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Abstract

The increase in the number of materials in public databases like Materials Project and
the advent of faster GPUs and CPUs made Machine Learning a prominent subject in
materials science due to the promise of high accuracy at a much lower computational
cost than standard methods. Among the recent state-of-the-art methods in use are
crystal graph convolution networks (CGNNs). CGNNs are neural networks that operate
on graph-structured data. The network consists of a series of connected nodes, each of
which represents a vertex in the graph. The edges of the graph are used to connect the
nodes and define the relationship between them.

In recent years, the search for super-hard materials has been a hot topic due to their
specific characteristics and possible applications. Most of these searches are performed
by screening various materials using Density Functional Theory (DFT) calculations,
which, despite being very accurate, have a high computational cost.

In this work, a CGCNN was trained to predict the shear and bulk moduli and
Vickers’ hardness of a dataset containing 106 materials of a recently created dataset.
For the most promising candidates, DFT calculations were performed to validate the
predictions made by the CGCNN. Young’s modulus and Poisson’s ratio of the these
candidates were also calculated using Mazhnik and Oganov’s model. A good agreement
between predictions and calculations was observed, and an interesting candidate with
Vickers’s hardness above 40 GPa was identified.





Resumo

O aumento do número de materiais nas bases de dados públicas como o Materials Project
e o aparecimento de GPUs e CPUs mais rápidos tornaram o Machine Learning num
tema proeminente em ciência dos materiais devido à promessa de uma elevada precisão
com custo computacional inferior ao dos métodos convencionais. Entre os métodos
de última geração encontram-se as crystal graph convolution networks (CGNNs). As
CGCNNs são redes neuronais que utilizam dados estruturados em grafos. A rede é
formada por uma série de nós conectados, onde cada um representa um vértice no
grafo. As arestas do grafo são usadas para conectar os nós e definir a relação entre eles.

Nos últimos anos, a busca por materiais super-duros tem sido um tema em destaque
devido às suas características específicas e aplicações possíveis. Grande parte destas
buscas são efetuadas através da análise de vários materiais recorrendo a cálculos de
Density Functional Theory (DFT) que, apesar de serem muito precisos, têm um elevado
custo computacional.

Nesta tese foi treinada uma CGCNN para prever o módulo de cisalhamento,
o módulo volumétrico e a dureza de Vickers de um dataset com 106 de materiais
provenientes de um dataset criado recentemente. Para os candidatos mais promissores
foram efectuados cálculos de DFT para validar as previsões efectuadas pela CGNN.
O módulo de Young e o rácio de Poisson destes candidatos também foram calculados
utilizando o modelo de Mazhnik e Oganov. Foi encontrada uma boa concordância
entres as previsões e os cálculos tendo ainda sido identificado um candidato de interesse
com dureza de Vickers acima de 40 GPa.
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is included to give a feel for the magnitude of the MAE. . . . . . . . . 52



xviii List of tables

6.4 Summary of the elastic properties of some materials of interest [4, 7, 9].
The Materials Project’s id of the materials is included to identify them. 53

6.5 Summary of the elastic properties of some materials of interest [4, 7, 9].
The Materials Project’s id of the materials is included to identify them. 55

6.6 Summary of the predicted (ML) and calculated (DFT) shear G and
bulk K moduli and Vickers’ hardness Hv for the 29 different materials
chosen for validation via. Apart form the elastic properties, the table
also includes information about the space group spg, number of atoms
N and the energy above the convex hull Ehull. The materials are sorted
in descending order of Vickers’ hardness. . . . . . . . . . . . . . . . . . 57

6.7 Summary of the accuracy of the prediction of the elastic properties of
the materials analysed with DFT calculations. The mean value ȳ of all
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Chapter 1

Introduction

1.1 Motivation

With the advent of faster and more powerful GPUs and CPUs, Machine Learning (ML)
has become a major subject of interest in a vast number of areas. From image and
speech recognition to financial risk modelling, ML has become a regular presence in
everyday life [10, 11].

In materials science, ML methods appear as useful tools to accelerate the design of
new materials by predicting their properties with accuracy close to Density Functional
Theory (DFT) [2]. The advantage of these ML methods over DFT calculations is
their lower computational cost. However, the ML methods should not be seen as a
replacement for DFT calculations but as a complementary tool to them [12]. An
example of this complementarity is the possibility of using ML to screen a larger
number of materials than what is possible to do efficiently with DFT and then validate
the predictions of the most promising materials using the standard DFT methods (see,
for example, the work done in [1]).

An ML method is only as good as the amount of data available for training
it [12, 13]. Therefore, along with the improvement on the computational side, the
expansion of computational resources and the development of a stable and reliable
theory made the size of public materials databases such as the Open Quantum Materials
Database (OQMD) [14], AFLOW [15], Materials Project (MP) [9], or JARVIS [16]
grow “exponentially” [12].

As said, the main purpose of ML in materials science is to develop models capable
of predicting the properties of a given material. These methods can be divided into
two categories according with the input used:
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• Compositional input: These models represent a material using its chemical
formula alone and, usually, do not consider its structure. This fact can be
seen as an advantage, since these models can be used in new materials for
which the structural information may not be available [12]. However, some
properties of materials depend heavily on structure. For example, in the case of
the diamond (hard, wide-band-gap insulator) and graphite (soft, semi-metal) [12]
their properties are quite opposite because of the atomic arrangement. In
comparison with the structural input models, compositional input models benefit
from the fact that databases like SuperCon [17] only contain the chemical formulae
of the materials. Examples of these so called compositional input models are the
ElemNet [18], the CrabNet [19], and the Atom2Vec [20].

• Structural input: These models use atomic structure and atomic composition
information of the material as an input. In this category of models there are
some that are mainly based in atomic distances like the crystal graph convolu-
tional neural network (CGCNN) [2, 3], and the materials graph neural network
(MEGNet) [21] and there are others like the iCGCNN [22], and the atomistic line
graph neural network (ALIGNN) [23] that capture many-body interactions using
graph convolution networks (GCN). All these models have in common the use of
both the atomic positions and the atomic species as input for the graph neural
networks (GNN) which can be a problem when predicting new materials, since
these informations are not precisely known. The model [24] presents a possible
solution to this by replacing the precise bond distances with embeddings of
graph distances. Such implementation allows the model to be applied in studies
based on both composition and crystal structure prototype without using relaxed
structures as input [12].

There are also models like Finder [25] that can use both composition and structural
information as input to predict the properties of materials. For the work done in this
thesis the model used was the crystal graph convolutional neural network (CGCNN).

ML methods can also be used in the development of interatomic potentials (IAP).
ML removes the “guessing game” involved in the construction of classic IAPs such
as Lennard-Jones Potential [26] and the Embedded Atom Method [27]. Then, the
application of ML generated IAPs is faster and more accurate than the application
of a classic IAP. The problem of a ML IAP is that a large dataset is still required for
its training [12]. The ML IAP can be purely based on Neural Networks (NN), like
Behler-Parrinello neural network (BPNN) [28] and its variants, or use graph neural
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network merged with physics-based many-body features of classical IAPs like the model
presented in [29].

Finally, other application of ML in materials science is the use of generative
adversarial networks (GANs) to perform inverse materials design, i.e, finding materials
with suitable properties and act as a complement to forward prediction models. This
and other techniques and examples can be found in [12].

1.2 Objectives

The main objective of this thesis is the search for super-hard materials, i.e, to predict
the shear and bulk moduli and Vickers’ hardness with DFT accuracy of materials from
a subset of dataset [1]. The predictions will be made using the CGCNN model [2, 3].
Doing so will require to train and find the best model for each one of the elastic
properties and to implement new features on the original code to make it more user-
friendly and improve the computational costs. As such, the following steps have to be
taken:

• Rewriting of the original code in Pytorch Lightning framework [30] and implement
a gridsearch method to fine-tune the model parameters using Optuna [31];

• Assess the importance of the features of the atom feature vector;

• Train models using the data from [4];

• Use the trained models to predict the shear and bulk moduli and Vickers’ hardness
of materials from [1] with distance to the convex-hull lower than 200 meV/atom;

• Use the predicted values of Vickers’ hardness to search for super-hard materials
in the dataset where the predictions were made.

1.3 Thesis’ outline

This section aims to give a general idea of the structure of the thesis.
In the second chapter an introduction to elastic properties is given. After introducing

the strain and stress tensor, Hooke’s law is presented and the expressions for the shear
and bulk moduli are derived. Also, since Young’s modulus and Poisson’s ratio are also
quantities of interest for this work, their form is also derived. It follows a discussion
about the form of the elastic moduli tensor in crystals and how the number of its
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independent components changes with the symmetry of the crystal. A small discussion
about polycrystals allows for the introduction of a new form of the shear and bulk
moduli is introduced. The chapter ends with an explanation of Mazhnik and Oganov’s
Vickers’ hardness model [6].

In the third chapter an overview of neural networks is presented, followed by a
explanation of the forward and back propagations and the importance of choosing a
good method to update the weights of the network. Convolution neural networks and
their key features are then briefly described. In the last section of this chapter the
importance of finding the best set of hyperparameters is discussed.

In chapter four, the model used to predict the shear and bulk moduli and Vickers’
hardness is introduced. The chapter starts with a description of the original CGCNN
[2, 3]. Afterwards, a discussion about the feature vector is presented and it is followed
by the changes done in the original code. In the last section the method/program used
to perform the hyperparameters optimization is also introduced.

Chapter 5 starts with the characterization of the database used to train the models.
Then, the database where the predictions will be made is discussed.

Finally, chapter six starts with the information about the training process, followed
by the accuracy of the models trained for each elastic property. The chapter ends with
the analysis of the predicted shear and bulk moduli and Vickers’ hardness for materials
contained in a dataset build from the database from [1]. Young’s modulus and Vickers’
hardness of these materials is also calculated in this chapter.

In Appendix A are discussed the criteria used in this thesis to evaluate the structural
and elastic stability of materials.



Chapter 2

On elastic properties

2.1 The strain tensor

Consider a solid material with some shape and volume that will undergo a deformation.
Each point of the undeformed material will be index by its position vector r =

(x1, x2, x3). The application of forces to this material will result in a change in its
volume and shape. To study the elastic properties of the material, it is necessary to
be able to describe the deformation of the material due to the applied forces in a
mathematical way. The deformation will produce a displacement of point r to a new
position r′ = (x′

1, x
′
2, x

′
3) that can be represented by a displacement vector [5]

u = r′ − r ⇒ ui = x′
i − xi. (2.1)

The deformation will produce a change in the distance between any two points. If
the radial vector joining two infinitesimally close points, before deformation, is dxi the
radial vector dx′

i that joins these points after the deformation can be written as

dx′
i = dxi + dui . (2.2)

The distance dl between these two points will change due to the deformation. Then,
the modulus of the new distance dl′ after the deformation can be written as [5] (using
Einstein’s summation convention)

dl′2 = dl2 + 2
∂ui

∂xk

dxi dxk +
∂ui

∂xk

∂ui

∂xl

dxk dxl

= dl2 + 2uikdxidxk,

(2.3)
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where the strain tensor uij can be defined as

uik =
1

2

(
∂ui

∂xk

+
∂uk

∂xi

+
∂ul

∂xi

∂ul

∂xk

)
=

1

2

(
∂ui

∂xk

+
∂uk

∂xi

) (2.4)

for small deformations.
Since this tensor is symmetric, it can be diagonalized at any given point. It is

important to note that if the tensor is diagonalized at some point in the solid material,
it will not be diagonal at any other point [5]. Then, at the point where the tensor is
diagonal, Eq. 2.3 can be written as

dl′ 2 = (δik + 2uik) dxi dxk

= (1 + 2u11) dx1
2 + (1 + 2u22) dx2

2 + (1 + 2u33) dx3
2

(2.5)

From Eq. 2.5 arises that the strain in any volume element may be regarded as
composed of independent strains in three mutually perpendicular directions, namely
those of the principal axes1 of the strain tensor. In addition, if the deformation is
small, all the components of the strain tensor are small too [5].

2.2 The stress tensor

In addition to describing the solid material when it undergoes deformation, it is also
necessary to describe the interactions between different parts of the solid material. To
express the forces that these different parts of the solid material exert on each other,
one can use the stress σ. Since two parts of the material can be assumed to be in
contact through an imaginary surface, the stress is the force acting on that surface
per unit of area [32]. Consider the forces acting on a portion of solid material. The
components in direction j of the stress acting on a face perpendicular to the axis i can
be written as a tensor σij [32]. The schematic representation of these forces is shown
in Figure 2.1. The components of stress σij can be:

• normal stress components, if i = j;

• shear stress components, if i ̸= j.

1 The principal axes of the tensor uik are a set of coordinate axes in which only the diagonal
components of the tensor are non-zero [5].
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Figure 2.1: Representation of the components of stress on the faces of a cubic solid
material.

Once the components of stress are defined, the force F acting on an infinitesimal
volume of the solid material can be expressed in terms of the components of stress.
To do so, consider any two parallel faces of an infinitesimal cube of solid material
placed at x1 and x1 + dx1, where dxi is infinitesimal distance. The stress component
along the x1 axis on these faces is σ11(x1) and σ11(x1) + dx1 , respectively. If positive
stress is defined relative to the outward normal to the face (as in Figure 2.2) these
stress components have opposite directions and are shown in Figure 2.2. Then, the
component along the x1 axis of the force acting on these two faces can be written
as [32]

[σ11(x1 + dx1)− σ11(x1)] dx2 dx3 . (2.6)

Using the same principle, the total force along the x1 axis acting on the all portion of
solid material is

F1 = [σ11(x1 + dx1)− σ11(x1)] dx2 dx3

+ [σ21(x2 + dx2)− σ21(x2)] dx1 dx3

+ [σ31(x3 + dx3)− σ31(x3)] dx1 dx2 ,

(2.7)
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where the three terms represent the force acting on the faces of solid material along
the three axes [32]. Eq. 2.7 can be rewritten as

F1 =

(
∂σ11

∂x1

+
∂σ21

∂x2

+
∂σ31

∂x3

)
dx1 dx2 dx3 (2.8)

by making a linear Taylor expansion of σ(x+dx) around x. Defining the x1-component
of the force per unit volume by F

(v)
1 , Eq. 2.8 can be rewritten as

F
(v)
1 =

(
∂σ11

∂x1

+
∂σ21

∂x2

+
∂σ31

∂x3

)
. (2.9)

Then, by generalisation, the ith component of the force per unit volume due to stress
is (using Einstein’s summation convention)

F
(v)
i =

∂σji

∂xj

⇒ F
(v)
i =

∂σij

∂xj

, (2.10)

if the stress tensor σij is symmetric [5].

Figure 2.2: The stress on two faces of a cube along the x1 axis.
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2.3 Hooke’s law

As mentioned in Sec. 2.1, a body subjected to external forces or stresses undergoes
deformation. Therefore, there is a relation between the stress tensor σ and the strain
tensor ε. To find this relation consider a deformed solid material and an additional
deformation that changes the displacement vector ui by a small amount δui. Assuming
an infinitesimal volume dV of the material, the work δW done by the internal stresses
per unit volume is [5]∫

δW dV =

∫
∂σij

∂xj

δui dV =

∮
σijδui dSk −

∫
σij

∂δui

∂xj

dV

= −1

2

∫
σij

[
∂δui

∂xj

+
∂δuj

∂xi

]
dV = −1

2

∫
σijδ

[
∂ui

∂xj

+
∂uj

∂xi

]
dV

= −
∫

σijδεij dV

(2.11)

From the previous equation it is possible to write the work δW in terms of the change
in the strain vector as

δW = −σijδεij. (2.12)

If the deformation is sufficiently small, the solid material returns to the non-deformed
state when the external forces causing the deformation are no longer applied to the
solid. This type of deformation is called elastic deformation, and all deformations
considered until the end of the Chapter will be of this type. If the deformation is large,
the solid material will not fully return to its original state when the applied forces are
removed. This type of deformation is called plastic deformation [5].

The total work done on a system by external forces is equal to the increase in its
energy less the amount of heat absorbed by the system [32]. Ignoring the absorbed
heat and considering only the internal energy U , the work done by external forces
dW = −δW is equal to the change dU in the internal energy. Therefore, Eq. 2.12 can
be written as

σij =
∂U

∂εij
(2.13)

Since all the deformations are considered to be small, it is possible to expand the
internal energy U in powers of the strain tensor εij . The linear terms of the expansion
are zero since [5, 32]

σij = 0 ⇒ εij = 0. (2.14)
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Then, assuming an elastically isotropic solid material2, the expansion of the internal
energy U can be written as a linear combination of the scalars of the second degree of
a symmetrical tensor:

U = U0 +
1

2
λε2ii + µε2ij. (2.15)

The parameters µ and λ are the Lamé coefficients.
It is possible to change the shape of the solid material without changing its volume.

Such a deformation is called pure shear. The opposite case, i.e change the volume
without changing the shape, is called hydrostatic compression. Any deformation can
be represented as the sum of a pure shear term ε

(ps)
ij and a hydrostatic compression

term ε
(hc)
ij [5]. The strain tensor becomes

εij = ε
(ps)
ij + ε

(hc)
ij =

(
εij −

1

3
δijεkk

)
+

1

3
δijεkk (2.16)

Making use of Eq. 2.16 and neglecting the constant term U0 of Eq. 2.15, the internal
energy U can be written as

U = G

(
εij −

1

3
δijεkk

)2

+
1

2
Kε2kk. (2.17)

The quantity K is the bulk modulus, and G is the shear modulus.
The bulk and shear moduli are always positive and are related to the Lamé constants

by [5, 32]

K = λ+
2

3
µ (2.18)

with G = µ.
From Eq. 2.16, it is possible to write Hooke’s Law. This law states that, for

small deformations, the strain tensor is a linear function of the stress tensor, i.e. the
deformation is proportional to the applied forces [5, 32]. Therefore, starting from
Eq. 2.13

σij =
∂

∂εij

(
1

2
λε2ii + µε2ij

)
= 2µεij + λδijεkk

= Kεkkδij + 2G

(
εij −

1

3
εkkδij

)
,

(2.19)

2 A solid material is said to be elastically isotropic when its elastic properties are the same in all
directions [32].
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and, by taking the trace of σij, it is possible to write

tr(σij) = σii = 3Kεii + 0

⇔ εii =
1

3
σii.

(2.20)

Then, Eq. 2.19 can be inverted as:

εij =
1

9K
δijσkk +

1

2G

(
σij −

1

3
δijσkk

)
(2.21)

The previous equation presents the linear dependence between the strain and stress
tensors stated by Hooke’s Law.

2.3.1 Young’s modulus and Poisson’s ratio

Apart from the bulk and shear moduli, there are two other useful quantities that can
be derived. To do so, consider a simple case of homogeneous deformation of a rod.
In a homogeneous deformation, the strain tensor εij is constant throughout the body,
which means that the stress tensor σij is also constant [5]. Due to the nature of the
deformation, the stress tensor can be determined from the boundary condition

σijnj = Fi, (2.22)

where Fi are the external applied forces per unit area of the surface and nj is the unit
vector perpendicular to the surface. Since there are no external forces applied on the
sides of the rod, on these sides Eq. 2.22 becomes

σijnj = 0. (2.23)

Consider that the rod is aligned along the x3-axis and only feels a force at its ends.
The vector n of the side surface is perpendicular to the x3-axis, i.e. n3 = 0. The only
non-zero component of σij is, then, σ33. On the end surface the condition is σ33 = F .

From Eq. 2.21, all the components σij with i ̸= j are zero. The only non-zero
components are [5]

ε11 = ε22 = −1

3

(
1

2G
− 1

3K

)
F and ε33 =

1

3

(
1

3K
+

1

G

)
F. (2.24)
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The component ε33 gives the relative elongation of the rod and, from it, it is possible
to define the modulus of extension or Young’s modulus E [5, 32],

ε33 =
F

E
⇔ E =

F

ε33

⇔ E =
9KG

(3K +G)
.

(2.25)

The components ε11 and ε22 give the relative compression of the rod in the transverse
direction. The ratio between the transverse compression and the longitudinal extension
gives the Poisson’s modulus ν [5, 32],

ε11 = −νε33 ⇔ ν = −ε11
ε33

⇔ ν =
3K − 2G

2(3K +G)
.

(2.26)

As said before, the values of K and G are always positive. Therefore, Poisson’s ratio ν

can have values in the interval
−1 ≤ ν ≤ 1

2
(2.27)

With these two new quantities defined, it is possible to rewrite the stress tensor σij

as
σij =

E

1 + ν

(
εij +

ν

1− 2ν
εkkδij

)
(2.28)

and the strain tensor εij as

εij =
1

E
[(1 + ν)σij − νσkkδij] . (2.29)

2.4 Elastic properties of crystals

Consider the compression of a crystal where the effects of temperature are neglected.
The change in the internal energy, like in isotropic bodies, is a quadratic function of the
strain tensor εij. As shown in the previous section, for an isotropic body this function
contains just two coefficients. For crystals, though, the number of coefficients can be
much larger [5]. The internal energy U of a deformed crystal can be written as

U =
1

2
λijklεijεkl, (2.30)
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where the rank four tensor λijkl is called the elastic moduli tensor. This tensor can
be constructed to have the same symmetry properties as the strain tensor. Therefore,
from symmetry

λijkl = λjikl = λijlk = λklij. (2.31)

In general, this type of tensor has 81 components but only 21 are independent.
The independent components arise due to the symmetry properties imposed by con-
struction [5, 33]. This number of components can be reduced if the crystal possesses
symmetry. The crystals’ symmetries create relations between the various components
of the tensor. The number of independent parameters N of the tensor σij for the
classes of various systems is presented in Table 2.1. These independent parameters
could be elastic moduli or angles defining the orientation of axes in the structure [5].

As done in Section 2.3, it is still possible to write the relation between the stress
tensor and the strain tensor. Using Eq. 2.30 the relation can be written as

σij =
∂U

∂εij
= λijklεkl. (2.32)

Table 2.1: Number of independent parameters N of the tensor σij for the classes of
various systems. These independent parameters could be elastic moduli or angles
defining the orientation of axes in the structure [5].

Class of the system N Class of the system N

Triclinic 21 Rhombohedral (C3, S6) 7
Monoclinic 13 Rhombohedral (C3v, D3, D3d) 6

Orthorhombic 9 Hexagonal 5
Tetragonal (C4, S4, C4h) 7 Cubic 3

Tetragonal (C4v, D2d, D4, D4h) 6

2.4.1 Polycrystal

The discussions presented in Sections 2.3 and 2.4 are only valid for single crystals.
Assuming that the components of a polycrystal are small enough, this can be seen as
an isotropic crystal. Therefore, a polycrystal has only two moduli of elasticity, and it
is necessary to know their expressions. Since, in general, there is no general relation
between the moduli of elasticity of a polycrystal and those of a single crystal of the
same substance, it is necessary to find a new way to compute them [5].
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To do so, it is useful to use the Voigt notation. With this notation the components
of the symmetric tensor λijkl can be written in a compact way. Since the indices i, j, k, l
are Cartesian indices, they take the values x, y and z. Then, under the transformations

xx 7→ 1, yy 7→ 2, zz 7→ 3, yz = zy 7→ 4, xz = zx 7→ 5, xy = yx 7→ 6, (2.33)

the tensor components can be written as λxxxx 7→ λ11, λxxyy 7→ λ12 and so on. There
are three ways to compute the bulk and shear moduli of a polycrystal. The first, the
Voigt average, gives the upper bound of the moduli [4]

KV =
1

9

[
(λ11 + λ22 + λ33) + 2(λ12 + λ23 + λ31)

]
(2.34)

GV =
1

15

[
(λ11 + λ22 + λ33)− (λ12 + λ23 + λ31) + 3(λ44 + λ55 + λ66)

]
. (2.35)

The second, the Reuss average, gives the lower bound of the moduli [4]

1

KR
= (λ−1

11 + λ−1
22 + λ−1

33 ) + 2(λ−1
12 + λ−1

23 + λ−1
31 ) (2.36)

15

KR
= 4(λ−1

11 + λ−1
22 + λ−1

33 )− 4(λ−1
12 + λ−1

23 + λ−1
31 ) + 3(λ−1

44 + λ−1
55 + λ−1

66 ). (2.37)

Finally, the Voigt-Reuss-Hill (VRH) average is the average of the upper and lower
bounds of the moduli [4]

KVRH =
1

2
(KV +KR) (2.38)

GVRH =
1

2
(GV +GR). (2.39)

2.5 A Vickers’ hardness model

The hardness of a material is its resistance to local deformation induced by pressing
a harder solid [6]. Despite the existence of many scales to measure the hardness of a
material, in this thesis, only Vickers’ hardness will be considered.

Vickers’ hardness can be measured experimentally by applying a square-based
pyramid diamond load into a sample and measuring the resulting area of indentation [6].
Then, after measuring the area of indentation, the Vickers’ hardness Hv can be
determined as a function of the force F applied to the diamond, the surface area A of
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the indentation using [6]

Hv =
F

A
, (2.40)

or, alternatively, as a function of the force F applied to the diamond and the average
length d of the diagonal left by the indenter using [6]

Hv ≈ 1.8544
F

d2
. (2.41)

The experimental measurement of the hardness values can be difficult since the
applied stress depends on various factors, such as the orientation of the material, the
loading forces, and the geometry of an indenter [6]. Therefore, the development of
models that can easily estimate this property is crucial. Most of these models have
free parameters that are adjusted to reproduce experimental data. These models can
be divided into two types [6]:

• Type 1: These models try to relate other elastic properties such as the bulk and
shear moduli, since they are easier to measure and a lot of experimental data is
available, with the hardness Hv of a material. One of these models, the Chen
et al. model [34], relates the bulk modulus K and the shear modulus G to the
hardness as

Hv = 2

(
G3

K2

)
− 3. (2.42)

By making use of the homogeneous approximation

K =
E

3(1− 2ν)
; G =

E

2(1 + ν)
, (2.43)

Eq. 2.42 can be rewritten in terms of Young’s modulus E and Poisson’s ratio ν

as [6]

Hv = 2

(
9E(1− 2ν)2

8(1 + ν)3

)0.585

− 3. (2.44)

Despite offering good results for a wide variety of materials, the Chen et al.
model [34] has some limitations [6]:

– overestimates the hardness of materials that have low or negative Poisson’s
ratio;

– incorrectly predicts the hardness for unusually hard materials;

– give unphysical negative hardness values for soft compounds.
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• Type 2: These models attempt to calculate the hardness from the chemical bond
properties [6]. In Table 2.2 are shown examples of this type of models as well as
the properties used to calculate the hardness.

Table 2.2: Information about models that attempt to calculate the hardness from the
chemical bond properties [6].

Model Chemical bond properties

Gao’s model [35]
Bond length

Average electron density
Ionicity

Šimůnek and Vackář’s model [36] Chemical bond strength

Li et al.’s model [37]
Electronegativities

Covalent radii
Bond length

Lyahov-Oganov’s model [38] Bond-valence model

In this thesis, the model used to calculate Vickers’s hardness falls into the previous
definition of a type 1 model and was proposed by Mazhnik and Oganov in [6]. This
model is inspired in Chen et al.’s model [34] and assumes that the hardness Hv can
be written in terms of a dimensionless constant γ0 independent of the material, a
dimensionless function of Poisson’s ratio χ(ν), and Young’s modulus as

Hv = γ0χ(ν)E. (2.45)

From [6], the value of γ0 is 0.096 and the function χ(ν) is

χ(ν) =
1− 8.5ν + 19.5ν2

1− 7.5ν + 12.2ν2 + 19.6ν3
. (2.46)

According to mean absolute error (MAE) and root mean squared error (RMSE)
values presented in Table 2.3, the Mazhnik and Oganov’s model [6] used to calculate
Vickers’ hardness in this thesis shows good accuracy when compared with other models
(see Table 2.3). From the informations in [6] this model also seems to solve the problems
associated with Chen et al.’s model.
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Table 2.3: Summary of the accuracy of some models used to calculate Vickers’ hardness.
The mean absolute error (MAE) and root mean squared error (RMSE) are provided
for comparison [6].

Model MAE [GPa] RMSE [
√

GPa]
Gao’s model [35] 3 3

Šimůnek and Vackář’s model [36] 3 2
Chen et al.’s model [34] 3 4

Mazhnik and Oganov’s model [6] 3 4





Chapter 3

On neural networks

3.1 An overview

One of the most recognizable machine learning methods are artificial neural networks
or simply neural networks (NN), having earned this name since they take inspiration
from the learning mechanism in biological organisms. NNs are composed by layers
of nodes, also known as neurons, connected through weights [13]. A node is a basic
computational element of a NN that: (i) receives a scalar from the input data or from
the linear combination of the outputs of all previous nodes, (ii) applies a non-linear
function to the scalar whose result will be used as the output of node. The first layer of
a NN is called input layer. The nodes in this layer do not perform any computational
work and only transmit the input data to the next layer. The nodes in the remaining
layers of the NN are responsible for all the computations involved in a NN. These
layers are called computational layers [13].

The simplest NN its called perceptron and contains a single input layer and a
output node (see Figure 3.1a). The inputs of a node are scaled with weights w that are
used as intermediate values to compute the output of that node. These output values
are then propagated through the NN until reaching the output node [11, 13].

The learning process occurs by changing the weights that connect the nodes using
training data containing examples of input-output pairs (X̄, y) of the function to be
learned [11, 13]. The NN is fed with the inputs X̄ to make predictions ŷ about the
outputs y. The value of ŷ is then used to evaluate the accuracy of the NN by comparing
it with the original output label y [13]. The weights are adjusted successively over many
input-output pairs to refine the function computed by the NN to improve prediction
accuracy. This refinement is called training the network. When the training is complete,
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the NN will be able to perform good predictions over unseen inputs, this being called
model generalization [11, 13, 39].

(a) Single layer neural network.

(b) Single layer neural network with a bias node.

(c) Multi-layer neural network.

Figure 3.1: Examples of neural networks.



3.2 Multi-layer neural network 21

3.2 Multi-layer neural network

Multi-layer NN are networks that contain more than one computational layer. Consider
a simple case of a multi-layer NN containing one input layer, one intermediate layer,
and one output layer (see Figure 3.1c). The input layer with d nodes transmits the
features X̄ = [x1 · · ·xd] with edges of weights W̄ = [w1 · · ·wd] to the intermediate layer
with h nodes. Since the computations performed by the intermediate layers are not
visible to the user, they are also called hidden layers. The hidden layer transmit the
h features X̄ ′ = [x′

1 · · ·x′
h] with edges of weights W̄ ′ = [w′

1 · · ·w′
h] to an output layer

with c nodes.
A multi-layer NN is also referred to as a feed-forward network, since successive

layers feed into one another in the forward direction. The mathematical explanation of
these networks follows what is done in [40] and is presented in Sections 3.2.1 and 3.2.2.

3.2.1 Forward Phase

Consider a node j in one of the h hidden layers which is connected to the nodes of
the previous layer by weights wji. The total input of the node j is a linear function of
the outputs xi of the nodes that are connected to him and the weights wji of those
connections

Σ = W̄ · X̄ =
∑
i

xiwji. (3.1)

The computations performed in the node j can be divided into two different phases,
as shown in Figure 3.2. In the first phase, called the pre-activation phase, the node
computes the Eq. 3.1 which is called the pre-activation value a. The other phase
computes the output value yj of the node, which is called the post-activation value h,
by applying to xj a activation function [13]. The choice of the activation function is
important in the design of NN. Depending on the target variable to predict, non-linear
functions such as the sign, sigmoid, or hyperbolic tangents may be used as activation
functions of various layers [13]. Therefore, choosing a generic activation function σ,
the generic output of a node is given by

ŷ = σ(W̄ · X̄) (3.2)

For some applications, the predictions have an invariant part called bias. This bias
can be added to the network by considering a bias node with weight b that always
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transmits a value 1 to the nodes to which it is connected (see Figure 3.1b). In this
case, Eq. 3.2 should be written as

ŷ = σ(W̄ · X̄ + b), (3.3)

where b is the bias. For simplicity, in the following discussions, bias nodes will not be
considered.

This is the end of the forward phase, in which the training instances that where
fed to the network are forward propagated through the network.

Figure 3.2: Representation of a computational node and its calculations.

3.2.2 Backwards Phase: the back-propagation

The goal is now to find a set of weights that minimise the error E(X̄) between the
output value ŷ predicted by the network and the expected output value y given to the
network [13, 40],

E(X̄) = ŷ − y. (3.4)

If this error E(X̄) is non-zero, then the weights need to be updated by minimizing an
objective function L, called loss function, that depends on the prediction error E in
the dataset D

MinimizeW̄L =
∑

(X̄,y)∈D

L(y − ŷ). (3.5)

In practice, the error E(X̄) does not reach zero but eventually converges to a small
value.
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The most common way to perform the minimization shown in Eq. 3.5 is to use
gradient descent [11, 13, 40]. The gradient descent method minimizes the function
L(w) by updating the parameters w in the opposite direction of the gradient of L(w)
with respect to w that has largest absolute value [41]. The gradient descent is given by

wnew = w − α∇wL(w), (3.6)

with the learning rate α being the size of the steps taken. After the forward phase, a back
pass, also known as back propagation, is applied to propagate the partial derivatives of
L concerning each weight throughout the network [40]. The back-propagation starts
by computing ∂L

∂y
for each output node and, by applying the chain rule, also computes

∂L
∂xj

=
∂L
∂yj

· dyj
dxj

=
∂L
∂yj

· dσ(xj)

dxj

. (3.7)

From Eq. 3.7 is possible to know how a change in the input xj of a output node j

affects the error. The definition of this input xj given in Eq. 3.1 makes it possible to
compare how the error will be affected by the change of these states x and weights
w [40]. For weights the process is similar. Assuming a weight wji, from i to j the
derivative is [40]

∂L
∂wji

=
∂L
∂xj

· ∂xj

∂wji

=
∂L
∂xj

· yi. (3.8)

Then, the general formula to update the weights of the network can be obtained by
rewritten Eq. 3.6 as

wnew = w − α
∂L
∂wji

(3.9)

= w − α
∂L
∂xj

· yi. (3.10)

3.2.3 Gradient Descent: variants and optimizations

As previously stated, the update of the weights is responsible for the learning process
of the network. Therefore, it is important to understand how the amount of data used
to compute the gradients affects its performance [42].

Consider a dataset with N input-output pairs (X̄, y) and let a batch be a portion
with n < N elements of that dataset. The gradient of the loss function L with respect
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to the weights w can be computed using the entire dataset as

wnew = w − α∇wL(w), (3.11)

i.e, the weights are updated just once. However, it is impractical to simultaneously run
all examples through the network to compute the gradient with respect to the entire
dataset in one shot, since depending on the size of the dataset, it would be very slow
and computationally heavy [13, 42].

Other way of calculate the gradient is to update the weights for each pair (X̄(i), y(i)),

wnew = w − α∇wL(w, X̄(i), y(i)). (3.12)

This method is called stochastic gradient descent (SGD) and is faster than the pre-
vious method. However, performing frequent updates with a high variance causes
the loss function L to fluctuate heavily. This fluctuation enables it to jump to other
and potentially better local minima but also complicates convergence to the exact
minimum [42].

In mini-batch stochastic gradient descent, the weights update is done using a batch
with size n < N ,

wnew = w − α∇wL(w, X̄(i+n), y(i+n)). (3.13)

This method often provides the best trade-off between stability, speed, and memory
requirements [13]. It is common to use powers of 2 as the size of the mini-batch and
the usual batch sizes are 32, 64, 128, or 256 [13].

However, even the mini-batch stochastic gradient descent does not guarantee good
convergence [13, 42]. To solve the convergence problem, it is possible to use gradient
descent optimization methods like momentum [43] that helps to accelerate the SGD in
the relevant directions, or methods like RMSprop [39] and Adam [44] that adaptively
adjust the learning rate. For the rest of this thesis, the mini-batch stochastic gradient
descent will be called stochastic gradient descent (SGD).

3.3 Convolutional Neural Networks

Convolutional neural networks (CNN) are a different type of network where the states
in each layer are arranged according to a spatial grid structure. The spatial relations
are inherited from one layer to the next and are a consequence of each feature value
being based on a local spatial region in the previous layer [13]. The input I(x, y) of
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a CNN has a grid-like structure and the pairs (x, y) represent the coordinates of a
element in the grid. Usually, a CNN is built using a repetition of [13]:

• Convolution layers: A convolution layer contains a set of convolutional kernels,
where each node acts as a kernel. The convolutions processes inside this layer
divide the grid into small slices by convolving the kernel with the input I using
a set of weights [45]. Assuming a j × k kernel e(j, k) a convolution operation
in layer l can be express in terms of the linear combination of the individual
elements s of the input with the elements of the kernel as [45, 46]

fl(p, q) =
∑
c

∑
x,y

s(x, y) · e(j, k). (3.14)

If the CNN has more than one kernel k, then Eq. 3.14 becomes

fk
l (p, q) =

∑
c

∑
x,y

s(x, y) · ek(j, k). (3.15)

An example of this operation using a 5× 5 input and a 3× 3 kernel is shown in
Figure 3.4a.

• Pooling layers: Once the features are extracted using convolution layers, their
exact location become less important as long as their position in relation to
others is preserved [45]. Pooling or down-sampling offers a way to reduce the
feature map by introducing a translation invariance to small shifts and distortions.
The size reduction of the feature-maps to invariant feature set helps to keep
the complexity of the model low and also to increase generalization by reducing
overfit [13, 45, 46]. A generic pooled feature map P can obtained by applying a
pooling operation ϑ to the feature-map C,

P = ϑ(C). (3.16)

In Figure 3.4b is shown an example of a 2 × 2 max pooling operation with a
2 dimensions input. This operation extracts slices from the input feature map
and outputs the highest value in each slice. For example, if a 2× 2 max pooling
operation is done, the feature map will be downsample by a factor of 2. Another
common pooling operation is the global average pooling. This operation performs
the average of all values in the feature map and outputs its average [47]. Usually,
the pooling layers are used before a multi-layer NN.
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In summary, the repetition of convolution and pooling layers perform the extraction
of the relevant input features that are then passed to an multi-layer NN similar to the
ones presented in Section 3.2 that gives the network’s output [13, 46, 47].

Figure 3.3: Representation of a generic CNN with N blocks of convolution and pooling
layers. The network can have as much convolution layers before a pooling layer as
needed for the task in hand. The multi-layer network can be substituted for a single-
layer network depending on the task.

3.4 Hyperparameters

A good choice of parameters that define a network is a fundamental part of building
that network. Looking at the networks described in Sections 3.2 and 3.3, the learning
rate α, the number of hidden layers, the number of convolution and pooling layers, the
dimension of the network’s input, and the choice of the gradient-descent method can
be seen as hyperparameters of a network. The hyperparameters λ are used to configure
various aspects of the model and can have wildly varying effects on the resulting model
and its performance [48]. Usually, the values of the hyperparameters are not adapted
by the learning algorithm itself [11].

The set of hyperparameters λ is also related to the complexity of the model. If the
model is too complex, it will tend to overfit, i.e, the fit to the training data will be very
good but will fail to generalise for unseen data. On the other hand, if the model is too
simple, it will tend to underfit, i.e it won’t capture all the information in the data [48].

The parameters that control the capacity of the model should always be hyperpa-
rameters. If those hyperparameters were to be learned on the training set, they would
always choose the maximum possible model capacity. This choice would make the
model overfit the data [11]. A way of solving this problem is to use a validation set with
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(a) Example of the convolution of a 5×5 input with a 3×3 kernel.

(b) Example a 2× 2 max pooling of a 4× 4 input.

Figure 3.4: Examples of application of convolution and pooling. In Figure (a) a
3× 3 kernel is applied to a 5× 5 input to demonstrate the feature extraction using a
convolutional layer. In Figure (b) a 2× 2 max pooling operation is applied to a 4× 4
input to demonstrate the feature extraction using a pooling layer.

data that the training process has not seen to choose the best set of hyperparameters.
This method of using a validation set constructed from the same distribution of the
training set is called cross-validation [11].

In cross-validation, the training set is used to learn the model’s parameters and the
validation set is used to estimate the generalization error during or after training. The
generalization error allows for the hyperparameters to be updated accordingly [11].

There are multiple ways to find the best set of hyperparameters. The simplest way
is to monitor the network and manually tune the hyperparameters. In addition to
being time consuming, this method involves a guessing factor which makes it difficult
to apply to complex models. Another method called gridsearch [49, 50], used in this
thesis, consists of choosing multiple values for each hyperparameter, run every possible
combination of them, and then choose the combination that provides the best results.
The optimization methods for the SGD can also be used to search for the best learning
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rate. This is, the learning rate at which the learning process ends can be used as the
optimal learning rate [41, 50]. Other hyperparameter search methods can be found in
[50].

After the best set of hyperparameters is found, the generalization error may be
estimated using a test set that should not contain data from the training and validation
sets [11]. In this work, 60% of the full database was used as the training set, 20% as
the validation set, and the remaining 20% as the test set.



Chapter 4

On the model

4.1 Crystal graph convolution neural network

The model used in this thesis was the Crystal Graph Convolutional Neural Network
(CGCNN) presented by Xie and Grossman in [2]. In this model, the crystal structure
is represented by a crystal graph that encodes both atomic information and bond
interactions between atoms. In a crystal graph G, as the one in Figure 4.1, the nodes
represent atoms, and the edges represent the connections between atoms in a crystal.
The information of the atom corresponding to the node i is encoded by a feature vector
vi and each node in the crystal graph is connected to its 12 nearest neighbours. The
number of nearest neighbours to which each node is connected comes from practice.
The k-th bond connecting atoms i and j is represented by a feature vector u(i,j)k [2, 3].
More details about the atom and bond feature vectors are presented in Section 4.2.

On top of the crystal graph G, a convolutional neural network is built to auto-
matically extract representations that are optimal for predicting target properties by
training with data [2, 3].

4.1.1 Model architecture

The convolutional neural networks built on top of the crystal graph are used to
automatically extract representations that are good for predicting target properties,
and are similar to the ones described in Section 3.3. Before the convolution layers are
used to iteratively update the atom feature vector vi, a neighbour feature vector

z
(t)
(i,j)k

= v
(t)
i ⊕ v

(t)
j ⊕ u(i,j)k , (4.1)
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Figure 4.1: Representation of a crystal graph G. The crystal is converted to a crystal
graph where the nodes represent atoms in the unit cell and edges represent the atom
connections. Both nodes and edges are characterized by vectors corresponding to the
atoms and bonds in the crystal, respectively [2, 3].

is created by concatenating1 the atom and bond feature vectors of the neighbouring
atoms of the i-th atom [2, 3]. Then, the update of the atom feature vector v

(t)
i can be

written as

v
(t+1)
i = v

(t)
i +

∑
j,k

σ
(
z
(t)
(i,j)k

W
(t)
f + b

(t)
f

)
⊙ g

(
z
(t)
(i,j)k

W(t)
s + b(t)

s

)
, (4.2)

where ⊙ denotes element-wise multiplication, σ denotes a sigmoid function, and g

is the activation function for introducing non-linear coupling between layers. The
quantities W

(t)
s and W

(t)
f are the self weight matrix, and weight matrix of the t-th

layer, respectively [2, 3].
After R convolutions, a new feature vector v

(R)
i is generated for each atom i of the

crystal. The pooling layer after the R convolution layers produce the overall feature
vector vc for the crystal

vc = Pool
(
v
(R)
0 ,v

(R)
1 , . . . ,v

(R)
N

)
, (4.3)

using the atom feature vectors from the N atoms of the crystal.

1 The concatenation operation in Eq. 4.1 is represented by the ⊕ symbol.
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The overall feature vector vc for the crystal is then used as input to a multi-layer
NN with L2 hidden layers, as the one presented in Section 3.2, to predict a target
property value y. The predicted value can be obtained by using Eq. 3.2 as

ŷ = f(vcWc + bc), (4.4)

where Wc, bc, and f(·) are the weight matrix, bias, and non-linear activation function
of the layers that compose the multi-layer NN, respectively [2, 3, 51]. The training
process is done as described in Section 3.2 using backpropagation and the SGD to
update the weights. A schematic representation of the model is shown in Figure 4.2.

Depending on the activation function of the output layer and the loss function used,
the output of the multi-layer NN could be a prediction task or a classification task.
The loss function and the activation function of the output layer for the regression
used in each task are presented in Table 4.1.

Table 4.1: Loss function and the activation function of the output layer for the regression
task used in this thesis and the functions for the classification task.

Type Loss function Output layer activation function
Regression Mean squared error (MSE) Linear

Classification Negative log-likelihood (NLL)
LogSoftmax

or
LogSigmoid

4.1.2 Improvements on the original CGCNN model

The CGCNN model used in this work was firstly published in 2018 in [2] and, since
then, new models based on it have been developed. This list might not be exhaustive,
but it shows the main improvements:

• MT-CGCNN : This was the first altered version of the CGCNN model published
in 2018 [52]. This model is in every way similar to the original one, the only
difference being the inclusion of a hard parameter sharing multi-task learning2,
where for each crystal property (p) being learned, there is an independent multi-
layer network which takes vc and predicts the intended property value. This

2 A common set of layers is shared across all tasks and then some task-specific output layers are
used for each individual task.
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Figure 4.2: Representation of the CGCNN model. The result of the R convolutional
layers is a new graph with each node representing the local environment of each atom.
After pooling, a vector vc representing the entire crystal is connected to a multi-layer
NN with L2 hidden layers, followed by the output layer to provide the prediction
value [2, 3].

architecture allows to predict more than one property at the same time, while
CGCNN only allows to predict one property at a time.

• iCGCNN : A second modification was published in 2020 [22]. In this archi-
tecture, descriptors extracted from the crystal graphs include the information
of the Voronoi tessellated crystal structure, explicit three-body correlations of
neighbouring constituent atoms, and an optimized chemical representation of
interatomic bonds, all of which are absent in the crystal graphs utilized by the
original CGCNN model. The goal of this architecture was to not only improve
the accuracy of the original model, but also have a better representation of the
chemical nature of an inorganic compound.

• TL-CGCNN : A third altered version was published in 2021 [51]. These architec-
ture propose the use of transfer learning (TL) to improve the accuracy of the
original model. The TL is used to provide knowledge to other predictive models
with different target variables. Therefore, the focus of this architecture is to load
a pre-trained model constructed with an enormous amount of data and use it to
make predictions on a smaller database.
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4.2 The feature vectors

The atom properties of the original model are encoded in atom feature vector vi using
one hot encoding. For discrete values, the vectors are encoded according to the category
that the value belongs to; for continuous values, the range of property values is evenly
divided in 10 categories and the vectors are encoded accordingly [2, 3, 53]. The full
list of atom properties as well as their ranges are presented in Table 4.2. The atom
feature vector constructed this way will be denoted as v

(0)orig
i .

Table 4.2: Properties used in the original atom feature vector v
(0)orig
i [2, 3].

Property Range # of categories
Group number 1, 2, . . . , 18 18
Period number 1, 2, . . . , 91 9

Electronegativity 0.5− 4.0 10
Covalent radius (pm) 25− 250 10

Valence electrons 1, 2, . . . , 12 12
First ionization energy (log(V)) 1.3− 3.3 10

Electron affinity (eV) −3− 3.7 10
Block s, p, d, f 4

Atomic volume (log(cm3/mol)) 1.5− 4.3 10

Apart from the original atom feature vector, a different one was used in this thesis,
where only the atomic number is used (see Table 4.3). This means that the only
information given to the network was that all atoms were different from each other.
The atom feature vector constructed this way will be denoted as v

(0)Z
i .

Table 4.3: Properties used in the new atom feature vector v
(0)Z
i .

Property Range # of categories
Atomic number 1, 2, . . . , 100 100

To build the bond feature vector u
(0)
(i,j), the distance between the connected atoms

d(i,j) is expanded in a Gaussian basis as [3]

u
(0)
(i,j)[t] = exp

(
−
(
d(i,j) − µt

)2
σ2

)
(4.5)

where µt = 0.2t Å for t = 0, 1, .., k and σ = 0.2 Å.
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Table 4.4: Properties used in the bond feature vector u
(0)
(i,j) [3].

Property Range # of categories
Atom distance (Å) 0.7− 5.2 10

4.3 The code

The original code of the model was written in the Machine Learning framework
Pytorch [54]. Therefore, the first step was to rewrite it in a framework called Pytorch
Lightning [30]. This decision was made due to Pytorch Lightning’s simpler and user
friendly interface. It is worth noting that the core of the original code [2, 3] was kept
unchanged.

The change of framework made it possible to easily implement a Early Stop
functionality which allows the training process to stop when a pre-defined metric,
usually the loss function L, stops improving. This functionality helped in the reduction
of the computational time.

The ability of classification of the model was also improved. The original code only
includes the possibility of binary classification. Therefore, a way to perform multi-class
classification was implemented. Other implementation made was the ability to remove
the values of the network before the last activation function. This implementation
allows to use these values as input features in simpler models to explore the accuracy of
transferring the feature engineering using a huge dataset, to small and specific datasets.

Finding the best model for each property implies finding the set of hyperparameters
for which the accuracy is the best. The package Optuna [31] was used to help manage
and perform the gridsearch of the hyperparameters. In addition to being able to
automatically run all the possible combinations of hyperamaters chosen for the model
(see Table 4.5), this package was chosen due to its routine pruners.MedianPrune. This
routine considers each combination of hyperparameters as a trail and prunes the current
trail if the trial’s best intermediate result is worse than the median of intermediate
results of previous trials at the same step. Therefore, the only weights that are saved
are the ones from not pruned trails.

From all the sets of hyperparameters whose weights were saved, the best one is
chosen according to the result of a certain pre-defined metric. For the regression task,
the pre-defined metric used was the mean absolute error (MAE) between the predicted
and target values from the validation step.
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Table 4.5: Values of the hyperparameters used in the gridsearch to obtain each property
best model.

Hyperparameter Range
Number of convolutional layers R 1, 2, . . . , 6

Number of hidden layer L2 1, 2, . . . , 6





Chapter 5

On the databases

5.1 The training database

The models for the shear G and bulk K moduli were trained using the [4] database.
The raw data used to generate this database was the calculated properties from the
Materials Project [9]. In contrast with the data from the Materials Project, the [4]
database contain only the materials input objects and target variables. Apart from the
removal of extra data, the following filters were also applied [4, 8]:

• Removal of entries having a energy above the convex hull1 above 150 meV;

• Removal of entries having GV, GR, GVRH, KV, KR, or KVRH less than or equal
to zero;

• Removal of entries failing GR ≤ GVRH ≤ GV or KR ≤ KVRH ≤ KV;

• Removal of entries containing noble gases;

• Removal of all columns except structure and the target variable.

In total, the final database contains 9741 structures covering 87 elements. This
database does not include materials containing Helium (Z = 2), Neon (Z = 10), Argon
(Z = 18), Xenon (Z = 54), Polonium (Z = 84), Astatine (Z = 85), Radon (Z = 86),
Francium(Z = 87), and Radium (Z = 88).

The database created to train the models for Vickers’ hardness Hv was built using
the values of shear G and bulk K moduli contained in the previous database and
Eqs. 2.45 and 2.46. Vickers’ hardness database contained the same 9741 materials
covering 87 elements as the other database.

1A discussion about the energy above the convex hull is presented in Appendix A
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The plot of the number of materials of these databases that contain a certain
chemical element is presented in Figure 5.1. The minimum min(y), maximum max(y),
and mean ȳ value as well as the standard deviation σ of each elastic property are
presented in Table 5.1.

Table 5.1: Information about the the minimum min(y), maximum max(y), and mean ȳ
value as well as the standard deviation σ of the elastic properties used to train the
models [4].

Property min(y) [GPa] max (y) [GPa] ȳ [GPa] σ [GPa]
G 2 523 50 39
K 2 575 103 68
Hv 0 99 7 5

Since the models were trained using the decimal logarithm of the properties, the
values used to plot the distribution of values of each property shown in Figure 5.2 were
calculated using log

(
P
P0

)
, with P being the value of the elastic property in GPa and

P0 = 1 GPa. The reason behind the use of the decimal logarithm will be discussed in
Section 6.1.

From the analysis of the Figure 5.1 it is possible to see that the database is biased.
The number of materials with elements with Z ≤ 31 is greater than the number of
materials with elements with Z > 31. Oxygen (Z = 8) is present in 1635 materials
and is the most frequent element in the materials in the database. The less frequent
element is Neptunium (Z = 93) and is present in 19 materials.
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Figure 5.1: Representation of the number of materials containing a certain chemical
element on the databases used to train the models.
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Figure 5.2: Distribution of values of the elastic properties shear G and bulk H moduli,
and Vickers’ hardness Hv of the materials contained in the databases used to train the
models.
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5.2 DB1M - a dataset form [1]

The models trained with the previous databases were to be used to predict the shear
G and bulk K moduli and Vickers’ hardness Hv of the materials in the database of [1]
with the goal of finding super-hard materials. From now onwards this database will be
called DB1B and the dataset used for training in [24] will be called DB2021.

The motivation for the creation of DB1B was to solve DB2021’s bias with respect
to the distribution of chemical elements and of crystal structures. As described in [1],
the first bias problem was solved by performing a series of high-throughput searches
with an extended set of 84 chemical elements, using the transfer learning approach
presented in [24]. The additional data generated by these calculations was employed
to retrain the crystal graph network (DCGAT-1) from [24]. The structural bias was
reduced by using this DCGAT-1 to scan a material space of almost 1 billion compounds
that comprises more than 2000 crystal-structure prototypes [1].

A dataset denoted as DB1M was built using 1160292 materials from DB1B with
with energy above the convex-hull bellow 200 meV/atom. DB1M’s materials did no
have Polonium (Z = 84), Astatine (Z = 85), Radon (Z = 86), Francium (Z = 87),
and Radium (Z = 88) in their constitution. In contrast with the databases discussed
in Section 5.1, DB1M includes materials containing Helium (Z = 2), Neon (Z = 10),
Argon (Z = 18), and Xenon (Z = 54). However, these materials containing noble
gases are omitted since they are not relevant to the search of superhard materials. A
plot of the number of materials of DB1M that contain a certain chemical element is
shown in Figure 5.3.

Comparing Figures 5.1 and 5.3 it is possible to see that DB1M is less biased in terms
of chemical elements than the database used to in the training process of the models.
The fact that DB1M has materials with chemical elements with less representation in
the train databases is not a problem. This only means that the model could have some
problems predicting the properties of the materials containing these elements. The
ability of the model to accurately predict the elastic properties of these materials will
depend on the robustness of the model.

The best models trained with the databases presented in Section 5.1 and the
predicted elastic properties for the materials in DB1M are presented and discussed in
the next Chapter.
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Figure 5.3: Representation of the number of materials containing a certain chemical
element on the DB1M.



Chapter 6

Results and analysis

6.1 The training process

The models were trained using the database presented in Section 5.1. To choose the
best model, a cross-validation scheme was applied to optimize the prediction of the
elastic properties. Each model was trained with 60% of the data and then validated
with 20% of the data, and the best-performing model in the validation set is selected
[2, 3]. The remaining 20% of the data were used to test the predictive ability of the
model. The cross-validation scheme was improved by merging it with the gridsearch
method described in Section 4.3.

The train of each model was allowed to run through 400 epochs, i.e, the full train
and validation sets were allowed to pass through the network 400 times. However,
since the Pytorch Lightning’s functionality EarlyStopping [30] was implemented, the
process was stopped before the 400 epochs were completed, if a stopping criteria was
met. The stopping criteria used was: if the loss function value L is the lowest and
after 20 epochs remains in the interval

[
Lmin − 0.001,Lmin + 0.001

]
, then the training

process stops.
The initial learning rate α = 0.02 was decreased by a factor of 10 every 100 epochs,

using the Pytorch’s routine MultiStepLR [54]. By not reducing the learning rate α

at a continuous rate δ, this is αnew = α− δ, it was possible to cover a larger space of
learning rate’s magnitudes, while saving computational resources.

Since the difference in magnitude between the largest and smaller value of the
properties in study is huge (see Table 5.1), the models were trained using the decimal
logarithm of the elastic properties. The use of the decimal logarithm works as a
“normalization” of the values and helps to compare them. In fact, if the inputs of
the network are not comparable the loss function will fluctuate heavily and affect the
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accuracy of the model [13]. Until there is an explicit indication, the values of the
elastic properties presented were calculated using log

(
P
P0

)
, with P being the value of

the elastic property in GPa and P0 = 1 GPa.
The training and gridsearch process of the models was performed on a Intel i7-9700

with a Nvidia Tesla P100 (16 GB vRAM). For reference, the training and gridsearch
process of the best model for the bulk modulus using the v

(0)orig
i , presented in the next

section, took approximately 10 minutes.

6.2 Elastic properties - best model

The performance of the newly trained models was assessed by measuring the accuracy
of the model’s predictions in the test dataset. The accuracy was measured by making
use of the mean absolute error (MAE) of the predicted values compared with DFT
calculated values from the training database (see Section 5.1) and the R2 metric. The
predicted values are identified with the subscript ML and the values calculated with
DFT are identified with the subscript DFT. A summary of the MAE obtained for each
property model and a summary of benchmark MAE values obtained from [7, 8] are
presented in Tables 6.1 and 6.2, respectively.

It is important to mention that the benchmark MAE values in Table 6.2 serve only
as an indicator for the accuracy of the models trained in this thesis. In addition to
being calculated differently, the datasets used to perform the benchmarks have neither
the same materials nor the same number of materials as the dataset used to train
and evaluate the accuracy of the models in this thesis. Therefore, the comparisons
done in this Section are to be taken carefully and used as a representative value. It is
not expected that the values calculated under the same conditions as those presented
in this thesis using CGCNN v2019 [2, 3, 8] will differ much from those presented in
Table 6.2.

As two models were trained for each elastic property, it is useful to define an easy
way to distinguish them. Let the models trained with the v

(0)orig
i atom feature vector be

called Mv-O(i), with i = G, K, Hv, and the ones trained with the v
(0)Z
i atom feature

vector be called Mv-Z(i). In both cases i and represents the property for which the
model was trained. For example, the shear modulus model trained with the v

(0)orig
i

atom feature vector is called Mv-O(G).
For the shear modulus G, the MAE of Mv-O(G) was 0.091 and the one for Mv-Z(G)

was 0.091, respectively (see Table 6.1). This means that the accuracy of both models
is similar. When compared with the benchmark MAE values in Table 6.2, both
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Table 6.1: Summary of the accuracy of the predicted elastic properties on the test
dataset for each atom feature vector. The mean value ȳ of each property is included to
give a feel for the magnitude of the MAE obtained.

(a) Predictions made using the models that used v
(0)orig
i as the atom feature vector.

Property ȳ MAEML R2

G 1.579 0.091 0.861
K 1.900 0.068 0.891
Hv 0.711 0.079 0.880

(b) Predictions made using the models that used v
(0)Z
i as the atom feature vector.

Property ȳ MAEML R2

G 1.579 0.091 0.867
K 1.900 0.072 0.877
Hv 0.711 0.083 0.877

atom feature vectors seem to produce accurate models to predict the shear modulus
G. Although these models are significantly more accurate than the Dummy model
(MAE= 0.288) [8], their accuracy is still far from the one of the ALIGNN model
(MAE= 0.071) [23].

The R2 metric value obtained for Mv-O(G) and Mv-Z(G) was, respectively, 0.861
and 0.867 (see Table 6.1). These values combined with the analysis of the plots shown
in Figure 6.1 indicate a good linear relation between the values GDFT and GML for
both Mv-O(G) and Mv-Z(G). It should be noted that Mv-Z(G) seems to produce fewer
outliers than Mv-O(G).

As presented in Table 6.1, for the the bulk modulus K, the MAE of Mv-O(K) was
0.068 and the one of Mv-Z(K) was 0.072. By comparing these MAE values with
the ones in Table 6.2, it is possible to conclude that both models can produce an
accurate prediction for the bulk modulus K and are more accurate than the less
accurate model in Table 6.2, the Dummy (MAE= 0.283) [8]. Just like for the accuracy
of Mv-Z(G) and Mv-O(G), the accuracy of the models trained for the bulk modulus is
still far from the accuracy of the MODNet model (MAE= 0.051) [55]. In contrast to
what happened for the shear models, the model trained with the v

(0)orig
i atom feature

vector is more accurate than the one the v
(0)Z
i atom feature vector, as indicated by the

MAE values.
For this property, the R2 metric value for Mv-O(K) was 0.891 and the one for

Mv-Z(K) was 0.877 has presented in Table 6.1. Combining the plot of each model
shown in Figure 6.2 with its R2 metric value, it is possible to see that both models have
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a good linear relation between the values KDFT and KML. As for the shear modulus,
the model trained using v

(0)Z
i as the atom feature vector appears to produce less outliers

than the model trained using v
(0)orig
i as the atom feature vector.

Finally, for Vickers’ hardness Hv, the MAE of Mv-O(Hv) and Mv-Z(Hv) was, re-
spectively, 0.079 and 0.083, respectively (see Table 6.1). As for the previous elastic
property models, previous the model trained with the v

(0)orig
i atom feature vector

is more accurate than the one trained with the v
(0)Z
i atom feature vector. For this

property, the accuracy of both models is much lower than the accuracy of the Mazhnik
and Oganov’s model (MAE= 0.049) [7, 6]. It is worth noting that the MAE of Mazhnik
and Oganov’s model was calculated using the values in Table III of [7], therefore, the
size of the dataset is different from the one used in this thesis.

For this property, the R2 metric values obtained for Mv-O(Hv) and Mv-Z(Hv) were
0.880 and 0.877, respectively (see Table 6.1). As for the previous properties, the R2

metric values combined with the analysis of the plots shown in Figure 6.3 indicate
a good linear relation between the values HvDFT and HvML for each model. From
these plots it is also possible to see that Mv-Z(Hv) appears to produce less outliers
than Mv-O(Hv).

These results are a good indicator that, in future works, for large enough datasets,
the model is able to build the atom feature vector using only the atomic number of
the chemical element. This is important for elements to which there are not many
experimental results available.

Table 6.2: Benchmark MAE values of other machine learning models used to predict
elastic properties [7, 8].

Model MAEG MAEK MAEHv

CrabNet [19] 0.099 0.070 -
Finder v1.2 (composition only) [25] 0.098 0.074 -
Finder v1.2 (structure based) [25] 0.088 0.064 -

ALIGNN [23] 0.071 0.053 -
AMMExpress v2020 [8] 0.085 0.063 -
CGCNN v2019 [2, 3, 8] 0.087 0.067 -

Dummy [8] 0.288 0.283 -
MODNet [55] 0.072 0.051 -

RF-SCM/Magpie [8, 56–58] 0.102 0.078 -
Mazhnik and Oganov’s model [6, 7] - - 0.049
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(a) Predictions made using the model Mv-O(G).
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(b) Predictions made using the model Mv-Z(G).

Figure 6.1: Comparison of the predicted shear modulus GML and the DFT values GDFT

from [4] used as targets. The predictions were performed on the test dataset.
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(a) Predictions made using the model Mv-O(K).
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(b) Predictions made using the model Mv-Z(K).

Figure 6.2: Comparison of the predicted bulk modulus KML and the DFT values KDFT

from [4] used as targets. The predictions were performed on the test dataset.
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(a) Predictions made using the model Mv-O(Hv).
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(b) Predictions made using the model Mv-Z(Hv).

Figure 6.3: Comparison of the predicted Vickers’ hardness HvML values and the values
HvDFT obtained as described in Section 5.2 used as targets.

6.2.1 The combined prediction

For the same property, the only difference between the models shown in the previous
section is the atom feature vector. Then, it is possible to use an ensemble method to
achieve better predictions. By using an ensemble method, it is possible to combine
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the predicted values of the two models trained for each property to have better
predictions [59]. In this thesis, the ensemble method used was to consider the mean
average between the values yorig predicted by the model trained using the v

(0)orig
i atom

feature vector and the values yZ predicted by the model trained using the v
(0)Z
i atom

feature vector,

ȳ =
yorig + yZ

2
. (6.1)

The combination of the predictions according with Eq. 6.1 will be treated as a model
and called M2v-p throughout this thesis and will also be used in the analysis presented
in Section 6.3.

The comparison between the MAE of the trained models and those used as a
benchmark made in this Section must taken carefully and used as a representative
value due to the same reasons discussed in the previous section.

For the shear modulus G, the MAE of M2v-p(G) was 0.087 (see Table 6.3). By
using M2v-p(G), the accuracy of the predictions was improved to the point of becoming
the fourth best model only behind the ALIGNN (MAE=0.071) [23], the AMMExpress
v2020 (MAE=0.085) [8], and the Finder v1.2 (structure based) [25] (MAE=0.088) [25]
(see Table 6.2). The M2v-p also produces a good linear relation between the values
GDFT and GML as can be seen in the plot shown in Figure 6.1 and by looking at the
R2 metric (R2=0.875) presented in Table 6.3.

In the case of the bulk modulus K, the MAE of M2v-p(K) was 0.067 (see Ta-
ble 6.3). Like for the shear modulus, the M2v-p(K) also improved the accuracy of
the predictions to the point of becoming the fifth best model only behind the MOD-
Net (MAE=0.051) [55], the ALIGNN (MAE=0.053), [23] the AMMExpress v2020
(MAE=0.063) [8], and the Finder v1.2 (structure based) (MAE=0.064) [25] (see Ta-
ble 6.2). Similar to the previous property, the plot shown in Figure 6.4 for the bulk
modulus and the R2 metric value show a good linear relation between the values KDFT

and KML. The value of the R2 metric obtained was 0.893 (see Table 6.3).
For Vickers’ hardness Hv, the MAE of M2v-p(Hv) was 0.087 (see Table 6.3). This is

a big improvement on the MAE of the trained models of the previous section. The
accuracy remains lower than the accuracy of Mazhnik and Oganov’s model [7, 6], but it
is a step in the right direction. Finally, for this property, the plot shown in Figure 6.6
and the fact that the value of the R2 metric obtain was 0.887 (see Table 6.3), indicate
a good linear relation between the values HvDFT and HvML .
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Figure 6.4: Comparison of the shear modulus GML values predicted with M2v-p(G) and
the values GDFT from [4] used as targets. The predictions were performed on the test
dataset.
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Figure 6.5: Comparison of the bulk modulus KML values predicted with M2v-p(K) and
the values KDFT from [4] used as targets. The predictions were performed on the test
dataset.
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Figure 6.6: Comparison of the Vickers’ hardness HvML values predicted with M2v-
p(Hv) and the values HvDFT obtained as described in Section 5.2 used as targets. The
predictions were performed on the test dataset.

Table 6.3: Summary of the accuracy of M2v-p. The mean value ȳ of each property is
included to give a feel for the magnitude of the MAE.

Property ȳ MAE R2

G 1.579 0.087 0.875
K 1.900 0.066 0.893
Hv 0.711 0.077 0.887

6.3 Prediction of elastic properties of new materials

6.3.1 Distribution of the predicted values

The models presented in Section 6.2 were used to predict the elastic properties of the
structures contained in the DB1M database introduced in Section 5.2. The final values
of the predictions were obtained using the M2v-p model described in Section 6.2.1 and
are presented below.

The distribution of the M2v-p(G)’s predicted values for the shear modulus G is
shown in Figure 6.7. These values are in the interval [−0.267, 2.725] and have a mean
and standard deviation value of 1.450 and 0.301, respectively.
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The M2v-p(K)’s predicted values distribution for the bulk modulus K is shown in
Figure 6.8 and the values are in the interval [0.473, 2.739]. The mean and standard
deviation value of the distribution are 1.797 and 0.319, respectively.

Finally, the distribution of the M2v-p(Hv)’s predicted values for the Vickers’ hardness
Hv is shown in Figure 6.9. The predicted values have a mean and standard deviation
value of 0.384 and 0.305, respectively, and are in the interval [−0.985, 2.115].

The vertical lines in Figures 6.7 to 6.9 represent reference values of the elastic
properties of Si, WC, c-BN and diamond. The value of the shear GML and bulk
KML moduli are from Materials Project [9] and Vickers’ hardness value Hexp

v is a
experimental value from [7] (Table 6.4).

Table 6.4: Summary of the elastic properties of some materials of interest [4, 7, 9]. The
Materials Project’s id of the materials is included to identify them.

Material id GMP [4, 9] KMP [4, 9] Hexp
v [7]

Diamond 66 2.720 2.640 1.982
c-BN 1639 - - 1.820
WC 1894 2.446 2.586 1.431
Si 149 1.785 1.919 1.079

Figure 6.7: Distribution of the predicted shear modulus values GML of the materials
contained in the DB1M database.
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Figure 6.8: Distribution of the predicted bulk modulus values KML of the materials
contained in the DB1M database.

Figure 6.9: Distribution of the predicted Vickers’ hardness values HvML of the materials
contained in the DB1M database.

6.3.2 Comparison between the predicted and reference values
for Vickers’ hardness

The goal of this thesis was to find super-hard materials in DB1M. Super-hard materials
are materials with Vickers’ hardness Hv above 40 GPa when measured by the Vickers
hardness experimental test discussed in Section 2.5 [60].
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Therefore, it is useful to know how many materials the M2v-p(Hv) predicted to be
super-hard. To do so, the predicted Vickers’ hardness values HvML were compared with
some experimental reference values Hexp

v from [7]. The M2v-p(Hv) predicted:

• 7 materials with a HvML greater than the experimental value Hexp
v of diamond

(mp-66) [7, 9];

• 14 materials with a HvML equal to the experimental value Hexp
v of diamond

(mp-66) [7, 9];

• 1 materials with a HvML greater than the experimental value Hexp
v of c-BN (mp-

1639) [7, 9], but smaller than the experimental value of diamond (mp-66) [7, 9];

• 685 materials with a HvML greater than the experimental value Hexp
v of WC (mp-

1894) [7, 9], but smaller than the experimental value of c-BN (mp-1639) [7, 9];

The summary of Vickers’ hardness values of the reference materials used in the
previous comparisons are presented in Table 6.5. Like in Table 6.4, the materials are
identified using their Materials Project id [9]. From this section onwards, the values of
the elastic properties will be presented in GPa for convenience reasons.

Table 6.5: Summary of the elastic properties of some materials of interest [4, 7, 9]. The
Materials Project’s id of the materials is included to identify them.

Material id Hexp
v [GPa] [7]

Diamond 66 96
c-BN 1639 66
WC 1894 27

6.3.3 Validation via DFT calculations

Carrying out the validation via DFT calculations of the predictions made for 1 million
materials is not viable. Therefore, for this thesis, the focus were materials with an
higher chance of being synthesizable, i.e., materials with an energy above the convex
hull Ehull bellow 50 meV1. From these, the 25 materials with highest predicted shear
and bulk moduli were chosen to be analysed using DFT calculations. Only 29 DFT
calculations were performed since most of the materials chosen due to the shear modulus
predictions were the same as those chosen due to the bulk modulus predictions.

1A discussion about the thermodynamic stability of a material is presented in Appendix A.
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The analysis of the 29 chosen materials consisted in calculating their stiffness tensor,
also called elastic moduli tensor. These calculations were performed in VASP via
atomate’s [61] workflows, using the corresponding default input parameters. Once the
tensor was computed, all the elastic properties could be obtained [6, 62]. The list of
materials used and their space group spg, number of atoms N , and predicted (ML) and
calculated (DFT) shear G and bulk K moduli and Vickers’ hardness Hv are presented
in Table 6.6. Information about the thermodynamic stability of materials is also given
in Table 6.6 through the energy above the convex hull Ehull. This way of evaluate the
thermodynamic stability of materials is discussed in Appendix A.

Looking at the Table 6.6 it is possible to see that most of the materials chosen
are metal borides, in particular with a generic formula of the type MNB3. The only
materials that were not present in both lists of selected materials where BeNb2B3,
BeNbB2, Ir3Os5, Nb2ReB2, Os2RuW, TaBeB2, TaTiB3, and VReB.

The MAE was used to assess if the predictions were in good agreement with the
results obtained through more accurate DFT calculations. The MAEs obtained, in
GPa, for the shear and bulk moduli and the Vickers’s hardness were 26, 9, and 5,
respectively. However, presenting the MAEs by themselves does not provide full insight
into whether the predictions are good or not. Therefore, the mean value ȳ of all values
calculated via DFT for each property were calculated. The values obtained were,
in GPa, 197, 304, and 26 for the shear and bulk moduli and the Vickers’ hardness,
respectively. By taking into account the MAE and the mean value ȳ of each property,
it is possible to see that the best predictions where made for the bulk modulus. These
MAE values and the mean values ȳ for the three elastic properties are presented in
Table 6.7.

This statement can also be confirmed using the R2 metric. The values obtained
for this metric were -0.166, 0.901, and -0.014 for the shear and bulk moduli and the
Vickers’ hardness, respectively. These values show that the bulk modulus is the only
one that shows good linear relation between the values KDFT and KML. These linear
relation is also visible in Figure 6.11. The plots of the shear modulus and Vickers’
hardness are shown in Figures 6.10 and 6.12, respectively. The R2 metric values for
these three elastic properties are presented in Table 6.7.

All 29 materials in Table 6.6 were considered thermodynamically stable or quasi -
stable since all have energy above the convex hull Ehull bellow 50 meV and only the
B2OsW2 was considered to be elastically unstable. A discussion about the elastic
stability of a material is presented in Appendix A.
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Table 6.6: Summary of the predicted (ML) and calculated (DFT) shear G and bulk K
moduli and Vickers’ hardness Hv for the 29 different materials chosen for validation
via. Apart form the elastic properties, the table also includes information about the
space group spg, number of atoms N and the energy above the convex hull Ehull. The
materials are sorted in descending order of Vickers’ hardness.

Material spg N
Ehull

[meV]
GML

[GPa]
GDFT

[GPa]
KML

[GPa]
KDFT

[GPa]
HvML

[GPa]
HvDFT

[GPa]
TiVB3 63 10 16 226 245 270 262 36 42
TaTiB3 63 10 14 209 230 262 268 33 36
Ta2BeB3 69 12 0 218 232 272 272 25 36
BeNb2B3 69 12 0 223 222 268 255 26 35
TiB3W 63 10 0 216 235 297 293 33 33
NbVB3 63 10 13 226 217 285 279 29 29
TaVB3 63 10 13 224 222 289 290 29 29
Os5Ru3 25 8 18 215 236 356 365 27 27
TaNbB3 63 10 0 230 213 285 288 28 27
Os2Ru 15 6 14 213 233 360 369 28 27
TaBeB2 62 16 39 209 192 248 248 25 26
BeNbB2 62 16 29 208 186 244 235 25 26

MoOs4Ru 13 12 21 210 220 358 357 28 25
Ir3Os5 25 8 28 203 196 365 378 28 25

V2ReB2 127 20 8 217 206 301 299 31 24
VOs3 44 4 0 224 197 362 342 27 23

Os2RuW 51 8 49 201 189 341 350 26 23
MoOs2 62 12 38 209 188 358 345 28 23
V2TcB2 127 20 8 209 197 286 283 28 23
VReB2 38 4 26 230 200 306 319 33 23
VB2Mo 26 8 0 208 196 287 293 26 22
TaTcB3 63 10 19 215 191 293 311 28 22
VReB 63 6 21 203 185 299 310 27 22

Nb2ReB2 127 20 0 206 189 295 290 24 22
NbTcB3 63 10 4 222 174 293 294 27 20
VTcB2 26 8 8 210 147 294 299 28 19

BIr 129 4 28 216 139 299 265 31 18
VCoOs2 123 4 44 209 119 339 312 25 17
B2OsW2 128 20 46 208 106 364 352 26 16

Since the objective was to search for super-hard materials, it is worth mentioning
the prediction of the super-hard ternary compound TiVB3 with a Vickers’ hardness of
42 GPa (see Table 6.6). There were also predicted some osmium compounds with high
bulk modulus.
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Table 6.7: Summary of the accuracy of the prediction of the elastic properties of the
materials analysed with DFT calculations. The mean value ȳ of all values calculated
via DFT for each property is included to give a feel for the magnitude of the MAE
obtained.

Metric G K Hv E ν
ȳ 197 GPa 304 GPa 26 GPa 419 GPa 0.23

MAE 26 GPa 9 GPa 5 GPa 55 GPa 0.03
R2 -0.166 0.901 -0.014 -0.241 0.411

As discussed in Section 2.3.1, it is possible to use Eqs. 2.25 and 2.26 to obtain,
respectively, Young’s modulus E and Poisson’s ratio ν using the shear and bulk moduli.
Let Young’s modulus and Poisson’s ratio calculated using the shear and bulk moduli
obtained from DFT calculations be called EDFT and νDFT, respectively. These elastic
properties calculated using the predicted values of the shear and bulk moduli were
called EML and νML, respectively. Young’s modulus and Poisson’s ratio calculated
using Eqs. 2.25 and 2.26 and both type of values, i.e, using DFT and predicted values,
are presented in Table 6.8.

The MAE was used to check if Young’s modulus and Poisson’s ratio calculated
with predicted values were in good agreement with the ones calculated with values
obtain through DFT calculations. The MAEs obtained, in GPa, were 55 and 0.03
for Young’s modulus and Poisson’s ratio, respectively. The mean value ȳ of all values
calculated using via DFT for each property were calculated and the values obtained
were, in GPa, 419 and 0.23 for Young’s modulus and Poisson’s ratio, respectively.
Looking at the R2 metric, the values obtained were -0.241 and 0.411 for Young’s
modulus and Poisson’s ratio, respectively. This means that, despite not having the
best linear relation between the values calculated using the model’s predictions and
the ones calculated with DFT’s values, the best predictions were made for Poisson’s
ratio. The plots of Young’s modulus and Poisson’s ratio are shown in Figures 6.13
and 6.14, respectively.
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Figure 6.10: Comparison of the shear modulus GML values predicted with M2v-p(G) and
the values GDFT from DFT calculations used as targets for the 29 materials chosen to
be analysed with DFT calculations.
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Figure 6.11: Comparison of the bulk modulus KML values predicted with M2v-p(K) and
the values KDFT from DFT calculations used as targets for the 29 materials chosen to
be analysed with DFT calculations.
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Figure 6.12: Comparison of Vickers’ hardness HvML values predicted with M2v-p(Hv) and
the values HvDFT obtained as described in Section 5.2 used as targets for the 29 materials
chosen for validation.
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Figure 6.13: Comparison of Young’s modulus EML values predicted with M2v-p and the
values EDFT obtained as described in Section 6.3.3 used as targets for the 29 materials
chosen to be analysed with DFT calculations.
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Table 6.8: Summary of Young’s modulus E and Poisson’s ratio ν calculated using
predicted (ML) and calculated (DFT) shear G and bulk K moduli for the 29 different
materials chosen for validation.

Material EML [GPa] EDFT [GPa] νML νDFT

TiVB3 530 560 0.17 0.14
TaTiB3 495 537 0.19 0.17
Ta2BeB3 516 541 0.18 0.17
BeNb2B3 523 517 0.17 0.16
TiB3W 522 556 0.21 0.18
NbVB3 537 518 0.19 0.19
TaVB3 534 530 0.19 0.20
Os5Ru3 538 583 0.25 0.23
TaNbB3 544 513 0.18 0.20
Os2Ru 533 578 0.25 0.24
TaBeB2 490 458 0.17 0.19
BeNbB2 486 442 0.17 0.19

MoOs4Ru 527 548 0.25 0.24
Ir3Os5 515 501 0.27 0.28

V2ReB2 526 503 0.21 0.22
VOs3 557 496 0.24 0.26

Os2RuW 504 481 0.25 0.27
MoOs2 526 477 0.26 0.27
V2TcB2 505 479 0.21 0.22
VReB2 552 496 0.20 0.24
VB2Mo 502 480 0.21 0.23
TaTcB3 518 477 0.21 0.24
VReB 496 463 0.22 0.25

Nb2ReB2 501 466 0.22 0.23
NbTcB3 532 436 0.20 0.25
VTcB2 509 380 0.21 0.29

BIr 522 354 0.21 0.28
VCoOs2 520 317 0.24 0.33
B2OsW2 525 289 0.26 0.36
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Figure 6.14: Comparison of Poisson’s ratio νML values predicted with M2v-p and the
values νDFT obtained as described in Section 6.3.3 used as targets for the 29 materials
chosen to be analysed with DFT calculations.



Chapter 7

Conclusions and future work

7.1 Conclusions

The goal of this thesis was to predict the shear and bulk moduli and Vickers’ hardness
with DFT accuracy of materials from a dataset of [1] in the search for super-hard
materials.

Rewrite of the original code in Pytorch Lightning framework [30] and the implemen-
tation of the package Optuna [31] to fine-tune the model hyperparameters has proven
to be useful in the management of the training of all models used.

From Sections 6.2, it is possible to see that the results obtained using the original
atom feature vector and the one containing only the atomic number are similar. This
is a good indicator that, in future works, for large enough datasets, the model is
able to build the atom feature vector using only the atomic number of the chemical
element. This is important for elements to which there are not many experimental
results available.

The model trained for each property was able to produce accurate predictions on
the data from DB1M. The search for super-hard materials in this dataset resulted in
the prediction of the super-hard ternary compound TiVB3 with a Vickers’ hardness of
42 GPa. There were also predicted some osmium compounds with high bulk modulus.

7.2 Future work

In this thesis, the SGD optimiser was used to calculate the gradients in the training
process. It would be important to test if the use of the ADAM optimiser, the standard
optimizer, to calculate these gradients would affect the accuracy of the model.
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In terms of the feature vectors used, it would be interesting to continue to investigate
the importance of the features used to build the atom feature vector due to the results
obtained. It would also be interesting to see the response of the model to the change
in the bond feature vector.

Since the ability to remove the values of the network before the last activation
function was implemented, it would be interesting to use these values as input features
in simpler models to explore the accuracy of transferring the feature engineered using
a huge dataset to small and specific datasets. This process was not tested in this thesis
due to lack of time.

The model is now able to perform multi-class classification. In future work, the
model could be trained and used to classify the materials of DB1M. It was not possible
to perform this search due to lack of time.

The model shows good predictive capabilities for the elastic properties studied. It
would be interesting to analyse the materials predicted to have high Vickers’ hardness
but with energy above the convex hull between 50 meV and 200 meV. In the future,
the model should be applied to predict other properties of the materials from DB1M.
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Appendix A

Evaluate the stability of a material

A.1 Structural stability

A way to describe the structural stability of a material is to use the energy above the
convex hull Ehull. The concept of convex hull arises from the need to guarantee that
the decomposition channel of a material is the more stable channel available [63]. In
other words, it is necessary to know if, for example, the material AxBx is not more
stable than the material AxBy.

The convex hull of thermodynamic stability is the hypersurface in composition
space that passes by all materials that are thermodynamically stable [63]. Therefore, a
material is said to be:

• thermodynamically stable if its distance to the convex hull is zero or sufficiently
close to zero;

• thermodynamically unstable if its distance to the convex hull above zero.

A.2 Elastic stability

As discussed in Chapter 2, the behaviour of a crystal is described by the elastic moduli
tensor λijkl. Then, as noted by Born [64], the properties of this tensor can be used to
to determine the elastic stability of a crystal. In [65] are stated the following necessary
and sufficient stability conditions:

• The tensor λijkl is definite positive;

• all eigenvalues of λijkl are positive;
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which are possible formulations of the generic Born elastic stability conditions for an
unstressed crystal. These conditions are agnostic to the symmetry of the crystal.
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