameters such as FA and ADC can 

identify axonal damage that results in the interruption of the diffusion along the axon fibre 

before obvious structural changes on conventional MRI. However, one must take into 

consideration that these parameters are not specific to axon and myelin pathology: it is not 

possible to differentiate between the two kinds of damage just by investigating changes in 

FA and ADC values (Aung et al., 2013); as a matter of fact, anisotropy levels are maintained 

mostly by axonal membranes and density, while myelin plays a less important role (Costa 

Sousa, 2015), which means that damage to both axons and myelin can contribute to a 

decrease in anisotropy and increase in water diffusion. Still, these parameters are valuable 

in the identification of MS lesions, since they present decreased FA and AD, and increased 

ADC and RD values, due to myelin and axonal damage (Aung et al., 2013; Ceccarelli et al., 

2012). 

Studies have shown that RD seems to be a good indicator of myelin damage, whereas 

AD is only an indicator of axonal damage in the early stages of MS, since there is no 

correlation between this parameter and the extent of axonal loss in chronic stages. This 

happens due to factors such as inflammation, cellular infiltration, or gliosis (Aung et al., 

2013). In fact, AD may even have normal values even if demyelination and/or axonal loss is 

present, because even though smaller calibre axons may disappear, larger calibre axons can 

be preserved (Costa Sousa, 2015). 

In summary, studies show that changes in MS patients include a decrease in FA and 

an increase in MD/ADC in both WM lesions and NAWM, in the early stages of the disease 

(de Santis et al., 2019; Granberg et al., 2017; Schneider et al., 2017). It is also recognised that 

the more marked variations are associated with patients with high disability and 

progressive forms of MS. Changes in the GM can also be accounted for, in both lesions and 

normal appearing tissue, and these are associated with physical disability and cognitive 

impairment. So, there are significant correlations between changes in DTI indices and 

myelin content and axonal count in NAWM and WM lesions (Schneider et al., 2017).  

However, in the context of MS, DTI-derived measures may not be able to discern 

demyelination from axonal loss, since these processes have similar contributions to DTI 

parameters and cannot be differentiated using these metrics (de Santis et al., 2019). 

2.4.2.2. Correlation of DTI metrics with clinical scores in MS 

 Some studies do not report any association between EDSS and DTI metrics, which 

may be normal when EDSS scores are low (Hagiwara et al., 2019; Lee et al., 2020). However, 
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this is not the rule. Barnabéu-Sanz, et. al found positive correlations between EDSS and MD 

and negative correlations between EDSS and FA, for thalamic connections in RRMS patients 

(Bernabéu-Sanz et al., 2021). On another example, ElSayed et al. found statistically 

significant negative correlations between FA and EDSS in both NAWM and tracts of the brain 

and spinal cord of MS patients. In the corpus callosum tract, they found a positive 

correlation between ADC and EDSS and a negative correlation between FA and EDSS. Still, 

this was only valid for SPMS patients; it is important to note that EDSS is related to physical 

disability. Thus, RRMS patients with low EDSS scores may not have many significant 

correlations with DTI metrics, since their motor disability may not be impaired at a clinically 

significant level (ElSayed et al., 2019). 

 On the other hand, a positive correlation between MFIS and ADC in different WM 

tracts has been found; however, no association between FA and MFIS was shown. This 

shows a relationship between fatigue and NAWM damage, here represented by the ADC 

parameter (Novo et al., 2018).  

 SDMT also presents some correlations with DTI metrics. For example, Barnabéu-

Sanz et. al found a negative correlation between this test’s scores and FA, while MD was 

positively correlated with SDMT scores, in thalamic connections (Bernabéu-Sanz et al., 

2021). 

 A poorer performance in CVLT has been associated with FA reduction in cognitively 

relevant tracts, such as the sagittal stratum, fornix, and the posterior thalamic radiation. 

These correlations were strong and supported by an increase in radial diffusivity, which 

indicates demyelination as a major factor for cognitive impairment in MS (Yu et al., 2012).  

 BVMT also seems to correlate with DTI metrics, such as FA and MD in forniceal 

regions. Worse performance on this test has been associated to lower FA values and higher 

MD in MS patients, using a tract-based approach (Koenig et al., 2012). 

DTI-derived parameters are well established to be altered in patients with MS, and 

correlate with clinical features such as fatigue and disability scores (Bester et al., 2013; 

Filippi et al., 2001; Rovaris & Filippi, 2007), and social cognition impairment (Batista, Alves, 

et al., 2017). However, there are scarce data on longitudinal measures, which are crucial to 

determine mechanisms underlying longitudinal disease progression, with contradicting 

results showing an association with clinical deterioration (Kolasa et al., 2018; Sämann et al., 

2012; Schmierer et al., 2004) or not observing changes over time (Ontaneda et al., 2017; 

Rashid et al., 2008). These contradictory findings suggest that conventional DTI protocols 
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might have suboptimal capacity for capturing diffusivity pathological changes in normal 

appearing WM, which are in principle more subtle than in T2 lesions and follow the early 

disease course. 

2.4.3. Neurite Orientation Dispersion and Density 

Imaging  

 Although DTI is a method with high sensitivity for microstructural changes, it lacks 

specificity since a variation in its measured parameters can be due to a myriad of processes 

(Zhang et al., 2012). This gives opportunity for methods such as NODDI to arise. 

Neurites are the combination of axons and dendrites, which are projections of 

neurons, and quantifying both neurite density and orientation gives insights into brain 

function. On one hand, dendritic density represents the branching complexity of dendrites, 

which may reflect their function: there is an increase in complexion with the development 

of such function. On the other hand, brain development leads to an increase in the 

dispersion of neurite orientation distribution, and a decrease in such dispersion is 

associated with ageing. Other conditions, such as MS, can be linked to changes in neurite 

morphology (Zhang et al., 2012). 

The NODDI model accounts for three types of microstructural environment 

(intracellular, extracellular and CSF) in which water diffusion has different properties, 

leading to different DWI signals (Zhang et al., 2012). These compartments are modelled 

with different diffusion distributions according to the diffusion characteristics. The 

intracellular space is modelled by a Watson distribution, the extracellular space by a 

Gaussian anisotropic diffusion distribution and the CSF by a Gaussian isotropic diffusion 

distribution (Schneider et al., 2017). The difference in diffusion distributions comes from 

the fact that the considered environments either have hindered or restricted diffusion. 

Hindered diffusion is present when water movement has a Gaussian pattern and they have 

their diffusion slowed, but not restricted, which happens in environments such as the 

extracellular space. Restricted diffusion is present when water movement has a non-

Gaussian pattern and diffusion is blocked by barriers, such as cellular membranes; this 

happens in environments such as the intracellular space (Zhang et al., 2012). 

The intracellular compartment – in this case, the axon - is bounded by the neurites’ 

membranes. It is characterised as zero-radius cylinders (sticks) that reflect highly restricted 

diffusion in the transversal direction and free (unhindered) diffusion along the longitudinal 
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direction, where the latter leads to an attenuation in DWI signal. The sticks’ orientation 

distribution reflects the spectrum of neurites’ orientation in different brain tissues, ranging 

from highly parallel in some WM structures to highly dispersed in GM (Zhang et al., 2012). 

The extracellular compartment is the space bounded by neurites, which slow water 

diffusion, but do not restrict it, which means diffusion is still anisotropic, as it was in the 

previously described compartment; this is the space where glial cells and cell bodies 

(somas) are. The NODDI model expresses parallel and perpendicular diffusivities in the 

extracellular compartments in terms of the neurite morphology and the intrinsic diffusivity, 

which means they are determined by both neurite density and orientation dispersion 

(Zhang et al., 2012). 

The final compartment is the CSF, where there is isotropic Gaussian diffusion (Zhang 

et al., 2012). 

Fig. 6 shows how the DWI signal can be decomposed to achieve a mathematical 

model for each compartment. Level 1 is the distinction between non-tissue signal (from 

CSF) and tissue signal (WM and GM), while level 2 separates the two compartments that 

together yield the tissue signal (extracellular or extra-neurite and intracellular or intra-

neurite). Lastly, each compartment has a mathematical model assigned, as previously 

mentioned (Tariq et al., 2016). 

 

The NODDI protocol has been developed using two HARDI shells with b-values of 

711 and 2855 s/mm2 (30 and 60 directions, respectively) and nine b=0 images. In fact, 

Fig. 6 Decomposition of the DWI signal into tissue and non-tissue. Each contribution has a mathematical model 
assigned; for non-tissue, it is the Gaussian isotropic diffusion model, while for tissue, it is the Gaussian 
anisotropic diffusion model for extra-neurite and the Watson distribution for intra-neurite (Tariq et al., 2016). 
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neurite density cannot be estimated using single-shell data, only with at least two-shells 

(Zhang et al., 2012).  

The pre-processing steps in the NODDI model consist in segmenting the images into 

CSF, GM, and WM, according to criteria such as isotropic diffusion (if it is greater than 80%, 

it is considered as CSF) and orientation linearity (if it is lower than 0.2 it means that it is the 

GM, whereas if it is higher than 0.2, WM is identified) (Zhang et al., 2012). 

The parameters obtained from this model are the intracellular volume fraction 

(same as neurite density index), intrinsic free diffusivity, concentration parameter of 

Watson distribution, mean orientation of Watson distribution, isotropic volume fraction, 

and isotropic diffusivity; the diffusivities are fixed to their typical values in vivo, while the 

rest of the parameters are estimated through model fitting. The concentration parameter of 

Watson distribution is later used to compute another value, the orientation dispersion index 

(ODI) by using Equation 6: 

𝑂𝐷𝐼 =
2

𝜋
arctan (1/κ)        Equation 6 (Zhang et al., 2012) 

The parameter κ was defined in (Zhang et al., 2011) as a concentration parameter 

that controlled dispersion in the Watson model; it was then named as orientation dispersion 

index and redefined as the ODI from Equation 6 in (Zhang et al., 2012). 

By estimating the isotropic volume fraction, the contamination by CSF can be 

eliminated (Zhang et al., 2012). The computed parameters are used to produce maps of 

metrics such as neurite density index (NDI), ODI and isotropic volume fraction (Schneider 

et al., 2017). 

The map of NDI shows lower neurite density in GM and higher in WM, having the 

highest values in WM tracts. This means that high intracellular volume fraction is linked to 

high neurite density, which is higher in WM, since GM has cell bodies and not neurites 

(Zhang et al., 2012).  

The map of ODI shows higher values for GM and lower for WM, having the lowest 

values in the corpus callosum. This means that there is more orientation dispersion in GM, 

which is true, since the linearity is more prevalent in WM than in GM. The ODI of neurites 

can be used to quantify the bending and fanning of axons in the WM, which is useful to map 

brain structural connectivity, and to quantify the pattern of sprawling dendritic processes 

in GM. It can also help to determine whether the voxels identified as having crossing fibres 

really have just one dominant direction (Zhang et al., 2012).  
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Lastly, the map of isotropic volume fraction displays its highest values in the CSF 

regions, which means that there is more isotropic diffusion in those areas, as compared to 

others (Zhang et al., 2012). 

A relationship between FA and NODDI measures can be drawn. The most 

contributing factors to FA are ODI and NDI, and FA is primarily sensitive to ODI: ODI and FA 

are inversely correlated and exhibit significant regional variation, while NDI shows less 

changes. Thus, FA is influenced by both the neurite orientation, showing strong negative 

correlation with ODI in both WM and GM, and a positive weak correlation with intracellular 

volume fraction. Therefore, for both WM and GM, an FA value can be achieved through a 

combination of ODI and NDI; two voxels can have the same FA value if the one with the 

largest ODI value also has the largest NDI value, so that one can compensate for the other (a 

small change in ODI needs to be compensated with a much larger change in NDI, since FA is 

more sensitive to ODI variations) (Zhang et al., 2012). The fact that an FA value can be 

disentangled into changes in density and orientation improves this measure’s specificity, 

meaning that NODDI can differentiate whether a change in FA is due to a loss in neurites or 

to a change in fibre architecture (Spano et al., 2018). 

However great NODDI is, it is not without limitations. The quantification of 

orientation dispersion is only for isotropic orientation dispersion; there is a level of 

anisotropy in orientation dispersion, in the case of bending and fanning axons, since 

dispersion in the main direction of orientation is higher in the plane of bending and fanning 

and lower in the perpendicular plane (Tariq et al., 2016). 

2.4.3.1. Use of NODDI in MS – what to expect 

There is evidence of a strong correlation between neurite density and the intensity 

of myelin damage, leading to the use of neurite density as a marker of MS. Since FA loosely 

depends on neurite density, maybe NDI could be a better marker for pathology than FA. It 

may even highlight signs of demyelination earlier, because even if there is a high decrease 

in neurite values, FA may not reflect it and thus not show alterations in its values and show 

signs of pathology (Zhang et al., 2012). However, it has been shown that neurite density is 

primarily sensitive to axonal loss, and to demyelination in a lesser degree (Mustafi et al., 

2019). 

It has been shown that NDI is lower in both WM lesions and in NAWM (By et al., 

2017; Granberg et al., 2017; Grussu et al., 2017; Schneider et al., 2017), which means that 

there is a loss in neurite density in both tissues, but to a higher degree in WM lesions. 
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However, it also has been demonstrated that NDI can be higher in lesions, mainly lesions 

that are not enhanced in the presence of a contrast agent such as Gadolinium, which can be 

an indicator of remyelination in such tissue (Sacco et al., 2020).  

It has also been shown a decrease in ODI in MS lesions (Grussu et al., 2017; Schneider 

et al., 2017) and an increase in NAWM (By et al., 2017; Grussu et al., 2017; Schneider et al., 

2017). These findings support that there is a loss of fibre coherence in NAWM (since ODI 

increases) and a decrease in axonal density (decrease in NDI). These measures cannot be 

obtained using the DTI parameters, which reinforces the usefulness of NODDI metrics 

(Schneider et al., 2017). Still, ODI values can be found to be increased in WM lesions (By et 

al., 2017; Granberg et al., 2017; Spano et al., 2018), mainly because this parameter reflects 

a complex combination of structural changes, which can either result in an increase or 

decrease in the ODI value. Another explanation for this is the healthy brain status: if the 

normal ODI value is high, then it will experience a decrease in disease; if the normal ODI 

value is low, then it will be higher in disease (Spano et al., 2018).  

Lastly, it has been reported an increase in isotropic volume fraction, which 

translates into an increase in isotropic diffusion, as expected (Schneider et al., 2017). 

The main reason to use NODDI instead of DTI is its ability to differentiate between 

neurite density and fibre orientation. DTI accounts for these in a single value (FA), thus not 

discerning these contributions; besides, there may not be a change in FA simply because 

both ODI and NDI contribute to it, and they can cancel each other out. While both NODDI 

and DTI are sensitive to changes in MS patients, NODDI can identify the likely nature of these 

changes, particularly in GM. This is important, since GM involvement in pathology is 

associated with long term disability, disease progression and cognitive impairment (Spano 

et al., 2018). Even though the NODDI metrics do not add sensitivity to disease when 

compared to DTI, they add specificity to inference on pathology. This is due to the water 

compartmentalization, immunity to fibre crossing, and ability to estimate size, tortuosity, 

and geometry of axonal sizes (Chen et al., 2021). 

2.4.3.2. Correlation of NODDI metrics with clinical scores in 

MS 

 Several studies have attempted to investigate correlations between NODDI metrics 

and clinical scores in MS, mainly EDSS. Spano et al. reported that there are significant 

negative correlations between NDI and EDSS in several brain regions; the contrary may 

happen with ODI, where an increase in EDSS can be associated with both a decrease and an 
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increase in ODI, in different brain regions. However, these correlations may not be true for 

RRMS patients, since their disability is not as advanced as in SPMS patients, who were found 

to drive these associations (Spano et al., 2018). 

 In the specific case of RRMS patients, correlations between EDSS and ODI have been 

found, in regions such as the left primary motor and somatosensory cortices, with a 

worsening in EDSS values accompanied by increased ODI (Granberg et al., 2017). Similar to 

what was reported by Spano et al., but now in the spinal cord, other studies found a strong 

negative correlation between NDI values and EDSS scores, in the white matter of RRMS 

patients. This correlation shows how reduced NDI contributes to physical disability in MS 

patients, namely in the spinal cord, where long axons are present; there can also be 

correlations in specific parts of the brain, and they are more probable to be found in regions 

with long tracts (Collorone et al., 2020). 

 In summary, it is more probable to find correlations between EDSS scores and 

NODDI metrics when there is clinical disability (EDSS>1) (Rahmanzadeh et al., 2021). This 

shows that, for lower EDSS values (early phases of MS), disability might be mainly due to 

inflammation and demyelination, and not neurite loss/neurodegeneration (Margoni et al., 

2022). 

 On the other hand, there is evidence of a positive correlation between NDI and SDMT 

scores in the grey matter of the left primary motor area, i.e., a decrease in NDI values 

predicted a poorer performance in SDMT by MS patients. This shows how NODDI metrics 

can evaluate not only white matter integrity, but also grey matter (Radetz et al., 2021). 

 Note that the number of correlations illustrated in section 2.4.2.2. (“Correlation of 

DTI metrics with clinical scores in MS”) if far higher than the one presented here. To my 

knowledge, not many studies attempted to correlate NODDI metrics with the cognitive and 

neuropsychological tests used in this work. The most common correlations are for EDSS and 

for the Multiple Sclerosis Functional Composite (MSFC). 

2.5. Structural Connectivity 

Structural connectivity allows the modelling of the brain as several cortical areas 

linked by structural pathways. It relies on graph theory, which identifies each cortical area 

as a node and each structural pathway as an edge; the edges are reconstructed using 

methods such as tractography and are characterised using parameters that resemble the 

strength of connection between nodes (Pagani et al., 2020), being either directed or 
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undirected, unweighted/binary (either it exists or not) or weighted. Graph theory is used 

since it provides metrics that characterise the topology of a network, and graphs can be 

represented by using a 2D matrix, also known as a connectivity matrix (C. H. Yeh et al., 

2021). 

Regarding structural connectivity in later stages of MS, studies have shown that 

network efficiency is globally disrupted and decreased in specific regions, correlating with 

increased lesion load. In fact, WM lesions seem to be associated with abnormal neuronal 

connectivity, which indicates MS as a disconnection syndrome (Pagani et al., 2020). 

2.5.1. Tractography 

Using DWI, a whole brain streamline tractography can be computed and used to link 

regions of interest in GM, inferring potential WM connections (edges) between pairs of GM 

areas (nodes). Using tractography, edges are undirected, because DWI cannot differentiate 

whether they are afferent or efferent, since the probability of molecular displacement along 

a vector is the same as that along the antipode (C. H. Yeh et al., 2021). The organisation of 

fibre tracts (tractography – represented in Fig. 7) is deduced using FA and ADC (Aung et al., 

2013).  

A 

B 

Fig. 7 Tractography of A) whole brain (F. C. Yeh et al., 2019) and B) Corticospinal tract (Jeurissen et al., 2018). The colours in A) 
represent fibre orientation: red is left-to-right, green is posterior-to-anterior, and blue is inferior-to-superior orientation. 



 

29 
 
 

The computation of fibre directions can either rely on a probabilistic or a 

deterministic approach. Whereas the first uses probabilistic distributions to outline 

different probable directions, the second gives a result based on the most likely direction in 

each voxel (de Figueiredo et al., 2011). 

This technique is based on three steps. The first step is seeding, which means 

choosing the areas from where the fibres are drawn. The second step is propagation, which 

generates the fibres. The last step is termination, which is based on termination criteria 

(Soares et al., 2013). These criteria are needed since the signal in one voxel comes from 

more than one neuron. Thus, this data cannot pinpoint the exact location of neuronal cells, 

and because of that, there is no biological indicator of where a computed streamline should 

end. The criteria are then based on some constraints that lead to biologically plausible 

streamlines. These constraints are e.g., that fibres should reach at least the interface of GM 

and WM at both ends, and fibres cannot terminate either in the middle of WM or CSF (they 

must connect to cell bodies, which are in GM). If a fibre does not meet these criteria, then it 

is not biologically plausible. The opposite, however, is not true; just because a fibre meets 

the criteria, it does not mean that it exists. One can also incorporate anatomical data from 

magnetic resonance scans in the fibre-tracking process for streamline selection (C. H. Yeh 

et al., 2021). 

Anatomical constrained tractography (ACT) is a variation of the tractography 

technique that uses T1-weighted images to segment tissue and biological/anatomical a 

priori knowledge to influence the termination and acceptance/rejection of each fibre track. 

Where there are lesions, T1-weighted images may not be truly reliable, and T2-weighted 

images (FLAIR) should be incorporated into the pipeline (Horbruegger et al., 2019). 

In conclusion, DTI based tractography can be used to generate voxel-scale 

connectivity maps, which have a scalar value ranking the degree of connection to a seed 

point in each voxel; regions of voxels with the highest voxel-scale connectivity define 

pathways connected to the seed point (Costa Sousa, 2015). 
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2.5.2. Connectome 

The connectome is the visual representation of both nodes (GM areas) and edges 

(WM paths). The nodes are obtained from brain parcellation of anatomical MRI data (Fig. 8 

A), either using an individual’s image data, or an atlas. The edges can be defined by the 

number, length, volume, or probability of all streamlines between the corresponding nodes, 

or by averaging diffusion metrics within the volume along the path of streamlines between 

the considered nodes (Fig. 8 B) (C. H. Yeh et al., 2021). 

 

The construction of the structural connectome requires a streamline-to-node 

assignment process, to associate streamlines with GM areas, which influences the computed 

metrics and connectivity patterns. The most sensible way to construct this assignment 

process is to assign one streamline to only two GM regions. This is compatible with the 

anatomical knowledge, since an axonal fibre connects two cell bodies in the GM. Hence, the 

ideal streamline will connect one GM node with another, to represent a neuron-neuron 

connection (C. H. Yeh et al., 2021). 

Since the raw streamline density cannot be used as a valid metric due to its lack of 

biological meaning, the used connectomes are either binary or weighted. In binary 

connectomes, streamlines only indicate whether there is a connection; this is achieved using 

a threshold where if the edges are below it, are set to zero, and otherwise, are set to one. 

This type of method, however, results in an oversimplification and is not a good portrait of 

real connections. In weighted connectomes, instead of stating the absence of fibre tracts, it 

infers the degree of fibre tracts density loss. Using this type of connectome, the weak 

connections that probably come from noisy data are eliminated through a threshold, which 

must be carefully chosen, since some weak connections are relevant; this elimination will 

result in sparse networks. Dense weighted connectomes can be used to compute global 

A B 

Fig. 8 A) Parcellation of the human brain to identify regions of interest (GM areas/nodes); B) connectome with the lines 
representing the edges/WM paths and the balls representing nodes/GM regions. Adapted from (Chu et al., 2018). 
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weighted network metrics and do not need a threshold; these metrics are insensitive to the 

contribution of weak connections to the network (C. H. Yeh et al., 2021). 
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3. Methods 
The data analysed in this thesis were collected in the context of the scientific project 

BIOMUSCLE, funded by Fundação para a Ciência e Tecnologia (reference PTDC/MEC-

NEU/31973/2017). Patients were recruited and clinically evaluated by the members of the 

project at the Neurology Department of the University Hospital of Coimbra and met the 

criteria for MS diagnosis according to McDonald Criteria (Thompson et al., 2018). All the 

participants filled out written informed consent forms before the experiment. 

3.1. Participants 

Eighteen recently diagnosed RRMS patients (mean age ± standard deviation (sd) = 

31.92 ± 8.09 years, 10 females) and eighteen age and sex-matched healthy controls (mean 

age ± sd = 31.89 ± 8.15 years, 10 females) were included in this study. The RRMS patients 

underwent neuropsychological and clinical assessment and performed the imaging session 

and clinical assessment before initiating pharmacological treatment (as per standard of 

care). Six assessments were included in this evaluation. The first two are scales that 

measure physical disability (Expanded Disability Status Scale - EDSS) and fatigue (Modified 

Fatigue Impact Scale - MFIS), four assessments are cognitive tests, namely those composing 

the Brief Cognitive Assessment for MS (BICAMS) (Langdon et al., 2012), which study brain 

performance during processing speed (Simplified Digit Modalities Test - SDMT), auditory, 

visuospatial, and verbal memory tasks (California Verbal Learning Test - CVLT and Brief 

Visuospatial Memory Test - BVMT, respectively), and the last assessment is a social 

cognition test (Reading the Mind in the Eyes - RME). Detailed demographic information can 

be found in Table 1. 
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Clinical and Demographic Information 

 MS patients Healthy controls 

Gender (females/males) 10/8 10/8 

Age (mean ± sd, in years) 31.92 ± 8.09 31.89 ± 8.15 

Disease duration (mean ± sd, in years) 0.91 ± 1.81 

 

EDSS (median ± interquartile range) 1.75 ± 1.00 

MFIS (mean ± sd) 31.78 ± 16.15 

SDMT (mean ± sd) 52.28 ± 9.43 

CVLT (mean ± sd) 50.56 ± 8.66 

BVMT (mean ± sd) 24.44 ± 7.68 

RME (mean ± sd) 24.22 ± 3.39 

Table 1 Summary of demographics for both MS patients and healthy controls. 

 

3.2. DWI and MRI acquisition and analysis 

3.2.1. Imaging protocol 

 MRI data was acquired on a 3 Tesla Siemens Magnetom Prismafit MRI system 

(Siemens, Munich, Germany). The sequence for T1-weighted images was the MP2RAGE, 

with voxel size equal to 1x1x1 mm3, a TE of 3.11 ms, a TR of 5000 ms, 192 slices, and a Field 

of View (FOV) of 256 mm. The T2-weighted images were acquired with a FLAIR sequence, 

with voxel size equal to 1x1x1 mm3, a TR/TE of 4800/441 ms, 160 slices, and a FOV of 256 

mm. The DWI acquisition was performed with a voxel size of 1.5x1.5x1.5 mm3, TR/TE of 

3230/89.20 ms, 92 slices, and a FOV of 210 mm, using a multi-shell protocol with b-values 

of 1000, 2000 and 3000 s/mm2 (30 gradient directions at b=1000 s/mm2, 45 gradient 

directions at b=2000 s/mm2 and 60 gradient directions at b=3000 s/m2, with an additional 

10 gradient directions for a b-value of 0 s/mm2).  

3.2.2. Pre-processing 

The pre-processing of the DWI volumes was made using MRtrix3 as described in 

(Tournier et al., 2019) and the FMRIB Software Library (FSL) as described in (Jenkinson et 

al., 2002; S. M. Smith, 2002). The pre-processing of these images allows for the removal of 

noise sources such as movement and other artefacts. Before this step, however, it was 

necessary to combine all the raw DWI data with its corresponding .bvec and the .bval files 

and transform it to the MRtrix3 file extension (.mif); the .bvec file contains three numbers 
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per line which code the directions in which the gradients were applied in each volume, 

whereas the .bval  file contains one number per line, which is the strength of the applied 

diffusion gradient in each volume. 

 In MRtrix3, the pre-processing of the data started with denoising it (using a 

command that implements noise level estimation and denoising based on random matrix 

theory). This was followed by Gibb’s artefact removal, which is the presence of rings on 

tissues’ boundaries caused by image reconstruction (Archibald & Gelb, 2002) once it was 

verified that that step did not worsen the images’ quality. The next step was to combine the 

DWI data acquired in the posterior-anterior phase encoding direction with data acquired in 

the anterior-posterior direction, to estimate and correct magnetic susceptibility-induced 

geometric distortions in the data. Then, the data were corrected for eddy currents using FSL. 

Lastly, a brain mask was created using FSL, by thresholding voxels at 0.4; this value was 

determined after manual adjustments, and by visually inspecting the resulting masks. 

3.2.3. Tractography 

The tractography generation was done using MRtrix3, FSL, and MATLAB software 

(version R2019b); MRtrix3 used constrained spherical deconvolution to construct this 

tractography. The diffusion signal was decomposed into smaller individual fibre 

orientations, which means deconvolving the fibre orientation distributions for each tissue 

type (WM, GM, and CSF), using the dhollander algorithm, since the data was acquired with a 

multi-shell protocol. Response functions for each tissue were obtained, which show what 

diffusion looks like inside each tissue type and with each b-value. Fibre orientation densities 

were generated for each brain tissue type, which estimate the amount of diffusion in each 

of the three orthogonal directions; they were later normalised to perform group-level 

analysis without depending on intensity differences.  

After this initial processing, the T1-weighted image was registered into the diffusion 

space (T1-DWI) using a linear registration algorithm form FSL (FLIRT), so that it could be 

submitted to FSL’s command FAST and a five-tissue type (5tt) image could be created, i.e., a 

segmented anatomical image; the five tissue types were GM, subcortical GM, WM, CSF, and 

pathological tissue (MS lesions). The latter was edited into the 5tt image and was created 

using the Lesion Segmentation Toolbox (LST) for SPM12 (SPM – Statistical Parametric 

Mapping) in MATLAB; for that, the T2-weighted image was registered to the T1-DWI image 

in the same manner as described above, and then submitted to the LST algorithm, along 

with the T1-DWI, for automatic lesion segmentation and creation of (individual) lesion 
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maps. Then, a boundary between WM and GM was created, so that the seeds for the 

tractography could be placed along that boundary. These processes help to anatomically 

constrain the tractography. 

Using ACT, tractography was constructed, using 10 million streamlines, as 

recommended; this was done using MRtrix3, in a probabilistic manner, and with plausibility 

criteria that is based on anatomical knowledge. However, the generated tractogram still had 

under and over-fitted tracts and was thus filtered using Spherical-deconvolution 

Information Filtering (SIFT), as described in (R. E. Smith et al., 2013). 

3.2.4. Connectome 

The brain connectome was constructed using MRtrix3. Firstly, the T1-weighted 

image was pre-processed using the Freesurfer software, to obtain the parcellation image 

from the Desikan-Killiany atlas (84 regions of interest, ROIs) and then the connectome 

construction was made using the ROIs as nodes and the weights derived from the SIFT 

process as edges between nodes. 

3.2.5. DTI and NODDI maps 

The DTI estimation was done using MRtrix3, and FA, ADC, AD and RD maps were 

derived. NODDI fitting was performed using the NODDI toolbox Version 1.05 as described 

in https://www.nitrc.org/projects/noddi_toolbox for MATLAB, generating maps of ODI, 

NDI and isotropic volume fraction.  

DTI and NODDI measures were pre-processed using TBSS (S. M. Smith et al., 2006) 

from FSL (S. M. Smith et al., 2004), using predefined scripts available in the software. The 

FA maps were eroded, and the end slices were set to zero, so that outliers could be removed. 

The other maps were also fed into TBSS, which can also analyse non-FA data using adapted 

scripts. After this processing, the data were aligned with a target image in a standard space 

(FMRIB58_FA image, as suggested in 

https://fsl.fmrib.ox.ac.uk/fsl/fslwiki/TBSS/UserGuide), using a nonlinear registration. 

Then, the target image was aligned with the 1x1x1mm3 standard MNI152 space using an 

affine transformation. Finally, each individual data was brought to the MNI152 space by 

using the nonlinear transform to the target image followed by the affine transform to the 

MNI152 space. The result was a 4D image with all the participants’ 3D data merged in a 

single file. A mean of the individual images was also created, as was a mean data skeleton, 

via a skeletonization process. The final step used in TBSS before any statistical analysis is to 

https://www.nitrc.org/projects/noddi_toolbox
https://fsl.fmrib.ox.ac.uk/fsl/fslwiki/TBSS/UserGuide
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apply a threshold to the mean FA skeleton image, which was set to 0.2, a common value for 

this process (as suggested in https://fsl.fmrib.ox.ac.uk/fsl/fslwiki/TBSS/UserGuide; a 

visual inspection of the thresholded image shows that it is predominantly white matter). 

This thresholded mean skeleton is what is used in TBSS statistical processing. 

3.3. Statistical Analysis 

3.3.1. TBSS – Tract-based statistics on the skeletonised 

data 

 Using TBSS, the skeletonised maps from the previous section were analysed, using 

voxel-wise statistics, incorporated in TBSS scripts; however, note that this is not a true 

“voxel-wise” analysis, since TBSS uses a skeleton, rather than all voxels in the image. The 

main goal was to identify differences in diffusion metrics between the two groups (patients 

and healthy controls), in different voxels. This was achieved through the randomise tool 

(Winkler et al., 2014) from FSL, which is a permutation method (nonparametric test) used 

for inference on statistic maps when the null distribution is not known, as described in 

https://fsl.fmrib.ox.ac.uk/fsl/fslwiki/Randomise. 

 Before running randomise, a design matrix and a contrast file were generated 

through TBSS scripts. Randomise was used with the Threshold-Free Cluster Enhanced 

(TFCE) option and 5000 permutations.  

3.3.2. SPM – Voxel-wise differences between groups 

Using SPM, it was possible to infer differences between the MS patients’ group (MSC) 

and the healthy controls’ group (CNT), truly voxel-wise over the whole brain. This means 

that the software compared scans from different groups voxel by voxel, originating 

difference maps with multiple comparisons. The input images for SPM were FA, ADC, ODI 

and NDI scans registered into the MNI152 standard space using TBSS, as described in the 

previous Methods section. These scans were smoothed using a filter with 3 mm Full-Width 

at Half-Maximum (FWHM), to achieve Gaussianity so that Gaussian random field theory 

could be applied, to correct for multiple comparisons, and to correct for putative 

misalignment issues (S. M. Smith et al., 2006). 

The statistical model was designed using the CAT12 toolbox for SPM12; this design 

comprised a two-sample t-test, with covariates, and with and without masking. The 

considered covariates were age, gender, and total intracranial volume (TIV), which was 

https://fsl.fmrib.ox.ac.uk/fsl/fslwiki/TBSS/UserGuide
https://fsl.fmrib.ox.ac.uk/fsl/fslwiki/Randomise
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estimated using CAT12. The used masks were a global lesion map, and global NAWM. The 

first was obtained by combining (adding) the individual lesion maps from each individual 

in the MSC group (Fig. 9 A) and then binarizing the final image (Fig. 9 B), using FSL (this 

mask is referred as “global lesion mask” thereafter). The second was achieved by extracting 

the WM image obtained from the segmentation of the T1 image of each subject in the CNT 

group, which was done in CAT12 when estimating the TIV, and then averaging them in SPM. 

Then, the mean image was thresholded at 0.6 so that it could be binarized, creating as little 

regions with non-WM tissue as possible; this threshold was chosen from a range of 

thresholds, by visually inspecting the images. Finally, the NAWM mask came from 

subtracting the global lesion mask from the WM mask, and then setting negative values to 

0, which came from lesions outside the defined WM mask (this mask is called “global NAWM 

mask” – Fig. 9 C).  
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Apart from the designs using the global masks, individual masks were also 

considered. For that, the model design had the same specifications as described above, 

except for the masking step. Instead of using an explicit mask, the images fed into CAT12 

were previously masked in the following manner: each participant’s scan was multiplied by 

their own individual mask (either NAWM or WM); these masks were originated during the 

anatomical image segmentation and were then processed accordingly to what was 

previously described, excluding all averaging steps. In this analysis, the images were 

Fig. 9 A) original and B) binarized lesion map mask, and C) NAWM mask. The masks are overlaid on a MNI152 T1-weighted 
template, and the slice shown has the MNI coordinates 3, -11,18 mm. In A) the colours range from deep blue (minimum value) 
to deep red (maximum value) and the scale here represented is 0:6.562. 

A 

C 

B 
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thresholded, so that any voxel that was not present in at least one scan could be excluded 

from voxel-wise analysis. For that, for each parameter (FA, ADC, ODI and NDI), the 

considered threshold was the minimum value across all NAWM/WM images.  

Then, the models were estimated using SPM and between-group differences were 

tested. Two different contrasts were defined, taking the considered differences into 

account: MSC>CNT and CNT>MSC; these contrasts allow to statistically make inferences of 

where values of the diffusion metrics are greater in the MSC group than in the CNT group 

and vice-versa, respectively. Because we were in the presence of multiple comparisons 

(many voxels), the obtained p-values needed to be corrected, and this was done with False 

Discovery Rate (FDR), with a significance level at p<0.05. The cluster extent threshold 

(minimum number of voxels in a cluster for being considered significant) for each map was 

estimated directly from the data by SPM.  

3.3.3. Means in Tissues of Interest 

 To further verify results from voxel-wise analysis in SPM and perform summary 

statistics of differences in diffusion metrics in different tissues (lesions and NAWM in MS 

patients, and WM in healthy controls), means and standard deviations of FA, ADC, ODI and 

NDI were computed, using MATLAB. This was done by averaging each metric for each 

participant, in each tissue of interest (NAWM, WM and lesions) and then averaging across 

groups, yielding one single mean value and standard deviation, for each parameter, in each 

tissue (knowing that NAWM and lesions were the tissues considered for the MSC group and 

WM for the CNT group). Then, statistical analysis was performed to compare such means 

and assess if there were differences that could be considered statistically different. 

 Using MATLAB, the normality for each set of means was checked, and all came back 

as normally distributed, using a Kolmogorov-Smirnov test. Thus, to evaluate the differences 

in means, a two-tailed t-test was used, considering equal or unequal variances, according to 

a previously performed F-test for variances, and with a significance level at p<0.05. 

Comparisons made were WM vs NAWM, WM vs lesions and NAWM vs lesions; for the first 

two, the t-test was for independent samples, whereas for the NAWM vs lesions comparison, 

since these measures belong to the same subjects, the paired samples t-test was used. 
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3.3.4. Correlation of DTI and NODDI metrics with 

clinical scores 

 Lastly, the cognitive and neuropsychological assessments described in section 3.1 

(“Participants") were used to verify if correlations could be established between them and 

DTI (FA, ADC) and NODDI (ODI, NDI) parameters.  

 For correlations of DTI and NODDI parameters with EDSS, the Spearman’s rank 

correlation was used, since EDSS does not follow a normal distribution. However, for MFIS, 

SDMT, CVLT, BVMT and RME, Pearson’s correlation was chosen since these are normally 

distributed. All estimations were performed using MATLAB. A statistically significant 

correlation was considered if the p-value was below the significance level of 0.05; the p-

value was corrected for multiple corrections via FDR correction (qFDR). 

 These correlations were performed on tissues of interest (NAWM and lesions) and 

on regions of interest (ROIs). These ROIs were extracted from the Atlas provided by 

Neuromorphometrics, Inc., using a script provided online by K. Nemoto (25 April 2015) 

available on https://www.nemotos.net/?p=1083. After extraction, the ROIs were registered 

into the MNI space, thresholded (threshold of 0.7 for all ROIs, except the Optic Chiasm, 

where the threshold was 0.6), and then binarized, using FSL. Thus, one rho/r (EDSS and 

other tests, respectively) and one p-value for each ROI were computed, representing the 

correlation between the parameter in that region with the cognitive/neuropsychological 

score. 
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4. Results 

4.1. Voxel-wise FA comparisons 

 Voxel-wise comparison of FA values shows that there are no statistically significant 

differences for the contrast MSC>CNT in the analysis performed in the whole brain, 

global NAWM mask and global lesion mask. The same happens for the analysis with 

the individual NAWM/WM masking process. On the contrary, the CNT>MSC contrast 

shows statistically significant differences in all considered tissues (Fig. 10 A-D), with 

128 clusters (extent threshold of 15 voxels) in the whole brain, 124 clusters (extent 

threshold of 19 voxels) in the global NAWM, 73 clusters (extent threshold of 29 

voxels) in the individual NAWM/WM, and 32 clusters (extent threshold of 70 voxels) 

in the global lesion mask.  
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Fig. 10 Voxel-wise analysis of FA with the CNT>MSC contrast and significance value at 0.05 (corrected with FDR), highlighting statistically significant 
differences where the FA value is lower in the MSC group than in the CNT group in A) whole brain analysis, B) analysis with global NAWM masking, 
C) analysis with individual NAWM masking and D) analysis with global lesion map masking; the differences are overlaid on a MNI152 T1-weighted 
template image (slices -24 to 32) and the colour bar represents t-statistic values.  

A B 

C D 
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4.2. Voxel-wise ADC comparisons 

Voxel-wise comparison of ADC values shows that there are no statistically 

significant differences for the contrast CNT>MSC in the whole brain, global NAWM mask 

and global lesion mask analysis. The same happens for the analysis with the individual 

NAWM/WM masking process. On the contrary, the MSC>CNT contrast shows statistically 

significant differences in all considered tissues (Fig. 11 A-D), with 49 clusters in the whole 

brain (extent threshold of 28 voxels), 31 clusters in the global NAWM (extent threshold of 

57 voxels), 3 clusters in the individual NAWM/WM (extent threshold of 179 voxels), and 4 

clusters in the global lesion map (extent threshold of 273 voxels). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

44 
 
 

 

A B 

C D 

Fig. 11 Voxel-wise analysis of ADC with the MSC>CNT contrast and significance value at 0.05 (corrected with FDR), highlighting statistically 
significant differences where the ADC value is greater in the MSC group than in the CNT group in A) whole brain analysis, B) analysis with global 
NAWM masking, C) analysis with individual NAWM masking and D) analysis with global  lesion map masking; the differences are overlaid on a 
MNI152 T1-weighted template image (slices -24 to 32) and the colour bar represents t-statistic values. 
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4.3. Voxel-wise ODI comparisons 

Voxel-wise comparison of ODI values shows that there are no statistically significant 

differences for both contrasts in both whole brain and lesion map analysis. However, for 

both the global NAWM masking and the individual NAWM/WM masking process, there are 

statistically significant differences for the MSC>CNT contrast (Fig. 12 A-B), with 10 clusters 

(extent threshold of 9 voxels, and extent threshold of 13 voxels, respectively). 

4.4. Voxel-wise NDI comparisons 

Voxel-wise comparison of NDI values shows that there are virtually no statistically 

significant differences for the contrast MSC>CNT in the global and individual NAWM and 

lesion map analysis. There was only a significant small cluster (with 22 voxels) in the whole 

brain for this contrast, located in the left superior parietal lobe, which was interpreted as a 

false positive, since this was an unexpected finding for this contrast. On the contrary, the 

CNT>MSC contrast shows statistically significant differences in all considered tissues (Fig. 

13 A-D), with 16 clusters in the whole brain (extent threshold of 79 voxels), 8 clusters in the 

global NAWM (extent threshold of 124 voxels), 5 clusters in the individual NAWM/WM 

A B 

Fig. 12 Voxel-wise analysis of ODI with the MSC>CNT contrast and significance value at 0.05 (corrected with FDR), highlighting statistically significant 
differences where the ODI value is greater in the MSC group than in the CNT group in A) analysis with global NAWM masking and B) analysis with 
individual NAWM masking; the differences are overlaid on a MNI152 T1-weighted template image (slices -24 to 32) and the colour bar represents t-
statistic values. 
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(extent threshold of 340 voxels), and 1 cluster in the global lesion mask (extent threshold 

of 520 voxels). 
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A B 

C D 

Fig. 13 Voxel-wise analysis of NDI with the CNT>MSC contrast and significance value at 0.05 (corrected with FDR), highlighting statistically significant 
differences where the NDI value is lower in the MSC group than in the CNT group in A) whole brain analysis, B) analysis with global NAWM masking, 
C) analysis with individual NAWM masking and D) analysis with global lesion map masking; the differences are overlaid on a MNI152 T1-weighted 
template image (slices -24 to 32) and the colour bar represents t-statistic values. 
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4.5. Location of voxel-wise differences 

Voxel-wise differences were located using the SPM default atlas 

(Neuromorphometrics labels provided by Neuromorphometrics, Inc.). These results are in 

Table 2, Table 3, Table 4, Table 5, Table 6, Table 7, Table 8, Table 9, Table 10 and Table 11. 

The number of voxels, qFDR (q-value), MNI coordinates and t-value are shown for the most 

significant cluster of each region, and for peak-level.  
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Voxel-wise differences in FA (Whole brain) CNT>MSC 

Region 
MNI coordinates 

[x;y;z] (mm) 
t-value qFDR # voxels 

Left Cerebral White Matter (LCWM) [-40;-32;-6] 9.926 0.00003 884 

Right Cerebral White Matter (RCWM) [30;13;-1] 7.113 0.00069 274 

Left Ventral Diencephalon (LVDC) [-7;-6;-12] 6.917 0.00101 98 

Brain Stem (BS) [0;-28;-5] 6.793 0.00128 249 

Right Ventral Diencephalon (RVDC) [9;-22;-3] 6.205 0.00276 691 

Left Cerebellum White Matter (LCumWM) [-21;-58;-33] 5.851 0.00444 66 

Left Anterior Cingulate Gyrus (LACG) [-4;35;4] 5.832 0.00456 109 

Right Angular Gyrus (RAG) [49;-58;34] 5.676 0.00572 47 

Left Caudate (LC) [-10;9;7] 5.654 0.00586 322 

Right Cerebellum Exterior (RCE) [33;-56;-48] 5.510 0.00696 222 

Right Cerebellum White Matter (RCumWM) [21;-59;-33] 5.458 0.00746 119 

Left Pallidum (LP) [-21;-8;1] 5.412 0.00796 195 

Right Putamen (RPu) [24;-5;9] 5.351 0.00873 139 

Right Thalamus Proper (RTP) [19;-19;9] 5.318 0.00922 89 

Right Caudate (RC) [12;3;10] 5.252 0.01008 470 

Right Amygdala (RAm) [16;-5;-18] 5.209 0.01078 76 

Left Thalamus Proper (LTP) [-18;-24;-2] 5.086 0.01242 59 

Right Superior Frontal Gyrus (RSFG) [26;27;52] 4.972 0.01429 56 

Left Posterior Cingulate Gyrus (LPCG) [-1;-36;26] 4.917 0.01506 63 

Left Opercular part of the Inferior Frontal Gyrus 

(LOPOFIFG) 
[-48;7;12] 4.721 0.01868 41 

Right Pallidum (RP) [19;-3;3] 4.570 0.02165 22 

Left Putamen (LPu) [-27;-15;5] 4.569 0.02168 23 

Left Superior Frontal Gyrus Medial Segment (LSFGMS) [-5;45;47] 4.550 0.02224 44 

Left Superior Parietal Lobule (LSPL) [-17;-60;58] 4.544 0.02241 21 

Left Planum Polare (LPP) [-40;-7;-14] 4.529 0.02276 31 

Left Lateral Ventricle (LLV) [-5;-2;12] 4.508 0.02314 90 

Left Postcentral Gyrus (LPG) [-40;-36;57] 4.473 0.02378 53 

Right Inferior Temporal Gyrus (RITG) [42;-2;-39] 4.387 0.02595 22 

Left Middle Cingulate Gyrus (LMCG) [-4;21;26] 4.185 0.03043 39 

Cerebellar Vermal Lobules VI-VII 
(CVLVIVII) [-3;-72;-28] 4.155 0.03130 27 

Left Supplementary Motor Cortex (LSMC) [-6;0;62] 4.012 0.03561 23 

Table 2 Locations of the voxel-wise statistically significant differences in FA in the whole brain for the CNT>MSC contrast, according to the 
Neuromorphometrics labels; t-value represents the value of the t-test’s statistic; qFDR represents the FDR-corrected p-value. The details of the regions 
identified here belong to the clusters with higher t-value for each region and are for peak-level. 
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Table 3 Locations of the voxel-wise statistically significant differences in FA in NAWM (global and individual) for the CNT>MSC contrast, according 
to the Neuromorphometrics labels; t-value represents the value of the t-test’s statistic; qFDR represents the FDR-corrected p-value. The details of the 
regions identified here belong to the clusters with higher t-value for each region and are for peak-level. 

 

Voxel-wise differences in FA (NAWM) CNT>MSC 

Region 
MNI coordinates 

[x;y;z] (mm) 
t-value qFDR # voxels 

GLOBAL NAWM 

Left Cerebral White Matter (LCWM) [-40;-30;-8] 7.846 0.00062 613 

Right Cerebral White Matter (RCWM) [30;13;-1] 7.112 0.00133 470 

Right Ventral Diencephalon (RVDC) [9;-22;-3] 6.206 0.00280 3430 

Left Cerebellum White Matter (LCumWM) [-21;-58;-33] 5.851 0.00393 311 

Brain Stem (BS) [-6;-35;-16] 5.605 0.00516 79 

Right Cerebellum White Matter (RCumWM) [21;-59;-33] 5.457 0.00600 1075 

Right Cerebellum Exterior (RCE) [33;-49;-49] 4.754 0.01133 81 

Left Putamen (LPu) [-27;-15;5] 4.569 0.01276 185 

Left Postcentral Gyrus (LPG) [-40;-36;57] 4.475 0.01358 126 

Right Inferior Temporal Gyrus (RITG) [42;-2;-39] 4.389 0.01446 96 

Left Cerebellum Exterior (LCE) [-29;-72;-44] 4.011 0.01892 122 

Right Postcentral Gyrus (RPG) [37;-15;36] 3.687 0.02449 62 

Left Ventral Diencephalon (LVDC) [-10;-17;-13] 3.652 0.02538 23 

Left Thalamus Proper (LTP) [-9;-7;14] 3.542 0.02802 45 

Right Lingual Gyrus (RLG) [20;-60;-7] 3.418 0.03150 27 

Right Precentral Gyrus (RPreG) [12;-25;69] 3.351 0.03351 21 

INDIVIDUAL NAWM 

Left Cerebral White Matter (LCWM) [-40;-33;-4] 7.739 0.00022 222 

Right Cerebral White Matter (RCWM) [30;13;-1] 7.169 0.00045 76 

Right Ventral Diencephalon (RVDC) [9;-22;-3] 6.262 0.00145 2793 

Left Cerebellum White Matter (LCumWM) [-21;-58;-33] 5.898 0.00231 669 

Left Pallidum (LP) [-21;-8;1] 5.501 0.00375 2793 

Right Cerebellum White Matter (RCumWM) [26;-39;-37] 5.188 0.00595 1164 

Brain Stem (BS) [-6;-34;-15] 4.821 0.00794 61 

Left Ventral Diencephalon (LVDC) [-10;-17;-13] 3.670 0.01859 42 
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Table 4 Locations of the voxel-wise statistically significant differences in FA in the (global) lesion mask for the CNT>MSC contrast, 
according to the Neuromorphometrics labels; t-value represents the value of the t-test’s statistic; qFDR represents the FDR-corrected 
p-value. The details of the regions identified here belong to the clusters with higher t-value for each region and are for peak-level. 

Voxel-wise differences in FA (Lesion Map) CNT>MSC 

Region 
MNI coordinates 

[x;y;z] (mm) 
t-value qFDR # voxels 

Left Cerebral White Matter (LCWM) [-40;-32;-6] 9.913 0.000002 48014 

Left Caudate (LC) [-9;9;7] 5.540 0.000688 244 

Right Cerebral White Matter (RCWM) [13;3;10] 5.217 0.001156 73 

Right Ventral Diencephalon (RVDC) [7;-5;-13] 4.699 0.002431 158 

Right Thalamus Proper (RTP) [19;-19;-5] 4.363 0.003625 187 

Left Lateral Ventricle (LLV) [-5;-3;11] 3.939 0.005641 98 
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Table 5 Locations of the voxel-wise statistically significant differences in ADC in the whole brain for the MSC>CNT contrast, according to the 
Neuromorphometrics labels; t-value represents the value of the t-test’s statistic; qFDR represents the FDR-corrected p-value. The details of the regions 
identified here belong to the clusters with higher t-value for each region and are for peak-level. 

Voxel-wise differences in ADC (Whole brain) MSC>CNT 

Region 
MNI coordinates 

[x;y;z] (mm) 
t-value qFDR # voxels 

Right Cerebral White Matter (RCWM) [38;-47;0] 7.564 0.00487 19219 

Left Middle Frontal Gyrus (LMFG) [-27;58;-2] 6.235 0.00852 128 

Left Cerebral White Matter (LCWM) [-42;-34;-6] 5.779 0.00852 18032 

Left Postcentral Gyrus (LPG) [-41;-37;57] 5.614 0.00852 160 

Right Superior Frontal Gyrus Medial Segment (RSFGMS) [0;44;-10] 5.524 0.00852 265 

Right Frontal Operculum (RFO) [42;26;4] 5.259 0.00858 184 

Right Superior Frontal Gyrus (RSFG) [24;23;48] 5.023 0.00918 117 

Right Planum Temporale (RPT) [46;-33;17] 4.939 0.00947 69 

Right Supramarginal Gyrus (RSG) [51;-41;47] 4.896 0.00957 58 

Left Frontal Operculum (LFO) [-39;12;2] 4.831 0.00983 68 

Right Anterior Cingulate Gyrus (RACG) [2;47;0] 4.825 0.00987 188 

Left Central Operculum (LCO) [-37;-18;17] 4.626 0.01124 115 

Left Opercular part of the Inferior Frontal Gyrus 

(LOPOFIFG) 
[-47;9;24] 4.599 0.01148 36 

Right Supplementary Motor Cortex (RSMC) [1;-12;53] 4.489 0.01251 85 

Right Middle Frontal Gyrus (RMFG) [38;51;14] 4.425 0.01332 58 

Left Thalamus Proper (LTP) [-1;-10;12] 4.398 0.01368 88 

Left Superior Frontal Gyrus Medial Segment (LSFGMS) [-1;46;13] 4.350 0.01438 56 

Right Anterior Insula (RAIns) [33;15;-19] 4.339 0.01453 37 

Left Superior Frontal Gyrus (LSFG) [-24;20;57] 4.230 0.01646 66 

Right Central Operculum (RCO) [57;5;4] 4.014 0.02164 58 

Right Middle Temporal Gyrus (RMTG) [60;-6;-13] 3.977 0.02275 35 

Right Opercular part of the Inferior Frontal Gyrus 

(ROPOFIFG) 
[42;17;25] 3.965 0.02308 47 

Right Posterior Insula (RPIns) [36;-19;13] 3.919 0.02454 56 

Left Lateral Ventricle (LLV) [-1;1;8] 3.909 0.02489 68 

Right Hippocampus (RH) [21;-31;-6] 3.903 0.02507 35 

Right Precentral Gyrus (RPreG) [43;5;28] 3.724 0.03187 30 

Right Lateral Ventricle (RLV) [9;7;21] 3.637 0.03572 60 
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Voxel-wise differences in ADC (NAWM) MSC>CNT 

Region 
MNI coordinates 

[x;y;z] (mm) 
t-value qFDR # voxels 

GLOBAL NAWM 

Right Cerebral White Matter (RCWM) [38;-44;-1] 7.222 0.00318 79744 

Left Postcentral Gyrus (LPG) [-41;-36;57] 5.576 0.00333 220 

Left Cerebral White Matter (LCWM) [-6;43;46] 4.547 0.00632 254 

Right Central Operculum (RCO) [57;5;5] 3.924 0.01133 66 

Right Inferior Temporal Gyrus (RITG) [45;0;-40] 3.745 0.01359 60 

Right Occipital Fusiform Gyrus (ROFG) [29;-81;-13] 3.699 0.01425 74 

Right Hippocampus (RH) [22;-33;-7] 3.435 0.01864 216 

Right Postcentral Gyrus (RPG) [48;-26;54] 3.309 0.02131 60 

INDIVIDUAL NAWM 

Left Cerebral White Matter (LCWM) [-42;-36;-5] 7.108 0.00053 87946 

Right Cerebral White Matter (RCWM) [10;20;18] 3.639 0.00423 583 

Left Cerebellum White Matter (LCumWM) [-12;-46;-30] 3.448 0.00536 453 

 

 

 

 

 

 

 

 

 

 

Table 6 Locations of the voxel-wise statistically significant differences in ADC in NAWM (global and individual) for the MSC>CNT contrast, 
according to the Neuromorphometrics labels; t-value represents the value of the t-test’s statistic; qFDR represents the FDR-corrected p-
value. The details of the regions identified here belong to the clusters with higher t-value for each region and are for peak-level. 

Voxel-wise differences in ADC (Lesion Map) MSC>CNT 

Region 
MNI coordinates 

[x;y;z] (mm) 
t-value qFDR # voxels 

Right Cerebral White Matter (LCWM) [38;-47;0] 7.940 0.00011 93651 

Left Cerebral White Matter (RCWM) [-33;-57;34] 4.901 0.00039 414 

Table 7 Locations of the voxel-wise statistically significant differences in ADC in the (global) lesion mask for the MSC>CNT contrast, 
according to the Neuromorphometrics labels; t-value represents the value of the t-test’s statistic; qFDR represents the FDR-corrected p-
value. The details of the regions identified here belong to the clusters with higher t-value for each region and are for peak-level. 
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Voxel-wise differences in ODI (NAWM) MSC>CNT 

Region 
MNI coordinates 

[x;y;z] (mm) 
t-value qFDR # voxels 

GLOBAL NAWM 

Right Thalamus Proper (RTP) [8;-20;-2] 6.652 0.0123 286 

Right Putamen (RPu) [29;14;-1] 5.192 0.0233 45 

Right Cerebellum White Matter (RCumWM) [31;-57;-44] 5.131 0.0256 24 

Right Cerebral White Matter (RCWM) [21;8;8] 4.835 0.0357 28 

Left Thalamus Proper (LTP) [-10;-20;-2] 4.805 0.0362 74 

Left Cerebral White Matter (LCWM) [-36;21;13] 4.754 0.0372 9 

INDIVIDUAL NAWM 

Right Thalamus Proper (RTP) [8;-20;-2] 6.675 0.00504 358 

Right Cerebral White Matter (RCWM) [29;15;0] 5.089 0.01794 20 

Left Thalamus Proper (LTP) [-10;-20;-2] 4.815 0.02502 172 

Left Cerebellum White Matter (LCumWM) [-21;-57;-31] 4.805 0.02550 14 

Right Cerebellum White Matter (RCumWM) [32;-56;-44] 4.702 0.02727 14 

Left Cerebral White Matter (LCWM) [-36;21;14] 4.463 0.03316 16 

 

 

Table 8 Locations of the voxel-wise statistically significant differences in ODI in NAWM (global and individual) for the MSC>CNT contrast, 
according to the Neuromorphometrics labels; t-value represents the value of the t-test’s statistic; qFDR represents the FDR-corrected p-value. 
The details of the regions identified here belong to the clusters with higher t-value for each region and are for peak-level. 

Voxel-wise differences in NDI (Whole brain) CNT>MSC 

Region 
MNI coordinates 

[x;y;z] (mm) 
t-value qFDR # voxels 

Right Cerebral White Matter (RCWM) [27;-34;23] 10.260 0.00001 198964 

Left Middle Temporal Gyrus (LMTG) [-50;-54;14] 4.799 0.00090 97 

Left Cerebral White Matter (LCWM) [-55;-13;4] 4.183 0.00325 100 

Right Occipital Fusiform Gyrus (ROFG) [40;-71;-19] 3.740 0.00806 219 

Left Cerebellum White Matter (LCumWM) [-26;-59;-40] 3.702 0.00869 152 

Left Cerebellum Exterior (LCE) [-19;-55;-26] 3.687 0.00895 324 

Right Cerebellum White Matter (RCumWM) [13;-35;-39] 3.589 0.01086 296 

Right Hippocampus (RH) [25;-36;-6] 3.325 0.01805 152 

Right Cerebellum Exterior (RCE) [7;-58;-20] 3.237 0.02131 84 

Table 9 Locations of the voxel-wise statistically significant differences in NDI in the whole brain for the CNT>MSC contrast, according to the 
Neuromorphometrics labels; t-value represents the value of the t-test’s statistic; qFDR represents the FDR-corrected p-value. The details of the 
regions identified here belong to the clusters with higher t-value for each region and are for peak-level. 
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Voxel-wise differences in NDI (NAWM) CNT>MSC 

Region 
MNI coordinates 

[x;y;z] (mm) 
t-value qFDR # voxels 

GLOBAL NAWM 

Right Cerebral White Matter (RCWM) [26;-33;23] 9.863 0.00001 139490 

Right Cerebellum White Matter 

(RCumWM) 
[31;-51;-41] 3.885 0.00322 2783 

Left Cerebellum White Matter (LCumWM) [-26;-59;-40] 3.781 0.00387 1283 

Left Cerebellum Exterior (LCE) [-17;-54;-25] 3.775 0.00391 960 

Left Lingual Gyrus (LLG) [-4;-86;-6] 3.396 0.00747 190 

Right Cerebellum Exterior (RCE) [7;-58;-20] 3.362 0.00790 433 

Left Cerebral White Matter (LCWM) [-42;27;11] 3.098 0.01240 138 

INDIVIDUAL NAWM 

Right Cerebral White Matter (RCWM) [15;-43;9] 9.048 0.00001 95015 

Right Cerebellum White Matter 

(RCumWM) 
[31;-51;-41] 3.897 0.00159 2957 

Left Cerebellum White Matter (LCumWM) [-26;-59;-40] 3.781 0.00196 1648 

 

 

 

 

 

 

 

Table 10 Locations of the voxel-wise statistically significant differences in NDI in NAWM (global and individual) for the CNT>MSC contrast, 
according to the Neuromorphometrics labels; t-value represents the value of the t-test’s statistic; qFDR represents the FDR-corrected p-
value. The details of the regions identified here belong to the clusters with higher t-value for each region and are for peak-level. 

Voxel-wise differences in NDI (Lesion Map) CNT>MSC 

Region 
MNI coordinates 

[x;y;z] (mm) 
t-value qFDR # voxels 

Right Cerebral White Matter (LCWM) [27;-34;23] 10.485 3.08E-07 108947 

Table 11 Locations of the voxel-wise statistically significant differences in NDI in the (global) lesion mask for the CNT>MSC contrast, 
according to the Neuromorphometrics labels; t-value represents the value of the t-test’s statistic; qFDR represents the FDR-corrected p-
value. The details of the regions identified here belong to the clusters with higher t-value for each region and are for peak-level. 
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4.6. Summary statistics of the means 

Table 12 and the boxplots in Fig. 14 (A-D) show the mean and the standard deviation 

(SD) for each diffusion metric and each tissue; Fig. 14 also shows the median and each point 

represents one participant, either patient or healthy control. 

Summary statistics for tissues of interest  
mean sd 

FA_WM 4.07E-01 1.35E-02 

FA_NAWM 3.83E-01 1.59E-02 

FA_LES 3.86E-01 2.74E-02 

ADC_WM 5.88E-04 1.48E-05 

ADC_NAWM 6.08E-04 1.69E-05 

ADC_LES 1.14E-03 8.68E-05 

ODI_WM 3.20E-01 7.76E-03 

ODI_NAWM 3.25E-01 9.68E-03 

ODI_LES 2.90E-01 1.87E-02 

NDI_WM 5.59E-01 1.86E-02 

NDI_NAWM 5.29E-01 2.22E-02 

NDI_LES 5.85E-01 3.02E-02 
Table 12 Mean and SD for each parameter (FA, ADC, ODI and NDI), in each tissue of interest (NAWM, WM and lesions). 
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* * * 

* * 
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* * * * * * 

* * * 
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* * * 

* * * 
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The results for the statistical analysis of the means are summarised in Table . Each 

entry in the table is the p-value for each comparison, which has an asterisk or more if it is 

lower than the significance value 0.05, and thus the null hypothesis that the means are the 

same is rejected. By combining the results from both Table 12 and Table 13 it can be seen 

that, in MS patients: FA is decreased in NAWM and lesions; ADC is increased in NAWM and 

lesions; ODI is decreased in lesions; NDI is increased in lesions and decreased in NAWM. 

 

 

 

 

Table 13 p-values of the statistical analysis (comparisons) performed on the means in tissues of interest. Asterisks represent 
statistically significant p-values (** p<0.01; *** p<0.001). 

4.7. Correlations with clinical scores  

 In tissues of interest, the only statistically significant correlation found was between 

ODI in NAWM and MFIS, with an r of 0.528 and a p-value of 0.0242; this correlation is 

represented by the scatter plot and the least squares line seen on Fig. 15. 

p-values for comparisons of the means in tissues of interest 
  WM VS NAWM WM VS LESIONS NAWM VS LESIONS 

FA 3.71E-05*** 0.0097** 0.6774 

ADC 9.68E-04*** 1.11E-15*** 3.86E-15*** 

ODI 0.1139 2.21E-06*** 2.65E-06*** 

NDI 1.58E-04*** 0.0063** 1.68E-07*** 

Fig. 14 Boxplots of DTI (A,B) and NODDI (C,D) metrics; each figure has three boxplots, each computed with the means from the 
participants (MSC group in NAWM and lesions and CNT group in WM), with each point representing this measure for each 
participant; the mean is the full red line, while the median is the dotted red line. The standard deviation is represented by the 
blue line, whereas the red area is the 95% confidence interval. The black lines between boxplots represent statistically 
significant differences, with the number of asterisks representing the p-value (* p<0.05; ** p<0.01; *** p<0.001). 

D 

* * * * * * 

* * 
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For the correlations between ROIs and clinical scores, the detailed statistically 

significant (uncorrected p-value<0.05) results can be found in Table 14, Table 15, Table 16, 

Table 17, Table 18, and Table 19 in Annex D. For better visualising these correlations, the 

ROIs with statistically significant correlations were overlaid on the considered atlas.  In each 

figure, the coloured ROIs are numbered (those showing significant correlations), and the 

legend is on the right; if the ROI remained statistically significant after FDR correction, that 

fact is indicated by an asterisk next to the abbreviation. Note that since there is only one 

slice displayed for each view (axial, sagittal and coronal) not all ROIs are visible.  

FA and EDSS were correlated in 13 ROIs, with negative correlations in 10 and 

positive in 3; when FDR correction was applied, only one ROI remained statistically 

significant (see FA column in Table 14 of Annex D). The highest positive correlation was 

found in the Right Accumbens Area (RAA) (rho of 0.769; remained statistically significant 

after FDR correction) and the highest negative correlation was found in the Left Fusiform 

Gyrus (LFG) (rho of -0.640). ADC and EDSS showed associations in 7 ROIs, all with positive 

correlations; none of these survived FDR correction (see ADC column in Table 14 of Annex 

D).  The highest correlation was found in LCE, with a rho of 0.666. ODI and EDSS showed 

negative correlations in 6 ROIs, and a positive correlation in 1 ROI (see ODI column in Table 

14 of Annex D).  The maximum positive correlation was in the Left Calcarine Cortex (LCC) 

Fig. 15 Scatter plot of the MFIS score against ODI values in NAWM. The grey line represents a least squares line, which 
is used by Pearson’s correlation to describe the relationship between the two variables as linearly dependent. 
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(rho = 0.520), whereas the highest negative one was in LC (rho=-0.666). All correlations (5 

ROIs) between NDI and EDSS were negative (see NDI column in Table 14 of Annex D); the 

highest correlation was for the Right Basal Forebrain (RBF) (rho of -0.619). These results 

are displayed in Fig. 16 (EDSS and FA), Fig. 17 (EDSS and ADC), Fig. 18 (EDSS and ODI) and 

Fig. 19 (EDSS and NDI). 

 

 

 

 

 

1 - Right Caudate (RC) 

2 – Right Posterior Insula 
(RPIns) 

3 - Left Calcarine Cortex (LCC) 

4 - Right Lingual Gyrus (RLG) 

5 - Cerebellar Vermal Lobules I-
V (CVLIV) 

6 - Brain Stem (BS) 

7 – Left Frontal Pole (LFP) 

8 - Left Orbital part of the 
Inferior Frontal Gyrus 
(LOrPOFIFG) 
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Fig. 16 ROIs with correlations between EDSS and FA. The ROIs are overlaid on the Neuromorphometrics atlas, and the 
displayed slices have coordinates 0,0,0 mm in the MNI space. The colourbar represents the strength of the correlation; note 
that blue-ish colours represent negative correlations, while red-ish ones indicate positive correlations 

Correlations between EDSS and FA 
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1 – Left Fusiform Gyrus (LFG) 

2 – Right Lingual Gyrus (RLG) 

3 – Right Cerebellum White 
Matter (RCumWM) 

4 – Brain Stem (BS) 

5 – Left Cerebellum Exterior 

 

3 

5 

Correlations between EDSS and ADC 

Fig. 17 ROIs with correlations between EDSS and ADC. The ROIs are overlaid on the Neuromorphometrics atlas, and the 
displayed slices have coordinates 0,0,0 mm in the MNI space. The colourbar represents the strength of the correlation; note 
that there are only positive correlations. 

1 – Right Caudate (RC) 

2 – Left Caudate (LC) 

3 – Right Thalamus Proper 
(RTP) 

4 – Third Ventricle (thirdV) 

5 – Left Calcarine Cortex (LCC) 

6 – Left Thalamus Proper (LTP) 
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Correlations between EDSS and ODI 

Fig. 18 ROIs with correlations between EDSS and ODI. The ROIs are overlaid on the Neuromorphometrics atlas, and the 
displayed slices have coordinates 0,0,0 mm in the MNI space. The colourbar represents the strength of the correlation; note 
that blue-ish colors represent negative correlations, while red-ish ones indicate positive correlations. 
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1 –Left Calcarine Cortex (LCC) 

2 – Optic Chiasm (OC) 

3 – Right Basal Forebrain (RBF) 

4 – Left Thalamus Proper (LTP) 
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Correlations between EDSS and NDI 

Fig. 19 with correlations between EDSS and NDI. The ROIs are overlaid on the Neuromorphometrics atlas, and the displayed 
slices have coordinates 0,0,0 mm in the MNI space. The colourbar represents the strength of the correlation; note that there 
are only negative correlations. 
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FA and MFIS were inversely correlated in all 9 statistically significant ROIs (see FA 

column in Table 15 of Annex D) with no multiple comparisons’ correction. Once FDR 

correction was employed, no ROIs survived. For these correlations, the higher had an r of -

0.555 and was in the Left Subcallosal Area (LSA). ADC and MFIS showed correlations in only 

2 ROIs, all positive, and with none surviving the FDR correction (see ADC column in Table 

15 of Annex D); the highest correlation was in the Left Posterior Orbital Gyrus (LPOrG) 

(r=0.508).  ODI was the metric that showed more correlations with MFIS (all positive): a 

total of 18 ROIs, with two of them surviving the multiple comparisons’ correction (see ODI 

column in Table 15 of Annex D). One of the ROIs that survived FDR correction was the Right 

Fusiform Gyrus (RFG), and this was the region with higher correlation coefficient (r=0.721). 

Finally, correlations between NDI and MFIS were found in 4 ROIs, all of them were positive 

and none survived the FDR correction (see NDI column in Table 15 of Annex D). The highest 

correlation was in the Right Transverse Temporal Gyrus (RTTG), with an r of 0.726. These 

results can be viewed on Fig. 20 (MFIS and FA), Fig. 21 (MFIS and ADC), Fig. 22 (MFIS and 

ODI) and on Fig. 23 (MFIS and NDI). 

1 – Right Middle Temporal 
Gyrus (RMTG) 

2 – Right Posterior Insula 
(RPIns) 

3 – Left Posterior Insula (LPIns) 

4 – Left Entorhinal Area (LEA) 

5 – Brain Stem (BS) 

6 – Left Subcallosal Area (LSA) 
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Correlations between MFIS and FA 

Fig. 20 ROIs with correlations between MFIS and FA. The ROIs are overlaid on the Neuromorphometrics atlas, and the 
displayed slices have coordinates 0,0,0 mm in the MNI space. The colourbar represents the strength of the correlation; 
note that there are only negative correlations. 
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1 – Right Central Operculum 
(RCO) 

2 – Right Planum Polare (RPP) 

3 – Right Middle Temporal 
Gyrus (RMTG*) 

4 – Right Posterior Insula 
(RPIns) 

5 – Left Posterior Insula 
(LPIns) 

6 – Left Calcarine Cortex (LCC) 

7 – Left Posterior Cingulate 
Gyrus (LPCG) 

8 – Right Cerebellum Exterior 
(RCE) 
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Correlations between MFIS and ODI 

Fig. 22 ROIs with correlations between MFIS and ODI. The ROIs are overlaid on the Neuromorphometrics atlas, and the 
displayed slices have coordinates 0,0,0 mm in the MNI space. The colourbar represents the strength of the correlation; 
note that there are only positive correlations. Asterisks show statistically significant correlations with an FDR-corrected 
p-value lower than 0.05. 

1 – Left Subcallosal Area (LSA) 

1 

Correlations between MFIS and ADC 

Fig. 21 ROIs with correlations between MFIS and ADC. The ROIs are overlaid on the Neuromorphometrics atlas, and the 
displayed slices have coordinates 0,0,0 mm in the MNI space. The colourbar represents the strength of the correlation; note 
that there are only positive correlations. 
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SDMT and FA were positively correlated in 14 ROIs and negatively correlated in one 

(see FA column in Table 16 of Annex D). The highest positive correlation was in LSMC, with 

an r of 0.70; the only negative correlation was in the Right Middle Occipital Gyrus (RMOG) 

and had an r of -0.483. 12 ROIs showed correlations between SDMT and ADC, with 10 having 

negative associations, 2 having positive associations, and none of them remaining 

significative after FDR correction (see ADC column in Table 16 of Annex D). For the negative 

correlations, the highest was in LSMC (r -0.634) and for the positive, it was in the Left 

Accumbens Area (LAA) (r=0.644).  ODI showed a negative correlation with SDMT in all the 

17 statistically significant ROIs (see ODI column in Table 16 in Annex D), for an uncorrected 

p-value (no ROIs were considered as statistically significant for the FDR-corrected p-value). 

The highest correlation was found in the Left Anterior Insula (LAIns), with r=-0.631. Lastly, 

NDI was the only metric that showed significant ROIs after FDR correction. All 32 ROIs 

previously identified as significant remained as such and presented negative correlations 

between NDI and SDMT (see NDI column in Table 16 of Annex D). Thus, the higher 

correlation was for RACG, with r=-0.744. These results are represented in Fig. 24 (SDMT 

and FA), Fig. 25 (SDMT and ADC), Fig. 26 (SDMT and ODI) and in Fig. 27 (SDMT and NDI). 

 

1 – Left Central Operculum 
(LCO) 

2 – Right Transverse Temporal 
Gyrus (RTTG) 

 1 

1 2 

Correlations between MFIS and NDI 

Fig. 23 ROIs with correlations between MFIS and NDI. The ROIs are overlaid on the Neuromorphometrics atlas, and the 
displayed slices have coordinates 0,0,0 mm in the MNI space. The colourbar represents the strength of the correlation; 
note that there are only positive correlations. 
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1 – Right Supplementary Motor 
Cortex (RSMC) 

2 – Left Supplementary Motor 
Cortex (LSMC) 

3 – Left Middle Frontal Gyrus 
(LMFG) 

4 – Left Anterior Insula (LAIns) 

5 – Left Planum Polare (LPP) 

6 – Right Superior Temporal 
Gyrus (RSTG) 

7 - Left Opercular part of the 
Inferior Frontal Gyrus 
(LOPOFIFG)  

8 – Right Calcarine Cortex (RCC) 
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Fig. 24 ROIs with correlations between SDMT and FA. The ROIs are overlaid on the Neuromorphometrics atlas, and the 
displayed slices have coordinates 0,0,0 mm in the MNI space. The colourbar represents the strength of the correlation; 
note that there are only positive correlations. 

Correlations between SDMT and FA 

1 – Right Superior Frontal Gyrus 
(RSFG) 

2 – Right Supplementary Motor 
Cortex (RSMC) 

3 – Left Supplementary Motor 
Cortex (LSMC) 

4 – Right Middle Cingulate Gyrus 
(RMCG) 

5 – Right Central Operculum 
(RCO) 

6 – Left Planum Polare (LPP) 

7 - Right Anterior Cingulate 
Gyrus (RACG) 
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Correlations between SDMT and ADC 

Fig. 25 ROIs with correlations between SDMT and ADC. The ROIs are overlaid on the Neuromorphometrics atlas, and the 
displayed slices have coordinates 0,0,0 mm in the MNI space. The colourbar represents the strength of the correlation; 
note that there are only negative correlations. 
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1 – Left Supplementary Motor 
Cortex (LSMC) 

2 – Left Middle Frontal Gyrus 
(LMFG) 

3 – Right Superior Temporal 
Gyrus (RSTG) 

4 – Left Anterior Insula (LAIns) 

5 – Left Planum Polare (LPP) 

6 – Left Superior Temporal 
Gyrus (LSTG) 

7 – Left Middle Temporal Gyrus 
(LMTG) 

8 – Left Fusiform Gyrus (LFG) 

9 – Right Subcallosal Area (RSA) 

10 – Left Cerebellum Exterior 
(LCE) 

11 – Right Cerebellum Exterior 
(RCE) 

12 – Right Cerebellum White 
Matter (RCumWM) 

13 – Left Opercular part of the 
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Fig. 26 ROIs with correlations between SDMT and ODI. The ROIs are overlaid on the Neuromorphometrics atlas, and the 
displayed slices have coordinates 0,0,0 mm in the MNI space. The colourbar represents the strength of the correlation; 
note that there are only negative correlations. 
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Correlations between SDMT and ODI 
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1 – Right Precentral Gyrus 
(RPreG*) 

2 – Right Middle Frontal Gyrus 
(RMFG*) 

3 – Right Superior Frontal Gyrus 
(RSFG*) 

4 – Right Supplementary Motor 
Cortex (RSMC*) 

5 – Right Middle Cingulate Gyrus 
(RMCG*) 

6 – Left Middle Cingulate Gyrus 
(LMCG*) 

7 – Right Caudate (RC*) 

8 – Right Putamen (RPu*) 

9 – Left Central Operculum 
(LCO*) 

10 – Left Posterior Insula 
(LPIns*) 

11 – Left Precuneus (LPC*) 

12 – Left Precentral Gyrus 
Medial Segment (LPreGMS*) 

13 – Right Superior Frontal 
Gyrus Medial Segment 
(RSFGMS*) 

14 – Right Anterior Cingulate 
Gyrus (RACG*) 

15 – Left Anterior Cingulate 
Gyrus (LACG*) 

16 - Left Triangular part of the 
Inferior Frontal Gyrus 
(LTPOFTIFG*) 

17 - Left Orbital part of the 
Inferior Frontal Gyrus 
(LOrPOFIFG*) 

18 – Left Frontal Operculum 
(LFO*) 

19 – Left Transverse Temporal 
Gyrus (LTTG*) 

20 - Right Opercular part of the 
Inferior Frontal Gyrus 
(ROPOFIFG*) 

21 – Right Central Operculum 
(RCO*) 
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Fig. 27 ROIs with correlations between SDMT and NDI. The ROIs are overlaid on the Neuromorphometrics atlas, and the 
displayed slices have coordinates 0,0,0 mm in the MNI space. The colourbar represents the strength of the correlation; 
note that there are only negative correlations. Asterisks show statistically significant correlations with an FDR-corrected 
p-value lower than 0.05. 

Correlations between SDMT and NDI 



 

69 
 
 

Correlations between CVLT and FA were all positive, present in 4 ROIs, and none of 

them was statistically significant when FDR correction was applied (see FA column in Table 

17 of Annex D). In this case, the highest correlation was for Left Gyrus Rectus (LGR), with 

an r of 0.567. ADC and CVLT were negatively correlated in 4 of the 5 ROIs found to be 

statistically significant (the highest correlation was for CSF, with r=-0.557); the fifth ROI 

presented a positive correlation, with an r of 0.586 (the ROI was the Left Amygdala - LAm) 

(see ADC column in Table 17 of Annex D). However, none of them survived FDR correction. 

ODI and CVLT were inversely correlated in all 10 ROIs, which were statistically significant 

only for non-corrected p-values (see ODI column in Table 17 of Annex D). The highest 

association was found in LPP, with r=-0.586. NDI and CVLT showed negative correlations in 

16 ROIs, and these ROIs did not remain statistically significant after FDR correction (see NDI 

column in Table 17 of Annex D); the Left Orbital part of the Inferior Frontal Gyrus 

(LOrPOFIFG) was the ROI with the highest correlation (r=-0.627). These findings are 

illustrated in Fig. 28 (CVLT and FA), Fig. 29 (CVLT and ADC), Fig. 30 (CVLT and ODI), and in 

Fig. 31 (CVLT and NDI). 

 

1 – Cerebellar Vermal Lobules VI-
VII (CVLVIVII) 

2 – Cerebrospinal Fluid (CSF) 

 

 

1 2 

Correlations between CVLT and FA 

Fig. 28 ROIs with correlations between CVLT and FA. The ROIs are overlaid on the Neuromorphometrics atlas, and the 
displayed slices have coordinates 0,0,0 mm in the MNI space. The colourbar represents the strength of the correlation; 
note that there are only positive correlations. 
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1 – Right Entorhinal Area (REA) 

2 – Left Anterior Insula (LAIns) 

3 – Left Planum Polare (LPP) 

4 - Left Orbital part of the Inferior 
Frontal Gyrus (LOrPOFIFG) 

5 – Left Frontal Operculum (LFO) 

6 - Left Opercular part of the 
Inferior Frontal Gyrus 
(LOPOFIFG) 
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Fig. 30 ROIs with correlations between CVLT and ODI. The ROIs are overlaid on the Neuromorphometrics atlas, and the 
displayed slices have coordinates 0,0,0 mm in the MNI space. The colourbar represents the strength of the correlation; note 
that there are only negative correlations. 

Correlations between CVLT and ODI 

1 – Right Lateral Ventricle (RLV) 

2 – Left Lateral Ventricle (LLV) 

3 – CSF 

4 - Left Orbital part of the Inferior 
Frontal Gyrus (LOrPOFIFG) 
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Correlations between CVLT and ADC 

Fig. 29 ROIs with correlations between CVLT and ADC. ROIs are overlaid on the Neuromorphometrics atlas, and the 
displayed slices have coordinates 0,0,0 mm in the MNI space. The colourbar represents the strength of the correlation; note 
that there are only negative correlations. 
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BVMT and FA were positively correlated in 11 ROIs, with none surviving FDR 

correction (see FA column in Table 18 of Annex D); the maximum correlation was 0.723, in 

LSMC. For BVMT and ADC, 11 statistically significant ROIs showed negative correlations, 

but one ROI showed a positive one (r=0.618, in RAA) (see ADC column in Table 18 of Annex 

D); the strongest negative correlation was in LSMC, with r=-0.678. Again, none of these were 

significant after an FDR correction. 22 ROIs showed statistically significant correlations 

between BVMT and ODI, all of them negative, and none of them remained significant after 

FDR correction (see ODI column of Table 18 in Annex D). The highest correlation was in 

LAIns, with r -0.675. NDI was the metric that showed more correlations with BVMT. There 

were 35 statistically significant ROIs, with 15 remaining significant after FDR correction 

(see NDI column in Table 18 of Annex D), all negative. The strongest correlation was in 

LACG, with an r of -0.701. These can be seen in Fig. 32 (BVMT and FA), Fig. 33 (BVMT and 

ADC), Fig. 34 (BVMT and ODI), and in Fig. 35 (BVMT and NDI). 
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1 – Right Lateral Ventricle (RLV) 

2 – Left Lateral Ventricle (LLV) 

3 – Right Superior Temporal 
Gyrus (RSTG) 

4 – Left Middle Temporal Gyrus 
(LMTG) 

5 – Cerebrospinal Fluid (CSF) 

6 - Left Orbital part of the 
Inferior Frontal Gyrus 
(LOrPOFIFG) 

7 - Right Opercular part of the 
Inferior Frontal Gyrus 
(ROPOFIFG) 

8 – Right Frontal Operculum 
(RFO) 

9 – Right Orbital Part of the 
Inferior Frontal Gyrus 
(ROrPOFIFG) 

 

7 

Fig. 31 ROIs with correlations between CVLT and NDI. The ROIs are overlaid on the Neuromorphometrics atlas, and the 
displayed slices have coordinates 0,0,0 mm in the MNI space. The colourbar represents the strength of the correlation; 
note that there are only negative correlations. 

Correlations between CVLT and NDI 
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1 – Right Superior Frontal Gyrus 
(RSFG) 

2 – Left Supplementary Motor 
Cortex (LSMC) 

3 – Left Planum Polare (LPP) 

4 – Right Central Operculum 
(RCO) 

5 – Left Precentral Gyrus Medial 
Segment (LPreGMS) 

6 – Cerebrospinal Fluid (CSF) 

7 – Right Lingual Gyrus (RLG) 
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Fig. 33 ROIs with correlations between BVMT and ADC. The ROIs are overlaid on the Neuromorphometrics atlas, and the 
displayed slices have coordinates 0,0,0 mm in the MNI space. The colourbar represents the strength of the correlation; 
note that there are only negative correlations. 

Correlations between BVMT and ADC 

1 – Left Supplementary Motor 
Cortex (LSMC) 

2 – Left Anterior Insula (LAIns) 

3 – Right Precentral Gyrus 
Medial Segment (RPreGMS) 

4 – Cerebrospinal Fluid (CSF) 

5 – Right Orbital part of the 
Inferior Frontal Gyrus 
(ROrPOFIFG) 
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Correlations between BVMT and FA 

Fig. 32 ROIs with correlations between BVMT and FA. The ROIs are overlaid on the Neuromorphometrics atlas, and the 
displayed slices have coordinates 0,0,0 mm in the MNI space. The colourbar represents the strength of the correlation; note 
that there are only positive correlations. 
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1 – Right Superior Frontal Gyrus 
(RSFG) 

2 – Left Supplementary Motor 
Cortex (LSMC) 

3 – Left Middle Frontal Gyrus 
(LMFG) 

4 – Left Anterior Insula (LAIns) 

5 – Left Planum Polare (LPP) 

6 – Left Superior Temporal Gyrus 
(LSTG) 

7 – Left Middle Temporal Gyrus 
(LMTG) 

8 – Right Medial Frontal Cortex 
(RMFC) 

9 – Left Cerebellum Exterior 
(LCE) 

10 - Left Orbital part of the 
Inferior Frontal Gyrus 
(LOrPOFIFG) 

11 - Left Triangular part of the 
Inferior Frontal Gyrus 
(LTPOFTIFG) 
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Fig. 34 ROIs with correlations between BVMT and ODI. The ROIs are overlaid on the Neuromorphometrics atlas, and the 
displayed slices have coordinates 0,0,0 mm in the MNI space. The colourbar represents the strength of the correlation; note 
that there are only negative correlations. 

Correlations between BVMT and ODI 
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 16 

1 – Right Central Operculum (RCO*) 

2 – Right Precentral Gyrus (RPreG) 

3 – Right Middle Frontal Gyrus (RMFG*) 

4 – Right Superior Frontal Gyrus (RSFG) 

5 – Right Supplementary Motor Cortex 
(RSMC) 

6 – Left Supplementary Motor Cortex 
(LSMC*) 

7 – Left Superior Frontal Gyrus (LSFG) 

8 – Left Middle Frontal Gyrus (LMFG*) 

9 – Left Precentral Gyrus (LPreG) 

10 – Left Middle Cingulate Gyrus (LMCG) 

11 - Left Central Operculum (LCO*) 

12 – Left Postcentral Gyrus Medial Segment 
(LPGMS) 

13 – Left Precentral Gyrus Medial Segment 
(LPreGMS) 

14 – Left Superior Frontal Gyrus Middle 
Segment (LSFGMS) 

15 – Right Superior Frontal Gyrus Medial 
Segment (RSFGMS*) 

16 – Left Anterior Cingulate Gyrus (LACG*) 

17 – Right Anterior Cingulate Gyrus (RACG*) 

18 – Right Opercular part of the Inferior 
Frontal Gyrus (ROPOFIFG*) 

19 – Right Orbital part of the Inferior Frontal 
Gyrus (ROrPOFIFG) 

20 – Left Triangular part of the Inferior 
Frontal Gyrus (LTPOFTIFG) 

21 – Left Orbital part of the Inferior Frontal 
Gyrus (LOrPOFIFG) 

22 – Left Opercular part of the Inferior 
Frontal Gyrus (LOPOFIFG) 

23 – Left Transverse Temporal Gyrus 
(LTTG*) 
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Fig. 35 ROIs with correlations between BVMT and NDI. The ROIs are overlaid on the Neuromorphometrics atlas, and the 
displayed slices have coordinates 0,0,0 mm in the MNI space. The colourbar represents the strength of the correlation; note 
that there are only negative correlations. Asterisks show statistically significant correlations with an FDR-corrected p-value 
lower than 0.05. 

Correlations between BVMT and NDI 
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Of all the studied ROIs, 24 showed statistically significant correlations between FA 

and RME, with none remaining significant after FDR correction (see FA column in Table 19 

of Annex D). In these ROIs, correlations were positive in all except one (LAA, r=-0.559); the 

highest correlation found was in the Left Precentral Gyrus (LPreG; r = 0.656).  ADC and RME 

were widely correlated, showing negative associations in 29 ROIs (see ADC column in Table 

19 of Annex D). Of these, 2 remained statistically significant (LAIns, Right 

Parahippocamapal Gyrus (RPhG)) after FDR correction; the highest correlation was for 

LAIns, with an r of -0.735. ODI and RME showed correlations in only 13 ROIs (12 negative, 

1 positive), and none of them were statistically significant considering FDR-corrected p-

values (see ODI column in Table 19 of Annex D). The positive correlation was in LAA (r = 

0.710), and the strongest negative correlation was found in RACG (r=-0.644). Finally, NDI 

and RME were extensively correlated, with 27 ROIs identified as statistically significant 

maintaining their status after FDR correction (see NDI column in Table 19 of Annex D), and 

2 ROIs that switched to nonsignificant. Yet, all these correlations were negative, with the 

highest being r=-0.697 (in RPG). These correlations are represented in Fig. 36 (RME and 

FA), Fig. 37 (RME and ADC), Fig. 38 (RME and ODI), and in Fig. 39 (RME and NDI). 
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1 – Right Cerebral White Matter 
(RCWM) 

2 – Right Middle Cingulate Gyrus 
(RMCG) 

3 – Left Cerebral White Matter 
(LCWM) 

4 – Left Precentral Gyrus (LPreG) 

5 – Left Anterior Insula (LAIns) 

6 – Left Lingual Gyrus (LLG) 

7 – Right Lingual Gyrus (RLG) 

8 – Left Cerebellum Exterior (LCE) 

9 – Cerebellar Vermal Lobules VIII-
X (CVLVIIIX) 

10 – Right Cerebellum Exterior 
(RCE) 

1 - Cerebellar Vermal Lobules I-V 
(CVLIV) 

12 – Right Anterior Cingulate 
Gyrus (RACG) 

13 – Left Anterior Cingulate Gyrus 
(LACG) 

14 – Right Middle Frontal Gyrus 
(RMFG) 
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Fig. 36 ROIs with correlations between RME and FA. The ROIs are overlaid on the Neuromorphometrics atlas, and the displayed 
slices have coordinates 0,0,0 mm in the MNI space. The colourbar represents the strength of the correlation; note that there 
are only positive correlations. 

Correlations between RME and FA 
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1 – Right Precentral Gyrus 
(RPreG) 

2 – Right Middle Frontal Gyrus 
(RMFG) 

3 – Left Supplementary Motor 
Cortex (LSMC) 

4 – Left Middle Frontal Gyrus 
(LMFG) 

5 – Left Precentral Gyrus (LPreG) 

6 – Left Planum Polare (LPP) 

7 – Left Anterior Insula (LAIns*) 

8 – Left Entorhinal Area (LEA) 

9 – Right Anterior Insula (RAIns) 

10 – Right Posterior Insula 
(RPIns) 

11 – Right Central Operculum 
(RCO) 

12 – Right Superior Temporal 
Gyrus (RSTG) 

13 - Cerebellar Vermal Lobules VI-
VII (CVLVIVII) 

14 – Left Lingual Gyrus (LLG) 

15 – Right Lingual Gyrus (RLG) 

16 – Left Cun Cuneus (LCun) 

17 – Left Precuneus (LPC) 

18 – Left Postcentral Gyrus Medial 
Segment (LPGMS) 

19 – Cerebrospinal Fluid (CSF) 

20 – Right Opercular part of the 
Inferior Frontal Gyrus 
(ROPOFIFG) 

21 – Right Frontal Operculum 
(RFO) 

22 – Left Opercular part of the 
Inferior Frontal Gryus 
(LOPOFIFG) 

23 – Left Frontal Operculum 
(LFO) 
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Fig. 37 ROIs with correlations between RME and ADC. The ROIs are overlaid on the Neuromorphometrics atlas, and the 
displayed slices have coordinates 0,0,0 mm in the MNI space. The colourbar represents the strength of the correlation; 
note that there are only negative correlations. Asterisks show statistically significant correlations with an FDR-corrected 
p-value lower than 0.05. 
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1 – Left Cerebellum Exterior 
(LCE) 

2 – Right Anterior Cingulate 
Gyrus (RACG) 

3 – Right Medial Frontal Cortex 
(RMFC) 

4 – Right Gyrus Rectus (RGR) 

5 – Right Subcallosal Area (RSA) 

6 – Right Opercular part of the 
Inferior Frontal Gyrus 
(ROPOFIFG) 

7 – Left Hippocampus (LH) 
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Fig. 38 ROIs with correlations between RME and ODI. The ROIs are overlayed on the Neuromorphometrics atlas, and the 
displayed slices have coordinates 0,0,0 mm in the MNI space. The colourbar represents the strength of the correlation; 
note that there are only negative correlations. 

Correlations between RME and ODI 
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1 – Right Precentral Gyrus 
(RPreG*) 

2 – Right Middle Frontal Gyrus 
(RMFG*) 

3 – Right Superior Frontal Gyrus 
(RSFG*) 

4 – Right Supplementary Cortex 
(RSMC*) 

5 – Left Superior Frontal Gyrus 
(LSFG*) 

6 – Left Middle Frontal Gyrus 
(LMFG*) 

7 – Left Precentral Gyrus 
(LPreG*) 

8 – Left Central Operculum 
(LCO*) 

9 – Left Anterior Insula (LAIns*) 

10 – Right Anterior Insula 
(RAIns*) 

11 – Right Posterior Insula 
(RPIns*) 

12 – Right Central Operculum 
(RCO*) 

13 – Left Anterior Cingulate 
Gyrus (LACG) 

14 – Right Medial Frontal Cortex 
(RMFC*) 

15 – Right Gyrus Rectus (RGR*) 

16 – Cerebrospinal Fluid (CSF*) 

17 – Right Opercular part of the 
Inferior Frontal Gyrus 
(ROPOFIFG*) 

18 – Right Triangular part of the 
Inferior Frontal Gyrus 
(RTPOFTIFG*) 

19 – Left Opercular part of the 
Inferior Frontal Gyrus 
(LOPOFIFG) 
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Fig. 39 ROIs with correlations between RME and NDI. The ROIs are overlaid on the Neuromorphometrics atlas, and the 
displayed slices have coordinates 0,0,0 mm in the MNI space. The colourbar represents the strength of the correlation; 
note that there are only negative correlations. Asterisks show statistically significant correlations with an FDR-corrected 
p-value lower than 0.05. 

Correlations between RME and NDI 
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5. Discussion 

5.1. Voxel-wise FA comparisons  

 The voxel-wise FA analysis showed a widespread decrease in FA in the MS patients’ 

group, when compared to the healthy controls’ group, as was expected. This solidifies the 

well-known notion that demyelination in MS patients leads to the loss of myelin integrity 

and possibly axonal damage, disrupting the barrier that keeps water moving with a 

preferred direction. The decrease in FA value thus represents the movement of water across 

the axon, leading to an increase in isotropy; this could be further verified by computing 

radial diffusivity and assess its voxel-wise differences.  

 Interestingly, the decrease in FA was not only present in lesions (where it is 

expected to exist more marked myelin insults) but also in NAWM. This suggests that NAWM 

is, in fact, “normal appearing”, and not completely healthy. Even though there are no visible 

lesions in imaging, this tissue shows indications of myelin and axonal injury, as has been 

previously reported (Andersen et al., 2020; Cercignani et al., 1999; Costa Sousa, 2015). 

Comparing the global NAWM to the individual NAWM masking process, the latter seems to 

add sensitivity to the analysis. Differences are less widespread and more confined and may 

be interpreted as “truer” differences that the ones visible on Fig. 10 B (global NAWM 

masking), since this analysis excludes any voxel that does not exist in at least one 

participant, whereas the global NAWM mask includes voxels that may not belong to NAWM 

in some subjects. In lesions, there was a marked decrease in FA, which is visible in the high 

t-statistic of clusters in Fig. 10 D; this again shows demyelination in these regions. Even 

though these conclusions were reached, one still needs to keep in mind that other processes 

beside demyelination, like microstructural changes and orientation distribution, or even the 

existence of crossing fibres, contribute to a lower FA value. 

5.2. Voxel-wise ADC comparisons  

 Inversely to FA, ADC shows an increase in MS patients, when compared to healthy 

controls. Again, this was to be expected (Aung et al., 2013; Cercignani et al., 1999). The loss 

of myelin integrity and axonal injury increase the directions in which water can diffuse, and 

so the amount of water diffusion (here represented by ADC) escalates; on the other hand, 

the increase in ADC represents a loss in structural organisation, which here is true, since the 

loss of myelin can lead to axonal damage, decreasing anisotropy, i.e., diffusion along the 



 

81 
 
 

axon fibre. Increased ADC values might also be due to an increase in free water, which can 

be caused by inflammation, and not demyelination. This is especially noticeable in NAWM 

and lesions (Fig. 11 B-D), where the t-statistic values are higher, which represents higher 

differences between the two groups. Furthermore, there seem to be more differences 

associated with ADC than with FA, which may mean that ADC can detect damage in locations 

not seen with FA analysis. 

 As was seen with FA, ADC can only indicate that there are changes in diffusion, but 

it cannot pinpoint exactly what changed. By knowing the organisation of WM tracts and 

what changes diffusion properties, one can conclude that these parameters are related to 

myelin and axonal injury, or inflammation, but they might lose meaning if, for example, the 

analysed voxel has crossing fibres. Therefore, it is important to consider other diffusion 

metrics, such as the ones presented next (NODDI model); mainly, using isotropic volume 

fraction maps from the NODDI model, it would be possible to infer the volume fraction that 

has isotropic diffusion, and see if an increase in ADC reflected a true increase in isotropy. 

Still, DTI can easily assess the severity of WM damage in MS, since higher differences in ADC 

and FA reflect more injury. 

5.3. Voxel-wise ODI comparisons  

 ODI only showed statistically significant differences between the MSC group and the 

CNT group in one tissue of interest, NAWM. Even though there were not many differences, 

this still provides insight into WM disruption in MS: ODI is a marker of fibre dispersion and 

an increase in this value shows a loss in fibre coherence in NAWM, i.e., regions with highly 

compacted and parallel fibres lose this organisation and neurites become dispersed in more 

directions; a loss in neurite density (seen in the next topic – 5.4.) can also increase the 

orientation dispersion. The fact that there were not found any statistically significant 

differences in WM lesions may only mean that, for example, neurite density might decrease 

so much that any expected alteration in ODI will be overshadowed, since there are less 

neurites to be dispersed and an increase in ODI will not be observed. Considering this, it is 

plausible that ODI in MS patients will be similar to that in healthy controls.  

5.4. Voxel-wise NDI comparisons  

 NDI is consistently lower in the MSC group, when compared to the CNT group, in all 

tissues of interest. This is an indication of the loss of neurite density in both NAWM and MS 

lesions. Comparing these results with DTI metrics, NDI seems to be more sensitive to 
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damage in MS, primarily in cerebral WM, since it identifies more voxels as being statistically 

different between groups than any other metric. In fact, NDI seems to not be very influenced 

by DTI metrics, which enlightens this parameter as a possible biomarker for early MS 

pathology. This is further supported by the fact that NDI shows a higher number of 

abnormal voxels than FA and ADC, which may reflect that there may be axonal pathology in 

early MS that is not justified by demyelinating processes, and thus the decrease in 

anisotropy is not only due to myelin injury; to try to verify this, it would be interesting to do 

an analysis that could quantify myelin content. 

 Lastly, the fact that NDI shows a higher number of voxels with differences for the 

CNT>MSC contrast than ODI shows for the MSC>CNT contrast, and still FA shows abnormal 

voxels for the MSC>CNT contrast stresses the relationship between these three parameters: 

both ODI and NDI contribute to FA, but ODI to a higher degree; NDI and FA are negatively 

related, whereas ODI and FA have a strong positive correlation. Knowing this, in the 

presence of a small number of abnormal voxels for ODI, it is necessary a greater change in 

NDI values for FA voxel-wise analysis to show results, which happens here.  

5.5. Summary statistics of the means  

 When analysing statistically significant differences between the means of FA, ADC, 

ODI and NDI in the two studied groups, some interesting results were found. For both FA 

and ADC, this analysis corroborated what was found in the voxel-wise statistical analysis: 

an increase in ADC in NAWM and lesions when compared with WM in the CNT group, to a 

higher degree in lesions, which also showed a significant difference when compared to 

NAWM; a decrease in FA in NAWM and lesions compared with WM in the CNT group, but no 

difference between NAWM and lesions. The fact that there were no statistically significant 

differences between average FA in NAWM and lesions might indicate that other processes 

besides demyelination and/or axonal injury justify the evolution of NAWM tissue to lesion. 

If FA values are similar in these two tissues, NAWM shows the same degree of anisotropy 

loss, which is interpreted as myelin and axonal injury, as lesions, showing that other 

processes such as neurodegeneration play a part in lesions being visible on structural 

images.  

On the other hand, ODI did not show statistically significant differences between 

lesions and WM in the voxel-wise analysis; however, average ODI in NAWM does not differ 

from the one in WM, whereas there is a marked difference between lesions and NAWM, and 

WM. Note that this analysis takes one average value of ODI per participant, while the voxel-
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wise analysis identifies any voxel with a statistically significant difference and is then 

corrected for multiple comparisons. This may justify this apparent discrepancy in these 

results because the voxel-wise approach can hide voxels where statistically significant 

differences in lesions could occur. Still, this analysis shows a decrease in ODI in lesions, 

while an increase ODI in the NAWM is observed (even if not significant); this is in line with 

some results (Hagiwara et al., 2019; Zhang et al., 2012), but contradictory to others 

(Granberg et al., 2017). ODI analysis seems to present an intriguing outcome, since it can 

either be increased or decreased in both NAWM and lesions, without being expectable. The 

fact that ODI is lower in lesions may seem surprising, since it indicates that there is an 

increase in fibre coherence, and should be indicative of an increase in FA, because of the 

high negative correlation between ODI and FA (Zhang et al., 2012), which does not happen 

in MS lesions (FA values are lower). However, NDI also contributes to FA (to a lesser degree) 

and its wide variations may justify FA values  (Zhang et al., 2012). It also needs to be taken 

into consideration that the interpretation of ODI values depend on its ground truth: if the 

healthy brain’s ODI is high in that region (namely, highly parallel WM tracts), it may 

experience a decrease in disease (Spano et al., 2018). Lastly, a decrease in ODI can be 

accompanied by an increase in NDI, since a gain in neurite density in WM restores lower 

dispersion values seen in healthy cases. This is discussed in the next paragraph. 

Finally, the NDI analysis shows the most surprising results of all: an increase in mean 

NDI in lesions. This is not seen on the voxel-wise analysis, but again note that this analysis 

was corrected for multiple comparisons, which is not the case here. One hypothesis for this 

result is the fact that there could be some degree of remyelination that leads to an increase 

in NDI, as suggested by (Sacco et al., 2020), showing that not all MS lesions have active tissue 

destruction; note that this work is focused on very early MS, with recently diagnosed 

patients, so it is probable that they can experience some degree of remyelination in lesions. 

This may very well help to justify the decrease in ODI values in lesions, since if there is active 

remyelination, there could also be a gain in fibre coherence at the same time. Here, there is 

no way to prove this; however, using a contrast agent such as Gadolinium could provide an 

insight as to whether there is an active inflammation in these lesions. Also, investigating 

changes in time, in a longitudinal study, could show if there was a shrinkage in the lesion or 

not, and thus trying to understand its evolution. Lastly, using other measures, such as T1/T2 

ratio to evaluate myelin content, could supply more information that could be conjugated 

with these findings to reach a conclusion about the pathophysiological meaning of these 

results. 
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5.6. Correlations with cognitive and 

neuropsychological tests 

Regarding the analysis of average diffusion metrics in tissues of interest, the only 

correlation found was between ODI in NAWM and MFIS. This was a positive correlation, 

which states that an increase in ODI in NAWM should lead to an increase in MFIS, i.e., an 

increase in the patient’s fatigue degree. In both the voxel-wise analysis and the statistical 

analysis of the means, it was seen an increase in ODI in NAWM, when compared to WM and 

to lesions. Since this increase implicates a loss in fibre coherence and can be accompanied 

by a loss in neurite density, as well as a decrease in FA, it is acceptable to consider that it 

may also lead to a decay in a patient’s physical sate.  

The correlations with diffusion metrics in ROIs, on the other hand, showed a 

multitude of different results, which are discussed below.  

5.6.1. Correlations between EDSS and diffusion 

metrics 

Knowing that EDSS is a scale that measures disability, and higher scores represent 

worse disability, and that a decrease in FA is a sign of myelin/axonal damage that leads to 

the slowing or interruption of the conduction of the nerve impulse, the negative correlations 

seen seem to make sense: an increase of EDSS can be justified by a decrease in FA. However, 

positive correlations were not to be expected. They indicate that a worsening in a patient’s 

incapacity can be explained by an increase in FA. In fact, one of the ROIs that survived the 

FDR correction shows a positive correlation, but that might be a spurious correlation. 

Nonetheless, if these measures are in cortical lesions, these results may start to make sense, 

since it has been reported an increase in FA in cortical lesions (Granberg et al., 2017). 

Furthermore, it is also conceivable that maladaptive compensatory mechanisms might be 

observed, namely corresponding to (apparently beneficial) increased FA correlating with 

higher EDSS scores. 

However, in the Right Accumbens Area (RAA), where FA shows a positive 

correlation with EDSS, ODI shows a negative one. Knowing that the ODI value largely 

contributes to the FA value and that they are inversely correlated, there seems to be some 

consistency in these results. Hypothetically, an increase in FA would lead to an increase in 

EDSS, as would a decrease in ODI, in this region; this could be justified if histological analysis 
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was performed to assess the integrity of fibres in that region, and to see if maybe there could 

be a compensation mechanism in MS patients that led to an improvement in diffusion 

metrics. Still, note that this is a subcortical region, and thus has a different microstructure 

from WM and other GM regions, which should be taken into account. 

Since an increase in ADC indicates an overall increased diffusion and may indicate 

axonal/myelin injury, a positive correlation with EDSS seems to be reasonable. Still, ADC is 

not specific for a loss in myelin, and it may represent other processes, such as ongoing 

inflammation (increase in inflammatory free water component) and so the interpretation 

of these correlations remains limited. 

An increase in orientation dispersion indicates a loss in fibre coherence and 

increasing of bending processes, and thus it seems reasonable to think that it is positively 

related to EDSS: a loss in fibre coherence can lead to an increase in disability and EDSS score. 

However, interpretation of ODI results needs greater care. The variation of its value may 

depend on whether we are in the presence of MS lesions or NAWM, as it has been 

demonstrated in section 5.5. Thus, by only looking at the ROIs where correlations appeared 

it is not possible to infer their veracity. It would be necessary to evaluate the type of tissue 

(either normal appearing brain tissue or lesions) to better understand these correlations. 

These results are in line with the ones from (Spano et al., 2018), where EDSS was associated 

with both an increase and a decrease in ODI, since this parameter may depend on regional 

microstructure. 

The fact that all correlations between EDSS and NDI were negative means that, in 

the identified regions, a decrease in NDI is associated to an increase in EDSS, i.e., a decrease 

in neurite density explains an increase in disability. This is understandable, considering that 

a decrease in neurite density may break some important connections that were maintaining 

the patient’s physical status, leading to physical disability. The fact that correlations 

between both NDI and EDSS and ODI and EDSS were found may indicate that disability in 

early phases of MS, however clinically relevant it may be, can be explained by 

neurodegeneration. 

5.6.2. Correlations between MFIS and diffusion metrics 

MFIS is a scale that indicates more fatigue for higher scores, and thus it is coherent 

that a decrease in FA (myelin/axonal damage) is associated with an increase in MFIS. It 

would be interesting to know the exact mechanisms behind fatigue in MS, so that some light 

could be shed into the importance of these ROIs in showing negative correlations with FA. 
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As it was with FA, the positive correlations between MFIS and ADC are coherent with the 

notion that an increase in ADC is related to the worsening of MS symptoms, such as fatigue. 

All correlations between MFIS and ODI were positive, meaning that an increase in 

ODI and consequently loss of highly compact fibres, contributes to an increase in MFIS and, 

ultimately, fatigue. It is interesting to note that in some regions (Left Planum Temporale 

(LPT), Left Posterior Insula (LPIns), RMTG and RPIns) these positive correlations are 

accompanied by negative correlations between FA and MFIS, thus reinforcing the 

relationship between these two metrics, in these regions.  

The correlations between MFIS and NDI were all positive. That indicates that an 

increase in NDI leads to an increase in fatigue, i.e., worsening of MS symptoms. Since it was 

observed a decrease in NDI in the voxel-wise analysis and an increase in average NDI in MS 

lesions for MS patients, by solely looking at these results, no conclusions can be drawn as to 

whether these are spurious correlations, or e.g., the increase in NDI results in more neuronal 

activation or connectivity, leading to higher energy consumption, which in turn would lead 

to increased levels of fatigue.  

5.6.3. Correlations between SDMT and diffusion 

metrics 

SDMT measures information processing and motor speed, which are known to 

be impaired in MS (Ryan et al., 2020). Because higher scores mean higher processing 

speed, most of the correlations were expected. A decrease in FA should reflect in a 

decrease in SDMT, since the apparent loss of myelin should compromise impulse 

conduction and consequent neurological abilities. The only negative correlation may be 

related to noise, but again its location should be further analysed, as should the myelin 

content. 

The negative associations found between SDMT and ADC match the concept that an 

increase in ADC is associated with cognitive impairment, here represented by a decrease in 

processing speed. The positive correlations, however, cannot have such an easy 

interpretation since they may not represent a true correlation and rather a spurious one; 

however, these positive correlations could still be an indicator of maladaptive diffusion 

compensatory mechanisms, or of functional compensatory mechanisms that allow higher 

scores for higher ADC, simply because structural damage can be overcome. 
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The results from correlations between SDMT and ODI express the connection 

between the increase in neurite orientation and the increase in cognitive impairment, here 

represented by a decrease in SDMT. This increase in neurite orientation is representative of 

a disorganisation in axonal tracts and loss of highly parallel orientations, which can 

eventually lead to a decline in processing and motor speed. Also, note that ODI is remarkably 

higher for GM areas, so the location of ROIs should be taken into account, to see if these 

correlations are related to WM injury or to GM. 

Concerning the relationship between SDMT and NDI, it shows that a decrease in NDI 

justifies an increase in SDMT. Note that, and this is valid for all tests answered by patients, 

MS patients can have a good performance in neuropsychological and cognitive tests; they 

can have compensation mechanisms in terms of functional connectivity that allow them to 

avoid consequences from structural damage, especially if early diagnosed. This may be a 

reason as to why a decrease in NDI (seen in patients) can justify an increase in tests’ scores. 

However, there is a need for more context in these situations, and they might raise more 

questions than give answers. 

5.6.4. Correlations between CVLT and diffusion 

metrics 

CVLT is a test that assesses episodic memory, which is known to be deficient in MS 

(Stegen et al., 2010). Hence, MS patients perform poorly in this test if this cognitive 

component is impaired, achieving lower scores than healthy controls. So, it means 

something that FA is positively correlated with this test: a decrease in FA (considered as a 

sign of myelin and/or axonal damage), which is seen in MS patients as proved in voxel-wise 

analysis justifies a decrease in CVLT scores, and thus a decrease in memory preservation in 

MS; still, lower FA values can be due to an increase of bending axons or crossing fibers, 

which should reflect an increase in ODI and negative correlations between ODI and CVLT. 

An increase in ADC is indicative of not only axonal/myelin injury, but also of 

inflammatory processes, as seen before, and it is natural that it is associated with a decrease 

in CVLT scores, in MS patients. The ROI that presents a positive correlation is the odd one 

out, and once again it needs to be carefully interpreted, since it might be a false positive. 

There is a need for more information to be able to draw meaningful conclusions about this 

relationship, since, at first sight, it is not what one would expect to see here.  
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The results from correlations between CVLT and ODI are in line with the SDMT 

results, where MS patients are expected to achieve lower scores for ODI increases. ODI can 

increase either due to a true increase in dispersion or can be related to a variation in NDI, 

where a decrease in neurite density or in axonal size can contribute to a higher ODI value, 

simply because the number of neurites is lower. So, this parameter alone may not indicate 

which subtle microstructural alteration is present and related to CVLT, and that is why it is 

important to take NDI into consideration. 

The fact that all corelations between CVLT and NDI were negative emphasises what 

was discussed in the previous paragraph. NDI is a valuable metric when looking at the 

underlying processes that drive alterations in ODI. The fact that a loss in neurites correlates 

with an increase in CVLT may not seem relevant, since what was expected was the opposite. 

In fact, correlations were found in ROIs such as CSF and lateral ventricles (LLV and RLV), 

where NDI is not expected to contribute much, since these are the cerebrospinal fluid, and 

spaces that hold fluid, respectively. Logically, the number of neurites found there is not 

significant, and thus these correlations may not hold significant in this context; still, neurites 

are not non-existent – there are dendritic terminals that contact with the CSF (Vigh-

Teichmann & Vigh, 1983). Taking this into account, the correlation between ODI and CVLT 

might be linked to the correlation between NDI and CVLT: a decrease in CVLT scores is 

associated with an increase in both NDI and ODI; this could be verified by calculating partial 

correlations or through mediation analysis. Since an increase and not a decrease in NDI is 

correlated with decreasing CVLT scores, ODI alterations that drive CVLT results can be seen 

as a true increase in dispersion, and not due to a loss of neurites. Again, the association 

between decreased NDI and increased tests’ scores is not to be discarded without further 

investigation; the loss in neurites can very well be compensated by functional mechanisms, 

mainly in early MS, that can justify higher scores. 

5.6.5. Correlations between BVMT and diffusion 

metrics 

It has been reported that BVMT is highly correlated with SDMT (in a positive way, 

with rho=0.6) (de Caneda et al., 2018). Conjugating the fact that BVMT measures cognitive 

performance in the form of visuospatial learning and memory, its decrease should be 

related to a decrease in processing speed (decrease in SDMT), and the form of correlations 

(positive or negative) between BVMT and diffusion metrics should be similar to what was 

found for SDMT. 
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Knowing what was explained in the previous paragraph and all that was discussed 

until now, it is acceptable that a decrease in FA values can be associated with a decrease in 

BVMT and ultimately, an increase in cognitive impairment. 

As was discussed earlier regarding the relationship between BVMT and SDMT, what 

was expected to be found were negative correlations between BVMT and ADC. This was 

indeed true for most of the significative ROIs but untrue for 1 ROI. This region is RAA, which 

has shown controversial results before (EDSS and FA, EDSS and ODI), and it seems coherent 

that it remains that way. Since this region consistently behaves the same way in more than 

one analysis, it may no longer be a simple false positive. It could be producing consistent 

signals or noise, but there might be something in the structure of the accumbens area that 

leads to these correlations. Making that ROI an exception, these results are concordant with 

an increase in ADC being related to a decrease in cognitive performance in MS patients. 

Nonetheless, these apparently odd results must be put in the context of being observed in 

very early MS patients and of being coherent across metrics/tests, which shows the 

potential for this type of studies to identify very early alterations that should be investigated 

further. 

The negative correlations found between BVMT and ODI are in line with the FA 

findings, since FA and ODI seem to be inversely correlated. Here, an increase in ODI is 

associated to lower BVMT scores, which are associated to MS patients. 

The correlations found between BVMT and NDI were all negative, showing that an 

increase in NDI should lead to a decrease in BVMT. This seems to contradict what was found 

for other measures, i.e., alterations found in MS patients (decrease in FA, increase in ADC, 

increase in ODI) should be related to lower BVMT scores. It has been shown that MS patients 

present a lower NDI value, and thus, for these results to be coherent, the correlations should 

be positive. Again, the influence of compensatory phenomena in cognitive performance as a 

way of fighting pathological processes are not to be disregarded. 

5.6.6. Correlations between RME and diffusion metrics 

It has been shown that social cognition, here evaluated by RME, is impaired in MS 

(Batista, Alves, et al., 2017; Batista, d’Almeida, et al., 2017). This demonstrates that 

symptoms are not only physical and supports the concept that psychological and mental 

abilities may be affected in MS. Hence, RME quantifies how well a person can predict 

someone else’s mental emotional state, and higher scores represent a higher ability to do 

that (Chalah et al., 2017). Then, it is expected that MS patients reach lower RME scores and 
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that diffusion metrics correlate with them accordingly. That seems to be true for FA, where 

a decrease in its values leads to a decrease in RME and thus an increase in impairment of 

social cognition, a recognised consequence of damage by MS. The outlier observed matches 

the one from correlations between EDSS and FA, but in this case being the left hemisphere 

the one implied (Left Accumbens Area, LAA). This seems to follow a tendency, where 

unexpected correlations for FA appear in these regions (RAA and LAA); it would be 

interesting to try and assess what might be going on with myelin and what axonal/neurite 

changes may be occurring with other imaging or contrast techniques, to better determine if 

we are in fact in the presence of a spurious correlation. 

The consistency of negative correlations between RME and ADC is what was 

anticipated, knowing how ADC is a marker for pathology. Therefore, an increase in ADC may 

validate a decrease in RME scores, in these regions. 

Interestingly, for correlations between RME and ODI, 12 of the statistically 

significant ROIs showed negative correlations but one showed a positive correlation. This 

one was LAA. Again, this is aligned with the FA results and with the relationship between 

FA and ODI; this emphasises the need to carefully handle these results, since this 

consistency may be an indicative that these correlations might have some significance. For 

the rest of them, the negative correlation seems adequate: an increase in neurite dispersion 

leads to a decrease in RME scores, which is patent in MS patients as observed. 

Again, the results for NDI were not what one could predict: a decrease in NDI should 

not justify an increase in RME scores and thus a better social cognition. As was previously 

discussed for contradictory NDI results, it is important to try to understand what kind of 

tissue is present in each of these ROIs (either normal appearing or lesions) and if that can 

lead to some insight into these results. As discussed earlier, we cannot exclude that the 

better performance of any cognitive test has the effect of compensatory mechanisms, which 

might surpass the damage provoked by the disease and underly the contradiction with 

diffusion metrics observed. Moreover, CSF was once again considered as a statistically 

significant ROI for this correlation, which creates more questions about the meaning of 

these results. 

5.6.7. Final considerations 

 In total, 136 ROIs from the Neuromorphometrics atlas were considered for this ROI-

wise correlation analysis. From both the figures on the Results section and the tables on the 

Annexes section, it is obvious that NODDI metrics showed (overall) more correlations than 
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DTI metrics. This is a reinforcement that NODDI is more sensitive to damage caused by MS 

than DTI, particularly in early disease stages. However, these results call for a more 

thorough analysis. Some correlations (mainly with NDI) were not what were expected. 

These contradictory results can have many causes; for example, the fact that Pearson’s 

correlation was used in normally distributed tests (MFIS, SDMT, CVLT, BVMT, and RME) and 

that it treats the variables as linearly dependent, has a high sensitivity for outliers, and has 

a known lack of robustness, may have led to some spurious correlations (Pernet et al., 

2013). This is further aggravated by the fact that, in each ROI, not all diffusion metrics’ 

values were normally distributed in all tests performed. For each ROI, ten normality tests 

were applied, and the metric was considered as having a normal distribution if the result of 

at least one test came out as normal; using this rule, every diffusion metric showed a normal 

distribution in all ROIs. This could have led to an oversimplification of the method, since in 

some cases Spearman’s correlation might have been a better fit. However, note that the 

images were previously filtered in the pre-processing steps, precisely to achieve 

Gaussianity. Hence, any deviation from the normal distribution should not have a major 

influence in the results. On the other hand, effect size should be calculated in future 

interpretations of these results since it could be a possible indicator of spuriousness. 

 Even though NDI seems to show correlations with the performed cognitive and 

neuropsychological tests that do not resemble what was predicted by conjugating the 

knowledge of what NDI is and how it behaves in MS, the associations presented were 

considerable. Further studies are needed to understand why these correlations seem to be 

opposite from what was expected and if it means something in this context or if they could 

be treated as false positives; it needs to be revised whether an increase in NDI could be 

linked to MS patients (maybe as a compensatory mechanism) and justify the increase 

associated with MS patients in certain cognitive/neuropsychological tests. Note that this 

increase was seen on the average NDI in MS lesions, so it is not unthinkable to hypothesise 

that some of these ROIs could present a tissue that behaves in the same manner, especially 

in the case of abnormal tissue preceding the evidence of lesions, where remyelination could 

be an attempt to fight an early stage of myelin loss that would lead to axonal damage, namely 

neurite loss.  

 Another interesting consideration is that there were correlations in regions that 

were not statistically significantly different between groups in voxel-wise analysis. This 

might mean that there are changes in diffusion metrics that are so subtle that are not 
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considered as significantly altered, but that still influence impairment in MS, in certain 

regions. 

 In conclusion, physical and cognitive impairment in MS seems to be described as an 

increase in ADC and ODI values, a decrease in FA values, and a decrease or increase in NDI 

values. This means that the processes leading to disability in early MS are demyelination, 

inflammation, increase in sprawling dendritic processes, neurodegeneration, and 

axonal/dendritic loss (or neurite gain, in cases where there is an increase in NDI). 
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6. Limitations 
 This work is not free of some limitations, which should be considered when 

interpreting the results. Below is the description of what I consider to be the major 

contributions for eventual bias in the previously presented results. 

 The transformation of the NODDI maps into the MNI space was performed via a 

TBSS script, using an FA template. Although the data used to extract both metrics are the 

same, the obtained maps were a little blurred when compared to the original images, and 

this may have meant some information loss, even though the voxels’ intensities were 

similarly distributed. 

 The lesion map mask was not thresholded; this means that every voxel that was 

considered as a lesion by the LST toolbox was included in the mask. This may lead to an 

overestimation in lesions, since it was possible that one voxel was a lesion in only one 

participant, but it was included as one in all participants, leading to the inclusion of voxels 

in the voxel-wise statistical analysis that were not representative of the whole group of MS 

patients. Another drawback in this mask is the fact that the estimation of lesions made by 

the LST toolbox was not checked by a trained radiologist. This toolbox considered 

hyperintensities in the T2-weighted image as lesions, and there could have been 

physiological hyperintensities that were considered as brain injury, which again leads to an 

overestimation in lesion load. Nonetheless, the LST was specifically developed and 

validated as a reliable tool for segmentation of MS lesions. 

 The choice in thresholding for the NAWM and WM masks was arbitrary. It was based 

on visual inspection of several threshold values, and it is possible that these masks did not 

cover all WM tissue; it was a compromise between including the most WM tissue possible, 

while excluding GM and CSF.  

 The choice of the amount of smoothing of the scans before entering voxel-wise 

statistics was based solely on trying to preserve the most information possible and at the 

same time achieving some smoothing degree. Again, it was based on visual inspection, and 

even though the amount of smoothing was not excessively high, it could still have led to the 

loss of information. Nonetheless, the smoothing level is similar to many voxel-wise 

neuroimaging studies in the literature. 

 The fact that the masks from the Neuromorphometrics Atlas had to be registered 

into the MNI space and then binarized may have led to an overestimation of the brain 
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regions. There could have been an overlap to some degree between some regions, and the 

correlations identified in such regions may extend a little over their borders. However, if 

occurring, this effect is expected to be very small, and not represent a significant bias in 

these analyses. 
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7. Conclusion 
DWI has proven to be a valuable tool in assessing microstructural changes in MS. The 

various ways to analyse these data make this technique a rich source of information that 

can be used to monitor disease progression and medication effects, understand its 

mechanisms, and try to predict its outcomes. DTI and NODDI are complementary 

approaches to DWI data. DTI is widely used in clinical environments and in research 

facilities; NODDI adds sensitivity to pathology and MS underlying mechanisms and thus 

opens a window to new discoveries. 

The main goal of this work was to understand how DTI and NODDI metrics differed 

between early MS patients and healthy controls, either voxel-wise or in tissues of interest, 

and how that variation reflected pathology at a microstructural level. Then, these DTI and 

NODDI-derived parameters were correlated with cognitive and neuropsychological tests of 

interest. Studies with early MS patients such as this study’s sample are scarce, and not all of 

them apply statistical analysis in a voxel-wise manner or try to correlate diffusion metrics 

with the same tests presented here. 

Most of the results presented in this thesis are in concordance with previous studies. 

However, some novel results provide new insights into what was taken as a ground truth 

for the behaviour of diffusion metrics in MS patients; the best example of it is the higher 

average NDI found in MS lesions, which is uncommon and almost unheard of. The 

correlations found are also of importance and may be a window into what might be 

happening not only in white matter, but also in grey matter in the brain of MS patients. 

Additionally, the fact that areas such as normal appearing brain tissue also showed 

differences in this analysis and not on MRI structural imaging indicates that CNS damage 

happens all over the brain and is not confined to lesions. 

Overall, NODDI-derived parameters seemed to better describe the major 

contributors to early MS pathology; NDI reflects neurite density loss in MS and this work 

gives a step into considering it a structural biomarker for both cognitive impairment in MS 

and CNS dysfunction. This further validates NODDI as a novel tool to analyse DWI data and 

to drive more conclusions about the hidden mechanisms of MS. 

Future work in this context should include a longitudinal analysis, to better 

understand the meaning of the previously mentioned alterations in MS patients; mainly, it 

would be a way to investigate the hypothesis that higher NDI in MS lesions is a way to try to 
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compensate for demyelination and CNS insults in early MS. Using other methods for DWI 

analysis, such as the diffusion kurtosis or T1/T2 ratio as a marker for myelin density could 

also prove useful in explaining the results found. 

With this work, diffusion metrics proved to be valuable in the monitoring of MS. 

Science evolves a little every day, and one can hope that tools such as NODDI can be 

implemented in clinical routine in the future, thus giving more information to both clinicians 

and patients about exactly what is happening, and to the pharmaceutical industry, which 

can hopefully someday find a cure for MS, or at least greatly improve patient’s quality of life. 
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Annexes 

A.  Tractography Results 

  

 

 

 

 

 

 

 

 

 

A B 

Fig. 40 Tractogram overlaid on a diffusion image from age and gender-matched A) healthy control and B) MS patient. Color 
code: red is left-to-right orientation, green is posterior-to-anterior orientation and blue is inferior-to-superior orientation. 
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B.  Connectome Results 

 

A B 

Fig. 41 Connectome overlaid on an axial plane of the parcellation image from age and gender-matched A) healthy control and 
B) MS patient. The strength threshold is 0.1 (edges with a connection strength which is less than 0.1 are not shown). 
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C. TBSS results 

 

 

 

 

 

 

 

 

Fig. 42 Sagittal, coronal, and axial view of TBSS results of FA, which show significant differences between MS patients and healthy controls 
with A) the CNT>MSC contrast and B) the MSC>CNT contrast for p-values corrected for multiple comparisons with Family Wise Error (FWE). 
In green, is the mean FA skeleton for all participants; in red-yellow are the differences between the two groups. The scale of the red-yellow 
colourmap is 0.95-1 and the maps are for 1-p-value. Thus, a lower p-value (more statistically significant) is represented in yellow and only 
statistically significant differences are shown (p-value<0.05). These skeletons are overlaid on a MNI152 T1-weighted template. Note that the 
MSC>CNT shows no statistically significant differences. 

A 
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D.  Correlations between cognitive and 

neuropsychological tests and diffusion 

metrics 

 

 

 

 

  

Correlations between EDSS and diffusion metrics 

FA ADC ODI NDI 

ROI rho pUNC ROI rho pUNC ROI rho pUNC ROI rho pUNC 

LAOG 0.516 0.0284 LCE 0.666 0.0026 LC -0.666 0.0026 LCC -0.519 0.0273 

LCC -0.565 0.0146 LCumWM 0.505 0.0327 LCC 0.520 0.0269 LLV -0.551 0.0177 

LFP 0.496 0.0364 LFG 0.507 0.0318 LTP -0.553 0.0174 LTP -0.525 0.0254 

LFG -0.640 0.0042 LPhG 0.545 0.0194 RAA -0.556 0.0166 RBF -0.619 0.0061 

LOrPOFIFG -0.531 0.0232 RCumWM 0.475 0.0465 RC -0.628 0.0052 OC -0.577 0.0122 

LTmP -0.489 0.0394 RLG 0.480 0.0437 RTP -0.569 0.0137 

 

RAA* 0.769* 0.0002* BS 0.658 0.0030 ThirdV -0.490 0.0389 

RC 0.469 0.0495 

 

RLG -0.471 0.0483 

RPIns -0.523 0.0261 

RPOrG -0.484 0.0420 

CVLIV -0.500 0.0345 

BS -0.486 0.0410 

Table 14 Statistics for the correlations between EDSS and diffusion metrics (FA, ADC, ODI and NDI). The table only shows statistically significant 
correlations for uncorrected p-values (pUNC<0.05). Asterisks represent ROIs where the correlation is statistically significant for FDR-corrected p-values (* 
p<0.05). In each column, the maximum (negative and/or positive) correlation and its corresponding p-value are the ones underlined. LAOG = Left Anterior 
Orbital Gyrus; LCC = Left Calcarine Cortex; LFP = Left Frontal Pole; LFG = Left Fusiform Gyrus; LOrPOFIFG = Left Orbital part of the Inferior Frontal Gyrus; 
LTmP = Left Temporal Pole; RAA = Right Accumbens Area; R/LC = Right/Left Caudate; RLG = Right Lingual Gyrus; RPIns = Right Posterior Insula; RPOrG 
= Right Posterior Orbital Gyrus; CVLIV = Cerebellar Vermal Lobules I-V; BS = Brain stem; LCE = Left Cerebellum Exterior; R/LCumWM = Right/Left 
Cerebellum White Matter; LPhG = Left Parahippocampal Gyrus; RCumWM = Right Cerebellum White Matter; R/LTP = Right/Left Thalamus Proper; ThirdV 
= Third Ventricle; LLV = Left Lateral Ventricle; RBF = Right Basal Forebrain; OC = Optic Chiasm. 
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Correlations between MFIS and diffusion metrics 

FA ADC ODI NDI 

ROI r pUNC ROI r pUNC ROI r pUNC ROI r pUNC 

LAG -0.523 0.0261 LPOrG 0.508 0.0314 LCC 0.480 0.0439 LAOG 0.549 0.0183 

LEA -0.538 0.0212 LSA 0.486 0.0408 LMFC 0.496 0.0362 LCO 0.491 0.0384 

LPT -0.518 0.0277 

 

LMOrG 0.619 0.0061 RPOrG 0.517 0.0282 

LPG -0.512 0.0299 LPCG 0.492 0.0382 RTTG 0.726 0.0006 

LPIns -0.504 0.0330 LPIns 0.519 0.0273 

 

LSA -0.555 0.0167 LPO 0.483 0.0424 

RMTG -0.526 0.0250 LPOrG* 0.718* 0.0008* 

RPIns -0.489 0.0394 LPT 0.564 0.0147 

BS -0.527 0.0246 LTmP 0.503 0.0333 

 

RCE 0.504 0.0330 

RCO 0.544 0.0196 

RFG* 0.721* 0.0007* 

RMTG* 0.675* 0.0021* 

ROFG 0.490 0.0389 

RPIns 0.652 0.0034 

RPOrG 0.482 0.0428 

RPP 0.542 0.0201 

RPT 0.543 0.0200 

 

 

Correlations between SDMT and diffusion metrics 

FA ADC ODI NDI 

ROI r pUNC ROI r pUNC ROI r pUNC ROI r pUNC 

LAIns 0.483 0.0421 LAA 0.644 0.0040 LAIns -0.631 0.0050 LAA* -0.592* 0.0096* 

LGR 0.473 0.0477 LPP -0.528 0.0243 LCE -0.522 0.0262 LACG* -0.688* 0.0016* 

LLOG 0.547 0.0189 LSMC -0.634 0.0048 LFG -0.504 0.0330 LAOG* -0.483* 0.0424* 

LMFG 0.664 0.0027 LTmP -0.502 0.0337 LMFG -0.600 0.0085 LCO* -0.568* 0.0139* 

LOPOFIFG 0.580 0.0116 RAA 0.562 0.0153 LMTG -0.621 0.0060 LFO* -0.576* 0.0123* 

LPP 0.498 0.0355 RACG -0.553 0.0173 LOPOFIFG -0.591 0.0098 LLOG* -0.474* 0.0471* 

LSMC 0.707 0.0010 RCO -0.562 0.0153 LPOrG -0.481 0.0433 LMCG* -0.580* 0.0117* 

LSPL 0.560 0.0157 RLOG -0.571 0.0133 LPP -0.557 0.0162 LOrPOFIFG* -0.616* 0.0065* 

Table 15 Statistics for the correlations between MFIS and diffusion metrics (FA, ADC, ODI and NDI). The table only shows statistically significant 
correlations for uncorrected p-values (pUNC<0.05). Asterisks represent ROIs where the correlation is statistically significant for FDR-corrected p-
values (* p<0.05).  In each column, the maximum (negative and/or positive) correlation and its corresponding p-value are the ones underlined. LAG 
= Left Angular Gyrus; LEA = Left Entorhinal Area; R/LPT = Right/Left Planum Temporale; LPG = Left Postcentral Gyrus; LSA = Left Subcallosal Area; 
RMTG = Left Middle Temporal Gyrus; R/LPIns = Right/Left Posterior Insula; BS = Brain Stem; R/LPOrG = Right/Left Posterior Orbital Gyrus; LCC = 
Left Calcarine Cortex; LMFC = Left Medial Frontal Cortex; LMOrG = Left Medial Orbital Gyrus; LTmP = Left Temporal pole; RCE = Right Cerebellum 
Exterior; R/LCO = Right/Left Central Operculum; RFG = Right Fusiform Gyrus; ROFG = Right Occipital Fusiform Gyrus; RPP = Right Planum Polare; 
LAOG = Left Anterior Orbital Gyrus; RTTG = Right Transverse Temporal Gyrus. 
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LTmP 0.506 0.0321 RMCG -0.520 0.0270 LSMC -0.628 0.0053 LPC* -0.489* 0.0396* 

RCC 0.542 0.0202 RMFG -0.470 0.0490 LSTG -0.539 0.0210 LPIns* -0.498* 0.0353* 

RMOG -0.483 0.0425 RSFG -0.481 0.0436 RAOG -0.491 0.0384 LPO* -0.488* 0.0398* 

RPO 0.518 0.0278 RSMC -0.553 0.0172 RCE -0.553 0.0173 LPOrG* -0.530* 0.0235* 

RSMC 0.486 0.0410 

 

RCumWM -0.525 0.0253 LPreGMS* -0.635* 0.0046* 

RSTG 0.568 0.0139 RMOrG -0.480 0.0440 LSMC* -0.542* 0.0202* 

RTmP 0.564 0.0149 RPO -0.624 0.0057 LTmP* -0.545* 0.0194* 

 

RSA -0.510 0.0307 LTPOFTIFG* -0.494* 0.0370* 

RSTG -0.476 0.0458 LTTG* -0.569* 0.0136* 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

RAA* -0.542* 0.0202* 

RACG* -0.744* 0.0004* 

RC* -0.516* 0.0283* 

RCO* -0.628* 0.0053* 

RLOG* -0.547* 0.0188* 

RMCG* -0.483* 0.0426* 

RMFG* -0.546* 0.0190* 

ROPOFIFG* -0.675* 0.0021* 

RPO* -0.534* 0.0223* 

RPreG* -0.520* 0.0268* 

RPu* -0.475* 0.0465* 

RSFG* -0.548* 0.0186* 

RSFGMS* -0.501* 0.0342* 

RSMC* -0.526* 0.0250* 

RTmP* -0.582* 0.0113* 

 

 

 

 

 

Table 16 Statistics for the correlations between SDMT and diffusion metrics (FA, ADC, ODI and NDI). The table only shows statistically significant correlations for 
uncorrected p-values (pUNC<0.05). Asterisks represent ROIs where the correlation is statistically significant for FDR-corrected p-values (* p<0.05).  In each column, 
the maximum (negative and/or positive) correlation and its corresponding p-value are the ones underlined. LAIns = Left Anterior Insula; LGR = Left Gyrus Rectus; 
R/LLOG = Right/Left Lateral Orbital Gyrus; R/LMFG = Right/Left Middle Frontal Gyrus; R/LOPOFIFG = Right/Left Opercular part of the Inferior Frontal Gyrus; LPP 
= Left Planum Polare; R/LSMC = Right/Left Supplementary Motor Cortex; LSPL = Left Superior Parietal Lobule; R/LTmP = Right/Left Temporal Pole; RCC = Right 
Calcarine Cortex; RMOG = Right Middle Occipital Gyrus; R/LPO = Right/Left Parietal Operculum; R/LSTG = Right/Left Superior Temporal Gyrus; R/LAA = Right/Left 
Accumbens Area; R/LACG = Right/Left Anterior Cingulate Gyrus; R/LCO = Right/Left Central Operculum; R/LMCG = Right/Left Middle Cingulate Gyrus; RSFG = 
Right Superior Frontal Gyrus; R/LCE = Right/Left Cerebellum Exterior; LFG = Left Fusiform Gyrus; LMTG = Left Middle Temporal Gyrus; LPOrG = Left Posterior 
Orbital Gyrus; R/LAOG = Right/Left Anterior Orbital Gyrus; RCumWM = Right Cerebellum White Matter; RMOrG = Right Medial Orbital Gyrus; RSA = Right Subcallosal 
Area; LFO = Left Frontal Operculum; LOrPOFIFG = Left Orbital part of the Inferior Frontal Gyrus; LPC = Left Precuneus; LPIns = Left Posterior Insula; LPreGMS = Left 
Precentral Gyrus Medial Segment; LTPOFTIFG = Left Triangular part of the Inferior Frontal Gyrus; LTTG = Left Transverse Temporal Gyrus; RC = Right Caudate; 
RPreG = Right Precentral Gyrus; RPu = Right Putamen; RSFGMS = Right Superior Frontal Gyrus Medial Segment. 
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Correlations between CVLT and diffusion metrics 

FA ADC ODI NDI 

ROI r pUNC ROI r pUNC ROI r pUNC ROI r pUNC 

LGR 0.567 0.0142 LAm 0.586 0.0105 LAIns -0.469 0.0495 LLV -0.506 0.0322 

RAOG 0.503 0.0334 LLV -0.481 0.0434 LFO -0.527 0.0247 LMTG -0.486 0.0408 

CVLVIVII 0.489 0.0397 LOrPOFIFG -0.490 0.0391 LMOrG -0.475 0.0462 LOrPOFIFG -0.627 0.0053 

CSF 0.480 0.0437 RLV -0.491 0.0386 LOPOFIFG -0.526 0.0249 LPT -0.503 0.0335 

 

CSF -0.557 0.0163 LOrPOFIFG -0.555 0.0168 LPOrG -0.564 0.0148 

 

LPOrG -0.553 0.0173 LTmP -0.596 0.0090 

LPP -0.586 0.0106 RFO -0.539 0.0209 

LPT -0.515 0.0288 RLV -0.529 0.0239 

REA -0.476 0.0458 RLOG -0.483 0.0421 

RMOrG -0.477 0.0453 ROPOFIFG -0.518 0.0277 

 
 

ROrPOFIFG -0.580 0.0116 

RPT -0.495 0.0368 

RPO -0.494 0.0370 

RPOrG -0.472 0.0477 

RSTG -0.494 0.0373 

CSF -0.574 0.0128 

 

 

 

 

Correlations between BVMT and diffusion metrics 

FA ADC ODI NDI 

ROI r pUNC ROI r pUNC ROI r pUNC ROI r pUNC 

LAIns 0.508 0.0313 LLOG -0.489 0.0396 LAG -0.500 0.0345 LAA -0.509 0.0309 

LGR 0.510 0.0305 LPreGMS -0.488 0.0400 LAIns -0.675 0.0021 LACG* -0.701* 0.0012* 

LPO 0.479 0.0444 LPP -0.522 0.0264 LCE -0.508 0.0316 LCO* -0.566* 0.0143* 

LSMC 0.723 0.0007 LSMC -0.678 0.0020 LMFC -0.638 0.0044 LMCG* -0.580* 0.0117* 

LSPL 0.636 0.0046 LTmP -0.577 0.0122 LMFG -0.581 0.0115 LMFG* -0.571* 0.0134* 

LTmP 0.490 0.0388 RAA 0.618 0.0063 LMTG -0.504 0.0331 LOPOFIFG -0.528 0.0242 

RPO 0.478 0.0449 RCO -0.503 0.0335 LOPOFIFG -0.543 0.0199 LOrPOFIFG* -0.647* 0.0037* 

Table 17 Statistics for the correlations between CVLT and diffusion metrics (FA, ADC, ODI and NDI). The table only shows statistically significant correlations 
for uncorrected p-values (pUNC<0.05). Asterisks represent ROIs where the correlation is statistically significant for FDR-corrected p-values (* p<0.05).  In each 
column, the maximum (negative and/or positive) correlation and its corresponding p-value are the ones underlined.   LGR = Left Gyrus Rectus; RAOG = Right 
Anterior Orbital Gyrus; CVLVVIVII = Cerebellar Vermal Lobules VI-VII; CSF = Cerebrospinal Fluid; Lam = Left Amygdala; R/LLV = Right/Left Lateral Ventricle; 
R/LOrPOFIFG = Right/Left Orbital part of the Inferior Frontal Gyrus; LAIns = Left Anterior Insula; R/LFO = Right/Left Frontal Operculum; R/LMOrG = 
Right/Left Medial Orbital Gyrus; R/LOPOFIFG = Right/Left Opercular part of the Inferior Frontal Gyrus; R/LPOrG = Right/Left Posterior Orbital Gyrus; LPP = 
Left Planum Polare; R/LPT = Right/Left Planum Temporale; REA = Right Entorhinal Area; LMTG = Left Middle Temporal Gyrus; LTmP = Left Temporal Pole; 
RLOG = Right Lateral Orbital Gyrus; RPO = Right Parietal Operculum; RSTG = Right Superior Temporal Gyrus. 
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RPreGMS 0.483 0.0421 RLG -0.490 0.0388 LOrPOFIFG -0.490 0.0391 LPT -0.475 0.0463 

RSPL 0.524 0.0255 RLOG -0.611 0.0071 LPO -0.545 0.0193 LPG -0.473 0.0475 

RTmP 0.584 0.0110 RSFG -0.480 0.0440 LPOrG -0.474 0.0467 LPGMS -0.472 0.0480 

CSF 0.490 0.0389 RTmP -0.501 0.0343 LPP -0.603 0.0080 LPO -0.495 0.0366 

 

CSF -0.508 0.0314 LPT -0.497 0.0357 LPreG -0.509 0.0311 

 

LSMC -0.602 0.0082 LPreGMS -0.546 0.0191 

LSTG -0.507 0.0319 LSFG -0.503 0.0333 

LTPOFTIFG -0.549 0.0182 LSFGMS -0.552 0.0175 

LTTG -0.527 0.0245 LSMC* -0.597* 0.0089* 

RMFC -0.603 0.0081 LSOG -0.494 0.0373 

RMOrG -0.486 0.0408 LTmP -0.513 0.0294 

RPO -0.548 0.0185 LTPOFTIFG -0.472 0.0478 

RPOrG -0.524 0.0258 LTTG* -0.567* 0.0142* 

RSFG -0.504 0.0330 RAA -0.528 0.0244 

RTmP -0.524 0.0255 RACG* -0.677* 0.0020* 

 

RCO* -0.589* 0.0101* 

RMFG* -0.585* 0.0107* 

ROPOFIFG* -0.628* 0.0052* 

ROrPOFIFG -0.473 0.0473 

RPT -0.488 0.0399 

RPG -0.499 0.0349 

RPO* -0.623* 0.0057* 

RPreG -0.498 0.0353 

RSFG* -0.657* 0.0030* 

RSFGMS* -0.566* 0.0143* 

RSMC -0.544 0.0196 

RTmP* -0.563* 0.0149* 

 

 

 

 

Table 18 Statistics for the correlations between BVMT and diffusion metrics (FA, ADC, ODI and NDI). The table only shows statistically significant correlations for 
uncorrected p-values (pUNC<0.05). Asterisks represent ROIs where the correlation is statistically significant for FDR-corrected p-values (* p<0.05). In each column, 
the maximum (negative and/or positive) correlation and its corresponding p-value are the ones underlined. LAIns = Left Anterior Insula; LGR = Left Gyrus Rectus; 
R/LPO = Right/Left Parietal Operculum; R/LSMC = Right/Left Supplementary Motor Cortex; R/LSPL = Right/Left Superior Parietal Lobule; R/LTmP = Right/Left 
Temporal Pole; R/LPreGMS = Right/Left Precentral Gyrus Medial Segment; CSF = Cerebrospinal Fluid; R/LLOG = Right/Left Lateral Orbital Gyrus; LPP = Left 
Planum Polare; R/LAA = Right/Left Accumbens Area; R/LCO = Right/Left Central Operculum; RLG = Right Lingual Gyrus; R/LSFG = Right/Left Superior Frontal 
Gyrus; LAG = Left Angular Gyrus; LCE = Left Cerebellum Exterior; R/LMFC = Left/Right Medial Frontal Cortex; R/LMFG = Right/Left Middle Frontal Gyrus; LMTG 
= Left Middle Temporal Gyrus; R/LOPOFIFG = Right/Left Opercular part of the Inferior Frontal Gyrus; R/LOrPOFIFG = Right/Left Orbital part of the Inferior Frontal 
Gyrus; R/LPOrG = Right/Left Posterior Orbital Gyrus; R/LPT = Right/Left Planum Temporale; LSG = Left Supramarginal Gyrus; LTPOFTIFG = Left Triangular part 
of the Inferior Frontal Gyrus; LTTG = Left Transverse Temporal Gyrus; RMOrG = Right Medial Orbital Gyrus;  R/LACG Right/Left Anterior Cingulate Gyrus; LMCG = 
Left Middle Cingulate Gyrus; R/LPG = Right/Left Postcentral Gyrus; LPGMS = Left Postcentral Gyrus Medial Segment; R/LPreG = Right/Left Precentral Gyrus; 
R/LSFGMS = Right/Left Superior Frontal Gyrus Medial Segment; LSOG = Left Superior Occipital Gyrus; 
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Correlations between RME and diffusion metrics 

FA ADC ODI NDI 

ROI r pUNC ROI r pUNC ROI r pUNC ROI r pUNC 

LAA -0.559 0.0158 LAIns* -0.735* 0.0005* LAA 0.710 0.0010 LACG -0.474 0.0468 

LACG 0.515 0.0286 LCun -0.488 0.0397 LAm -0.521 0.0265 LAIns* -0.487* 0.0405* 

LAIns 0.583 0.0111 LEA -0.505 0.0326 LCE -0.580 0.0117 LCO* -0.496* 0.0365* 

LCE 0.550 0.0180 LFO -0.568 0.0139 LGR -0.574 0.0128 LGR* -0.496* 0.0363* 

LCWM 0.491 0.0386 LLG -0.504 0.0328 LH -0.566 0.0144 LMFG* -0.615* 0.0066* 

LFG 0.573 0.0130 LMFG -0.472 0.0478 RACG -0.644 0.0039 LOPOFIFG* -0.577* 0.0122* 

LGR 0.521 0.0266 LOPOFIFG -0.574 0.0128 RGR -0.606 0.0077 LPG* -0.489* 0.0394* 

LH 0.569 0.0137 LPC -0.479 0.0444 RMFC -0.520 0.0270 LPreG* -0.515* 0.0287* 

LLG 0.555 0.0169 LPhG -0.469 0.0496 ROFG -0.547 0.0189 LSFG* -0.518* 0.0276* 

LP 0.477 0.0454 LPGMS -0.505 0.0324 ROPOFIFG -0.470 0.0491 LSG* -0.536* 0.0220* 

LPT 0.542 0.0201 LPreG -0.548 0.0185 RPOrG -0.510 0.0307 LSPL* -0.510* 0.0306* 

LPhG 0.511 0.0301 LPP -0.499 0.0348 RSA -0.498 0.0354 LTmP -0.471 0.0483 

LPreG 0.656 0.0031 LSMC -0.491 0.0384 RTmP -0.525 0.0255 RAIns* -0.492* 0.0381* 

RACG 0.548 0.0187 LSPL -0.471 0.0486 

 

RCO* -0.584* 0.0110* 

RCE 0.533 0.0229 LTmP -0.546 0.0192 RGR* -0.571* 0.0133* 

RCWM 0.478 0.0449 RAIns -0.506 0.0323 RMFC* -0.523* 0.0260* 

RILV 0.501 0.0344 RCO -0.603 0.0081 RMFG* -0.590* 0.0100* 

RLG 0.537 0.0216 RFG -0.530 0.0236 ROPOFIFG* -0.538* 0.0213* 

RMCG 0.583 0.0112 RLG -0.581 0.0114 RPG* -0.697* 0.0013* 

RMFG 0.472 0.0481 RMFG -0.492 0.0383 RPIns* -0.495* 0.0368* 

ROFG 0.490 0.0389 ROPOFIFG -0.486 0.0410 RPO* -0.582* 0.0112* 

RPhG 0.496 0.0365 RPG -0.543 0.0200 RPreG* -0.613* 0.0069* 

CVLIV 0.581 0.0114 RPhG* -0.678* 0.0020* RSA* -0.562* 0.0152* 

CVLVIIIX 0.543 0.0199 RPIns -0.633 0.0048 RSFG* -0.553* 0.0173* 

 

RPO -0.535 0.0222 RSMC* -0.494* 0.0373* 

RPreG -0.516 0.0285 RSG -0.475 0.0463 

RSTG -0.475 0.0462 RSPL* -0.537* 0.0216* 

CVLVIVII -0.598 0.0087 RTPOFTIFG* -0.632* 0.0049* 

CSF -0.613 0.0068 CSF* -0.490* 0.0389* 

 

Table 19 Statistics for the correlations between RME and diffusion metrics (FA, ADC, ODI and NDI). The table only shows statistically significant correlations for 
uncorrected p-values (pUNC<0.05). Asterisks represent ROIs where the correlation is statistically significant for FDR-corrected p-values (* p<0.05).  In each column, 
the maximum (negative and/or positive) correlation and its corresponding p-value are the ones underlined. LAA = Left Accumbens Area; R/LACG = Right/Left 
Anterior Cingulate Gyrus; R/LAIns = Right/Left Anterior Insula; R/LCE = Right/Left Cerebellum Exterior; R/LCWM = Right/Left Cerebral White Matter; R/LFG = 
Right/Left Fusiform Gyrus; R/LGR = Right/Left Gyrus Rectus; LH = Left Hippocampus; R/LLG = Right/Left Lingual Gyrus; LP = Left Pallidum; LPT = Left Planum 
Temporale; R/LPhG = Right/Left Parahippocampal Gyrus; R/LPreG = Right/Left Precentral Gyrus; RILV = Right Inf Lat Vent; RMCG = Right Middle Cingulate Gyrus; 
R/LMFG = Right/Left Middle Frontal Gyrus; ROFG = Right Occipital Fusiform Gyrus; CVLIV = Cerebellar Vermal Lobules I-V; CVLVIIIX = Cerebellar Vermal Lobules 
VIII-X; LCun = Left Cuneus; LEA = Left Entorhinal Area; LFO = Left Frontal Operculum; R/LOPOFIFG = Right/Left Opercular part of the Inferior Frontal Gyrus; LPC 
= Left Precuneus; LPP = Left Planum Polare; R/LSMC = Right/Left Supplementary Motor Cortex; R/LSPL = Right/Left Superior Parietal Lobule; R/LTmP = Right/Left 
Temporal Pole; R/LCO = Right/Left Central Operculum; R/LPG = Right/Left Postcentral Gyrus; RPIns = Right Posterior Insula; RPO = Right Parietal Operculum; 
RSTG = Right Superior Temporal Gyrus; CVLVIVII = Cerebellar Vermal Lobules VI-VII; CSF = Cerebrospinal Fluid; LAm = Left Amygdala; RMFC = Right Medial Frontal 
Cortex; RPOrG = Right Posterior Orbital Gyrus; RSA = Right Subcallosal Area; R/LSFG = Right/Left Superior Frontal Gyrus; R/LSG = Right/Left Supramarginal Gyrus; 
RTPOFTIFG = Right Triangular part of the Inferior Frontal Gyrus. 

 


