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Resumo

Resumo

Nos altimos anos, o problema de roteamento de veiculos e 0 seu impacto
ambiental tornou-se um ponto de interesse para as empresas logisticas e investigadores, que
continuam a propor novas e mais completas formulacdes para este problema para melhor
refletir o contexto real da operacdo logistica. A incerteza inerente aos dados também levou
ao aumento da investigacdo em modelos que consideram dados incertos, de modo a fornecer
resultados aplicdveis na prética.

Nesta dissertacdo, estudamos o Problema de Rotas com Poluicdo, e propomos
dois modelos que consideram a incerteza nos tempos de viagem e na procura, para 0S casos
em que 0s custos ambientais e operacionais sdo uma preocupacdo, e estudamos o0s
compromissos entre estes dois aspetos de avaliacdo. Verificamos que 0s atrasos na rota tém
um impacto muito mais pronunciado nas emissfes de veiculos, nos custos operacionais, e
nos tempos de resolucdo de problemas do que o aumento da procura. Mostramos também o
impacto que os sistemas start-stop tém nos custos de operagdo, e como 0s reduzem sem
esforgo computacional extra. A interagdo entre 0 aumento da procura e 0s atrasos raramente
é pronunciada, e, enquanto o aumento da procura tende apenas a piorar o desempenho
ambiental, os atrasos conduzem a custos mais elevados e pior desempenho, devido ao
aumento do salario do condutor, e ao aumento da velocidade dos veiculos, o que leva a um

aumento emissoes.

Palavras-chave: Problema poluicdo-rotas, Rotas robustas,
Otimizacao, Incerteza na procura, Incerteza no tempo
de viagem, Bi-objetivo.
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Abstract

Abstract

In recent years, the Vehicle Routing Problem and its environmental impact have
become a point of interest for logistic companies and researchers, that propose newer and
more complete formulations to better reflect the real context of logistic operation. The
inherent uncertainty in the data has also led to increasing research in models that work with
uncertain data, as provide practical results.

In this dissertation, we study the Pollution Routing Problem, and propose two
models that consider uncertainty in travel times and demand, for cases where environmental
and operational costs are a concern and study the tradeoffs between the two. We find delays
in route have a much more pronounced impact in vehicle emissions, operation costs, and in
problem solving times than increase in demand. We also show the impact start-stop systems
have on operation costs, and how they reduce them without requiring additional
computational effort. The interaction between demand increase and delays is rarely
pronounced, and, while demand increase tends to only worsen environmental performance,
delays drive higher costs and worse performance, due to increase in driver pay, and increase

in vehicle speeds, which leads to more emissions.

Keywords Pollution Routing Problem, Robust Routing, Optimization,
Demand uncertainty, Travel time uncertainty, Bi-Objective.
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Introduction

1. INTRODUCTION

The basic route planning problem, known as VRP, is becoming more well-
known in today's distribution networks, due to rapid advancements in computational
capabilities and solving methods, it is becoming feasible for companies to quickly design
solutions for the collection or delivery of packages, which are carried out by a small fleet of
vehicles, based on the geographic locations of customers, their respective demand, and time
constraints.

The interest of companies in having off-the-shelf models and algorithms devoted
to route planning problems is three-fold: not only can they optimize their transport system,
reducing necessary manpower, improving customer satisfaction, and reducing costs, but also
reduce the concerns caused by managing such complex networks of vehicles and customers.
However, most models assume the information is perfect, that is, that the data provided to
the model will materialize exactly, be it customer demands, travel speeds, travel times, fuel
consumption (among others). The solutions provided by the models and algorithms reflect
that assumption, but the solutions given are only guaranteed to work if the real world behaves
exactly as expected, which is seldom case. That inherent uncertainty in the data has led to
increasing research in approaches able to cope with uncertain data, as they better reflect real
world conditions, and provide more usable results.

In this dissertation, we created models that consider uncertainty in travel times
and demand, for cases where environmental, and operational costs are a concern. We study
the impact that uncertain conditions have on solutions, and what trade-offs may exist
between minimizing costs and minimizing emissions. We find delays in route have a higher
impact in vehicle emissions and operation costs, as well as in problem solving times, than
the increase in demand. We also show the impact start-stop systems have on operation costs,
and how they reduce them. The interaction between demand increase and delays is rarely
high, and, while demand increase tends to only worsen environmental performance, delays
result in higher costs and worse performance, due to increase in driver’s pay, and vehicle

speeds, which leads to more emissions.
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1.1. Motivation and Objectives

In recent years, the Vehicle Routing Problem (VRP) and the impact the transition
to greener transportation systems has on the problem formulation has become a focus of
researchers, leading to the introduction of more sophisticated formulations to the problem
that allows for better reflecting the full context of the logistic operation (Peng et al., 2020).
While the classic VRP is focused on reducing the economic cost of transporting a set of
goods to a set of customers, more recent variations have begun to include green issues, such
as the use of alternative fuel vehicles, pollution reduction, energy minimization, and other
constraints, leading to more challenging optimization problems (Zhen et al., 2020).

During the last decades, the increase in emission of greenhouse gases (GHG) has
become increasingly relevant. These GHG are mainly created by the burning of fossil fuels,
which in turn are mainly consumed by the transportation sector, making this sector one of
the main culprits of air pollution (Peng et al., 2020; Yu et al., 2020).

Meanwhile, consumer pressure and increasingly stiffer environmental
regulations have led to many companies overhauling their logistic management (Peng et al.,
2020), integrating environmental considerations into their logistic and vehicle route
planning. In turn, this trend has led to the increase in the complexity of transportation
optimization problems, caused by the potential dissonance between cost optimization and
ecological optimization.

Therefore, this work establishes the main focus points:

1. Identify the main factors subject to uncertainty that affect vehicle routing
problems.

2. Establish the conflicting objectives to evaluate solution in vehicle
routing.

3. Formulate a model that is capable of handling uncertainty in a vehicle
routing problem with environmental considerations.

4. Find the tradeoffs between handling uncertainty and optimal routing.

5. Find the impact of uncertainties on objective function tradeoffs.

2 2022



Introduction

1.2. Dissertation Structure

This dissertation contains 5 chapters. After this first introduction chapter, a
literature review is presented, which consists of a study of Vehicle Routing Problem with
focus on the Pollution Routing Problem and its variants, and a review of the main approaches
to deal with uncertainty, with a focus on the robust programming methodology. In the third
chapter, the problem formulations are presented, along with the explanations for the model
components. The fourth chapter contains a series of computational results and their
discussion. The fifth chapter presents the main conclusions, criticisms, and possible future

developments of this work.
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Literature Review

2. LITERATURE REVIEW

2.1. Green Logistics

(Poonthalir & Nadarajan, 2018) define Green Logistics as “routing vehicles with
a concern towards environment”. Logistics are easily impacted by environmental factors,
therefore routing vehicles should include concern towards environmental factors,
particularly towards CO, emission reduction through the development of better operating
plans. This has led carbon emission reduction to be intensively researched, and ingrained
carbon emission as a day-to-day conversational theme (Peng et al., 2020). Research on green
routing problems has then gained importance due to its environmental and societal impact.

Green Logistics has been widely researched in the literature, with particular
attention paid to the environmental consequences of various distribution systems, waste
management, energy conservation, and the use of unmanned aerial vehicles for delivery
(Peng et al., 2020).

Under increasing petroleum prices, finding different sources of energy has been
widely accepted as necessary. This makes Green Logistics an essential direction in the
development of modern logistic solutions (Zhen et al., 2020).

The main types of problems of current research on Green Logistics are the
Pollution Routing Problem, Energy Minimizing Vehicle Routing Problem, and Green
Vehicle Routing Problem (Yu et al., 2020).

2.2. Vehicle Routing Problem
The Vehicle Routing Problem, as formulated by (Laporte, 1992),is the problem
of, considering a depot, designing routes to deliver or collect a product to or from a set of
customers distributed in a territory, subject to the following conditions.
1. Each customer must be visited only once and by one vehicle.
2. All vehicles start and end their route at the depot.
Initially described in (Dantzig & Ramser, 1959)the mathematical formulation of

VRP now plays a central role in logistic planning.
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2.2.1. Capacited Vehicle Routing Problem
An important extension of the VRP, the Capacitated Vehicle Routing Problem
(CVRP) is formulated as a VRP with the following additional constraints ((Laporte, 1992).
1. Each customer has a non-negative demand that must be wholly fulfilled.
2. Each vehicle as a fixed maximum carrying capacity and may not leave
the depot carrying more than said capacity.

2.2.2. Vehicle Routing Problem with Time Windows

(Cordeau et al., 1999) formulates the Vehicle Routing Problem with Time
Windows (VRPTW) as an extension of the CVRP, in which the service to a customer has an
associated time window in which the service must start and finish. Two types of time
windows exist: soft time windows, which can be violated at a certain cost, and hard time
windows, for which no violation is allowed.

For each i in a node set N there is an associated time window [a;, b;], which
represents the earliest and latest time at which service may start. If the vehicle arrives before
the customer is ready to begin service, it waits. There is also a time window [ay, by],
associated to the depot node, where the values represent the earliest departure possible from
the depot, and the latest possible arrival to the depot.

Considering the travel time between node i and j to be t;; and customer service
time at node i to be s;, the inclusion of time windows may reduce the number of solutions,

and even lead to an impossible problem if (1) or (2) happen.

Ay < min (bi_tOi'i = 1,2,,|N|) (1)

by = min(a; +s; +tip, i =1,2,...,[N]|) (2)

The problem is then formulated as a CVRP with additional constraints to account
for service time constraints. The Objective Function (OF) is a minimization of total travel

costs.
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2.3. Green Variants of the Vehicle Routing Problem

2.3.1. Green Vehicle Routing Problem

Agencies consider numerous factors in the selection of a particular vehicle type,
including fuel availability and geographic distribution of fueling stations in the service area,
vehicle driving range, vehicle and fuel cost, fuel efficiency, and fleet maintenance costs. The
lack of a national infrastructure for refueling alternative fuel vehicles (AFVs) presents a
significant obstacle to alternative fuel technology adoption by companies and agencies
seeking to transition from traditional petroleum-powered vehicle fleets to AFV fleets.

Moreover, existing alternative fueling stations (AFS) are distributed unevenly
across the country and within specific regions. Additional operational challenges exist due
to the reduced driving range of most AFVs, which, coupled with the lack of infrastructure,
may increase the difficulties in overhauling conventional fleets for more modern,
environmentally friendly ones (Erdogan & Miller-Hooks, 2012).

As previously mentioned, transportation is responsible for a large part of GHG
emissions. Furthermore, fuel consumption is a significant amount of the total cost of
conventional transportation methods. The reduction of petroleum-based fuel consumption
would therefore improve vehicle route efficiency. The Green Vehicle Routing Problem
appears then with the goal of reducing fuel consumption and carbon emissions by using
AFVs (Zhen et al., 2020).

However, the lack of large-scale infrastructure for AFV refueling creates
operational problems unseen by conventional vehicle fleets, reducing the economic viability
of overhauling conventional fleets for more modern, environmentally friendly ones
(Erdogan, 2012).

Introduced by (Erdogan & Miller-Hooks, 2012)the Green-Vehicle Routing
Problem (GVRP) proposes the creation of routes of a fleet of homogenous vehicles,
beginning and ending on a single depot, that pass through a subset of the existing vertices
(which can be either customers or AFSs) with the main objective of reducing the total

distance travelled.
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2.3.2. Pollution Routing Problem

Before 2011, there was a gap in the application of energy-based models in
vehicle routing, where GHG emissions, operational and economic objectives were all
considered.

((Bektas & Laporte, 2011) introduced the Pollution Routing Problem, which
attempts to construct routes for a VRPTW model, with the objective to minimize the total
cost composed of cost of emissions, operational costs and cost of drivers.

The PRP can be defined on a complete graph with a set of nodes and a set of arcs
defined between each pair of nodes. Node 0 is the depot. There exists a homogeneous set of
vehicles, each with a certain capacity. There is a customer set and every customer has a
certain demand and a request to be served within a prespecified time interval. Each client
requires a certain time to be served.

The PRP deals with constructing a set of routes for vehicles where:

1. Each customer has its demand fully fulfilled, is only visited by one
vehicle, and has the service start at allowed times.

2. All vehicles depart from the depot and all vehicles must return to the
depot at the end of their routes.

3. The depot has a minimum service time and maximum service time,
which define the earliest start possible of the route and the maximum
length of the route.

4. The speed at which a vehicle travels on arc is constrained by a lower
bound and an upper bound.

The PRP formulation is non-linear due to the multiplication of speed and arc
travel variables in the OF and the multiplication of node arrival time and arc travel variable
in the calculation of driver time but can be linearized by discretizing the speed of a vehicle
in each arc into R equally distant speed levels.

The fuel consumption formula proposed in (Bektas & Laporte, 2011) fails to
properly account for fuel consumption at lower speeds. (Demir et al., 2012) extend the PRP
formulation, introducing a new term in the OF, that is only significant for lower speed levels,
as shown in the dotted line in Figure 2.1, therefore better describing fuel consumption at

speeds below 40 km/h.
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Figure 2.1. Fuel consumption at different speeds (Demir et al., 2012)

The discretization of speeds, although being a suitable tool to maintain linearity
in the PRP formulation, leads to discretized travel times and fuel consumption rates, which
increase the combinational complexity and may lead to sub-optimal solutions. (Xiao et al.,
2020).

(Xiao et al., 2020) extended the PRP formulation to the continuous case,
introducing the Continuous Pollution Routing Problem (e-CPRP) by considering the travel
speed as a continuous decision variable. All nonlinear components in the e-CPRP are
linearized by a unified parameter & to control the approximation error, resulting in the model
delivering truly optimized solutions. The authors find the parameter ¢ can be set as low as
0.01% without increasing the computational burden significantly and the gap between the

solution found by the e-CPRP model and the optimal one is within 3¢%.

2.4. Variants of the Pollution Routing Problem

2.4.1. Time-dependent Pollution Routing Problem
Traffic congestion is a concern in many major cities throughout the world,

especially during rush hours when traffic jams are common and delays likely. Increased

Jodo Daniel Machado Martins 9
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congestion also leads to increased exposure to some of the higher amounts of air pollution
(Moryadee et al., 2019).

In the standard PRP formulation, the travel time of a vehicle is a function
dependent on distance and speed, with the speed as an endogenous variable. In the Time-
Dependent Pollution Routing Problem (TD-PRP), the speed also depends on the departure
time of the vehicle because it is constrained during periods of traffic congestion.

Congestion can be considered in different ways. (Moryadee et al., 2019) define
three time periods, seen in Table 2.1: a starting period where there is free flow, a congestion
time period in the morning rush hour, and free-flow time period for the rest of the day.

Time Period Average Vehicle Speed (km/h)
1:00 - 5:30 (Free-Flow) 60
5:30 - 10:00 (Congestion) 30
10:00 - 12:30 (Free-Flow) 60

Table 2.1. Impact of time period on vehicle speed (Moryadee et al., 2019)

Franceschetti et al (2013) assume there is an initial period of congestion,
followed by free flow for the rest of the day. In the congestion period a vehicle drives at a
congestion speed smaller than the speed limit, during the peak time, but is only limited by
the speed limit in off-peak times. The authors assume congestion speed and congestions
times are constant that are already known.

One characteristic of vehicle routing problems with time windows is the ability
to arrive to a customer's location before the time window opens (with service only starting
within the time window). However, these problems only allow for idle waiting before the
service has begun, and do not consider waiting after a service has been completed as a
congestion-reduction approach.

(Franceschetti et al., 2013) formulate the TDPRP as a PRP with special
restrictions on vehicle speed. The authors employ the "idle waiting™ technique to include
congestion into the PRP framework, to appropriately account for the negative impacts of low

speeds induced by congestion.
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2.4.2. Fleet Size and Mix Pollution Routing Problem

Customer requests are addressed using heterogenous vehicle fleets in most real-
world distribution scenarios. The type of vehicle used has considerable influence on fuel
usage, distance travelled, and CO2 emissions, and is, therefore, an important variable to be
studied.

Utilizing lower capacity trucks will likely the increase overall distance travelled
when compared to a heavy-duty vehicle fleet, but each heavy-duty vehicle comes with a
larger engine, which results in higher fuel consumption and emissions per km. Replacing a
large vehicle with many trucks of various types can reduce CO2 emissions in some cases.
Solving the Fleet Size and Mix Pollution Routing Problem (FSMPRP) is worthwhile for
quantifying the benefits of using a flexible fleet in terms of fuel, emissions, and costs.

(Kog et al., 2014) introduced the FSMPRP, which is formulated as a PRP with
the objective of minimizing the total cost, which includes vehicle, driver, fuel, and emissions
costs. The maximum number of vehicles available for each type is imposed by constraints.
They found that employing a heterogeneous fleet without speed optimization results in a
higher decrease in overall cost than using a homogeneous fleet with speed optimization, also,
considering appropriate fixed speed produces results that are just marginally worse than

optimizing the speed on each arc.

2.4.3. Pollution Routing Problem with Simultaneous Pickup
and Delivery

(Tajik et al., 2014) proposes the Pollution Routing Problem with Simultaneous
Pickup and Delivery (PRPSPD), a variant of the PRP that includes two groups of nodes: the
first contains customers whose loads should be picked up, and the second covers customers
whose demands should be delivered. After servicing all pickup customers, their loads are
carried by trucks that distribute the loads among delivery customers, an example of which
can be seen in Figure 2.2. Hence, the amount of the product with which each vehicle is
loaded up at the depot is the total demands of delivery nodes visited during their routes minus
the total loads collected from pickup points in the routes that they are assigned to. If the total
picked-up products are over or equal to the total delivery demands during the route the

vehicle follows, it leaves the depot empty.
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Figure 2.2. Example of a PRPSPD solution (Tajik et al., 2014)

The PRPPD is formulated as a PRP with the added distinction of pickups from
and delivery to customers considering soft time windows (with a penalty in the OF for

earliness and tardiness).

2.4.4. Bi-Objective Pollution Routing Problem

Most real-world problems involve multiple objectives to evaluate the merit of
solution, which are generally conflicting and incommensurate. In the VRP, there exists for
each vehicle an optimal speed yielding a minimum fuel consumption, but that same speed is
generally lower than the speed preferred by vehicle drivers in practice. Increasing vehicle
speed leads to a reduction of total time spent on a route, which leads to the reduction of
driver—associated costs, but this, in turn, increases fuel costs and emissions.

Since the two objectives of minimizing fuel and time are conflicting, using multi-
objective optimization models and methods allows for an evaluation of the possible trade-
offs. In the context of the PRP, (Demir et al., 2014) introduce the bi-objective PRP,
consisting of a standard PRP problem where there are two conflicting objectives, namely the
minimization of fuel consumption (using the fuel consumption formula presented in (Demir
et al., 2012) and the total driving time.
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The authors show that while the two objectives are conflicting, it is possible to
achieve a strong reduction in fuel consumption without significantly increasing the total

driving time, and vice-versa.

2.4.5. Bi-level Pollution Routing Problem

Bi-level optimization is most useful to model in situations where there is a
leader-follower relation, meaning that the choices made by the leader restrict the follower’s
problem, the optimal solution of which has an impact on the leader’s objective function.

(Nath et al., 2019) employed bilevel optimization in PRP where the customers
are assigned to the fleet of vehicles by the depot, which operates as a leader. Its aim is to
determine the number of vehicles needed and the assignment of vehicles to consumers. The
vehicle will thereafter decide as the follower. Its goal is to plan a route that minimizes the
overall distance travelled while considering the depot's choice. This approach, while bi-level
in formulation, results in a pair of leader-follower that have similar priorities and are not
affected by the choice of the other level, reducing the necessity of portraying this relation as
a bi-level one.

Qiu et al (2020) also proposed a Bi-level PRP, seeking to minimize road freight
transport carbon emissions by taking into account both the authority and the freight

company, and their complex relationship, as seen in Figure 2.3.
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Figure 2.3. Conceptual model for a Bi-level PRP (Qiu et al., 2020)
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In this model the authority sets prices for carbon emissions to minimize their
cost, the freight company develops routes that minimize the total cost considering those
emissions, which in turn leads to the authority changing the prices to again minimize carbon
emissions. This back and forth continues until an equilibrium is reached between the upper
and lower level objectives. Resolving disagreements between the authority and the freight
business should be prioritized in order to jointly reduce road freight transport carbon

emissions from the viewpoints of the authority and the freight company

2.5. Uncertainty in Vehicle Routing Problem

The consideration of uncertain parameters is a difficult aspect of the VRPs to
solve. In order to address unknown events in demand, displacement time, and service time
in a VRP, various approaches have been developed. The two main approaches - stochastic
and robust techniques — are now distinguished.

The goal of the Stochastic Vehicle Routing Problem (SVRP) is to identify the
objective function's near-best solution while accounting for all uncertain occurrences with
defined probability distributions (Nasri, Hafidi, et al., 2020; Nasri, Metrane, et al., 2020).

However, in practice, one may not be aware of the travel and service timings
ahead of time. Weather or traffic circumstances, for example, may cause travel durations
between two vertexes to be uncertain. Furthermore, distribution technology, driver expertise,
parking circumstances, and other factors may influence service times (Li et al., 2010).

A different strategy to deal with uncertain parameters is robust optimization,
which does not rely on probability distributions for uncertain parameters, instead optimizing
against the worst-case scenario that may be caused by the source of uncertainty, making the
obtained solution as much as possible “immune” to it (Nasri, Hafidi, et al., 2020; Nasri,
Metrane, et al., 2020).

2.5.1. Stochastic Routing
There is a striking difference between deterministic and stochastic VRP
formulations: for all SVRP variants, the DM must decide the solution (at least partially)
before the exact values of all parameters are completely known as these are independent

continuous or discrete random variables with a probability distribution, such as uniform,
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exponential, or normal (Li et al., 2010).The solution may fail when it is implemented with
the realized data in opposition to the deterministic problem, where the DM has complete
information when making the plans. There are two common ways of modelling stochastic

problems: as a chance constrained program or as a stochastic program with recourse.

2.5.1.1. Chance Constrained Programming
Chance constrained programming (CCP) was proposed by (Charnes et al., 1959)
as a method of stochastic programming. It provides a way of modelling stochastic decisions
on the premise that the stochastic constraints will hold at least with probability «.
The problem is solved by ensuring that the probability of route failure is below
a certain level and the cost of failures is typically ignored (Oyola et al., 2018). The objective
is typically deterministic. The CCP model can be generically written as
Min f(x)
Subject to
Prob (xeX)>1—a« (3)

The DM provides the parameter value a giving the acceptable probability of
failing to meet the constraints. The confidence level also influences the problem tightness,
computational difficulty, and feasibility. A large enough confidence level may lead to

unrealistic solutions (Oyola et al., 2018).

2.5.1.2. Stochastic Programming with Recourse
Although simple, the CCP model does not consider the possibility of route
failure, nor does it take into account the correction costs in case of route failure (Li et al.,
2010). In Stochastic Programming with Recourse (SPR), one allows route failures, but the
DM must define a recourse policy, describing what actions to take to repair the solution after
a failure(Oyola et al., 2018).
The recourse policy leads to different variants of an SVRP formulation. Three
common recourse policies are:
1. When capacity is exceeded when servicing a customer, the vehicle
interrupts its route and returns to the depot, resuming the route at the

same customer.
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2. Before route failure happens the vehicle preemptively travels to the
depot. This method is averse to failure and attempts to prevent it from
happening.

3. Each route is continuously optimized, and the vehicle path may change
in route due to higher variations in demand than expected, route failure,

or restocking.

2.5.2. Robust Routing

The most popular methods for coping with uncertainty are stochastic procedures,
but they have two significant disadvantages: information accessibility and tractability. The
first occurs when it is unknown what probability distribution describes the uncertain
parameters, which frequently occurs when there is insufficient historical data. In addition,
when there are many random variables, tractability may become a problem, making it
prohibitively difficult to finish the optimization (Wang et al., 2021).

Robust optimization is an alternative paradigm that just assumes that uncertain
parameters are expressed as variables that fall into a predetermined set, and searches for the
best routing architecture that is immune to all possible parameter realizations within that set
(Wang et al, 2021).

(Soyster, 1973) proposed a linear optimization model to construct a solution that
is feasible for all data that belong to a convex set. The author considers the following nominal
linear optimization problem.

Consider a row i of a nominal matrix A, with size n * n. Let J; be the set of

coefficients in row i that are subject to uncertainty. Each entry a;;, j € J; takes values

according to a symmetric distribution with a mean equal to the nominal value in the interval

[a;j — d;j, a;j + d;;]. The authors formulate the linear model with auxiliary variable y; as

such.

n
Maximize Z CjX;
j=1

subject to

16 2022



Literature Review

= (4)
Zaux] + Zau yj < b;, vVi=12,..,n
j=1 JEJi
—yi <x; <Yj, Vi=12,..,n (5)
L <xj <u, vVi=12,..,n (6)
yj >0 , V] = 1,2, | (7)

At optimality, to allow x; to take the greatest value possible y; will be as low as
possible, therefore y; = |x;| which implies:
Z a;jx; + Z aij x| < b Vi=12,..,n (®)
JEJi JEJi
Y jey; 4;5x;| gives the necessary protection to the ith constraint by maintaining a
gap between }.;a;;x; and b;. The resulting model is capable of withstanding severe
uncertainty; however, it produces considerably worse solutions, when compared to the
deterministic problem, in order to ensure said robustness.
(Ben-Tal & Nemirovski, 2000) proposed a less conservative model by
considering an uncertain linear problem, now with auxiliary variables u;; and i;;

guaranteeing feasibility within an ellipsoidal uncertainty set.

n

Maximize Z CjXj

j=1
subject to

(9)

Zaux]+ Zauuu+ﬂ ZALZJ if, < b, Vi=12,..,n

JEJi JEJi

uU <x il-jSul-j, Vi,jE]i (10)
lj < x]' < uj , Vj = 1,2, v, n (11)
u; =0, vi=12,..,n,Vj =12,..,n (12)

Where ; is a positive number. The authors have shown that the probability that

the ith constraint is violated is at most e=%*/2 . Models following ellipsoidal uncertainty are
less conservative than the one proposed by (Soyster, 1973), as every feasible solution to the
latter problem is a feasible solution to the former problem, but leads to nonlinear models,

which are more demanding computationally (Bertsimas & Sim, 2004).
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(Bertsimas & Sim, 2004) propose an approach for robust linear optimization that
retains the linear formulation but offers control over the level of robustness of the solution.

Consider the ith constraint of the same nominal problem. For each i there is a
parameter t; that governs the robustness of the solution and takes values in the interval [0,
I/;[]. The aim is to be protected against all cases when up to |t;| of these coefficients can
change, and one coefficient a;; changes by (t; — [t;]) * 4;; , therefore, only a subset of the
coefficients adversely affects the solution with the rest of the uncertain parameters taking
their deterministic value.

The linear model is formulated as

n

Maximize z CjX;j

j=1
Subject to
n (13)
Zaijxj + ZiT; + ZPU < bi Vi = 1,2, v,
j=1 J€Ji
Zi+pij Zéij Vi Vj= 1,2,..,n (14)
=Y < Xj < Yj V] =12, ..,n (15)
lj < Xj < uj V] = 1,2, v, n (16)
pi; =0 Vi,j €]; (17)
Y, =0Vj=12,.,n (18)
zz=20Vi=12,..,n (19)

The box, ellipsoidal and polyhedral sets can also be intersected to form new sets:
“box+ellipsoidal”, “box+polyhedral” and “box-+ellipsoidal+polyhedral” uncertainty sets,
which are the intersection between ellipsoid and box, polyhedral and box, and ellipsoidal,
polyhedral and box set, respectively.

(Li, Z., Floudas, 2012; Wang et al., 2021) study some of the most prevalent
uncertainty sets used in the Robust Optimization (RO) literature considering consumer
demand and vehicle travel time uncertainty and reduce the uncertainty sets studied by
(Bertsimas & Sim, 2004).

The authors model the demand and travel time uncertainty as the following

cardinality constrained sets.
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I (20)
Qei= {qER":q; =q° + §,@; Vi € {1,2,...,n},z @, <T9, @ € [0,1]"}
i=1
I (21)
Te = {tER" :t;; =t + &6 Vi,j € A,z ¢ij <T%,¢;; €[0,1]™"}
i=1

Where N, is the set of customers, A is the set of arcs, q; is the demand of

customer i and ¢;; is the travel time between node i and j. g7 € R%, , e RY, ,T7€

[0, |N,|] and t?j € RZ, ,f;; € Ryo, TP € [0, |A]] are parameters that need to be specified
by the modeler for the demand and travel time sets, respectively, and @; and ¢;; are variables
indicating where demand or travel time worsening happen.

If the uncertainty sets Q; and T, are compact and convex, then they can be
replaced by Ext(Q.) and Ext(T;) where Ext(Q) or Ext(T;) denotes the set of extreme points
of Qg or T, respectively. The demand and travel time uncertainty sets can therefore be
reduced to the sets of their extreme points.

Furthermore, if the uncertainty sets Q. and T, are compact and convex, then
they can be replaced by Ext(Qg) and Ext(T;), where Ext(Q;) € Ext(Q;) and Ext(T;) S
Ext(Tg;) denotes the set of non-dominated points of Ext(Q) and Ext(Ty), respectively.

Robust solutions following polyhedral uncertainty sets can provide good enough
protection against uncertainty at a smaller cost premium over the deterministic situation
(Rouky et al., 2018). Choosing the amount of uncertainty to consider is mostly left to the
DM.

(Nasri, Hafidi, et al., 2020; Rouky et al., 2018) studied the VRPTW with
uncertain travel and service times. The authors formulate two polyhedral uncertainty sets
based on (Nasri, Metrane, et al., 2020), where the travel time interval [t;

i tij + Al] ‘Sij] and

the customer service time interval is [P;, P; + 8; w;], where t;; and P; denote the nominal
values, and A;; and 6; are the maximum positive perturbations, and ¢;; and w; variables
controlling the level of uncertainty .N is the set of nodes, W is the set of vehicles, and A is
the set of arcs. They defined the sets U, and U, in a similar fashion as (20) and (21),

respectively.

Ut:{EERlAl/ El’j:tl’j+ Al'jgl'j Z EUSF,OSEUSF,V(I,,])EA} (1) (22)

(i,j))eA
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L%z@ERW/E=H+8mn§}asm0S%SANiem (23)
IEN

Where I and A vary respectively between 0 and |N| + |4, and 0 and |N|, and
define the maximum number of travel times and customer service times that may be subject
to uncertainty.

The model that guarantees the feasibility of a solution for all possible realizations
of uncertain travel and service times is much harder to compute, as it may have to solve a
model with as many as a very large number more scenarios.

(Munari et al., 2019) simplify the formulation of robust VRPTW models with
travel time and demand uncertainty, reducing the complexity of formulating the constraints
by adapting them to be Miller-Tucker-Zemlin (MTZ), introducing MTZ based constraints
that guarantee feasibility for all realizations of uncertain travel time and demand without
requiring the numerous constraints proposed by (Nasri, Hafidi, et al., 2020; Rouky et al.,

2018).

2.5.3. Robust Routing in PRP

There is little literature relating to the implementation of robust PRP models.

(Eshtehadi et al., 2017) consider a special case of the PRP where the objective
function solely depends on the total fuel consumption rather than the total cost of fuel
consumed and driving time as in the PRP.

The authors formulate three models, each representing a different approach to
robustness: the Hard Worst Case (HWC), a boxed uncertainty set that protects the solution
for all possible realizations of g;; Soft Worst Case (SWC), which protects the solution for a
certain number of realizations of g;, and chance constrained robust model (which the authors
classify as realistic approach), that protects the solution for 1-a realizations of q;.

The hard worst case robust optimization approach is modelled as a standard PRP
problem with the following constraints added:

' / T T (24)
Zfij_Zfﬁ:qi_ g; Vi € Ny

N N
I (25)
Zfij_iji =q;+ q; Vi € N,
N N
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fijxij <@ — q;— g x;; Vi,j €A (26)
fijxij = (C_Ij + (’]\1) Xij Vl,] € A (27)
fojxij < floj Vi € Ny (28)
’ ’ ~ , (29)
Y hi= Y =D fly Y f =2 vi €N
jeN jEN jeN jeN
flijZO Vi,j€E A (30)

Where the continuous variable f’l.j is defined as the flow through the arc (i, j)
in the worst-case scenario where each customer receives a lower bound of demand when
vehicles are loaded with an upper bound of demand, f;; is the flow through the arc (i, /),g;
is the nominal demand of customer i,g; is the variation in demand of customer i and x;; is a
binary variable that indicates whether arc between nodes i and j is travelled or not.
Constraints (24)-(25) define the relation between f;; and f’;;, and together make the
constraint (29) redundant. Constraints (26)-(27) define the flow through an arc when
demands take their worst value, and constraints(28)-(30) guarantee f;; assumes only feasible
values.

The soft worst-case robust optimization approach is modelled as PRP problem

with the following constraints added.

_ . 31
Zfij—iji=Qi+ [;q; Vi € Ny 30

jen jen
fizxij < (Q — q; — Ligo)xy; Vi,j € A (32)
fojxij < floj Vi € Ny (34)
Zﬁj_zfﬁ_zf,ij-l_zf,ji=(1+Fi)¢7i Vi €N (35)
JEN JeN JEN JEN
Z I = l/) (36)
;=
ien
I €{0,1} Vi € N, (37)

Where binary variables I; are defined in (37), and control the degree of
conservation in each constraint i in which TI; is equal to 1 if customer i receives its upper

bound value (otherwise it takes 0). The parameter ¥ indicates how many uncertain variables
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take their worst value and can be selected as any value in the interval [0;|N|], and is given
values representative of generic situations, as seen in Table 2.2. Constraints (31) and (35)
are the SWC equivalent of (24) and (29). Constraints (32)-(33) are the SWC equivalent of
(26)-(27) , and define the flow through an arc when demands take either the worst value or
the nominal value, indicated by variable T;, which can only be 1 i times, guaranteed by

constraint (36).

Instance Set
Values taken by 1 for different robustness levels

Zero Low Medium High
UK10 0 2 5 7
UK15 0 3 7 11
UK20 0 5 10 15

Table 2.2. Values taken by 1 for different robustness levels (Eshtehadi et al., 2017)

The chance-constrained robust optimization PRP problem is modelled with the
following constraints added.

Zf'ij_zf'ﬁ:fli— (1—-a)g; Vi € N (38)
JEN JEN
a 5.\ (39)
Zfij _iji =g+ (1—a)g; Vi € N
JEN JeN
_ . (40)
Zfij_iji =q;+ (1—a)g; Vi € N,
jEN JEN
fijxij <@ — g — (1—a)g§;) x;j Vi,j € A (41)
fijxij = (@ + A1 —a)g;)x;; Vi,j € A (42)
' / A (43)
Zfij—iji—Zfij+Zfﬁ = 2(1—a)g; Vi € N
JEN JjEN JEN JEN

Where a is the chance of g; taking its worst value, when demand follows a
uniform distribution. Constraints (39)-(40) are the chance constrained equivalent of (24)-
(25), with a similar redundancy appearing in (43), and constraints (41)-(42) are the chance
constrained equivalent of (26)-(27).

The authors found that the robust solution leads to reliable routes, while only

requiring a marginal increase in fuel consumption. Feasibility in all realizations of uncertain
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values can be achieved with only a marginal increase in distance travelled and fuel
consumed.

The authors also redefine the speed limits when studying travel time uncertainty,
where low travel uncertainty is defined as R = {40; ...; 75km/h} whereas the high travel
uncertainty is defined as R = {40; ...; 55km/h}.However, this approach reduces the study
of travel time uncertainty to the study of speed limit scenarios, which results in
overconservative solutions (as in most cases not every road is constrained by the same speed
limit) and does not account for delays that may happen when travelling.

(Tajik et al., 2014) study the Time Window Pickup and Delivery Pollution
Routing Problem (TWPDPRP), extending the standard PRPSPD and guaranteeing the
feasibility of the solution for all realizations of boxed uncertainty sets of service time, travel
time, fuel cost and emissions cost.

After studying a specific instance, the authors found that increasing the capacity
has no effect on the objective function until a certain size is reached, after which the increase
in capacity allows for longer routes with one vehicle, which reduced the total cost of

operation.
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Figure 2.4. Impact of increasing vehicle capacity in the OF (Tajik et al., 2014)

Their findings corroborate the idea that one of the main cost drivers is the

number of vehicles used. The authors also found, however, that certain cases exist where
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smaller capacity constraints impose to much of a burden on fuel costs, leading to solutions
with fewer vehicles being better. Figure 2.4 shows the optimal solution for different
capacities, and although solutions using three or four vehicles exist at all capacity levels, the

solution with four vehicles is more efficient until 55 tons capacity is reached.
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3. PROBLEM DESCRIPTION

3.1. Pollution Routing Problem

The PRP is defined on a complete graph ¢ = (N; A) with N ={0,1,2, ...,n} as
the set of nodes and A as the set of arcs defined between each pair of nodes. Node 0 is the
depot. There exists a homogeneous set of vehicles W, each with capacity Q. The set N, =
{1,2, ...,n} is the customer set and every customer i € N, has demand g; and a request to
be served within a prespecified time interval [a;, b;]. The time taken by a vehicle to serve
customer i is denoted by t;, and the distance from i to j is denoted by d;;.

A binary variable x;; is equal to 1 if a vehicle travels on arc (i,j) € A. For a
givenarc (i,j) € A, f;jand v;; respectively represent the amount of commodity flowing and
the speed at which a vehicle travels on this arc. Variable y; is the time at which service at
node j € N, starts, and s; is the service time of the route with the last customer j € Nj,.

The fuel consumption formula used in this dissertation is presented in (Demir et

al., 2012) and is calculated as the following:

d
F(w) = MkNV +wyav + yafv + Byv?) * - (44)
where
_ (45)
A= g
_ 1 (46)
Y= 1000 * . %1
a= T+ gsinf + gC,cosb (47)
B =0.5CypA (48)

A and y are constants, « is an arc-specific constant and S is a vehicle-specific

constant. f; v; ; 6; d, w, denote the vehicle payload, vehicle speed, acceleration, road
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gradient, distance, and curb weight of an empty vehicle, respectively. The definition of all

parameters and their typical values are given in Table 3.1.

Table 3.1. Parameters used in instances

Motation Description WValue used
E Fuel-to-air mass ratio 1
k Engine Friction Factar 0,2
N Engine speed (rev/s) 33
v Engine displacement(liters) 5
g Gravitational constant (m/s’) 9,81
Cy Coefficient of aerodynamic drag 0,7
P Air density (kg/m’) 1,2041
A Frontal surface area {mzj 3,912
C Coefficient of rolling resistance 0,01
N Vehicle drive train efficiency 0,4
1 Efficiency parameter for diesel engines 0,9
K Heating value of a typical diesel fuel (kl/kg) 44
W Conversion factor (gfs to L/s) 737
fy Driver wage (£/s) 0,0022
f. Fuel cost (€/L) 1,4
) Emission conversion factor (kgC05eq/L) 2,60212

There is a set of R equidistant non-decreasing speed levels " = {1, 2, ...,R}. A

binary variable z;; assumes 1 if a vehicle travels at speed level r € R on arc (i, ), and 0

otherwise.

The standard PRP is then formulated:

R
Minimize Z fe KNVAd;; ) zj; /0" (49)
(l:J)EA r=1
+ Z fC Wylal-jdl-jxij (50)
(i,j)eAa
(51)
+ Z fo vAaijdijfij
(i,j)eA
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R (52)
+ Z fcﬁy)lal]dl] Zl-rj (.,37‘)2
(l:])EA r=1
53
+ Z fas; 53]
JENg
subject to
Z on >1 (54)
jEN
Z xl-j :1, Vi € NO (55)
jEN
Z xij =1, Vj€ N, (56)
iEN
qjxi; < fij < (@ —qdx;, V(@Ij)EA (57)
(58)
J’i—Yj+ti+zdijzirj—l7rSM(l—xij), Vi € N,Vj € Ny, i #j
r=1
a, <y; <b;, Vi € N, (59)
(60)
yf_Sj+tj+zdjozjro/77rSM(l—xjo), Vj € N,
rel
§ (61)
ZZLTJ' =xij, V(l,])EA
r=1
fiiz0, V(@)HEA (62)
zj; €{0,1}, v(i,j)€e Ar=12,..,R (63)
dji . (64)
ZZmax{Oa] a; +t+—= }]l_al, Vi € Ny
JEN TER
d; . (65)
yl+ZZmax{Ob — b+t +—}ZUSb Vi € N,
JEN TER

The objective function contains five components: (49) takes into account fuel
consumption for speeds under 40 km/h, (50) and (51) measure the costs due to vehicle
payload and curb weight,(52) measures the cost accrued by variations in speed. The last

component (53) measures the total amount paid to the drivers. Constraint (54) means that at
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least one vehicle departs from the depot. Constraints (55) and (56) guarantee that each
customer is visited exactly once. The balance of flow is described through constraints (57)
which model the flow as increasing by the amount of demand of each visited customer and
having a hard limit in vehicle capacity. Constraints (58), (59) and (60) impose time window
limits. Constraints (61) impose the choice of speed level in an arc, and that a speed level

only exists if the arc is travelled by a vehicle.(62)-(63) define the variables f;; and z;;.

Constraints (64)-(65) reduce solving times.

As stated in (Demir et al., 2014), increasing vehicle speed leads to the reduction
of total time spent on a route, which leads to the reduction of driver—associated costs, but
this, in turn, increases fuel costs and emissions. Two conflicting objective functions can then
be defined, one pertaining to driver related costs, and one relating to emissions.

The bi-objective PRP can then be formulated as:

R
Minimize Y okNVAdy ) 2 /5" (s6)
(i,j)eAa r=1
+ z Gwy)laijdijxij (67)
(i,j)eA
(68)
+ Z G)//laf”d”fl]
(i,j)eA
R (69)
+ z ofydaydy Y 2l (77)?
(i,j)eA r=1
Minimize Z fasSj (70)

JENy

Subject to (54)-(65)
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3.2. Robust Counterpart of the PRP formulation

3.2.1. Robust Pollution Routing Problem with Uncertain
Demand

We follow (Eshtehadi et al., 2017) to model for robust demand uncertainty. As
described in Section 2.3.1, a parameter v is defined as an uncertainty budget, that states only
a certain number of customers receive their upper bound value. Binary variables I; reflect
whether customer i receives the upper bound of its demand or not. Variable §; indicates the
uncertain part of the demand of customer i, equal to 10% of q;. According to the description

of the SWC in 2.5.3, a new robust approach can be formulated as follows.

R (71)
Minimize Z fekNVAd,; zj; [v"
(i,j)eA r=1
+ z fcwy/laijdijxij (72)
(i,))eA
+ Z feyda;diif'i 73)
(i,j)eA
R (74)
+ z fpyAaydy; Y 2l (77)?
(i,j)eA r=1
+ Z fasSj 73
JENg

Subject to (54) — (56), (58) — (65),and
A . 76
Zfij_iji:CIi‘l' [iqg;, VieN 7e)

jEN jen
fiiy<(@— q— Lig)xij, Vij €A (77)
fij = (C[J + Fi(’jj)xij , Vl,] € A (78)
foj <f'o;» Vi €N (79)
’ ' A~ , 80
JEN JEN JEN jEN
Z I, =1y (81)
=

i€N,

I; € {0,1}, Vi € N, (82)
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Constraints (77)-(78) are the robust counterparts of constraint (57). (79) states
that the worst-case value for flow must be equal or greater to the nominal flow. Constraints
(76) and (80) define the relation between f;; and fl; (81) states that only 1y customers have
increased demand and (82) defines the variables T;.

This formulation is nonlinear due to (77) and (78), and is linearized by defining

two new auxiliary variable sets,v and v'.

vy = Lixgj (83)
vi; = Tjxy; (84)

and the following constraints
fij < @ — qi)xij — qivyj, v(i,j)EA (85)
fij = qjxij +q;v'j, V(i,j) €A (86)
vy <x; V() €EA (87)
v <T, V(@Ej)€EA (88)
[i +x;; < 1+, V(i,j) €A (89)
v <xi; V(@) EA (90)
v <L, V(i )EA (91)
[ +x; <1+ v(i,j)eA (92)
v;; € {0,1}, V(i,j)EA (93)
v;€{01}, V(i )EA (94)

3.2.2. Robust Pollution Routing Problem with Uncertain Travel
Time
3.2.2.1. Formulation|
In a similar fashion to Section 3.2.1 a new parameter ¢ can be defined to control
the conservatism of the solution. Binary variables E;; control the degree of conservation and
assume the value of 1 if the arc suffers from a delay, and 0 otherwise. £ represents the amount

of delay, in seconds.
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Contrary to the demand uncertainty case, the travel time uncertainty was
formulated as a constant increase in travel time instead of a percentual increase. This is
because a delay in travel time is not necessarily larger the longer the travel is, contrarily to
demand uncertainty, where it is more likely for a customer with an order of 5000 units to ask
for 500 units more than it is for a smaller customer with an order of 500 units.

It is also necessary to quantify the impact a delay has on the objective function,
which depends on what one considers a delay is: a reduction of speed in a subsection of the
arc, a halting of the car with the engine running, or a complete stop with engine stopped. The
complete stop without engine halting case was studied. The impact a full engine stop has on
fuel consumption is obviously null, but the same does not apply when the engine is kept
running.

When considering the halting of the car with the engine still running the impact
the delay has on fuel emissions is independent of arc that suffers the delay.

Starting with the fuel consumption formula defined in (Demir et al., 2012)

E(KNV + P) (95)
FR(g/s) = =———
P 96
P — tract+ Pacc ( )
Ner

(97)

Piract = (MT + Mg sin + 0.5C;pAv? + MGC, cos 0) * 1000

When the car suffers the delay it stops, therefore the speed when suffering the

delay is 0.
V=0 = Pgy =0 =P =0= FR =" (98)
Cost associated to a delay = f, * il{% * $ *Ejj* © (99)
Cost associated with all delays = Z fe* KNVA = E;j * t (100}
(L.)eA
In the cost associated with all delays only E;; is a variable. Since
Yijea Eij= @ (101)
The equation can be reduced to
Cost associated with all delays = f, * KNVAx £ x (102)

Jodo Daniel Machado Martins 31



Bi-objective robust optimization for the pollution-routing problem under uncertainty in travel time and

demand

The definition of the delay value also deserves attention. In the real world, a

delay may be anything from a few minutes to several hours. While the impact of increasing

delay amounts is also studied, for simplicity’s sake, the delay was set as 20% of the average

travel time in all arcs in a certain instance, calculated as the average of distances/average

speed, then rounded to 1000 seconds.

The SWC delay formulation is as follows:
R

Minimize 2 fKNVA (dy; ) 20, /5" + £ Eyy)
(i,j)eA r=1
+ Z fcwy)laijdijxl-j
(i,j)eA
+ Z feydai;dijfij
(i,j)eA
R
+ z fByAasdy Y 2 (57)?
(i,j)eA r=1
+ z dej
JENy
Subject to (54),(56) - (57),(59),(61) - (63)
And

NgE

~
~

Z.. n
(d--*ﬂ)ﬂzij*tSM*(1—xij)+y,-,

it +
yl l vr

<
Il
=

yj+tj+

NgE

Zjor A
(djo*v_r)+E}0*tSM*(l_xjo)-l-S]’

<
I
oy

El'j Sxij, V(l,]) EA

Z Ej=¢

i,jeA
E;; € {0,1}, V(i,j)EA
¢ €{0,1,..,IN|+ W[}

v(i,j) €A

V(i,j) EA

(103)

(104)

(105)

(106)

(107)

(108)

(109)

(110)

(111)

(112)

(113)

Constraints (108) - (109) are the robust counterparts of (58) and (60). Constraint (110)

guarantees that a delay only occurs on travelled arcs, and constraint (111) defines only ¢

arcs suffer delays. Constraints (112)-(113) define E;; and ¢.
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3.2.2.1. Formulation Il

While simpler to study and implement, the previous formulation for the time
travel delay has the variables that represent the choice of where the delay happens as
endogenous, meaning the model choses where the delays happen, therefore, when only some
arcs suffer delay, the models cannot guarantee the feasibility of a solution for all possible
combinations of delays (equivalent to ensuring feasibility inside a polyhedral uncertainty
set). Another formulation, derived from (Munari et al., 2019), which can guarantee
feasibility inside a polyhedral uncertainty set, is proposed.

Variables y; and s; are replaced by y;, and s;,, respectively, where y;, is the time service
starts at j when n arcs have suffered delays, and s;,, is the service time of the route with the

last customer being j when n arcs have suffered delays.

The model is defined as follows.

Minimize z fowyda;;d;jx;; (124)
(i.))ea
115
+ z feyday;dijfi; (sl
(i.))eA
R (116)
+ z fByAasdy Y 2 (57)?
(L,j)eA r=1
R (117)
+ Z ERNVA (dy; Y 2l /57)
(i,j)eA r=1
+ f.kNVA* T x ¢ (118)
+ f,H (119)
Subject to (54)- (57),(59),(61),(62),(63) and
R (120)
Zijr -
Yin +t; + Z <dij *v_> <M=x(1- xl-j) + Vins v(i,j) eAne{0]1,..,9¢}
r=1 T
(121)

R

Z.. n

Vin-1 + t; + Z (dij * ;’T> +E<M*(1—x;) + ¥, V(i) €EAnE{0L, ..., P}
r=1 T
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R (122)
Z.
Yin +tj + Z (djo * ;"r) <Mx*(1—x5)+sin,  V(Ej)€AnE(0], .., ¢}
r=1 r
R (123)
ZjOT ~ .
Vin-1 + ¢t +Z (djo * - ) +t< M= (1 — xjo) + 5, V(,j)) EAn€E{01,..,¢}
r=1 r
a; <Y < bi, Vi € NO ,nNE {0,1, ,¢} (124)
ag < Sin < by, Vi € Ny,n € {0,1, ..., ¢} (125)
(126)

H ZZsjnj, vn €{0,1,..,¢}|jENyA znj =¢
] ]

Constraints (120) and (121) recursively define the arrival time at a customer as
the highest of two cases: either all n delays have happened, and the path between the last
customer and i suffers no delay, or only n — 1 delays had happened, and the path between
the last customer and customer i suffers a delay. Constraints (122) and (123) define s;,, in a
similar way, and allow for the model not having an extra node for the depot, as created in
(Munari et al., 2019).

Constraints (124) and (125) guarantee feasibility for all possible realizations of
the delay.

This model better adheres to the previously mentioned concept budget
uncertainty but obtaining the service time for (119) is significantly more challenging, as we
now have a collection of service times to choose from. Since robustness refers to minimizing
the worst case, the model must select the set of service times with the largest sum, where the
sum of all second indexes equals ¢, this was implemented in (126).

A representation of the problem created is shown in Figure 3.1 which features a
feasible solution with three routes to a hypothetical four customer problem where two arcs

suffer a delay.
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Yoo =0 Va0 = 200 S40 = 300 S0 + S10 + S37 = 1470
Yo1 =10 Ya1 = 250 54 = 310

Yoz =0 Yaz = 250 S42 = 340
02 42 42 @512 + 539 = 1490
° ° ° ° Sao + 511 + 531 = 1460

Yoo =0 Y20 = 500 Y10 = 600 510 = 700

Vo1 i 0 V21 i 550 y11 = 670 s11 =740 S41 + S11 + 530 = 1450
Yoz =0 V22 = 550 Y12 = 690 512 = 790

o ° ° Sg1 + S19 + 531 = 1430

S49 + 519 + S39 = 1440
Yoo =0 y30 = 300 530 = 400 42 10 30

Yo1 =0 ya1 = 350 531 = 420
Yoz =0 ¥32 = 350 S32 = 470

Figure 3.1. Example of solution to a 4-node problem with Formulation Il with the worst combination of s;;
highlighted

To obtain the value of (119) one must search for all possible combinations of
oNne sy,,S3,, and s,,, where the sum of all n indexes is two. This can be generalized to obtain
the number of constraints introduced by (126), since it involves choosing one value of ¢ +
1 possibilities, |N,| times, which means it will introduce no more than (¢ + 1)/Mol
constraints, an amount that quickly gets prohibitively complicated to handle.

There are some techniques that can help reduce the amount of possibilities: every
combination where there is at least one s;,, where n is greater than 0 and the node i is not the
last customer in a route can be discarded, as one can easily obtain a total sum equal or greater
with the combination where all n delays present in s;,, are allocated to a different route
service time where the corresponding node is the last in a route. While theoretically helpful,
we were not able to define the corresponding formulation and computational
implementation. Also, the existence of multiple service times and the choice that must be
made make the use of (64) and (65), impossible in this model, which results in even worse

performance.
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3.2.3. Robust Pollution Routing Problem with Uncertain Travel

Time and Demand

The formulations in Section 3.2.1 and Section 3.2.2.1 can be joined in order to

create a model robust to both demand and travel time uncertainty.

Minimize z fcwylaijdijxij (127)
(i,j)eA
R (128)
+ z fByAasdy Y 2 (57)?
(i,j)eA r=1
, 129
+ Z feydaydiif's; 129l
(i,))eA
R (130)
+ Z (KNVA (dy; Y 20, /5" + £ Eyj)
(i,j)eAa r=1
131
" Z fas; (131)
JENo
Subject to (54)-(56),(59),(61),(63)-(65),(76)- (82),(85)-(94),(108)-(113)
And its bi-objective counterpart.
Minimize Z Gwy)laijdijxij (132)
(i,))eA
R (133)
+ z ofyAady; Y 2 (7)?
(i,j)eA r=1
’ 134
+ Z oyAa;;d;;f'i 134
(L,))eA
R (135)
(i,j)ea r=1
Minimize Z fasSj (138)
JENo
Subject to(54)-(56),(59),(61),(63)-(65),(76)- (82),(85)-(94),(108)-(113)
36 2022



Results

4. RESULTS

4.1. Data and Experimental Settings

In order to validate the proposed mathematical models, we resort on the library
created by (Demir et al., 2012), whose instances represent randomly selected cities from the
UK and use real geographical distances. All instances are available for download from
http://www.apollo.management.soton.ac.uk/prplib.htm. Implementations of all formulations
were done in Python, using the Python CPLEX API to interact with CPLEX. Preliminary
analysis was conducted on a PC with an i7-4720hq and 8GB of RAM. Experiments were
conducted on a server with an Intel Xeon Gold 6138@3.7GHz processor and 320GB of
RAM.

All parameters were used as previously defined in Table 3.1. There was a three-
hour time limit on each run. Unless indicated otherwise, a problem ran until optimality was
achieved. Instances that reached the time limit have the corresponding gap to the best
possible solution indicated. Studying all possible cases of uncertainty would be excessive,
and generate too much information, making it difficult to draw conclusions, therefore we
choose to use values that represent some plausible level uncertainty and maximum

uncertainty, which are show in Table 4.1.

Table 4.1. Values of 1 and ¢ for different robustness levels

Instance Set

Value of ¥ for different robustness levels Value of @ for different robustness levels
Det Avg Max Det Avg Max
UK10 0 5 10 0 6 12
UK20 0 10 20 0 12 23

For demand uncertainty we considered maximum uncertainty when all
customers take their worst values, and some level of uncertainty as half (rounded up) of the
customers take their worst values. Travel time uncertainty is more challenging, as the total
amount of arcs run by vehicles is equal |N,| + |W|, however, the number of vehicles is an
endogenous variable, which means the maximum number of arcs is only known after the

instance is run. The maximum number of arcs cannot be known, but a minimum to this value
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can, since each car has a certain capacity and all customer demand has to be met. The
minimum number of vehicles used can be derived by dividing the sum of all demands and
the capacity of a single vehicle and rounding up the result. This means we can obtain a
minimum number of arcs travelled, which is used when the maximum number of arcs suffers

the delay, and half of that is used when some arcs suffer delay.

4.2. Results of RPRP-TTD

4.2.1. RPRP-TTD with formulation |

The following tables show the solutions to 10 and 20 node instances of the PRP.
Ten instances were run for each node count. All problems with 10 nodes ran to optimality,
while no optimal solution could be reached with any of the 20-node problems. Table 4.2 and
Table 4.3 show the OF values for the 10-node instances under some and maximum
uncertainty, and Table 4.5 and Table 4.6 show the CPU runtimes for the corresponding
instances. Table 4.7 and Table 4.8 show the OF values and CPU runtimes for the 20-node
instances under maximum uncertainty.

In the following tables, “OF ” represents the value obtained for the objective
function, and “%OF” represents the percentual difference between the objective function
value from a certain instance to the objective function value of corresponding deterministic
problem. Similarly, “Time” represents the time spent in seconds by the CPU to obtain the
optimal solution, and ”%Time” is the percentual difference between time from a certain
instance and the time in the corresponding deterministic problem. Each couple of numbers
represents the value of uncertain parameters used in the columns directly below — the left
number corresponding to the amount of demand uncertainty 1, and the right number to the

amount of travel time uncertainty ¢.
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Table 4.2. OF values for the 10-node instances under some uncertainty

Deterministic RPRP-D RPRP-TT RPRP-DTT

Uncertainty Values 0 0 5 0 0 6 5 6
Problem OF OF %OF OF %O0F OF %O0F
10_1 171 172 0,36 192 12,40 193 12,76
10_2 205 206 0,26 226 10,23 227 10,49
10_3 200 201 0,20 221 10,09 221 10,29
10_4 180 191 0,26 211 10,75 211 10,98
10_5 176 176 0,23 187 12,17 197 12,39
10_6 215 215 0,16 234 9,11 234 9,28
10_7 180 191 0,22 212 11,43 212 11,64
10 8 223 223 0,33 244 9,77 245 10,10
10_9 175 175 0,19 196 12,45 197 12,64
10_10 180 191 0,27 212 11,44 212 11,71
Average 103 194 0,25 215 10,98 215 11,23

Std. Deviation 16,39 16,43 16,15 16,19

The 10-node instances under some uncertainty show on average a 0.25%

worsening of the objective function value when only demand uncertainty is concerned, while

delays in travel time result in a 10.98% increase in total cost. The impact a moderate amount

of uncertainty has on the objective function value is similar between instances.

Table 4.3. OF values for the 10-node instances under maximum uncertainty

Deterministic RPRP-D RPRP-TT RPRP-DTT
Uncertainty Values 0 0 10 0 0 12 10 12
Problem OF OF %O0F OF %O0OF OF %OF
101 171 174 1,66 217 26,87 218 27,73
10_2 205 207 0,81 253 23,23 254 23,98
10_3 200 202 0,60 242 20,95 243 21,55
10 4 190 192 0,75 232 22,19 234 22,90
10_5 176 177 0,67 219 24,54 220 25,21
10_6 215 216 0,75 265 23,33 266 24,02
10_7 190 198 4,28 235 23,47 242 27,14
10_8 223 225 0,88 266 19,54 268 20,42
10_9 175 176 0,58 218 24,90 219 25,48
10_10 190 192 0,75 234 22,88 235 23,62
Average 238 196 1,17 238 23,19 240 24,21
Std.Deviation 16,39 16,40 17,34 17,49

The 10-node instances under maximum uncertainty show a stronger difference

between the impact delays and increases in demand have on the total cost — on average, the

increase of demand of all customers results in a slight increase of 1.17% in cost, while delays

in travel time result in a 23.19% increase in total cost. The two uncertainties are mostly

independent, as when both happen simultaneously the impact in the OF value is close to the

sum of the two individual problems. However, the impact delays have on operation cost is
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partially avoidable: all models were run with the assumption that the engine is left running

when a vehicle is at a standstill, and, as previously discussed, the impact of keeping the

engine running has on the objective function is shown in Figure 4.1.
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Figure 4.1. Reduction in operation costs resulting of shutting the engine down

When 6 arcs suffer a delay the impact of keeping the engine running in the OF

is 8.55 euros, when 12 arcs suffer a delay, the impact is 17.09 euros. Such values are

considerable and can easily be avoided by simply shutting the engine down when stopped.

Table 4.4 shows the impact shutting the engine down has on the OF. In the following table

“OF” represents the value obtained for the objective function, “OF-SS” is the value of the

objective function for the same route when start-stop system is active, and “%OF-SS” is the

percentual difference between “OF” and “OF-SS”.

Table 4.4. Savings caused by shutting the engine down in 10-node instances

Problem

RPRP-TT

RPRP-DTT

o

6

0

12

5

6

5

12

OF

OF-55

%0F-55

QF

OF-55

%0F-55

QF

OF-55

%0F-55

QOF

OF-55

S0F-55

10_1
10_2
10_3
10 4
10_5
10_6
10_7
10_8
10_9
10 10

192
226
221
211
197
234
212
244
136
212

1la4
218
212
202
189
226
204
236
188
203

4,45%
3,78%
3,88%
4,06%
4,34%
3,65%
4,03%
3,50%
4,35%
4,04%

217
253
242
232
219
265
235
266
218
234

200
236
225
215
202
248
218
249
201
217

7,89%
6,76%
7,06%
7,36%
7,81%
6,46%
7,28%
6,43%
7,84%
7,32%

193
227
221
211
197
234
212
245
197
212

184
218
212
202
189
226
204
237
188
204

4,44%
3,77%
3,87%
4,05%
4,33%
3,65%
4,02%
3,49%
4,34%
4,03%

218
254
243
234
220
266
242
268
219
235

201
237
226
217
203
249
225
251
202
218

7,83%
6,72%
7,02%
7,32%
7,77%
6,43%
7,07%
6,38%
7,80%
7,27%

Average

215

206

4,01%

238

221

7,22%

215

206

4,00%

240

223

7,16%

When 6 delays are considered, shutting down the engine leads to a reduction in

total operation costs averaging 4%, irrelevantly of whether demand uncertainty happens or
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not. When uncertainty increases, so does the impact of stopping the engine — there is on
average a 7% reduction in the total costs.

Such reductions are easy to achieve — modern vehicles possess a start-stop
system, that automatically stops the car when it is at a standstill. These results show the
relevance of this system to logistic companies, as they incur a smaller cost when faced with

the inevitable delays on their delivery routes.

Table 4.5. Runtime values for 10-node instances under some uncertainty

Deterministic RPRP-D RPRP-TT RPRP-DTT
Uncertainty Values 0 0 5 0 0 6 5 6
Problem Time Time %Time Time %Time Time %Time
101 26 35 31,51 141 433,23 136 414,33
10 2 13 20 50,80 60 349,47 101 665,04
10 3 50 72 45,55 138 177,77 153 209,11
10_4 31 44 42,82 80 162,84 109 256,43
10_5 80 136 69,84 266 233,08 487 510,58
10_6 30 36 21,04 77 160,84 114 286,39
10 7 19 29 50,03 72 269,90 105 442,95
10_8 15 22 47,53 48 225,86 48 226,92
109 11 14 29,30 g 256,60 35 229,03
10_10 12 24 96,71 43 246,29 51 308,85
Average 29 43 4851 96 251,59 134 354,96
Std.Deviation 20,42 34,52 66,03 123,36

Table 4.6. Runtime values for 10-node instances under maximum uncertainty

Deterministic RPRP-D RPRP-TT RPRP-DTT
Uncertainty Values 0 0 10 0 0 12 10 12
Problem time Time %Time Time %Time Time %Time
101 26 33 25,33 170 544,32 192 628,30
10_2 13 18 32,58 84 531,95 115 766,86
10 3 50 45 -10,16 130 161,52 128 157,97
10_4 31 36 16,87 81 164,30 72 133,67
10 5 80 81 0,87 348 336,08 300 276,37
10_6 30 25 -16,11 158 432,83 162 447,23
10_7 19 34 75,03 71 264,61 ag 404,02
10 8 15 17 14,91 55 270,05 66 344,72
10_9 11 10 -1,33 33 213,65 32 203,52
10_10 12 12 -5,22 a1 232,86 42 237,07
Average 29 31 13,28 117 315,22 121 359,97
Std.Deviation 20,42 19,70 88,99 76,97

The time increase in solving instances follows some of the patterns as the OF
value increase, where demand uncertainty has a smaller impact in computational time, while
travel time uncertainty in some instances takes almost five times as long to solve, when
compared to deterministic version. However, when solving instances with demand and travel
time uncertainty, the solving time suffers a larger increase than the sum of the previous two
increases, being on average 359.97% slower than the original problem. The impact travel

time uncertainty has on CPU runtimes varies greatly depending on the instance.
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Table 4.7. OF values for 20-node instances under maximum uncertainty
Deterministic RPRP-D RPRP-TT RPRP-DTT
Uncertainty Values 0 0 20 0 0 23 20 23
Problem OF oF %O0F OF %OF OF %OF
201 324 342 5,42 414 27,76 430 32,75
202 334 334 0,08 417 24,75 418 25,26
20_3 208 219 5,55 288 38,63 307 47,72
20_4 326 340 4,28 420 28,82 422 29,65
205 298 300 0,64 379 27,40 387 29,90
206 356 359 0,34 434 22,14 439 23,43
207 229 234 2,16 318 38,68 316 37,83
208 278 308 10,70 362 30,14 388 39,69
20_9 326 340 421 436 33,64 426 30,79
20_10 293 301 2,62 389 32,54 387 32,07
Average 297 308 3,65 386 30,45 392 32,91
Std.Deviation 45 45 47 44

The impact both uncertainties have on the problems stays the same, when

considering instances with more customers. On average, uncertainty in demand results in an

increase of 3.65% in cost, while delays in travel time result in a 30.45% increase in total

cost, with the impact of both uncertainties happening at the same time is close to the sum of

the impacts of each type of uncertainty. However, the percentual increase in cost driven by

demand uncertainty is quite variable, sometimes provoking a 10% worse value in OF, and

sometimes having a negligible impact. On the contrary, the effect of delays is less dependent

on the instance.

Table 4.8. Savings caused by shutting the engine down 20-node instances

RPRP-TT RPRP-DTT
] 23 20 23
Problem OF OF-55  %0F-55 OF OF-55  %OF-55
201 414 381 7,92% 430 397 7,62%
20 2 417 334 7.86% 418 386 7.83%
20 3 288 255 11,37% 307 274 10,67%
20 4 420 387 7.81% 422 390 7,.76%
20 5 373 346 8,64% 387 354 8,48%
20 6 434 402 7.54% 439 406 7.46%
20 7 318 285 10,31% 316 283 10,38%
20 8 3n2 329 9,068% 388 335 8,44%
20 9 436 403 7.52% 426 393 7,69%
20 10 389 356 8,43% 387 354 8,46%
Average g6 353 8,65% 392 359 8,48%

As shown in Table 4.8, the impact of engine stop in 20-node problems is slightly

larger than the one in the worst case in the 10-node problem — there is on average more than
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8% reduction in operation costs when start-stop systems are used. However, there is a larger
variation of savings within 20-node instances. Table 4.9 shows the impact shutting the
engine down has on the OF value, with “Gap(%)” indicating the percentual gap between the

obtained solution and possible best solution.

Table 4.9. CPU runtime values for 20-node instances under maximum uncertainty

Deterministic RPRP-D RPRP-TT RPRP-DTT
Uncertainty Values 0 0 20 0 0 23 20 23

Problem Gap(%) Gap(%) Gap(%) Gap(%)
20 1 23 26 33 33
20_2 22 20 28 27
20_3 26 27 35 37
20_4 25 26 33 32
205 26 24 32 31
20_6 32 24 34 29
20_7 24 23 33 31
20 8 23 23 31 29
20_9 21 24 32 30
20_10 28 29 36 33
Average 25 25 33 31
Std.Deviation 3 2 2 3

Solving times balloon when considering 20-node instances, not obtaining
optimal solutions within three hours. Gaps remain the same when only demand uncertainty

exists and increase when uncertainty in travel time is introduced.

4.2.2. RPRP-TTD with Formulation Il

While theoretically important, the second formulation of the travel time delay
suffers heavily from poor performance, compared to the Formulation I. The performance in
similar instances will be soon compared, but this formulation suffers from lack of
performance in another manner: formulating the model itself is computationally expensive,
due to the combinations of service times that must be individually analyzed to see if they
belong in the model. As previously mentioned in Section 3.2.2.1, implementing (126)
requires studying (¢ + 1)™ol constraints to see which are valid, and, since the proposed
simplifications could not be implemented, for a 10-node instance with maximum travel time
delay, this means parsing through 137 858 491 849 constraints to see whether or not they are
valid. As such an amount could not be done in acceptable time (models were not being
completely generated within 24 hours) the following results contain only results for 10 node

instances with some uncertainty.
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Table 4.10 and Table 4.11 show the solutions and CPU runtimes for the 10-node

instances. The meaning of column values is the same as previously described.

Table 4.10. OF values for 10-node instances under some uncertainty

Deterministic RPRP-D RPRP-TT RPRP-DTT

Uncertainty Values 0 0 5 0 0 6 5 6
Problem OF OF %OF OF %O0F OF %OF
10 1 170,90 171,51 0,36 203,89 19,30 204,45 19,63
10 2 205,18 205,72 0,26 238,98 16,48 239,45 16,70
10 3 200,32 200,72 0,20 230,61 15,12 231,01 15,32
10 4 190,09 190,58 0,26 220,39 15,94 220,87 16,19
10 5 175,72 176,11 0,23 206,01 17,24 206,41 17,47
10 6 214,55 214,90 0,16 252,21 17,55 252,64 17,76
10 7 190,32 190,74 0,22 220,62 15,92 221,03 16,14
10 8 222,59 223,33 0,33 252,88 13,61 253,62 13,94
10 9 174,66 175,00 0,19 204,96 17,35 205,29 17,54
10_10 190,11 190,62 0,27 220,40 15,94 220,92 16,21
Average 193,44 195,69 0,25 238,05 16,44 240,01 16,69

Std. Deviation 16,39 16,43 17,36 17,41

As expected, when only demand uncertainty is present, the solutions are equal
to the ones obtained with the Formulation I in Table 4.2. However, when, travel time delay
occurs, the OF value worsens, compared with Formulation I. This is consistent with the
different definitions of uncertainty present in each model. While this model presents
solutions that withstand all possible combinations of up to 6 delays, the first model only has
to guarantee that a solution is capable of withstanding 6 specific delays, therefore, it can
choose where the delays occur to obtain a better OF value, which comes at a cost of the

solution robustness.

Table 4.11. Runtime values for 10-node instances under some uncertainty

Deterministic RPRP-D RPRP-TT RPRP-DTT

Uncertainty Values 0 0 5 0 0 6 5 6
Problem Time Time %Time Time %Time Time %Time
10 1 52,76 109,21 106,98 345,27 554,38 532,40 909,03
10 2 37,95 49,45 30,29 174,32 359,33 241,07 535,21
10 3 87,77 141,12 60,79 358,89 308,91 603,36 587,44
10 4 48,29 57,68 19,44 186,11 28540 217,94 351,32
10 5 114,34 156,35 36,74 415,14 263,08 715,63 525,89
106 55,67 95,34 71,26 376,63 576,54 438,66 687,96
10 7 33,01 44,98 36,29 14551 340,86 22439 579,85
108 33,02 36,78 11,40 135,28 309,75 158,29 379,42
10 9 14,86 18,09 21,78 70,05 371,51 88,97 498,85
10_10 15,95 30,78 92,90 76,30 378,22 116,78 631,97
Average 4936 73,98 48,79 228,35 374,80 333,75 568,70

Std. Deviation 29,53 45,90 124,90 209,94

When considering solving times, this model is clearly inferior to the first one.
On average, this model requires double the time to solve an instance, when compared to
Formulation I. This is due to two factors: the model is more complex - while the first model
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can easily assign delays to certain arcs in a solution, and deal with travel time uncertainty
(due to the permissive arrival and departure times customers have in these instances),
Formulation 11 does not have the same ease of solving, as it still must consider all possible
arrival times, with or without delays. Moreover, the lack of the two subtour breaking
constraints (64)-(65) hurt solving times.

Overall, the model with recursive arrival times, although it is a relevant
formulation for considering polyhedral uncertainty in the PRP, requires further development:
the insertion of the maximum service time constrains must be optimized, to formulate the
model for larger instances or for higher levels of uncertainty, and constraints that optimize

solving times must be reintroduced.

4.3. Results of Bi-Objective RPRP-TTD

As the objective functions are conflicting, there is no feasible solution that
optimizes both objective functions simultaneously. Therefore, we need to characterize
(totally or partially) the nondominated solution set constituting the Pareto front, i.e., the
feasible solutions for which one can only improve an objective function accepting to
degrade, at least, another objective function value. As the proposed model is a MILP model,
an approximation of the Pareto front was found using the e-constraint method : the objective
function (136) was set as an increasingly more difficult constrain — decreasing in steps of

one, and the objective function (132)-(135) was chosen to be optimized.
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4.3.1. Bi-Objective RPRP-TTD

Figure 4.2 shows Pareto fronts for the instances of the problem 10 2, under

different levels of uncertainty.

Pareto Fronts for the instances of the problem 10_2
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Figure 4.2. Pareto fronts for 10-node instances under different levels of uncertainty

Three groups of three Pareto fronts can be identified, where within each group
all members have similar nondominated solution sets. The main distinction between
members of different groups is the uncertainty in travel time: the leftmost group has certain
travel times, the middle group has half of the arcs travelled suffering delays, and the
rightmost group has the maximum number of arcs suffering delays. Within each group
another pattern emerges: an increase in demand uncertainty drives a slight worsening of the
Pareto front (when compared to an increase in travel time uncertainty). This means that
increasing delays in routes have a more adverse effect in the total operation cost. A similar
saving through the start-stop mechanism can be applied to the emissions of each solution.
The savings have increasing impact in the third group, but they have no other effect than

bringing the groups closer.
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Figure 4.3 shows Pareto fronts for the different instances of the problem 20_1,
under different levels of uncertainty.

Pareto Fronts for instances of the problem 20_1
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Figure 4.3. Pareto fronts for 20-node instances under different levels of uncertainty

When increasing the number of customers, the same three groups distinguished
by the level of travel time uncertainty remain; however, the impact of demand uncertainty
changes drastically: while some uncertainty leads to marginally worse solution space,
maximum uncertainty severely worsens the operation environmental performance, having
no effect in operation costs, in the cases where only some arcs have uncertain travel times.
When the worst-case scenario is reached in both cases — not only is the environmental
performance worse, but the increase in requirements coupled with the many delays

necessitate the inclusion of another vehicle.

4.3.2. Impact of increasing delay amount

Although previous results were obtained using 1000 seconds delay, in the real-
world delays may be distinct, and the impact of different delays can be different, and not
reduced only to somewhat increasing emissions and driver cost. Multiple instances of one
10-node and one 20-node problem were run, where the maximum time travel delay was
considered, but each time the delay magnitude increased. Instances were initially run with
500 seconds delay and an increase of 100 seconds was applied, until 2000 seconds were
reached.
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Figure 4.4 shows Pareto fronts for the instances of the problem 10 2, with

maximum uncertainty and increasing delay amounts.
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Figure 4.4. Pareto fronts for a 10-node instance under maximum uncertainty with increasing delay amount

When studying the effect of the delay amount has in this instance, we can easily
distinguish two groups: one composed of delays under 1000 seconds, and another with
delays equal or greater than 1000 seconds. The former has Pareto fronts of similar shape,
with each one being a slightly worse version of the previous. This is due to the impact a
delay has on fuel consumption and travel time, while the routes obtained remain mostly the
same within this group. Increasing the delay magnitude results in more time the engine is
running while the car is at a standstill, and in an increase in service time. However, when
jumping from 900 seconds delay to 1000 seconds, there is a drastic change in the
nondominated solutions — while the minimum amount possible of operation costs remains a
linear increase from the previous minimum, minimizing emissions now results in a sharp
increase in driver costs. This is because minimization of fuel consumption, which is
correlated with emissions minimization, happens at a speed below the maximum amount,
and with delays larger than 900 seconds three vehicles no longer can satisfy the time
constraints of all customers, requiring another vehicle, that leads to a strong increase in the
driver cost. Delay amounts larger than 1200 seconds contain only solutions with 4 vehicles

and delays smaller than 1000 seconds contain only solutions with 3 vehicles. Delays of 1100
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and 1200 seconds are particularly important, as they show the differences between routes of
3 and 4 vehicles, which are shown in Figure 4.5, alongside with 900 and 1300 second delays

for comparison.

Pareto Fronts for the instances of the problem 10 _2
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Figure 4.5. Pareto fronts for a 10-node instance under maximum uncertainty with increasing delay amount

Delays of 1000 and 1100 seconds are the only ones that contain solutions with 3
and 4 vehicles, and the change between the two values can be seen in their Pareto fronts:
when the main aim is to minimize emissions, both run 4 cars, and are shaped similarly to
solution spaces with 1200 seconds delay or larger, which allows them to attain optimal
speed, and reduce emissions. However, at a certain point (operation cost below 116€) such
operation costs cannot be attained with four drivers, and solutions change to using three
vehicles only, with the rest of the Pareto front taking similar shape as the ones created with
delays 900 seconds or lower.

Figure 4.6 shows the Pareto fronts for the instances of the problem 20_1, with
maximum uncertainty and increasing delay amounts.
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Figure 4.6. Pareto fronts for a 20-node instance under maximum uncertainty with increasing delay amount

Similarly to the 10-node problem, we can distinguish two groups: one composed
of delays under 1300 seconds, and another one with delays equal or greater than 1400
seconds. The former has Pareto fronts of similar shape, with each one being a slightly worse
version of the previous one. However, when jumping from 1300 seconds delay to 1400
seconds, there is a drastic change in the nondominated solutions — while the minimum
amount possible of operation costs remains a small increase from the previous minimum,

minimizing emissions results in a sharp increase in driver costs, due to an increase in the
number of vehicles.
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5. CONCLUSION

In this dissertation we developed a collection of models for the Pollution Routing
Problem with travel time and demand uncertainty, defining the impact each type of
uncertainty has on the objective function, thus extending robustness approaches to green

routing problems.

5.1. Main contributions

By using several robust technigques, we have showed that it is possible to deal
with data uncertainty and to obtain reliable solutions with a limited worsening of the
objective function values. Obtaining solutions that are robust for demand uncertainty only
marginally increases operation costs. Solutions unaffected by travel time uncertainty have a
greater effect on operation cost. Therefore, the DM should carefully evaluate between
robustness vs. optimality of solution.

We also showed that the benefits of stopping the engine when at a standstill:
reduce total operation cost by 4% when some delays happen, and the impact increases with
the number of delays.

Using the shown robust techniques, companies can reduce the risk of unmet
demand and late arrivals. While solutions obtained with this method are more costly when
compared with non-robust solutions, when realized, non-robust solutions may fail, and result
in unsatisfied customers and extra operation costs. The solution robustness can also be
controlled, allowing for the DM to find a balanced point in between solution robustness and
optimal routing.

We also showed obtaining robust solutions has a different impact on objective
functions tradeoff — while demand uncertainty results only in a worsening of emissions,
travel time uncertainty worsens both environmental and travel time performance. However,
while obtaining reliable solutions for different uncertainties has different impacts on the
Pareto front, its shape remains similar for different uncertainty levels. The impact of an

increase in delay is also studied, and remains stable until a certain threshold is reached, at
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which an increase in the number of vehicles is necessary, which results in a stronger

worsening of the Pareto front, and a change in its shape.

5.2. Future Work

The most extensively researched model in this dissertation, Formulation I, while
simple to implement, suffers from demand and travel time variables not belonging to a
polyhedral uncertainty set, which reduces the robustness of solutions with some uncertainty
obtained with this formulation. While this has been partially addressed with Formulation II,
the second model is difficult to formulate and to solve, and only guarantees polyhedral
uncertainty for travel time delays. Expanding this model to include demand uncertainty and

optimizing its creation and solving times are both two possible avenues of research.
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