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Abstract

Real-time object detection is widely applied in a variety of contexts to automate
systems which require a detailed perception of the objects of interest present in
an image. The accuracy and speed of detectors has continued to steadily rise
since the implementation of deep learning models for object detection, however,
the detection accuracy obtainable for objects of smaller size has always signifi-
cantly trailed behind average, independently of the used architecture. With this
in mind, we sought to improve the accuracy of real-time small object detection by
restructuring and tuning the modern real-time object detection model YOLOR,
incorporating features of higher resolution extracted by the model’s backbone
network into the detection component, and generating bounding box anchors
tuned specifically for objects of small size. However, these approaches proved
to be ineffective in improving the detection accuracy of the baseline models, pro-
viding information of limited value when compared to the collection of features
previously used, and adding unnecessary complexity to the YOLOR architecture,
detrimental to its computational performance.
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Resumo

A deteção de objetos em tempo real é utilizada amplamente em vários contextos
na automação de sistemas que requerem uma perceção detalhada dos objetos de
interesse presentes numa dada imagem. A precisão e performance destes dete-
tores tem vindo a melhorar continuamente desde a implementação de modelos
deep learning para a deteção de objetos, contudo, a precisão da deteção de objetos
pequenos sempre obteve resultados significativamente abaixo da média, inde-
pendentemente da arquitetura utilizada. Tendo isto em conta, pretendemos mel-
horar a precisão da deteção de objetos pequenos em tempo real através da alter-
ação do modelo moderno na deteção de objetos em tempo real YOLOR, incorpo-
rando features de maior resolução extraídas pela rede neuronal convolucional do
modelo no componente de deteção, e gerando âncoras para bounding boxes adap-
tadas particularmente a objetos de pequenas dimensões. Contudo, estes métodos
revelaram-se inefetivos no melhoramento da precisão dos modelos baseline es-
colhidos, adicionando informação de valor limitado quando comparada com o
conjunto de features originalmente utilizadas, e resultando numa maior complex-
idade arquitetural, prejudicial para a performance computacional dos modelos
implementados.

Palavras-Chave

Deteção de objetos, deteção de objetos em tempo real, deteção de objetos pe-
quenos, YOLOR.
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Chapter 1

Introduction

Object detection is one of the fundamental tasks in the field of computer vision,
aiming to identify the objects of interest present in any given image, determin-
ing their location, dimensions, and category. Image annotation, automated trans-
portation, surveillance, and mass production are some examples of the industries
that stand to benefit from the evolution and successful implementation of object
detection technology. Software capable of object detection has the potential to
greatly enhance the perceptive abilities of automated systems, allowing them to
find and distinguish a known set of relevant entities in their environment and act
accordingly.

Object detectors, however, notoriously struggle to correctly detect small-sized ob-
jects consistently. Some object detection applications rely heavily on small object
detection, as is the case with the analysis of satellite or aerial images, where any
object occupies a tiny fraction of the whole image. Improving the detection per-
formance of small objects would not only benefit these applications, but also all
of the previously mentioned examples as well (where object size remains more
varied), by making object detectors generally more robust to a wider range of
object scales.

The core driving force behind this internship was to achieve an improvement in
the detection of small common objects, in a real-time context. To this end, we
proposed the design of an altered version of a state-of-the-art real-time object
detection model, specialized exclusively in the task of detecting small objects.

This chapter will next further clarify the context, necessity and goals of the project
in Sections 1.1 and 1.2, additionally presenting a short definition and discussion
of the problem in Section 1.3.

1.1 Contextualization

This project was developed within the context of a curricular internship at Crit-
ical Software, as a part of the second year of the Master’s Degree in Informatics
Engineering at the University of Coimbra, with a specialization in Intelligent Sys-
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tems.

The ultimate goal of the internship was to contribute to the advancement of real-
time small object detection using a state-of-the-art object detection architecture as
a basis. Similar projects developed in this branch of the company seek to research
and realise innovative artificial intelligence solutions with the potential to be of
valuable application in other ongoing projects or future endeavors. In the case
of this project, the results obtained could potentially inform a previously active
project focused on the detection of small personal objects in a public transport
setting, such as small belongings left on tables or chairs. Within the scope of the
internship, however, the context considered for the application of the developed
models was much more generalized, consisting in the real-time detection of com-
mon objects inserted in various locations and scenarios,such as those included in
Microsoft’s COCO data set [1].

We intended to implement a new version of an existent real-time object detec-
tion method, enhanced for the detection results of small object instances, while
striving to maintain its detection speed. This was planned so as to preserve the
possible real-time applications of the solution, making it a more desirable choice
for the majority of contexts.

1.2 Goals

The ultimate goal of the internship was to envision and produce alterations to
modern object detection models with the purpose of increasing their small object
detection performance. To achieve it, multiple tasks were distributed throughout
the available time, split between the first and second semesters. The first half of
the project had its focus placed on literature research, with the actual implemen-
tation and evaluation of the models being carried out during the second half.

In the first semester, the main objective was to write a review of the current liter-
ature on small object detection and define the proposed approach to the problem.
In recent years, multiple in-depth surveys and reviews have been published on
the topic [2–5]. This task was carried out with the sole purpose of gaining a bet-
ter understanding of the best-performing methods in the field of object detection
and the techniques employed to address the issue of small object detection, and
with no intention of providing a more comprehensive or complete compilation
of knowledge than previous works, due to scope, resource and time constraints
of the project. The knowledge obtained in this stage served to better inform deci-
sions regarding the method to be implemented and the context of its evaluation.
The obtained result was a systematic review of the most recent contributions to
the evolution of small object detection and object detection as a whole, a list of
the most relevant data sets being currently used as detection benchmarks, and
an initial proposal for the base architecture and techniques to be used in the new
approach. This review is presented in Chapter 2.

It is important to note once more that, while the literature review touches on
all aspects of the small object detection problem, the latter half of the internship
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specifically aimed at producing models capable of real-time small object detec-
tion. The concept of real-time detection is addressed in the literature review,
and further details pertaining to the desired context of application for the im-
plemented models is given in Chapter 4. The second stage of the internship was
dedicated to implementing and testing the proposed methods, evaluating them
in comparison to selected state-of-the-art models. These models were used as the
basis for the practical implementation of the planned changes, resulting in a fi-
nal collection of two base models and multiple modified architectures. Various
preliminary tests were performed as a means to evaluate the considered changes,
with the final results being obtained towards the end of internship’s schedule.
The concluding experiments focused on extending the models’ training time as
much as possible within the remaining available time, so as to obtain a more clear
picture of each approach’s real potential when given time to develop.

1.3 Problem Definition

Object detection has experienced a steady rise in accuracy and speed over the past
years stemming from the evolution of innovative and efficient methods reliant on
deep learning. However, detection of small objects has obtained less satisfactory
results compared to the detection of large-scale objects with most models [2]. It is
important to attempt to narrow this gap in performance as it would not only be
crucial to the evolution of certain applications but also lead to improvements in
object detection as a whole.

Before attempting to tackle this issue, it is important to clearly establish what de-
fines small objects in the task of object detection. Unfortunately, due to the variety
of contexts to which small object detection can be applied, there is no widespread
consensus regarding the size limit of small objects. There are, in any case, small
object definitions with a higher degree of relevance within each object detection
application, as is the case with the one presented in the evaluation metrics for
Microsoft’s COCO (Microsoft Common Objects in Context) object detection data
set [1]. According to this metric, small objects must cover an area smaller than
322 pixels. Given the data set’s fixed image resolution of 640 × 480 pixels, this
represents roughly 0.32% of the total image area. This definition is of importance
considering the popularity and usage of the COCO data set in object detection
research, due to its large number of images containing a good variety of object
classes in their natural context. Another set of criteria is presented in [6], where
a data set tailored for small object detection is assembled. Included objects range
in dimensions from 16× 16 to 42× 42 pixels, or 0.08% to 0.58% of the image area.
Examples of the commonly considered size for small object instances are given in
Figure 1.1, in the context of traffic sign recognition.

Usually, the measure used to define small objects focuses on either their resolu-
tion or the area percentage they occupy in the image that contains them, as these
factors are closely related to the lower detection performance in small object de-
tection. Criteria not tied to the image where an object is inserted, such as the ob-
ject’s physical dimensions, can’t always be easily obtained and do not affect the
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Figure 1.1: Examples of small object instances (traffic signs) in images, as pre-
sented in [7].

detection performance directly. The clarity and level detail with which any given
object is represented heavily depends on its distance to the camera, and whether
it is the focus of the picture in which it was captured, removing the significance
of the object’s real dimensions.

The accuracy difference that separates the detection of small objects from the rest
can be attributed to four key factors [2–5]: the low resolution, the need for pre-
cise localization, the distinction from background noise, and insufficient training
data.

Low resolution. The main problem with detecting small objects is the lack of
information that can be extracted from low-resolution image regions. The finer
details of the object are often not discernible at those scales, resulting in the ex-
traction of lower quality features. As will be discussed later in Chapter 2, deep
learning approaches to object detection sequentially create lower scale represen-
tations of objects in the process of extracting meaningful features, rich in seman-
tic information. Given the already reduced size of small objects, these operations
make their final feature maps less adequate for classification, as too much infor-
mation is lost in the process.

Localization precision. The localization aspect of object detection, referring to
the task of identifying an object’s position, also offers a greater challenge when
dealing with small objects. Traditionally, the metric used to evaluate the place-
ment of bounding boxes during training is based on their area of overlap with the
ground truth boxes defined on the training data set. The slight misplacement of
a bounding box around a small object results in a more significant loss of infor-
mation than it would for an object of larger size. The limited resolution of small
object regions means that even the smallest of region placement errors can result
in a larger part of the object being left out of the proposed area.

Separability from the background. The small dimensions of objects contained
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in images can often be attributed to their long distance from the position where
the image was captured, which makes small objects generally harder to distin-
guish from existing clutter or background noise. An object that is far enough
away not only loses most of its intricate detail on the resulting image but also
has a higher chance of being occluded by a larger object closer to the foreground.
Distant objects also noticeably blend in more with the background, making them
increasingly harder for an observer to discern their shape and differentiate them
from background noise. This can happen partly due to atmospheric factors such
as air pollution and humidity, making distant objects appear faded and lower
in contrast, an effect easily visible when observing images obtained under foggy
weather conditions.

Insufficient training data. Certain applications of object detection, as previously
discussed, depend mainly on the detection of small objects. One example would
be traffic sign detection, where the recognition of signs should ideally happen at
the longest possible distance, to allow the appropriate response to be executed
within a safe window of time. Most of the popular data sets for traffic sign recog-
nition, such as Tsinghua-Tencent 100K [8], contain a wealth of smaller traffic sign
examples due to this necessity, as well as the road setting depicted in the images
obtained. This, however, is not the case with more generic object detection data
sets. Data sets comprised of various common objects, like the COCO data set,
include labelling to identify differently sized objects, useful when attempting to
exclusively evaluate small object detection. Even so, the number of small objects
offered by these data sets might not be sufficient for effectively training small ob-
ject detection models. Additionally, using only certain portions of a larger data
set can lead to heavier class imbalances, not present when using it in its entirety.
While a data set comprised of various object scales might include a balanced dis-
tribution of its object categories, this balance is easily undone by only considering
the small-sized objects within it.
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Literature Review

In this chapter, a comprehensive review of the most relevant methods in the re-
cent evolution of small object detection is presented. As to provide further con-
text to these methods, an overview of object detection and some related concepts
is also presented, with a focus on deep learning methods. In this overview, an
introduction is given to deep learning and convolutional neural networks, fol-
lowed by a list of the most prevalent network architectures used in object detec-
tion models and the most representative methods themselves. Afterwards, the
review centres on the problem of small object detection, explaining each of the
solutions found to tackle the challenges presented by it. These contributions are
ordered chronologically and grouped according to the nature of the approach
used in the aforementioned solutions.

2.1 Object Detection

Object detection is one of the core applications of computer vision, having been
the focus of a great deal of machine learning research for the last decade. By
allowing the correct identification of objects of interest, detected in any position
of an image or video, object detection opens up meaningful avenues for systems
to more efficiently perceive their environment.

The object detection task is composed of two distinct aspects:

1. Localization, as the term suggests, is focused on determining the position of
objects of interest. Each object detected is enclosed within a bounding box
which encapsulates it, leaving ideally little to no space between its edges
and the object.

2. Classification is often achieved with the information present within an ob-
ject’s bounding box, from which its category is predicted. The quality and
informativeness of the features extracted from the image is paramount to
the accuracy of this task.
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Object detection also serves as the basis for other computer vision tasks such as
object tracking, image segmentation, action recognition, pose estimation, among
others.

2.2 Evaluating Object Detection Performance

For the evaluation of object detectors during training, metrics suited to its two
main tasks, localization and classification, are required. Traditionally, to judge
the overall performance of a detector, mean average precision (mAP) is used. To
better understand this measure, it is first necessary to understand the precision
and recall of a prediction model.

Given a set of predictions, precision represents the percentage of those that are
correct. This metric determines the ratio of correct predictions made by the de-
tector and is obtained by dividing the number of correct predictions (true posi-
tives) by the total amount of predictions (true positives and false positives). On
the other hand, recall measures the percentage of positive examples that were
correctly identified from the total amount available in the data set. In object de-
tection, recall is obtained by dividing the number of objects correctly categorized
by the total number of existent objects, encountered or not by the detector.

It is still necessary to assess the individual placement of bounding boxes in rela-
tion to the ground-truth examples during training. This is achieved with inter-
section over union (IoU), detailed in [9], which represents the overlap between
two bounding boxes. It is obtained with the following formula:

IoU = |P∩T|
|P∪T|

, where P corresponds to the area of the predicted bounding box, and T corre-
sponds to the area of its ground-truth counterpart. By applying this metric as a
threshold, it is possible to distinguish between correct and incorrect predictions of
object locations. As an example, bounding box predictions might be considered
correct when the IoU value is above 0.5. This value directly impacts the precision
and recall rates. If the IoU threshold is on the higher end, fewer predictions might
pass as correct, resulting in a lower recall rate of positive instances, and poten-
tially higher accuracy. Conversely, a relatively low IoU value would not limit the
recall rate of the detector but could reduce the accuracy of its predictions, given
the inclusion of less reliable bounding boxes.

Average precision (AP) is calculated with:

AP =
∫ 1

0 p(r)dr

, where p and r correspond to the precision and recall values of the model re-
spectively. When plotting both of these values in a graph for a set of predic-
tion outputs, sorted by their confidence level, a precision-recall curve is obtained,
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commonly depicting precision decreasing as the recall nears the maximum value
of 1, being that AP is meant to visually represent the area beneath this curve.

In light of the aforementioned effect the IoU threshold has on precision and recall,
AP is usually computed separately for each of its values. IoU levels of 0.5, 0.75,
and 0.5 : 0.95 are commonly chosen for analysis, with the latter being calculated
by averaging a set number of levels in between 0.5 and 0.95, obtained with a step
of 0.05.

Finally, mAP can derived in the same way as AP, although it specifically refers to
the overall result averaged from all of the existent classes.

2.3 Deep Learning for Object Detection

Deep learning is the currently preferred approach to the task of object detection,
having undeniably surpassed the previously used methods. Deep convolutional
networks represent the most widely used deep learning architecture in this re-
gard, serving as the basis for the most relevant methods in the past decade, such
as [10; 11].

In machine learning, deep learning is often described as a method that emulates
the learning process of a human brain. In deep learning, networks with a high
number of layers, deep neural networks, are employed to process data and ex-
tract complex patterns and relations. With the increase in layer depth, the infor-
mation obtained becomes more abstract and harder to understand, yet potentially
more valuable for distinction and classification. The result is often a black box so-
lution to the extraction of meaningful features, where the network’s ’logic’ can
only be partly understood through specific visualization techniques.

To better understand the role of deep learning in object detection architectures,
the following sections will explore the types of network usually implemented at
the core of object detectors and their variants.

2.3.1 Convolutional Neural Networks

For the task of image processing, Convolutional Neural Networks (CNN) have
largely been the favoured deep learning approach. The core concept of this archi-
tecture is present in the convolutional layers, responsible for learning small filters
that are moved across the image to obtain an output, a process referred to as con-
volution. These filters, also named kernels, take on the shape of small matrices
with a set of values, and are used to calculate a value for each pixel of the image
during the convolution. This value is the dot product between the kernel and the
image patch of the same size around a given pixel. This type of localized informa-
tion processing is ideal for images as it extracts the relations and patterns formed
by closely positioned pixels, eliminating the unnecessary task of fully connecting
each pixel to every output value.
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Between the convolutional layers of a CNN, pooling layers are placed, with the
goal of down-sampling the image to a lower resolution. This process is achieved
with a variety of functions, the most widely used being the max-pooling method.
With max-pooling, for each group of pixels, the one with the highest value is
kept for the down-sampled image. The intent of pooling is the reduction of the
image’s scale for subsequent convolutions, so that higher-level features may be
extracted. Instead of considering the correlation between adjacent pixels, useful
in the detection of smaller features such as corners or borders, the focus becomes
the placement of these features in relation to others. Higher-level features, or
deeper features, are utilized to distinguish more complex forms and patterns,
ideal for object detection.

Other components relevant in the CNN architecture are the ReLU layers (recti-
fied linear activation unit), the fully connected layers, and the loss function. The
ReLU non-linear activation function nullifies negative image values after convo-
lutions. The fully connected layers’ function is to predict the object categories
given as the output, and the loss function is used to calculate the prediction error
of each classification during training in order to adjust the network parameters
accordingly.

2.3.2 Backbone Networks

The networks used to initially extract image features in object detectors are re-
ferred to as backbone networks. Usually, these networks are inserted as compo-
nents in detector architectures, being pre-trained on a generic image classification
task. Despite a large majority of these networks being CNNs, based on the con-
cepts and components presented in the previous section, recent methods have
opted for different architectures, as is the case with the Swin Transformer [12].
Some of the most relevant backbone networks include [12–16]. A brief overview
of each of these networks is also given in this section, seeing as they play a major
role as central components of any object detector.

VGG [13]. The VGG network is a simple deep CNN architecture, characterized
by its depth and small layer receptive fields. It was introduced after the well-
known AlexNet [17], and focused on increasing the depth of previous networks
while reducing the size of the kernels used in convolution. With these reduced
receptive fields, the minimum filter size being 3 × 3, the network is capable of
capturing smaller image details in earlier layers and prolonging itself further
horizontally (depth-wise). The VGG-16 architecture is one of the most utilized
VGG network layouts, made up of five distinct convolution blocks separated by
max-pooling layers, followed by a sequence of three fully-connected (FC) layers
(Figure 2.1). The first two convolutional blocks include two convolutional layers
each, whereas the three following blocks are composed of three layers each, all
followed by a ReLU non-linear activation layer. The fully-connected layers are
followed by a final activation layer, commonly a softmax layer.

GoogLeNet [14]. Also known as Inception v1, the first iteration of this architec-
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Figure 2.1: Standard architecture of the VGG-16 backbone network [18].

Figure 2.2: Architecture of the inception block with dimensionality reduction.

ture attempted to tackle the issue of objects of multiple scales by introducing par-
allel convolutions with filters of different sizes. These were inserted in what are
referred to as Inception blocks, which initially included convolution operations
with 1 × 1, 3 × 3, and 5 × 5 filters, additionally to max pooling. This block also
employs 1 × 1 convolutions as a means to reduce the dimensionality of the input
before computationally intensive operations such as 5 × 5 convolutions (Figure
2.2). Later versions of the Inception network worked to optimize the architec-
ture further, in part by factorizing the aforementioned expensive convolution op-
erations. As an example, it was found that a 3 × 1 convolution followed by a
1 × 3 convolution were computationally cheaper than a standard 3 × 3 convolu-
tion while obtaining similar results. Furthermore, 7 × 7 convolutions were also
added with the third iteration of the network, partitioned into smaller convolu-
tions, expanding the network in width instead of depth. The Inception-ResNet
network architectures focused on combining the Inception blocks of previous ar-
chitectures with residual connections, introducing the output of each block into
its input.

ResNet [15]. Residual networks were developed with the intent of tackling the
problems related to the learning gradient used in deep neural networks. When
information is back-propagated to the earlier layers, a gradient is applied in the
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Figure 2.3: Residual block architecture with skip connection [15].

calculation responsible for the alteration of layer parameters. When a high num-
ber of layers is in place, this gradient may be exponentially decreased or increased
depending on the activation functions in place, resulting in the vanishing and ex-
ploding gradient issues respectively, which greatly hinder the training process
of the network. To this end, ResNet employs skip connections from shallower
layers to deeper layers, which jump over one or more layers (Figure 2.3). With
these connections, higher layers can receive information from previous ones, im-
proving the viability of training deeper networks by allowing the gradient to
easily propagate across the network without having to traverse it sequentially.
This is also referred to as mapping the identity of the network. The model itself
is divided into components named residual blocks, where the skip connections
are inserted, which can be easily stacked to form increasingly deep networks.
ResNet-34, ResNet-50, and ResNet-101 are a few examples of this architecture,
differing mainly when it comes to their depth.

DenseNet [16]. Densely connected networks take the concept seen in ResNet fur-
ther, by propagating any layer’s information to all subsequent layers. Likewise,
any layer in the network additionally takes as input all of the feature maps pro-
duced by previous layers. As a result of this setup, the feedback necessary to alter
each layer’s parameters reaches it directly from deeper layers. Given the progres-
sive down-scaling of image representations required in computer vision tasks, the
DenseNet architecture is made up of what are referred to as dense blocks, wherein
layers are densely connected and separated by the typical pooling operations.

Swin Transformer [12]. Contrary to the great majority of backbone networks
used in the last decade, the Swin Transformer does not follow a CNN architec-
ture, aiming instead to apply the concept of transformer networks to computer
vision tasks. It extracts image features on multiple scales by progressively merg-
ing small patches into larger ones throughout the network, as presented in dia-
gram (a) of Figure 2.4. Self-attention is calculated for each patch, in Multi-Head
Self-Attention layers [19]. In short, this measure determines not only the value
of each patch regarding the presence of relevant features but also its correlation
with all other patches. By further dividing the image into multiple windows,
each containing numerous patches, it is possible to calculate self-attention values
separately within each window, greatly reducing the consumption of resources
otherwise required when executing this operation for the entire image at once.
These windows are then shifted a certain number of patches, to avoid measuring
self-attention repeatedly inside the same isolated image segments. The initial size
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Figure 2.4: Architecture of the Swin Transformer alongside its building blocks
[12].

of patches also guarantees that simpler features of lower scale are obtained first,
and used to extract higher scale features deeper into the network, producing a
result akin to that of down-sampling operations found in CNN architectures. As
with other backbone architectures, the Swin Transformer is divided into blocks,
represented in diagram (a) of Figure 2.4. The first block is responsible for cal-
culating attention for the initial image patches, while the subsequent blocks start
by merging adjacent patches before executing the same operation. Inside each
block,as illustrated in diagram (b) of Figure 2.4, the output is obtained as a re-
sult of computing self-attention within a set of windows, followed by computing
self-attention within the shifted windows. Recently, this backbone architecture
has obtained some of the best results in important object detection benchmarks,
such as [1], with increasingly more research being dedicated to iterating on the
initial proposal.

2.3.3 Deep Learning Object Detectors

With the widespread adoption of deep learning in object detection, two sepa-
rate types of methods took shape, depending on how the two tasks of object
detection were tackled: the "two-stage" detectors, and the "one-stage" detectors.
The following sections will discuss some of the most meaningful contributions of
the past decade that introduced and iterated over these two distinct approaches,
shown in Table 2.1.

2.3.4 Two-Stage Detectors

Two-stage object detectors perform the tasks of localization and classification
with separate models. One of the model components is responsible for analysing
regions of interest (RoI) within an image and outputting object proposals, de-
pending on the chance of an object being present within each region, regardless
of its category. The second component takes the proposals as input and attempts
to determine the class of the object in question, improving the accuracy of the
bounding box location in the process. Some representative two-stage detectors
include [10; 20–23].
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Architecture Method Year

Two-Stage R-CNN [10] 2014
SPP-Net [20] 2015
Fast R-CNN [21] 2015
Faster R-CNN [22] 2016
FPN [23] 2017

One-Stage YOLO [11] 2016
SSD [24] 2016
YOLO9000 [25] 2017
RetinaNet [26] 2017
YOLOv3 [27] 2018
YOLOv4 [28] 2020

Table 2.1: Representative object detection methods described in Section 2.3.3, sep-
arated by architecture type.

R-CNN (Region-Based CNN) [10] pioneered research on this type of approach,
introducing convolutional neural networks as a mean to extract meaningful fea-
tures from region proposals, obtained with the selective search algorithm [29].
This architecture was significantly improved with its subsequent iterations, which
aimed to increase the speed and optimize the usage of computation resources of
the original model, by reducing the number of convolution operations and em-
ploying different training strategies. While R-CNN extracted features from each
individual region proposal, Fast R-CNN [21] opted to first extract a feature map
of the entire input image with a backbone convolutional neural network, obtain-
ing the regions of interest from this representation through an RoI pooling layer.
Faster R-CNN [22] proposed a Region proposal Network (RPN) to extract regions
of interest from the image feature map with the use of predefined anchors. For
any given region, the RPN determines the size and placement of object bound-
ing boxes, but an “objectness” score for each of those regions, which refers to the
likelihood of it containing any object from a finite set of classes versus the back-
ground. The anchors used to obtain these results, overlaid on the input image as
small windows, are built according to different object scales and shapes, being of
various sizes and aspect ratios (1:1, 1:2, and 2:1 are some examples of possible as-
pect ratios for these anchors). While managing to achieve state-of-the-art results
at the time it was developed, the Faster R-CNN method also achieved a running
frame rate of 5 FPS when obtaining these results, demonstrating the capability of
the heavily modified R-CNN approach to perform detection in real-time.

SPP-Net [30] employed a spatial pyramid pooling strategy to create a fixed-length
image representation regardless of the input image dimensions, addressing the
need to resize images to a fixed size before feeding them to a CNN. This strategy
works by pooling a given feature map in a fixed number of local spatial bins for
each pyramid level. The size of these bins is determined proportionally to the
image size, and the last level of the pyramid results in a representation of 1 × 1,
obtained with global pooling of the image, where the single considered bin cov-
ers its entire area. By introducing an SPP layer before classification, posterior to

14



Literature Review

Figure 2.5: Top-down architecture with skip-connections and a single feature map
for prediction (top), and the FPN architecture, with prediction at multiple scales
(bottom) [23].

the extraction of features by the convolutional layers, one obtains a vector made
up of the various results from the pooling operations, which maintain a fixed size
and preserve the spatial information of the image while allowing the CNN to
process images and output features of various dimensions.

FPN (Feature Pyramid Networks) [23] introduced multi-scale feature represen-
tations, widely applicable to other detection architectures. Instead of extracting
and utilizing a single feature map from the backbone network, FPN takes ad-
vantage of a pyramid containing multiple scales of the same image, performing
predictions on every level of the pyramid. This improves a model’s robustness
when dealing with different object scales, allowing more information to be avail-
able for the task of classification. This type of pyramid is easily obtainable using
the already employed convolutional networks, as sequential down-sampling al-
ready occurs as part of their operations, and the output of each convolution can
be stored as an individual feature map, as illustrated in Figure 2.5. When ap-
plying FPN to other methods, such as Faster R-CNN, the feature map selected
for detection can be determined by the size of each RoI identified by the RPN,
providing the model with some added adaptability to different object scales.

2.3.5 One-Stage Detectors

One-stage detectors, having been introduced as an evolution of the two-stage ar-
chitecture, attempt to unite the two tasks, by skipping the class-agnostic object
proposal stage. Instead, the network responsible for the classification of the ob-
jects directly analyses the processed image, determining whether there is a strong
response to any of the object classes learned during training. These methods boast
a significantly higher detection speed, though at the cost of classification accuracy
in the past, which has been subsequently diminished. Among one-stage detec-
tors, some of the most relevant contributions were [11; 24–28].

YOLO (You Only Look Once) [11] introduced single-stage detectors, utilizing a

15



Chapter 2

Figure 2.6: Representation of the YOLOv3 architecture, with the backbone, neck,
and detection head. The model predicts category, bounding box and objectness
values [31].

single network, similar in architecture to GoogLeNet, to predict the location and
class of objects in an image. The model analyses the image by dividing it into a
grid, computing a number of bounding boxes and confidence scores for each of its
cells. The confidence score metric conveys the probability of an object being en-
closed in the predicted bounding box, alongside the quality of the box prediction,
by measuring IoU with the ground truth during the learning process. Each cell
with an identified object and bounding box also outputs an independent number
of category predictions, completing the object detection task. Numerous versions
of YOLO have since been developed, starting with YOLOv2 [25], also known as
YOLO9000, which implemented batch normalization, increased the resolution of
the model and employed predefined anchors in the prediction of bounding boxes,
similarly to Faster R-CNN. Batch normalization, in short, refers to the strategy of
normalizing inputs in each layer in small batches, or mini-batches. The YOLOv3
[27] model built on the backbone established in the previous version, named
Darknet-19, increasing its depth and proposing Darknet-53. From this network,
the model extracts three distinct representation scales for classification using the
FPN method, as shown in Figure 2.6, improving the detection accuracy of smaller
objects. Finally, YOLOv4 [28] offered multiple improvements in relation to pre-
vious iterations, mainly in the form of the newly chosen backbone network and
various training strategies employed to increase the accuracy and efficiency of
the model. Data augmentation, for example, is used to significantly improve
the performance of the model without drastically decreasing its time efficiency
during training. On the other hand, techniques that result in a more noticeable
increase in inference time, such as the Mish activation function, are justified by
their significant contribution to the model in terms of classification performance.
The network ultimately chosen to serve as the backbone for the model was the
CSPDarknet53, which makes use of the network partitioning concept proposed
with CSPNet, where the initial feature representation is merged with the output
of each network stage. The multi-scale feature aggregation component was also
altered from the FPN method to the PAN module, which includes the sequential

16



Literature Review

down-scaling performed in FPN followed by the correspondent up-scaling of the
features, referred to as a bottom-up sequence.

SSD (Single Shot Multibox Detector) [24], using the VGG-16 backbone network
as a base, was introduced shortly after YOLO, sharing the concept of predicting
object locations and categories with a single pass through the network. SSD ini-
tially uses bounding boxes from a predefined set to enclose objects, with fixed
sizes and width to height ratios, in order to compute the probability of object
categories being present within these boxes. Their placement and dimensions
are then adjusted depending on the predicted object class through bounding box
regression, based on a loss function that takes into account the location of the
bounding box and the confidence score of the prediction. The model also takes
into account representations of multiple scales, similar to many of the previous
methods, to increase its robustness when dealing with objects of smaller size.

RetinaNet [26] attempted to tackle the problem of class imbalance in object de-
tection, by proposing a new loss function, denominated Focal Loss (FL). One-
stage detectors require a high density and quantity of image regions to be consid-
ered for prediction, as opposed to the finer selection performed in the localization
stage of two-stage architectures prior to classification. This increased number of
considered regions can lead to a higher percentage of easily classified instances,
which end up representing a disproportionately high amount of the total loss
incurred, due to their sheer quantity. One way to offset this problem is by consid-
ering the frequency of the encountered examples for each object class, using it to
inform the significance of those predictions. Focal Loss, however, seeks to tackle
the imbalance resulting from an overabundance of easy examples, by exponen-
tially down-weighing their impact.

To define the Focal Loss formula, pt must first be defined, being given by:

pt =

{
p if y = 1
1-p otherwise.

, where y represents the ground-truth class (+1 or −1), and p is the probability,
computed by the model, of the instance belonging to the positive examples of the
class. Focal Loss can then be obtained through the following formula:

FL(pt) = (1 − pt)λlog(pt)

, where λ is the factor by which the easily classified instances get down-weighed.

2.4 State-of-the-Art Object Detectors

Research on small object detection is closely related to that of object detection. A
sizeable amount of the approaches suggested to deal with the small object prob-
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lem use previously developed object detection models or architectures as a basis.
This is the case with [6; 32; 33], among others.

The influence of object detection advancements on the problem of small object
detection results in a gap between the currently best-performing object detection
models and the ones used as a basis to improve small object detection. With
this in mind, it is important to explore the most recent object detectors tested
with objects of all sizes. These not only represent the latest evolution regarding
the task as a whole but might already implement meaningful improvements that
increase the accuracy of small object detection, since a good degree of robustness
to varying object scales is a factor of high importance in many applications of the
technology.

Currently, one of the most relevant benchmarks for object detection is the COCO
Benchmark, where a model’s performance is evaluated on multiple versions of
the COCO data set. This benchmark is divided into multiple categories, namely
Object Detection and Real-Time Object Detection, for which the leaderboards can
be found in [34] and [35], respectively. This section looks into the best performing
models for both of these evaluation categories, providing a brief description of
their contributions.

2.4.1 Standard Object Detection

The standard object detection benchmarks based on COCO are divided into two
separate challenges, evaluated on different variants of the data set. One uses the
COCO minival data set (50K images), while the other is evaluated on the COCO
test-dev data set (20K images). However, the best performing models and their
accuracy values are similar for both of the data sets at the time of this writing.

The sole focus of the standard object detection task is the mAP achieved by a
given model. The lack of regard for inference time in this category makes the best
performing networks not suitable for systems that must run in real-time. Setting
aside those applications, the top-scoring models for this challenge still offer the
best possible accuracy obtainable in the object detection task and represent the
best options when time and resource usage are not major concerns.

Recently, the common deep convolutional network architectures have been sur-
passed in accuracy by implementations based on the Transformer architecture.
The Swin Transformer, an implementation of this architecture for computer vi-
sion tasks has largely served as the groundwork for these new approaches, which
manage to obtain state-of-the-art results on the standard object detection bench-
mark. As of the writing of this review, the following models presented hold some
of the best results on the COCO test-dev benchmark.

Swin Transformer V2 [12]. The intent behind Swin Transformer V2 was to scale
up the original Swin Transformer model in capacity and resolution (addressed
in Section 2.3.2). To this end, modifications to the layout of the original network
were proposed such as the use of the scaled cosine attention instead of dot prod-
uct attention and the placement of normalization layers after the residual com-
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ponents of the network, both contributions leading to a reduced amplitude of
attention values and a further stabilized training process. The increase in the in-
put resolution and number of parameters also leads to an increase in GPU mem-
ory usage, dealt with by proposing a new sequential self-attention computation
method. The SwinV2-G model version, applied to the task of object detection
manages to obtain state-of-the-art average precision scores for the COCO test-
dev data set.

Swin-L with Soft Teacher [36]. With the Swin-L network as its backbone, this
approach was developed in an attempt to improve detection performance using
pseudo-labels, applied to large amounts of unlabeled data. Its architecture is di-
vided into two models: the teacher and the student model. The teacher is tasked
with producing pseudo-labels for the unlabeled instances present in images of
the data set, potentially increasing the amount of useful information for the train-
ing of the detector. The student model, on the other hand, is trained with both the
labelled data and the pseudo-labelled examples given by the teacher model, pre-
trained to detect objects and provide a sizeable quantity of new instances. The
result is a semi-supervised object detection framework capable of being applied
to most existent models.

2.4.2 Real-Time Object Detection

The real-time object detection benchmark is based on the standard COCO data
set. The aim of real-time detection models is to perform accurate detection with a
short inference time, usually measured in milliseconds. Another metric utilized
to evaluate the speed of a model is the frame rate, in frames per second (FPS),
providing essentially a reverse measure of inference time.

Real-time object detection is the preferred standard for most implementations of
the technology, where a system is required to detect objects in the environment
and react accordingly within the shortest time span possible. Such is the case
with self-driving vehicles, for traffic-sign or pedestrian recognition.

Some of the models with the best performance on the COCO benchmark for real-
time object detection at the time of writing this review are presented below.

YOLOR [37]. You Only Learn One Representation (YOLOR) proposes a unified
network capable of encoding explicit and implicit information simultaneously.
In this context, explicit information refers to the information directly obtainable
from the input data, by early layers of the network, whereas implicit informa-
tion refers to the information present within deeper network layers, gained as
a result of its training process. By integrating implicit information into the net-
work’s learning process, after training it with explicit information, its overall per-
formance can be improved. Its usefulness can also be widened to related tasks,
such as being able to classify the parts that constitute an object in addition to
identifying the object itself. The most relevant achievement of this model was
its high running speed, above that of any model with similar levels of precision
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accuracy. In the real-time COCO benchmark, the fastest YOLOR model to be eval-
uated, YOLOR-W6, managed to run at 66 FPS, while the most accurate version,
YOLOR-D6, managed to obtain state-of-the-art average precision results while
running at 34 FPS.

Scaled-YOLOv4 [38]. With Scaled-YOLOv4, strategies were presented to scale
the original YOLOv4 model both up and down. Beyond adjustments to the width
and depth of the model, layout changes are also proposed to the CSPDarknet53
backbone network, focused on optimizing the processing of the image by replac-
ing the early stages of the network with the standard Darknet design. While
the scaled-down version, YOLOv4-Tiny, successfully adapted the architecture to
a reduced network size and low-end GPU devices, the improvements naturally
originated from the YOLOv4-Large version of the model, scaled up in depth and
resolution. This version managed to surpass the results of the original YOLOv4
model on the COCO test-dev data set while maintaining its high running speed.

EfficientDet [39]. The EfficientDet model appeared as an attempt to attain state-
of-the-art results by scaling up baseline models, in width, depth and resolution.
Compound scaling is proposed with this model, which is achieved by scaling
these three parameters equally, which produces the most efficient increase in per-
formance. Alongside this method, a new Feature Pyramid Network (FPN) ar-
chitecture is also proposed, BiFPN. With standard FPN, the multi-scale feature
fusion is only implemented in one direction, from top to bottom, meaning the
information from later layers gets augmented with the output of earlier layers.
BiFPN not only includes the same operations repeated in the opposite direction
(bottom-up) but also employs multiple skip connections from each layer’s initial
feature map to its fused counterpart, repeating this architecture with segmented
blocks. Finally, it also replaces the standard feature fusion method, based on
summing the different feature maps, by a weighed formula with the intent of
controlling the impact of different scale representations.

2.5 Small Object Detection Approaches

A wealth of strategies has been explored to deal with each of the challenges that
small object detection presents. These include techniques such as the fusion of
feature maps obtained at different scales, the use of contextual information exter-
nal to an object’s bounding box, or the generation of super-resolved versions of
small objects prior to classification. All of these techniques have been shown to
improve the accuracy of small object detection to some extent when incorporated
into otherwise traditional detection architectures.

This section will go over the most representative methods which employed these
strategies with the intent of improving the detection of small objects, seen in Table
2.2, providing a description for each approach.
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Strategy Method

Multi-Scale Features Finding Tiny Faces [40]
DSSD [41]
Faster R-CNN for SOD [32]
Feature-Fused SSD [42]
MDSSD [33]
FSSD [43]
HRDNet [44]

Tuned Region Anchors R-CNN for SOD [6]
Modified Faster R-CNN [45]
Small Face Anchors [46]
SCRDet [47]

Contextual Information ContextNet [6]
Modified Faster R-CNN [45]
Spatial Context Analysis [43]

Super-Resolution Perceptual GAN [48]
SOD-MTGAN [49]
Feature Super-Resolution [50]
JCS-Net [51]

Data Augmentation Modified Faster R-CNN [45]
Augmentation for SOD [52]

Table 2.2: Small object detection methods described in section 2.5, organized by
technique.

2.5.1 Multi-Scale Features

Object detection traditionally relies on feature representations produced by the
latter layers of deep convolutional network architectures. The features obtained
from these deeper layers, also referred to as high-level features, contain richer
semantic information, useful in the object classification stage. On the other hand,
lower-level feature maps retain a higher resolution, closer to that of the original
image.

Contrary to objects of larger size, smaller objects do not benefit nearly as much
from the usage of deeper feature maps. The more robust information obtainable
in high-level features maps comes at the cost of their resolution, which is increas-
ingly reduced after each convolutional layer. This makes the resulting represen-
tation obtained from small objects inadequate in size, due to their low original
resolution.

It is now known that leveraging the lower-level feature representations of small
objects in their classification significantly benefits its accuracy, as shown in Sec-
tion 2.5. This inclusion has been achieved with a variety of feature fusion tech-
niques, which combine the feature maps, corresponding to representations of dif-
ferent scales obtained along the network, to improve the performance in the de-
tection of small objects.
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Figure 2.7: Representation of the DSSD architecture, with the SSD layers depicted
in blue [41].

Finding tiny faces [40]. For this method, a multi-task model is developed for face
detection as a means to simultaneously process the input image at multiple scales
(×1, ×2, and ×0.5). This image pyramid is constructed first, followed by the pro-
cessing of each image resolution by the network, naturally producing different
feature responses at each different scale. The output for each of those resolutions
is then compared and eliminated through non-maximum suppression, leaving
the result correspondent to the scale that triggers the strongest response, which
is then used in the prediction stage.

DSSD [41]. Deconvolutional SSD appeared as an attempt to introduce addi-
tional information into detection with the SSD architecture, by incorporating de-
convolutional layers into the model, as is observable in Figure 2.7. It opted for
Residual-101 as a backbone network and appended the new layers to the end of
the original network’s architecture, to augment detection with high-level context
information. These layers provide an increase in resolution to the feature maps
obtained from the standard SSD stage, partly reverting the down-sampling of the
image by the convolutional network, resulting in a similar architecture to that of
encoder-decoder networks. The deconvolutional stage of the model, however, is
not as deep as the preceding convolutional network, with the intent of preserv-
ing the time efficiency achieved with the method. The final result of DSSD is also
combined with the output of the SSD segment with a component designated de-
convolutional module, which aims to integrate information from earlier layers of
the network in the detection.

Faster R-CNN for small object detection [32]. Here, a technique based on FPN
is applied to the Faster R-CNN model architecture, to improve the detection of
small company logos. The effect of different feature scales is tested on the pro-
posal and prediction stages, leading to the utilization of earlier convolutional
layers in both stages. The performance of the RPN is measured by the use of
the mean average best overlap (MABO) metric, which assesses if the network is
capable of producing at least one object proposal which strongly overlaps with
the ground truth. In the implementation of the model, the multiple feature scales,
obtained from the 3rd, 4th and 5th groups of convolutional layers, are fused into a
single representation before the prediction stage. However, each iteration of this
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fusion is separately fed into the RPN, which produces adequate object proposals
for each scale.

Feature-Fused SSD [42]. Feature-Fused SSD modifies the SSD architecture by
fetching features from earlier convolutional layers of the network and integrating
them into the prediction stage of the model. The features chosen to be merged us-
ing the fusion block are outputted from the fourth (conv4_3) and fifth (conv5_3)
convolutional blocks in the network. The output of the conv5_3 layer is first pro-
cessed in a deconvolutional layer, to match the size of the first output. Two fusion
modules are explored: the concatenation module and the element-sum module.
The concatenation strategy stacks the feature maps together and applies a 1 × 1
convolution to combine the various levels, while the element-sum technique re-
lies on the sum of the feature values from both representations. This method
managed to obtain comparable accuracy with the state-of-the-art methods at the
time while focusing on maintaining the fast detection speed characteristic of the
SSD architecture.

MDSSD [33]. The Multi-Scale Deconvolutional Single Shot Detector was pro-
posed with the intent of further adapting SSD for small object detection. It im-
plements multiple fusion modules set to merge features from specific network
layers at various depths, combining those with the standard outputs of hand-
picked convolutional layers. The goal of MDSSD’s architecture is to incorporate
lower-level information in the detection process, which contains a higher degree
of detail and significantly increases the accuracy in the prediction of small ob-
jects. Contrary to DSSD, which uses a set of deconvolutional layers to extract
this information from the output of the convolutional network, this model uses
deconvolutional layers in the feature map fusion process. Fusion Module 1 is an
example of this, being responsible for combining the output of the conv3_3 layer
and the comparatively small output of the conv8_2 layer (last layers of the third
and eighth group of convolutional layers respectively), made possible by pass-
ing the output of the eighth block by a deconvolutional layer, which restores a
higher resolution to the feature map. This method managed to improve small ob-
ject detection accuracy on the Tsinghua-Tencent 100K data set [8], for traffic sign
detection, when tested against Faster-RCNN and SSD, obtaining comparable re-
sults to those of DSSD. It was also tested on the small objects found in the COCO
data set, overcoming SSD and DSSD.

FSSD [43]. Applied to the context of Unmanned Aerial Vehicles (UAV), this
method utilizes feature representations of multiple scales to better detect small
objects, employing similar strategies to FPN and Feature-Fused SSD. Using the
SSD as a basis, FSSD extracts maps from multiple layers of the first convolutional
network, fusing them into a single representation. This combined representation
is then used as the input to extract a second pyramid of features, used in the pre-
diction stage. Additionally, average pooling is performed in the original output
of the convolutional network, the result of which is leveraged for prediction. Be-
fore the pooling operation, however, deconvolutional layers are introduced to in-
crease the resolution of the feature map, followed by a single convolutional layer,
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creating a separate branch of the network from the FSSD component, which man-
ages to improve results for small objects further.

HRDNet [44]. The High-Resolution Detection Network was proposed to deal
with small object detection by leveraging multiple scales of features. The model
is built to process a pyramid of images with different resolutions using distinct
convolutional networks of different depths: high-resolution images are processed
by shallow networks and low-resolution images are fed to deeper networks. This
component of the model is named Multi-Depth Image Pyramid Network (MD-
IPN). It is followed by the Multi-Scale Feature Pyramid Network (MS-FPN), which
combines the different feature representations, by first applying a technique sim-
ilar to FPN to each of the networks included in the MD-IPN component, then
combining the results obtained across the whole model.

2.5.2 Tuned Region Anchors

One of the aspects that most heavily influences the localization aspect of ob-
ject detection are the pre-determined region anchors utilized to obtain the object
bounding boxes. In the development of standard object detection models, these
anchors often take the sizes and shapes that most benefit their overall application
and get the best average response when overlaid with the objects most commonly
present in the context of the desired application. When considering small objects,
these parameters can also be appropriately adapted to achieve their goal more
efficiently.

By reducing the smallest size of the region anchors used it is possible to obtain a
stronger response for objects of smaller scales, which also obtain better locations
within their ultimate bounding boxes, after regression. In this context, a better
location would ideally have the detected instance centred within the bounding
box and occupying the largest possible area percentage of it. Another possible
change, somewhat related to the previous one, would be to lower the placement
stride of the small anchors. By making their placement more frequent across
the image, small objects have a higher chance of being adequately located and
processed, although not without an increased computational cost.

R-CNN for Small Object Detection [6]. In this proposal, where the R-CNN is
utilized as a basis to improve small object detection, one of the alterations sug-
gested is the resizing of the region anchors employed in the RPN to obtain the
initial object proposals. It was found that even considering the three different box
scales initially proposed with the RPN, the smallest one proved to be too large to
adequately detect objects of smaller dimensions. Anchor box dimensions were
significantly reduced in this approach to meet that demand, though the various
box ratios were maintained.

Modified Faster R-CNN for Optimal Remote Sensing [45]. The data set utilized
in this proposal is that of small objects captured from an aerial perspective. One
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Figure 2.8: In (a), an example of the adverse effect of a wide anchor stride, and
in (b), the higher bounding box IoU score afforded by the increased frequency
of anchor placements, where SA is the value of the stride (relative to the feature
map and not the image itself) [47].

of the simplest measures implemented to adapt the Faster R-CNN to this con-
text was the reduction of the fixed anchor sizes. The new anchor scales better
represented the average object size in display, resulting in a slight increase to the
accuracy of the model. The minimum anchor size was, in this case, 16× 16 pixels,
as opposed to the original smallest scale of 128 × 128 pixels.

Anchors for small faces [46]. With this method, a new anchor placement strategy
is studied which benefits the detection of small faces (under 16 × 6 pixels). This
strategy consists in increasing the density of anchors overlapped on the image
through various methods. First, the stride for the placement of anchors can be
reduced by increasing the resolution of the feature map used, through artificial
up-sampling, and the inclusion of information from previous convolutional lay-
ers. This increases the number of possible locations for anchors, making small
objects more likely to be detected with a good overlap. Another method is to
slightly displace the anchors or the feature map itself randomly throughout mul-
tiple iterations, increasing the odds of small objects landing closer to the centre
of an anchor in one of the iterations. Both of these techniques were found to
improve a model’s ability to detect small faces, though at the cost of a heavier
computational load, from the initial analysis of a significantly higher number of
anchors.

SCRDet [47]. SCRDet tunes the RPN component to achieve a higher level of
overlap with small objects in aerial images. Similarly to the strategy discussed in
[46], SCRDet employs a reduced anchor stride, increasing the number of anchors
placed across the image representation, improving the chances of small objects
being strongly detected by an anchor and included in the object proposals. With
low-resolution objects, a higher stride can likely lead to a lower overlap between
the bounding box and the ground truth. This effect is easily visualized with the
help of Figure 2.8, which shows the results of two different anchor strides. This
method also combines features from multiple network layers in order to achieve
the ideal balance between the high-level semantic information extracted by deep
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convolutional layers and the more detailed features outputted by shallower lay-
ers. Even considering the good results obtained with the tuned anchor position-
ing, it is necessary to note the adverse impact this strategy has on the computa-
tional performance of the algorithm, as it must process the image at a significantly
higher number of points.

2.5.3 Contextual Information

Given the scarcity of information offered by low-resolution objects, the addition
of complementary data can become a larger asset in classification. With this in
mind, contextual image information, obtained from areas of the image outside of
the object’s bounding box, can prove useful.

Additional context feature maps can be derived from the areas adjacent to that
of the object, or the image as a whole, in order to aid in the prediction stage of
an object detection algorithm. The context in which object categories appear can
become valuable for a model’s ability to identify them correctly. Certain object
classes might frequently appear in close proximity to others, or with a similar
background, making the inclusion of such information beneficial for those pre-
diction cases. The scene recognition field of Computer Vision, focused on the
identification of different scenes depicted in images, can also become relevant in
this regard.

ContextNet [6]. This network architecture was proposed to increase the accuracy
of small object detection by including information external to the object’s region
of interest. In this network, which used the R-CNN as a basis, a sizeable region
surrounding the original object proposal area is processed by the convolutional
layers and leveraged in the classification stage. While one branch of the network
processes the region of interest as per usual, a separate one takes the context
information as input, and the two distinct outputs resulting from both branches
are concatenated and used to compute category scores.

Modified Faster R-CNN for Optimal Remote Sensing [45]. Similarly to the pre-
vious method, this altered Faster R-CNN architecture extracts two regions of dif-
ferent sizes from the object proposal stage. Additionally to the processing of the
proposal region enclosing the object, a wider area is also considered, surrounding
this bounding box. The architecture is temporarily split into two paths, perform-
ing separate ROI pooling operations for the original and the contextual regions.
The two resulting feature maps obtained for a given object are concatenated and
combined, as to include the contextual information in a single representation be-
fore the classification stage.

Spatial Context Analysis [43]. A particular interpretation of spatial contextual
information is explored with this method, where different object instances near a
given object are considered after its detection. If a detection confidence score in-
dicates a less than reliable prediction, the model searches for objects of the same
category reliably detected in the vicinity, increasing the confidence score of the
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Figure 2.9: Representation of the Perceptual GAN architecture, with the generator
and backbone network in (a), and the two discriminator modules in (b) [48].

original prediction in case those instances are present. This increase is depen-
dent on the quantity of similar objects found and their distance to the original
object. The category confidence score of the object may also be reduced when
an increased number of similar objects are reliably detected at a greater distance
from the original object, indicating a reduced probability of that type of object
being placed where it is. The use of this strategy, named spatial context analysis
(SCA), showed an improvement in the final mAP results the detector managed to
achieve.

2.5.4 Super-Resolution

Super-resolution has been experimented within the context of small object detec-
tion, in an attempt to increase the detail found in small objects by studying their
relation with their larger counterparts.

As discussed, the prediction accuracy of object detection models appears to de-
crease along with the size of the object it is attempting to recognize. By increasing
the resolution of small object representations, bringing them closer in detail to
larger objects, their category can be more consistently predicted, as the network’s
prediction model can be trained with objects of larger scale.

Perceptual Generative Adversarial Network [48]. In 2017, Perceptual GAN was
the first to look to super-resolution with Generative Adversarial Networks (GAN)
in object detection, with the intent of increasing the resolution and detail of small
objects and achieve results comparable to those obtained in the detection of larger
instances. As seen in detail in Figure 2.9, the GAN architecture is composed of
two distinct adversary networks: a generator and a discriminator. In this con-
text, the main goal of the proposed model is to train a generator network capable
of producing realistic super-resolved versions of small objects. To this end, the
generator has to introduce finer details into the feature representation of a small
object, created using a residual network, while the discriminator is divided into
two branches. One branch is responsible for learning to distinguish the artifi-
cially generated object representations from those of real large objects, while the
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other predicts a bounding box and category scores for the object and is trained
using real large object representations. Distinct loss functions are computed for
these two tasks performed by the model, serving as feedback for the generator to
create increasingly convincing super-resolved representations. The first is adver-
sarial loss, computed from the result of the prediction made by the discriminators
first branch (real or fake), and the second is perceptual loss, which includes in its
computation the classification loss (category confidence scores), and the bound-
ing box location loss.

SOD-MTGAN [49]. A second application of GAN in small object detection was
proposed with SOD-MTGAN (Small Object Detection Multi-Task GAN), which
likewise generated super-resolved versions of small objects to improve detection
results. Its general architecture is in many ways similar to Perceptual GAN, with
a discriminator outputting a real/fake score, category scores, and a bounding
box, as well as back-propagating this information to the generator with multiple
loss functions. Additionally to the adversarial and perceptual loss, a function
referred to as pixel-wise loss is implemented, to minimize the difference between
the generated super-resolved images and the images of real large objects.

Supervised Feature Super-Resolution [50]. This proposal aims to generate super-
resolution versions of small feature maps, using a GAN-based architecture on
top of a one-stage object detection model, by exploring the relation between high
scale features and their low scale counterparts. These two distinct image scales
are obtained for training by down-sampling the original high-resolution image,
which serves as the super-resolution target. The model first obtains features maps
for both of these image scales, feeding them into separate prediction modules:
the features from the original image are given to the "large" predictor, and the
features from the down-sampled version are given to the "small" predictor, after
passing through the super-resolution (SR) generator. The SR generator also takes
as input the features extracted from the original large image, feeding its output
to the small prediction module and the GAN discriminator component. The dis-
criminator’s task is to distinguish between the generated super-resolved features
and the features directly extracted from the original image, providing a binary
answer according to the authenticity of the high-resolution features (original or
generated). The generator receives feedback from the discrimination process, by
implementing a function that attempts to minimize the difference between the
targets and super-resolved proposals, while the discriminator is trained to differ-
entiate them as much as possible, guiding the evolution of the generator. This
approach was found to not only benefit the detection accuracy of small objects
but also all of the object scales, when evaluated on the COCO data set.

JCS-Net [51]. JCS-Net attempts to use super-resolution to improve the detection
of small-sized objects in pedestrian recognition, by studying the relationship be-
tween small scale and large scale pedestrians. This relation is exploited to boost
the level of detail found in small pedestrian instances. Two network components
are included in this model: the super-resolution network and the classification
network. Firstly, a detection network is trained with large pedestrian instances,
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which serves as the basis for the classification component of the model (initial pa-
rameters). The super-resolution component is trained to produce super-resolved
versions of small scale pedestrians. The training of this network is achieved with
a data set of large pedestrian instances, which are then down-sampled to simu-
late pedestrians of small-scale, with the original large-scale object serving as the
target. The result is a super-resolution network capable of increasing the detec-
tion performance of small pedestrians, which is then combined with a standard
CNN for large instances and hand-crafted features. Multi-scale features are also
used in the final detection process, extracted from multiple layers of the super-
resolution network, corresponding to multiple levels of detail added to the small
pedestrian.

2.5.5 Data Augmentation

The goal of data augmentation is to artificially increase the amount of data avail-
able during training by reproducing and repurposing the existing samples. In the
context of object detection, this might include copying certain objects and plac-
ing them in different areas of the image, transforming some of its aspects before
doing so.

In small object detection, data augmentation can serve to mitigate a lack of ex-
amples of small objects in certain data sets. The concept was experimented in
this context in the following presented proposals, having generally produced
favourable performance results.

Modified Faster R-CNN for Optimal Remote Sensing [45]. In this proposal,
one of the problems tackled was the insufficient training data for the intended
application of the model. One of the strategies used to improve the learning
process of the detector was data augmentation, by introducing Random Rotation
(RR). Depending on a probability value, any image within a training mini-batch
has the possibility to be picked for Random Rotation, resulting in an additional
sample of it rotated by a random angle, with the ground-truth bounding boxes
labelling objects in the image also being rotated according to the coordinates of
their corners.

Augmentation for small object detection [52]. With this proposal, data augmen-
tation techniques are studied as a means to better train models to detect small
objects. It is shown that, by expanding the amount of small objects present in
each image of a data set, therefore increasing their representation in the data set,
their prediction results can be improved. To achieve this effect, strategies such
as the oversampling of existent data and the copying of small object instances
served as effective augmentation strategies. In consideration of the model’s ro-
bustness and to avoid over-fitting, copied instances were also randomly rotated
and transformed when reproduced.
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2.6 Discussion

In this chapter, a review of the existing literature related to object detection and
small object detection has been provided, going over the most representative and
best performing object detectors, as well as distinct methods developed with the
intent to tackle the small object detection problem.

Regarding standard object detection, the methods shown in Table 2.1 were first
presented, in light of their impact and contributions. When analysing the state-
of-the-art models evaluated on two distinct COCO benchmarks, it became appar-
ent that models derived from the recent Swin Transformer architecture currently
obtain the best performance in terms of accuracy (Swin Transformer V2), rela-
tively to other approaches. With inference time taken into account as one of the
evaluation metrics, as in the context of real-time detection, the YOLOv4 based ap-
proaches such as YOLOR and YOLOv4-Scaled produce the best mAP results bal-
anced with a good computational performance, making them likely candidates
for the base real-time detection model necessary for the project.

Several solutions focused on lessening the negative impact of small objects in de-
tection accuracy were presented in Section 2.5, with the proposed methods con-
nected to these solutions listed in Table 2.2.
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Model Implementation

This chapter will cover the implemented models and techniques, the foundations
and evolution of which were discussed in the previous chapter. It will begin by
covering the chosen base model architecture in detail and the main alterations
explored throughout the second phase of the project, as well as the reasoning
behind the most relevant choices in this regard.

3.1 Base Model Architecture

The model architecture chosen as the basis for implementation was the YOLOR
architecture, as it holds the best performance in the COCO real-time object detec-
tion benchmark, with three distinct versions of the model placing at the top of its
official leaderboard. Regarding this particular benchmark, not only does YOLOR
obtain the highest mAP scores, but also fast running speeds, above the great ma-
jority of the competition. Another noticeable aspect in these results, shown in
Table 3.1, is the trade-off between the prediction accuracy and speed, which of-
fers a variety of possible choices depending on the intended application of the
model and available resources.

The YOLOR architecture was introduced with the purpose of encoding implicit
and explicit information simultaneously to benefit the performance of already ex-
isting models. In the context of the YOLOR method, implicit information repre-
sents vector information extracted from deeper layers of a trained network, which
can then be leveraged in multiple stages of its architecture to improve results. The
main contribution of YOLOR is the addition of this encoded implicit information
to enhance various stages of the YOLOv4 architecture: feature alignment in the
FPN, prediction refinement, and multi-task learning. Despite this significant ad-
dition, the developed YOLOR models can still be considered heavily based on
the standard YOLO architecture, specifically that of the Scaled-YOLOv4 models
proposed in [38].

The close relation to the previous iterations of YOLOv4 of the YOLOR method
provides a solid foundation regarding the understanding and implementation of
the model as a baseline. Although more unfamiliar and complex components are
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Model mAP FPS

YOLOR-W6 57.3 34
YOLOR-E6 56.4 45
YOLOR-D6 55.5 66

Table 3.1: Three distinct YOLOR models evaluated on the COCO real-time object
detection benchmark [35].

Figure 3.1: High-level diagram of the YOLOR-P6 base model architecture, di-
vided into its main stages and components. The neck is composed of two distinct
networks, the FPN and PANet [54], preceded by the CSPSPP component. The
secondary dashed paths connecting intermediary levels of different components
represent the concatenation of features.

introduced with the incorporation of implicit information, the core architecture
can still be followed back to that of the first YOLO iterations. Considering the
vast amount of research dedicated to the evolution of the YOLO architecture and
its application to other computer vision tasks similar to object detection, YOLOR
represents a contemporary, yet safe option for the purposes of this project.

3.1.1 YOLOR Model Variants

The YOLOR-P6 variant of the YOLOR model was initially chosen for the project,
and implemented with the code provided by the authors in the official GitHub
repository [53]. A diagram of this model’s architecture in its original form can be
found in Figure 3.1.

When compared with the YOLOR models shown in Table 3.1, which held high
positions in the COCO real-time object detection benchmark leaderboards at the
time, YOLOR-P6 failed to achieve similar high levels of accuracy, being instead
designed to be the fasted and less resource-intensive alternative of the architec-
tures presented by the authors at the time. As evident by observing the backbone
used for YOLOR-P6, though it retained similarities in its structure, the quantity
of layers present in each of its convolutional blocks, as well as their number of
convolution filters, were inferior to those found in architectures such as YOLOR-
D6. Its detailed backbone composition is discussed further in Section 3.1.2. To
summarize these differences shortly, the backbone of YOLOR-P6 offered better
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Figure 3.2: High-level diagram of the YOLOR-CSP-X model architecture, divided
into its main stages and components. Five levels of features are extracted in the
backbone, resulting in three detection scales. The model’s input size is of 6402

pixels.

computing performance due to its decreased depth and width.

Consequently, the main factor behind the choice of YOLOR-P6 were the resources
available for the training and testing of the various planned changes within the
time frame available for the conclusion of the project. It became apparent when
exploring the implementation of any structural alteration in the early stages of the
project, that the assessment of the impact of such changes required re-training the
model weights from the ground up, a process only made feasible with the model
versions that were ultimately implemented. Added to this, a significant period
of time would also be required to obtain the final results, after the investigative
phase of the project, as many of the early tests were performed with a reduced
data set and limited number of epochs, as further explained in Section 4.2.3.

With these tasks in mind, it was determined early, through some quick experi-
mentation with all the variants provided by the authors, that YOLOR-P6 would
offer the most adequate foundation for the quick preliminary and final training
and evaluation of the developed changes, affording some tolerance and mal-
leability in the planning of the various implementation stages of the project.

Later in the project’s development, experiments were also run with a different
version of YOLOR, YOLOR-CSP-X, yet unpublished at the time of writing. This
variant was developed with a reduction of the input size in mind, from the stan-
dard size of 12802 pixels, used in the YOLOR-P6 architecture and other previous
versions, to 6402 pixels. This difference was reflected in the depth of the networks
used in the model, as seen in Figure 3.2, with the backbone network being divided
into only five segments, as opposed to six, a change that also naturally affected
the structure of the model’s neck. As a consequence of reducing the input size,
the sixth scale level of the standard models (P6) became futile in the acquisition
of relevant features, as it possibly overly decreased the resolution of feature maps
to the point where spatial relations and distinguishing features of objects in the
image became unclear, therefore being of less use in the detection phase.
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3.1.2 Detailed Model Structure

As detailed in Chapter 2.3.5, various single-stage models follow the same archi-
tecture at a high level, having three main components: the backbone, the neck,
and the head. The backbone is responsible for the extraction of features from the
input images, the neck assembles and enriches a multi-scale feature pyramid, and
the head is responsible for predicting the detection results, being divided into a
number of detectors equal to that of the number of feature maps produced by the
neck.

CSPDarknet53 backbone. The YOLOR-P6 model utilises a heavily modified ver-
sion of the Darknet backbone, first proposed with YOLO [11], with a combination
of FPN [23] and PANet [54] for its neck.

Across all YOLOR variants made available along with [37], the CSPDarknet53
backbone is used, first proposed with YOLOv4 [28]. Detailed in Figure 3.3a, as is
implemented in the YOLOR-P6 model, the backbone is divided into six distinct
segments, though this amount can vary between different variants. Each of these
represents different scale of features extracted from the image. Each level starts
by down-scaling the input with a convolutional layer before extracting meaning-
ful information through the subsequent layers. A residual block is integrated into
each segment as part of this process, as to facilitate the propagation of the gradi-
ent throughout the long sequence of convolutional layers utilized. Prior to this
block, a split occurs that allows for the unprocessed input to be sent directly to the
end of the segment, enriching the information ultimately analysed for detection,
and once more easing the propagation of the gradient during training.

FPN and PANet (neck). A CSPSPP component is placed prior to the neck, taking
as input the backbone’s output. The goal of this structure, visually represented
in image 3.3, is to allow the model to process inputs of various sizes, creating
a uniform representation for the extracted features, regardless of the size of the
original image. This process was also touched on in Section 2.3.4, in the overview
of SPP-Net [30].

In the construction of the multi-scale feature pyramid, YOLOR-P6 employs two
consecutive networks to augment the feature maps at each of the scale levels.
The first structure is a Feature Pyramid Network (FPN), used to up-sample the
final features obtained from the backbone and enrich them at each level with
prior information, as seen in image 3.3c. In the original models, this process
goes up to the scale of the features extracted in the P3 block of the backbone.
It is then followed by a down-sampling process, executed by a Path Aggregation
Network (PANet), represented in image 3.3d. This component acts similarly to
a reversed FPN, once more bringing the features step by step to the scale of the
backbone’s P6 block, and enriching each level with prior information (this time,
obtained from the FPN). Each feature map extracted by the PANet is later used
independently for detection.

Detection head. The detection head of YOLOR is made up of different compo-
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(a) CSPDarknet53. (b) CSPSPP. (c) FPN. (d) PANet.

Figure 3.3: Detailed architectures of YOLOR-P6’s main components, including
input sources, layout, and layer types and attributes. The convolutional and max
pooling layers represented are accompanied by their kernel size.

nents used for classification, each corresponding to the different scales of features
processed by the backbone and neck of the model. Bounding box anchors are
placed throughout each of these feature maps, fulfilling the purpose of default
bounding box templates that can be tuned to each detected object. These gener-
ally represent the most common dimensions and width to height ratios found in
objects of the training data set.

Each feature scale uses three predefined box anchors that are simultaneously
“placed” on every possible coordinate of the corresponding feature map. This
results in 12 different anchors for the original YOLOR-P6 model architecture with
four detection scales, and 9 different anchors for the YOLOR-CSP-X model with
only three detection scales. Given the lower resolution of these maps when com-
pared to the original image size, the coordinates of the boxes have to later be
adjusted to the original scale of the image, through a set multiplier of the for the
coordinates.

As mentioned, the output of each model is divided into distinct components in
accordance with the established feature scales. The number of predictions for a
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given scale is defined by the number of possible coordinates present in the cor-
responding feature map, multiplied by the three separate anchors placed concur-
rently on every coordinate. Each prediction contains values for the centre coor-
dinates and dimensions of the object’s final bounding box, as well as a score for
each of the existent object categories. These values range from 0 to 1, with the
bounding box parameters being set in relation to the total image size.

Automatic anchor generation. The generation of anchors is performed at the
start of the model’s training process. The goal of the algorithm is to provide a ma-
jority of the objects in the training data set with at least one of anchor of appropri-
ate size. First, the object data set is partitioned into groups with K-means cluster-
ing, with each of the cluster centres corresponding to one of the required anchors.
The result is an initial set of anchors, the dimensions of which are evolved with a
genetic algorithm. To assess the fitness of a set of anchors, the size ratio between
one object and the set of anchors is calculated with:

ratiok = min (w/wk, wk/w, h/hk, hk/h)

, where ratiok symbolises the size ratio measure between the object and an anchor
k, w and h represent the object’s width and height respectively, and wk and hk are
the anchor’s width and height respectively. Using this method, each ratio value
corresponds to the dimension of the object farthest in size to that of the anchor,
always staying in between the values of 0 and 1. The ratio value of the best
matching anchor is then considered for each object, corresponding to the value
closest to the value of 1 of all nine anchors, where 1 would represent the same
exact size. The resulting structure is a list of size ratios with the length of the
training data set, each corresponding to the most adequate anchor found for each
object. To finalise the operation, values below a set threshold are converted to
zero. For the base versions of YOLOR, this threshold is set to the value of 0.25,
meaning an anchor’s measurements cannot differ from the object’s by a factor
higher than four (be it four times larger or smaller). This evaluation process can
be represented as follows:

bestobj = max (ratiok1, ..., ratiokn)

metricobj =

{
bestobj if bestobj > thr
0 otherwise.

, where bestobj symbolises the best anchor match for a given object obj, with
(ratiok1, ..., ratiokn) representing all of the size ratios between that object and the
set of anchors, metricobj represents the element of the final array corresponding
to that same object, and thr stands in for the threshold value chosen, between the
values of 0 and 1. The final fitness value for a set of anchors is given by the mean
of the values included in the final array of metrics.
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Figure 3.4: YOLOR-P6 bounding box anchors, generated by default using the
full training data set from the COCO Object Detection Benchmark, separated and
colour coded according to the feature scale for which they are used. Represented
in relation to an input image of maximum size (1280 × 1280).

In summary, the fitness of a set of anchors can be increased by maximising the
number of objects that have an anchor adequately similar in dimensions, as dic-
tated by the defined threshold, and minimising their size difference as much as
possible. When generated for the base YOLOR-P6 model (four feature scale lev-
els) using the full training data set from the COCO Object Detection Benchmark,
the following anchors are obtained, visually represented in Figure 3.4:

• P3: 19 × 28, 42 × 40, and 37 × 92 pixels;

• P4: 89 × 72, 87 × 152, and 189 × 127 pixels;

• P5: 121 × 288, 246 × 271, and 465 × 249 pixels;

• P6: 292 × 517, 575 × 596, and 996 × 745 pixels.

As evident, anchors used in lower resolution feature maps are of larger size, with
the largest anchors belonging to the P6 detection scale. Deeper layers of the net-
work extract higher level features from the image, which are more useful in the
detection of larger objects that occupy a significant portion of it, hence the us-
age of more sizeable anchors. On the flip side, small anchors are used on higher
resolution features, useful in the distinction of smaller objects and details.

3.2 Implemented Modifications

This section will address techniques implemented as alterations to the base de-
tection model, with the goal of improving its performance relative to the problem
of small object detection. The two major aspects explored during the project were
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the use of higher resolution feature maps and the generation of anchors adapted
to small objects. The model variants produced for each approach will be detailed,
alongside the reasons for the changes made to the base architecture.

3.2.1 Addition of Higher Resolution Detection Component

As discussed at length in Chapter 2, the main approach for tackling small object
detection was the usage of feature maps of higher resolution, extracted from the
early stages of the backbone network.

The majority of the modern real-time object detection architectures already em-
ployed multiple feature scales, making use of not only the final feature map pro-
duced by the backbone, but also of the result of multiple preceding convolution
scales. Nevertheless, the general aim of these models was to balance a high de-
tection accuracy across various object scales with an efficient usage of resources,
meaning the feature maps used for detection were chosen with all object scales in
consideration. By limiting the scope of our research to the detection of small ob-
jects, certain alterations could be made to the structure of these models with the
sole objective of benefiting the precision of small object detection, disregarding
objects of larger size.

The principal strategy for improving small object detection explored in the project
was the addition of the second convolutional feature map, the output of the P2
block, to the detection component of the model. This feature layer, although ob-
tained as part of the backbone’s processing of the image, was not leveraged in
the neck or head of the base model architecture, possibly due to its low impact on
the detection results of larger-scale objects relative to its impact on the running
performance of the model.

One consequence of the insertion of the new detection feature map was the result-
ing five detection layers, in place of the original four, which raised, above all, con-
cerns regarding the model’s real-time performance, considering the added quan-
tity of layers and connections posterior to the backbone. The choice of YOLOR-P6
helps to alleviate this impact however, simply by virtue of already vastly surpass-
ing what could be seen in this context as the requirements for real-time detection.
The results in Chapter 5 nonetheless conveyed the effect of this added complexity,
which will be discussed accordingly.

Introduction of FPN-2 and PAN-3 (Modification A). The first implementation of
this approach attempted to incorporate the introduced feature map into the neck
in a similar manner to the already included layers, as seen in Figure 3.5a. Fol-
lowing the general structure of the network, the final layer of the backbone was
successively up-sampled by the FPN, in this case up to the resolution of the P2
output. As mentioned before, the resulting features were combined throughout
this process with the original features obtained by the backbone, before being
once again down-scaled by the PANet [54]. In this modified architecture, this
component first took the output of the last FPN block, FPN-2, necessitating for it
to be down-sampled one additional time, by a PAN-3 block. The inclusion of the
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(a) Added FPN-2 and PAN-3.

(b) Added FPN-2.

Figure 3.5: High-level diagrams of the altered model architectures.

P2 feature map in this manner added two more steps to the neck’s process in the
form of the additional FPN-2 and PAN-3 components, impacting all the detec-
tion layers in the second half of the neck. This increase of the model’s complexity
was also expected to result in a possibly significant loss of computational perfor-
mance. To keep up with the additional feature scale transported to the detection
stage of the model, a YOLO-2 block was added to the detection head, and the
number of bounding box anchors was raised by three. The anchors themselves
were newly generated and distributed in accordance with the detection head’s
complexity.

Introduction of FPN-2 without PAN-3 (Modification B). The second approach
arose as a response to two of the aspects mentioned in the previous implemen-
tation: the impact on subsequent layers and lower of performance. In this ver-
sion of the model, the additional scale of features was still incorporated into the
neck and passed on to the detection component, but without altering the second
half of the neck. As visualised in Figure 3.5b, the FPN-2 block was added in a
similar way to the previous variant, resulting in the same number of up-scaling
operations being present. It was however not used as the input for the subse-
quent PAN-4 block, which instead still received the output of the FPN-3 block
as its input. This not only skipped the previously added PAN-3 segment, but
completely detached the output of FPN-2 from the remaining connections in the
model’s neck. Once again, an additional YOLO-2 block for detection and three
box anchors were incorporated to derive predictions from the newly carried over
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feature scale.

Additional configurations (Modifications C and D). During the experimental
stage of the project, two more architectural changes were implemented, once
again in the form of alterations to the neck and detection head of the model.
Using the YOLOR-P6 model with Modification A as a basis, both of these config-
urations focused on returning the number of detection components to the original
amount (four rather than five). The first architecture produced saw the removal of
the final detection block, corresponding to the P6 scale of features (Modification
C), while for the second, we opted to eliminate the YOLOR-3 detection block and
replace it with the newly added YOLO-2 block (Modification D). The objective
of these alterations was to reduce some of the complexity added to the detec-
tion stage of the model with the previous modified versions, seeing as the added
quantity of information appeared to be detrimental in the detection process.

3.2.2 Tuning of Bounding Box Anchors

The second avenue explored for improving the detection of small objects was
the tuning of the size and frequency of the anchors used to detect objects. These
changes did not require the modification of the model’s architecture, focusing
instead on the tweaking of parameters impacting the generation and placement
of anchors.

Tweaking the density of anchors used to analyse each feature map, an approach
discussed in Section 2.5 with SCRDet [47], proved to be an unfit option for the
project’s context and implemented base model. As explained in Section 3.1.2, the
YOLOR architecture already used multiple predetermined box anchors for every
possible position of the extracted feature maps, leaving no room to increase the
proximity between the anchor centres with a “stride” parameter. In the context of
the implemented YOLOR-P6 and YOLOR-CSP-X models, anchor stride is instead
used to translate the centre position of anchors for each given feature scale to their
pixel coordinates in the original image, included in the detection output.

The option of creating anchors with appropriate dimensions for the detection
of small objects was also explored, with the intent of possibly improving small
object detection at the cost of other object scales. For this, the anchors were set
to be generated from a partition of the original data set, containing only small
objects, so as to not consider larger object scales when assessing the fitness of the
anchors during the process.

Small object anchors. The anchor generation algorithm follows the tendencies
of the chosen training data set, which can be limited and modified to create more
specialized templates. With a data set partition exclusively comprised of small
objects, the generator yielded the following result:

• P3: 16 × 18, 19 × 46, and 37 × 31 pixels;

• P4: 36 × 74, 68 × 43, and 89 × 110 pixels;
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• P5: 209 × 155, 137 × 307, and 249 × 433 pixels;

• P6: 511 × 269, 476 × 622, and 905 × 656 pixels.

The dimensions obtained were noticeably more compact when compared to the
anchors generated by default, notably when analysing the anchors attributed to
the first and second scale levels. This set of anchors offered a distinctly more var-
ied array of small object dimension ratios as templates for bounding boxes, in-
creasing the chances of subsequently detecting similar small objects with a more
adequate initial outline.
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Experimentation Methodology and
Environment

This chapter will serve the purpose of describing the working and testing en-
vironment for the second stage of the project, as well as the experimentation
methodology used to obtain the results seen in Chapter 5. It includes a brief de-
scription of the tools used during development in Section 4.1, followed by Section
4.2, which details the reasoning behind the chosen evaluation metrics and bench-
mark, and clarifies the manner in which the preliminary and final experiments
were carried out.

4.1 Resources and Tools

The development and testing of the potential enhancements discussed in Chap-
ter 3 was mainly achieved using Python version 3.9.7 [55], making use of various
machine learning libraries available online, chief among them PyTorch [56]. The
training and testing of the implemented models was performed on the NVIDIA
Geforce RTX 3090 high-end GPU, with approximately 25GB of VRAM, and com-
patibility with CUDA version 11.4. The base model implementation in PyTorch
was obtained from the original authors’ GitHub publication [53], and altered as
necessary to fit the context small object detection, with the relevant Python scripts
being edited in JupyterLab [57] and executed in a machine containing the afore-
mentioned GPU.

4.2 Model Evaluation

During the experimentation stage of the project, each model was evaluated using
a data set containing small objects, with the intent of obtaining results reflecting
its real-time small object detection performance. To this end, appropriate evalua-
tion metrics were chosen alongside a fitting data set.
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4.2.1 Evaluation Metrics

The main purpose of the planned experiments was to determine the validity of
the strategies implemented to improve small object detection. The evaluation was
solely focused on the results obtained for small object instances, with the most
relevant metric being the mAP score, previously detailed in Section 2.2. In short,
average precision (AP) combines the recall and precision of the detector, reflect-
ing its capacity to detect and classify objects respectively. An IoU threshold is also
commonly used to determine the true predictions of a detector, which introduces
an evaluation of the predicted bounding box into the final mAP score. Simulta-
neously, it was our intention to maintain the real-time detection capabilities of
the base models, attempting to improve the accuracy on small objects while ob-
taining comparable speed results in relation to the baseline. This aspect required
a performance metric to be monitored alongside the others, in this case, the run-
ning FPS of the model, derived from its inference time. These additional values
were automatically obtained for each of the final experiments, as per originally
programmed in the source code.

4.2.2 Evaluation Benchmark

Regarding the application of the evaluated detectors, the intent was to focus on
small common objects found in various contextual scenarios, where every object
was included within a realistic and potentially complex background where other
objects may be present, likely belonging to different categories. This was a rel-
evant aspect of the data, as it enabled the analysis of the information naturally
surrounding the object, a recourse that is not available in data sets depicting iso-
lated or cropped objects, such as CURE-OR [58] or CIFAR-10 [59].

The mentioned requirements were adequately fulfilled by the standard COCO
data set, used as one of the most relevant real-time object detection benchmarks.
The data set provided a clear standard to define small objects, as presented in
Section 1.3, making it possible for the results to be analysed independently for
the three main object scales: large, medium and small. During the analysis of
the available object detection benchmarks, a list of the encountered note-worthy
object detection data sets was compiled, given in Table 4.1, along with an assess-
ment of their adequacy for the proposed task, focused on the abundance of small
objects and the environment in which they are inserted.

COCO Object Detection Benchmark (2017). The selected benchmark data set
was comprised of 118K images for training and 5K images for validation, used
to evaluate the metrics mentioned in Section 4.2.1. Using this benchmark, the
main AP metric averaged between 10 different IoU thresholds, ranging from 0.5
to 0.95 with a step of 0.05. Additional AP values were measured for the IoU
thresholds of 0.5 and 0.75, as well as each of the three distinct object scales: small
(≤ 322 pixels), medium (≤ 962 pixels), and large (> 962 pixels). To evaluate
the computational performance of a model, the inference time of each image was
measured in milliseconds, from which the FPS could be directly derived.
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Data Set Content Description Small
Objects

Common
Objects Context

COCO [1] Common objects of various scales
in context, with 80 object categories
and approximately 330K images.

✓ ✓ ✓

PASCAL VOC [60] Common objects of various scales in
context, with 20 distinct object cate-
gories (VOC 2012).

✓ ✓

SUN Database [61] Scene recognition with labeled ob-
jects of various scales, with 5650
object categories and approximately
130K images.

✓ ✓ ✓

Objcets365 [62] Common objects of various scales in
context, with 365 object categories
and 2M images.

✓ ✓

Open Images [63] Common objects of various scales in
context, with 600 object classes and
1.9M images.

✓ ✓ ✓

CURE-OR [58] Common objects of various scales
captured in a controlled environ-
ment, with 100 object classes and 1M
images.

✓

CIFAR-10 [59] Small images of 32 × 32 pixels con-
taining cropped objects, with 10 ob-
ject classes equally spread over 60K
images.

✓ ✓

CIFAR-100 [59] Small images of 32 × 32 pixels con-
taining cropped objects, with 100 ob-
ject classes equally spread over 60K
images.

✓ ✓

FlickrLogos [64] Company logos of various scales in
context, with 32 distinct brand cat-
egories and approximately 8K im-
ages.

✓ ✓

Tsinghua-Tencent
100K [8]

Traffic signs of various scales in con-
text, with 128 traffic sign categories
and 100K images.

✓ ✓

DOTA [65] Aerial Images containing objects of
small scale, with 15 object classes
and approximately 3K images.

✓ ✓

KITTI [66] Road traffic scenes containing
pedestrians and objects of various
scales, with approximately 7.5K
labeled images.

✓ ✓

WIDER FACE [67] Faces of various scales in con-
text, with approximately 32K im-
ages containing around 400K identi-
fied faces.

✓ ✓

Caltech [68] Pedestrians of various scales in
context, with approximately 250K
video frames containing around
2.3K unique pedestrians.

✓ ✓

ImageMonkey [69] Open-source data set containing ob-
jects of various scales in context,
with 516 object categories and ap-
proximately 100K images to this
date.

✓ ✓

Table 4.1: List of relevant object detection data sets, considered for the evaluation
of the proposed model.
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Figure 4.1: Size and position distribution of objects included in the COCO Object
Detection benchmark data set. Both metrics are measured in the relation to the
total image size.

Lastly, the data set boasted a good distribution of sizes and positions, as seen in
Figure 4.1. Regarding the distribution of object centre coordinates, the highest
frequency of positions was naturally observed at the centre of the image itself.
However, the more clear benefit of using the COCO data set in this context was
the object size distribution, which shows that a sizeable amount of the labeled
examples was comprised of objects of small dimension in relation to the image
size, occupying simultaneously a small portion of vertical and horizontal space.

4.2.3 Preliminary Assessment of Structural Alterations

In the second stage of the project, a significant period of time was dedicated to the
exploration of possible enhancements to the base structure of YOLOR-P6, with
the objective of improving its ability to detect small objects. This process was
characterized by multiple experimental changes to the model of varied scale and
impact, which were initially judged based on different sets of reduced tests. The
intent was to decrease the amount of time between the implementation of these
modifications and the detection performance results necessary for their evalua-
tion, as fully training every version of the model produced would be unfeasible
within the given time-frame. These preliminary tests mainly differed from subse-
quent evaluations when it came to the size of the training data set and the number
of iterations afforded in the training process.

Given the large original size of the COCO object detection training data set, of
118K images, it only became feasible to superficially assess each configuration’s
performance on a heavily reduced portion of that set. The chosen size for most
comparison tests was of 20K images, randomly selected from the original pool.
This number allowed for much faster training times and temporary results, while
not altering the distribution of classes and size categories relatively to the full data
set.

For preliminary assessment, models were trained for a set number of iterations,
with prediction results being compared afterwards. This limit varied from exper-
iment to experiment, as to serve the necessities and time constrictions of each set
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of alterations. While this approach did not allow for the analysis of the full poten-
tial of each structural change, as it occasionally hampered the evolution of models
prematurely, it effectively allowed for the evaluation of their relative progression
early-on.

For all models trained during this stage of experimentation, the learning param-
eters were set as follows:

• Momentum: 0.937.

• Weight Decay: 0.0005

• Initial Learning Rate (α): 0.01

The values used to define these parameters were taken from the original YOLOR
experiments and left unchanged, with the initial intention of providing the closest
possible results to the ones previously obtained with the baseline models. The
learning rate value was also varied during training according to the schedule
implemented by the original authors, where it was multiplied by a range of set
values, alternating between the initial value and as low as 0.002.

4.2.4 Final Evaluation With Full Training Data Set

Nearing the end of the project, two of the developed architectures were evaluated
using the full training data set from the COCO Object Detection Benchmark. Al-
though these tests were prolonged as much as possible within the available time
window, the number of learning training iterations set for each model was lower
than had initially been planned due to the time required to train them using the
available resources. In Figure 4.2, the YOLOR-P6 model’s training process can be
observed, showing the evolution of results and loss values over time. Although
the evolution of the model predictably starts slowing down in a gradual man-
ner after the first iterations, the reduced quantity of training iterations was not
enough to reach a higher stability than the one displayed in the learning curve.

After training, the results were collected using the provided validation data set,
containing 5K images, providing information related to the detection precision
and computational performance of the models For these experiments, the train-
ing parameters were kept identical to those of the preliminary tests.

47



Chapter 4

Figure 4.2: Learning curves of the YOLOR-P6 base model when trained for 100
epochs on the full COCO training data set. The six graphs on the left show the
evolution of the loss values throughout training, while the four on the right rep-
resent the scores obtained.
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Results and Discussion

In this chapter, the results obtained as part of the final evaluation of the tested
models will be presented, in Section 5.1, and discussed, in Section 5.2. The discus-
sion will be comprised of an analysis of the potential causes behind the obtained
results, and a reflection on the possible directions that the research concerning
this problem can take in the future.

5.1 Evaluation Results

This section is dedicated to the presentation of the results obtained during the two
experimentation phases of the project. The outcome of the preliminary testing
phase is shown first, followed by the results obtained using the complete training
data set.

5.1.1 Preliminary Test Results

Preliminary tests were carried out for all of the experimented configurations, fo-
cused on obtaining and analysing early results in a reasonably shorter time frame.
For the results presented in this section, models were only trained for 50 epochs,
using a partition of the originally chosen training data set, containing 20K ran-
domly selected from the total pool of 118K. The obtained AP values across dif-
ferent IoU thresholds and object scales are presented for the different architecture
configurations in Table 5.1a and the tuned bounding box anchor generation in
Table 5.1b.

Precision values obtained in this round of testing summarized the trend seen with
the implemented configurations, with similar or lower small object detection AP
results. The main architecture modifications (A and B) saw a slight decline in
precision, while less significant changes such as the ones made with Modification
D resulted in nearly identical AP values. The usage of box anchors generated for
small objects were also shown to negatively impact the performance of the base
YOLOR-P6 model, more so when dealing with objects of larger scale, as expected
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Model Size AP AP0.5 AP0.75 APS APM APL

YOLOR-P6 1280 28.7% 43.7% 30.9% 15.5% 31.5% 36.1%
YOLOR-P6 Mod. A 1280 25.5% 39.7% 27.3% 13.5% 27.5% 32.3%
YOLOR-P6 Mod. B 1280 27.4% 41.6% 29.7% 14.0% 30.0% 35.7%
YOLOR-P6 Mod. C 1280 22.2% 34.9% 23.9% 12.3% 26.1% 26.3%
YOLOR-P6 Mod. D 1280 28.8% 43.4% 31.4% 15.3% 32.0% 36.0%

(a) YOLOR-P6 base and modified models.

Model Size AP AP0.5 AP0.75 APS APM APL

YOLOR-P6 1280 28.7% 43.7% 30.9% 15.5% 31.5% 36.1%
YOLOR-P6 Tuned Anchors 1280 26.8% 42.0% 28.9% 14.5% 29.4% 32.6%

(b) YOLOR-P6 base model with bounding box anchors generated by default and for small
objects.

Table 5.1: Precision results obtained with 50 iterations of training on a segment of
the COCO training data set (20K images), using the NVIDIA Geforce RTX 3090.
APS, APM, and APL denote the AP values across the small, medium, and large
object scales, respectively.

from the addition of lower-level feature maps.

5.1.2 Full Data Set Results

As addressed in the previous chapter, the architecturally modified versions of
YOLOR-P6 and YOLOR-CSP-X were tested using the COCO training data set in
its integrity, composed of 118K images. The number of training epochs afforded
to the models during this phase of testing was somewhat limited, with versions
of YOLOR-P6 being trained for 100 epochs, and versions of YOLOR-CSP-X being
trained for 150 epochs. The performance of these models was evaluated under
the conditions provided by the NVIDIA Geforce RTX 3090 GPU, with the batch
size set to 1, so as to simulate the processing of individual images in a practical
application. The obtained results are presented in Table 5.2a and Table 5.2b.

As can be observed in the obtained results, the modifications made to the YOLOR-
P6 and YOLOR-CSP-X architectures had a clear impact in the both of the models’
computational performance, while resulting in similar or lower AP values. Using
the YOLOR-P6 model, the decrease in precision resulting from these modifica-
tions was seen across all of the IoU thresholds and object scales included, while
the results produced by the YOLOR-CSP-X architectures were less distinct from
one another. It is important to not compare the values obtained with the different
architectures, as the number of training iterations afforded to each of them was
unequal in this context. The precision-recall curve obtained for the YOLOR-P6
model variants can be observed in Figure 5.1, providing a visual representation of
the slight difference seen in the AP values obtained. In the graph, we can see the
curves obtained by the two modified architectures mostly overlap, along with the
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Model Size FPS AP AP0.5 AP0.75 APS APM APL

YOLOR-P6 1280 49 48.8% 66.6% 53.4% 32.9% 53.3% 60.9%
YOLOR-P6 Mod. A 1280 41 46.8% 64.0% 51.5% 30.9% 51.6% 60.1%
YOLOR-P6 Mod. B 1280 45 47.1% 64.4% 51.5% 29.3% 52.2% 59.8%

(a) YOLOR-P6 base and modified models, trained for 100 iterations.

Model Size FPS AP AP0.5 AP0.75 APS APM APL

YOLOR-CSP-X 640 44 50.1% 68.5% 54.6% 34.6% 55.3% 63.8%
YOLOR-CSP-X Mod. A 640 38 50.3% 68.2% 55.0% 34.0% 55.2% 64.3%
YOLOR-CSP-X Mod. B 640 40 49.9% 68.2% 54.6% 33.3% 55.0% 64.4%

(b) YOLOR-CSP-X base and modified models, trained for 150 iterations.

Table 5.2: Performance and precision results obtained with the full COCO train-
ing data set, using the NVIDIA Geforce RTX 3090 and batch size set to 1. APS,
APM, and APL denote the AP values across the small, medium, and large object
scales respectively.

significant spread of the curves obtained separately for every single object class.

5.2 Discussion

This section will be dedicated to a discussion of the outcome of the presented ex-
periments, as well as an assessment of the possible factors behind the obtained
results. The two more significant techniques will be addressed: implementation
of an additional detection scale, and bounding box anchor generation tuned for
small objects. Moreover, other potential approaches to the problem will be dis-
cussed.

5.2.1 Addition of Higher Resolution Detection Component

The most important conclusion to be drawn from this set of experiments was
the ineffectiveness of the addition of the features produced by the P2 block of
the backbone network, using the proposed model architectures, when seeking to
improve object detection results at any scale. This addition, previously thought
to potentially benefit the detection of small objects, resulted instead in a loss both
in small object detection accuracy and computational performance when applied
to the YOLOR-P6 architecture, and no distinct improvements when implemented
with YOLOR-CSP-X as the base model.

With the widespread usage of multiple feature maps of varying scale in standard
and real-time object detection, models such as YOLOR are now optimized to take
full advantage of the relevant information that can be extracted by their backbone
networks. In this case, the chosen four levels of detection (from the P3 to the P6
network segments) appeared to be adequate in the detection of object of all the
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(a) Base YOLOR-P6. (b) YOLOR-P6 Mod. A.

(c) YOLOR-P6 Mod. B. (d) Simultaneous comparison.

Figure 5.1: Three distinct precision-recall curves obtained in the full data set ex-
periment with YOLOR-P6. The grey surrounding lines in each graph represent
the curves of each individual object category.

previously defined scales, small, medium, and large. Though detection results for
small objects remain inevitably lower due to the challenges mainly brought on by
their lower resolution, the addition of lower-level features at this stage presented
no value in the pursue of lessening this disparity.

5.2.2 Bounding Box Tuning for Small Objects

From the proposed approaches to the problem, the generation of bounding box
anchors for small objects had the least potential to result in a significant improve-
ment over the anchors used by default. The fact that each detection scale was
already complete with three distinct anchors, making up a total number of 12 for
the YOLOR-P6 model, conjoined with the adjustable nature of their dimensions
to fit the detected objects, limited the impact that a more focused anchor genera-
tion might have on a the model’s detection precision.

The initial intent behind this change was to improve the model’s ability to ac-
curately localise small objects, and by extension detect them, expectedly at the

52



Results and Discussion

cost of the detection precision of larger objects. However, by reducing the variety
of object sizes and ratios that the anchors have to loosely be adapted to, the al-
gorithm’s task was greatly facilitated, to the point where the original quantity of
anchors may have no longer been needed. Based on the results obtained, we were
compelled to concede that the previous quantity and variety of original anchors
was adequate to cover all three of the defined object scales.

5.3 Future Research Directions

On the topic of future research directions regarding the problem of small object
detection, various possibilities can be found in the unexplored approaches pre-
sented in Section 2.5. The two stand out techniques that remained outside of the
scope of this project were the usage of contextual information, and super-resolved
object representations. Additionally, there are the explored methods related to the
usage of lower-level features, and the tuning of anchors for small objects.

5.3.1 Explored Approaches

Due to the research presented in Chapter 2 coupled with the outcome of the cho-
sen architectural changes for implementation during the project’s second phase,
many aspects of the explored approaches have no feasible continuity in modern
object detection research. Though these avenues did produce the desired results
in the context of this project, it is also important not to rule out their potential
when incorporated through different means or into other model architectures.

Higher resolution feature maps. As previously discussed, the incorporation
of higher resolution information into the model’s detection process already is a
widespread method used in most modern object detection architectures. YOLOR
is no exception to this, with the inclusion of lower-level features extracted by
earlier layers of its backbone, all the way up to the P3 feature scale. Models pre-
viously made sole use of the last feature map extracted by the backbone to detect
any object, regardless of scale. However, what was once an innovative addition in
the form of features extracted from the middle of the network is now a mainstay
characteristic of model architectures focused on obtaining good detection per-
formance across varied object scales. To further improve the detection of small
objects, the best course of action might be to follow the current trend and go the
opposite direction by scaling up models in depth and width [38; 39], serving the
model’s overall detection performance.

Anchor tuning for small objects. Similarly to the previous approach, the cus-
tomisation of bounding box anchors to fit small objects is in some ways already
achieved for modern models through their automatic generation, as seen in this
project with YOLOR. One of the issues discussed in Section 2.5 was the space be-
tween the placed anchors, which could be minimised to create a more thorough
analysis of the image and place box templates closer on average to the center of
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objects. In the context of this project and YOLOR, anchors are already placed
across all the possible positions of the used feature maps, resulting in a high den-
sity of outputs, leaving little room to meaningfully improve the process.

5.3.2 Unexplored Methods

Beyond the modifications included in the experiments, there were other options
explored by the methods mentioned in Section 2.5. Approaches such as the gen-
eration of super-resolved representations of small objects offer potential future
solutions to the problem at hand, by tackling it from a completely distinct per-
spective.

Super-resolution. Low resolution object representation is the defining challenge
of small object detection, and what makes it as hard to circumvent as it is. One
possible measure to address this problem is using machine learning to artificially
increase this resolution, enhancing the image’s detail [48; 49; 70], which has com-
monly been achieved with GAN and autoencoder architectures. Though it has
been recently explored as an option to decrease the accuracy gap between the
detection of small and larger objects, obtaining favourable results, it presents a
constantly evolving solution to the issue, which should be considered for most
applications relying on the frequent and accurate detection of small objects. A
potential avenue for future research in this topic presents itself in developing
the two technologies simultaneously, by implementing the image up-scaling and
object detection into a single end-to-end model focused on the task of object de-
tection [71]. It is important note that, while the original small object detection
problem stemmed from the limited information available in low resolution rep-
resentations, as is explored in this document, this approach shifts the main re-
search concern to the improvement of the accuracy in the reconstruction of low
resolution image features.
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High-Level Planning

This chapter will briefly detail the planning of the tasks performed throughout
the project. It will disclose the initial high-level plan laid out for the second
semester, the changes made to it over the course of the project, and the final dis-
tribution of work throughout this stage.

As discussed in Section 1.2, the project was divided into two stages focused on
research and experimentation respectively. The first semester, chiefly allocated to
the reading and compiling related work, did not require any documented prior
planning, whereas the second semester’s work was distributed along the avail-
able time before it was tackled. Initially, this progression was planned as follows:

1. Research and design: from February 7th to March 6th.

2. Development environment: from February 14th to February 27th.

3. Data set preparation: from February 21th to March 13th.

4. Implementation of existent models: from March 7th to March 27th.

5. Evaluation (existent models): from March 28st to April 17th.

6. Implementation of proposed changes: from April 11th to May 8th.

7. Evaluation (proposed models): from May 9th to May 29th.

8. Analysis and report: from May 16th to June 26th.

The chronological distribution of the planned experiments gradually shifted for-
ward in time over the course of the semester do to the implementation of addi-
tional modified architectures, which required additional training and testing. A
degree of underestimation of the time required to train the YOLOR models from
the ground also greatly contributed to the gap between the original plan and the
final progression of events. While certain aspects of the work were developed
independently from experimentation, such as the implementation of models and
writing, the long time periods required to obtain results delayed the assessment
of the performed modifications, generally delaying the conclusion of the project
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or any necessary adjustments to its scope and direction. The resulting distribu-
tion of tasks was the following:

1. Research and design: from February 14th to April 17th.

2. Development environment: from February 14th to February 27th.

3. Data set preparation: from February 21st to March 13th.

4. Implementation of existent models: from February 28th to April 17th.

Base YOLOR-P6 and Scaled-YOLOv4: February 28th - March 20th.

Base YOLOR-CSP-X: April 11th - April 17th.

5. Implementation of proposed changes: from March 14th to June 19th.

YOLOR-P6 architecture modifications: March 14th - May 17th.

YOLOR-P6 tuned anchors: May 9th - June 12th.

YOLOR-CSP-X architecture modifications: June 6th - June 19th.

6. Evaluation (base and modified models): from March 21st to August 21st.

Preliminary YOLOR-P6 architecture experiments: March 21st - May 29th.

Preliminary YOLOR-P6 tuned anchor experiments: May 16th - July 3rd.

Final evaluation of modified YOLOR-CSP-X: July 4th - July 24th.

Final evaluation of modified YOLOR-P6: July 25th - August 21st.

7. Analysis and report: from May 2nd to September 4th.

Implementation and methodology: May 2nd - July 31st.

Result analysis and discussion: August 15th - September 4th.

Additionally, a Gantt chart representing a more detailed evolution of the project
can be consulted in Appendix A.
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Conclusion and Remarks

In this work, we explored previously proposed solutions for the problem of object
detection, incorporating them into state-of-the-art real-time object detection mod-
els, namely YOLOR-P6 and YOLOR-CSP-X, variants of the YOLOR architecture
[37].

The main considered approach was the addition of higher resolution features,
extracted from lower level blocks of the backbone network, to the detection com-
ponent of the chosen base models through their inclusion into the second stage
of the pipeline, the model’s neck. The second option explored was the generation
of bounding box anchors exclusively for the dimensions of small objects, through
their separation from the rest of the chosen data set.

Both of the approaches followed did not yield positive results, resulting in an
expected loss of computational performance coupled with slight decrease in de-
tection accuracy across the board, proving to be detrimental extensions in the con-
text of modern object detection architectures under the used training and evalua-
tion conditions. Further research focused on reducing the gap between the detec-
tion accuracy of small and large scale objects could instead be directed towards
the improvement of image up-scaling through super-resolution, which has the
potential to bring the level detail found in low resolution object representations
in line with that of higher object scales.
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Appendix A

Progress Chart

In this appendix, a Gantt chart is included to help visualize the progression of
the tasks performed during the second semester. The chart is divided into weeks
(columns), each starting on Monday, and is split into two pages for visibility rea-
sons. Some of the lengthier tasks included are broken up into sub-tasks, such as
the implementation and evaluation of different base and modified models.
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