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Resumo 

Nos últimos anos, o problema de roteamento de veículos e o seu impacto 

ambiental tornou-se um ponto de interesse para as empresas logísticas e investigadores, que 

continuam a propor novas e mais completas formulações para este problema para melhor 

refletir o contexto real da operação logística. A incerteza inerente aos dados também levou 

ao aumento da investigação em modelos que consideram dados incertos, de modo a fornecer 

resultados aplicáveis na prática. 

Nesta dissertação, estudamos o Problema de Rotas com Poluição, e propomos 

dois modelos que consideram a incerteza nos tempos de viagem e na procura, para os casos 

em que os custos ambientais e operacionais são uma preocupação, e estudamos os 

compromissos entre estes dois aspetos de avaliação. Verificamos que os atrasos na rota têm 

um impacto muito mais pronunciado nas emissões de veículos, nos custos operacionais, e 

nos tempos de resolução de problemas do que o aumento da procura. Mostramos também o 

impacto que os sistemas start-stop têm nos custos de operação, e como os reduzem sem 

esforço computacional extra. A interação entre o aumento da procura e os atrasos raramente 

é pronunciada, e, enquanto o aumento da procura tende apenas a piorar o desempenho 

ambiental, os atrasos conduzem a custos mais elevados e pior desempenho, devido ao 

aumento do salário do condutor, e ao aumento da velocidade dos veículos, o que leva a um 

aumento emissões. 

 

 

Palavras-chave: Problema poluição-rotas, Rotas robustas, 
Otimização, Incerteza na procura, Incerteza no tempo 
de viagem, Bi-objetivo. 
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Abstract 

In recent years, the Vehicle Routing Problem and its environmental impact have 

become a point of interest for logistic companies and researchers, that propose newer and 

more complete formulations to better reflect the real context of logistic operation. The 

inherent uncertainty in the data has also led to increasing research in models that work with 

uncertain data, as provide practical results. 

In this dissertation, we study the Pollution Routing Problem, and propose two 

models that consider uncertainty in travel times and demand, for cases where environmental 

and operational costs are a concern and study the tradeoffs between the two. We find delays 

in route have a much more pronounced impact in vehicle emissions, operation costs, and in 

problem solving times than increase in demand. We also show the impact start-stop systems 

have on operation costs, and how they reduce them without requiring additional 

computational effort. The interaction between demand increase and delays is rarely 

pronounced, and, while demand increase tends to only worsen environmental performance, 

delays drive higher costs and worse performance, due to increase in driver pay, and increase 

in vehicle speeds, which leads to more emissions. 

 

 

 

 

 

 

Keywords Pollution Routing Problem, Robust Routing, Optimization, 
Demand uncertainty, Travel time uncertainty, Bi-Objective. 
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1. INTRODUCTION 

The basic route planning problem, known as VRP, is becoming more well-

known in today's distribution networks, due to rapid advancements in computational 

capabilities and solving methods, it is becoming feasible for companies to quickly design 

solutions for the collection or delivery of packages, which are carried out by a small fleet of 

vehicles, based on the geographic locations of customers, their respective demand, and time 

constraints.  

The interest of companies in having off-the-shelf models and algorithms devoted 

to route planning problems is three-fold: not only can they optimize their transport system, 

reducing necessary manpower, improving customer satisfaction, and reducing costs, but also 

reduce the concerns caused by managing such complex networks of vehicles and customers. 

However, most models assume the information is perfect, that is, that the data provided to 

the model will materialize exactly, be it customer demands, travel speeds, travel times, fuel 

consumption (among others). The solutions provided by the models and algorithms reflect 

that assumption, but the solutions given are only guaranteed to work if the real world behaves 

exactly as expected, which is seldom case. That inherent uncertainty in the data has led to 

increasing research in approaches able to cope with uncertain data, as they better reflect real 

world conditions, and provide more usable results.  

In this dissertation, we created models that consider uncertainty in travel times 

and demand, for cases where environmental, and operational costs are a concern. We study 

the impact that uncertain conditions have on solutions, and what trade-offs may exist 

between minimizing costs and minimizing emissions. We find delays in route have a higher 

impact in vehicle emissions and operation costs, as well as in problem solving times, than 

the increase in demand. We also show the impact start-stop systems have on operation costs, 

and how they reduce them. The interaction between demand increase and delays is rarely 

high, and, while demand increase tends to only worsen environmental performance, delays 

result in higher costs and worse performance, due to increase in driver’s pay, and vehicle 

speeds, which leads to more emissions. 
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1.1. Motivation and Objectives 

In recent years, the Vehicle Routing Problem (VRP) and the impact the transition 

to greener transportation systems has on the problem formulation has become a focus of 

researchers, leading to the introduction of more sophisticated formulations to the problem 

that allows for better reflecting the full context of the logistic operation (Peng et al., 2020). 

While the classic VRP is focused on reducing the economic cost of transporting a set of 

goods to a set of customers, more recent variations have begun to include green issues, such 

as the use of alternative fuel vehicles, pollution reduction, energy minimization, and other 

constraints, leading to more challenging optimization problems (Zhen et al., 2020). 

During the last decades, the increase in emission of greenhouse gases (GHG) has 

become increasingly relevant. These GHG are mainly created by the burning of fossil fuels, 

which in turn are mainly consumed by the transportation sector, making this sector one of 

the main culprits of air pollution (Peng et al., 2020; Yu et al., 2020). 

Meanwhile, consumer pressure and increasingly stiffer environmental 

regulations have led to many companies overhauling their logistic management (Peng et al., 

2020), integrating environmental considerations into their logistic and vehicle route 

planning. In turn, this trend has led to the increase in the complexity of transportation 

optimization problems, caused by the potential dissonance between cost optimization and 

ecological optimization. 

Therefore, this work establishes the main focus points: 

1. Identify the main factors subject to uncertainty that affect vehicle routing 

problems. 

2. Establish the conflicting objectives to evaluate solution in vehicle 

routing. 

3. Formulate a model that is capable of handling uncertainty in a vehicle 

routing problem with environmental considerations. 

4. Find the tradeoffs between handling uncertainty and optimal routing. 

5. Find the impact of uncertainties on objective function tradeoffs. 
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1.2. Dissertation Structure 

This dissertation contains 5 chapters. After this first introduction chapter, a 

literature review is presented, which consists of a study of Vehicle Routing Problem with 

focus on the Pollution Routing Problem and its variants, and a review of the main approaches 

to deal with uncertainty, with a focus on the robust programming methodology. In the third 

chapter, the problem formulations are presented, along with the explanations for the model 

components. The fourth chapter contains a series of computational results and their 

discussion. The fifth chapter presents the main conclusions, criticisms, and possible future 

developments of this work.  
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2. LITERATURE REVIEW 

2.1. Green Logistics 

(Poonthalir & Nadarajan, 2018) define Green Logistics as “routing vehicles with 

a concern towards environment”. Logistics are easily impacted by environmental factors, 

therefore routing vehicles should include concern towards environmental factors, 

particularly towards CO2 emission reduction through the development of better operating 

plans. This has led carbon emission reduction to be intensively researched, and ingrained 

carbon emission as a day-to-day conversational theme (Peng et al., 2020). Research on green 

routing problems has then gained importance due to its environmental and societal impact. 

Green Logistics has been widely researched in the literature, with particular 

attention paid to the environmental consequences of various distribution systems, waste 

management, energy conservation, and the use of unmanned aerial vehicles for delivery 

(Peng et al., 2020). 

Under increasing petroleum prices, finding different sources of energy has been 

widely accepted as necessary. This makes Green Logistics an essential direction in the 

development of modern logistic solutions (Zhen et al., 2020). 

The main types of problems of current research on Green Logistics are the 

Pollution Routing Problem, Energy Minimizing Vehicle Routing Problem, and Green 

Vehicle Routing Problem (Yu et al., 2020). 

2.2. Vehicle Routing Problem 

The Vehicle Routing Problem, as formulated by (Laporte, 1992),is the problem 

of, considering a depot, designing routes to deliver or collect a product to or from a set of 

customers distributed in a territory, subject to the following conditions. 

1. Each customer must be visited only once and by one vehicle. 

2. All vehicles start and end their route at the depot. 

Initially described in (Dantzig & Ramser, 1959)the mathematical formulation of 

VRP now plays a central role in logistic planning. 
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2.2.1. Capacited Vehicle Routing Problem 

An important extension of the VRP, the Capacitated Vehicle Routing Problem 

(CVRP) is formulated as a VRP with the following additional constraints ((Laporte, 1992). 

1. Each customer has a non-negative demand that must be wholly fulfilled. 

2. Each vehicle as a fixed maximum carrying capacity and may not leave 

the depot carrying more than said capacity. 

2.2.2. Vehicle Routing Problem with Time Windows 

(Cordeaú et al., 1999) formulates the Vehicle Routing Problem with Time 

Windows (VRPTW) as an extension of the CVRP, in which the service to a customer has an 

associated time window in which the service must start and finish. Two types of time 

windows exist: soft time windows, which can be violated at a certain cost, and hard time 

windows, for which no violation is allowed.  

For each i in a node set 𝑁 there is an associated time window [𝑎𝑖, 𝑏𝑖], which 

represents the earliest and latest time at which service may start. If the vehicle arrives before 

the customer is ready to begin service, it waits. There is also a time window [𝑎0, 𝑏0], 

associated to the depot node, where the values represent the earliest departure possible from 

the depot, and the latest possible arrival to the depot.  

Considering the travel time between node i and j to be 𝑡𝑖𝑗 and customer service 

time at node i to be 𝑠𝑖, the inclusion of time windows may reduce the number of solutions, 

and even lead to an impossible problem if (1) or (2) happen.  

 

𝑎0 ≤ min⁡(𝑏𝑖 − 𝑡0𝑖⁡, 𝑖 = 1,2, … , |𝑁|⁡) (1) 

𝑏0 ≥ min(𝑎𝑖 + 𝑠𝑖 + 𝑡𝑖0⁡, ⁡𝑖 = 1,2, … , |𝑁|⁡) (2) 

 

The problem is then formulated as a CVRP with additional constraints to account 

for service time constraints. The Objective Function (OF) is a minimization of total travel 

costs. 
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2.3. Green Variants of the Vehicle Routing Problem 

2.3.1. Green Vehicle Routing Problem 

Agencies consider numerous factors in the selection of a particular vehicle type, 

including fuel availability and geographic distribution of fueling stations in the service area, 

vehicle driving range, vehicle and fuel cost, fuel efficiency, and fleet maintenance costs. The 

lack of a national infrastructure for refueling alternative fuel vehicles (AFVs) presents a 

significant obstacle to alternative fuel technology adoption by companies and agencies 

seeking to transition from traditional petroleum-powered vehicle fleets to AFV fleets. 

Moreover, existing alternative fueling stations (AFS) are distributed unevenly 

across the country and within specific regions. Additional operational challenges exist due 

to the reduced driving range of most AFVs, which, coupled with the lack of infrastructure, 

may increase the difficulties in overhauling conventional fleets for more modern, 

environmentally friendly ones (Erdoĝan & Miller-Hooks, 2012). 

As previously mentioned, transportation is responsible for a large part of GHG 

emissions. Furthermore, fuel consumption is a significant amount of the total cost of 

conventional transportation methods. The reduction of petroleum-based fuel consumption 

would therefore improve vehicle route efficiency. The Green Vehicle Routing Problem 

appears then with the goal of reducing fuel consumption and carbon emissions by using 

AFVs (Zhen et al., 2020). 

However, the lack of large-scale infrastructure for AFV refueling creates 

operational problems unseen by conventional vehicle fleets, reducing the economic viability 

of overhauling conventional fleets for more modern, environmentally friendly ones 

(Erdogan, 2012). 

Introduced by (Erdoĝan & Miller-Hooks, 2012)the Green-Vehicle Routing 

Problem (GVRP) proposes the creation of routes of a fleet of homogenous vehicles, 

beginning and ending on a single depot, that pass through a subset of the existing vertices 

(which can be either customers or AFSs) with the main objective of reducing the total 

distance travelled. 
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2.3.2. Pollution Routing Problem 

Before 2011, there was a gap in the application of energy-based models in 

vehicle routing, where GHG emissions, operational and economic objectives were all 

considered. 

((Bektaş & Laporte, 2011) introduced the Pollution Routing Problem, which 

attempts to construct routes for a VRPTW model, with the objective to minimize the total 

cost composed of cost of emissions, operational costs and cost of drivers. 

The PRP can be defined on a complete graph with a set of nodes and a set of arcs 

defined between each pair of nodes. Node 0 is the depot. There exists a homogeneous set of 

vehicles, each with a certain capacity. There is a customer set and every customer has a 

certain demand and a request to be served within a prespecified time interval. Each client 

requires a certain time to be served. 

The PRP deals with constructing a set of routes for vehicles where: 

1. Each customer has its demand fully fulfilled, is only visited by one 

vehicle, and has the service start at allowed times. 

2. All vehicles depart from the depot and all vehicles must return to the 

depot at the end of their routes. 

3. The depot has a minimum service time and maximum service time, 

which define the earliest start possible of the route and the maximum 

length of the route. 

4. The speed at which a vehicle travels on arc is constrained by a lower 

bound and an upper bound. 

The PRP formulation is non-linear due to the multiplication of speed and arc 

travel variables in the OF and the multiplication of node arrival time and arc travel variable 

in the calculation of driver time but can be linearized by discretizing the speed of a vehicle 

in each arc into R equally distant speed levels.     

The fuel consumption formula proposed in (Bektaş & Laporte, 2011) fails to 

properly account for fuel consumption at lower speeds. (Demir et al., 2012) extend the PRP 

formulation, introducing a new term in the OF, that is only significant for lower speed levels, 

as shown in the dotted line in Figure 2.1, therefore better describing fuel consumption at 

speeds below 40 km/h.   
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Figure 2.1. Fuel consumption at different speeds (Demir et al., 2012) 

 

The discretization of speeds, although being a suitable tool to maintain linearity 

in the PRP formulation, leads to discretized travel times and fuel consumption rates, which 

increase the combinational complexity and may lead to sub-optimal solutions. (Xiao et al., 

2020). 

(Xiao et al., 2020) extended the PRP formulation to the continuous case, 

introducing the Continuous Pollution Routing Problem (ε-CPRP) by considering the travel 

speed as a continuous decision variable. All nonlinear components in the ε-CPRP are 

linearized by a unified parameter ε to control the approximation error, resulting in the model 

delivering truly optimized solutions. The authors find the parameter ε can be set as low as 

0.01% without increasing the computational burden significantly and the gap between the 

solution found by the ε-CPRP model and the optimal one is within 3ε%.  

2.4. Variants of the Pollution Routing Problem 

2.4.1. Time-dependent Pollution Routing Problem 

Traffic congestion is a concern in many major cities throughout the world, 

especially during rush hours when traffic jams are common and delays likely. Increased 
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congestion also leads to increased exposure to some of the higher amounts of air pollution 

(Moryadee et al., 2019). 

In the standard PRP formulation, the travel time of a vehicle is a function 

dependent on distance and speed, with the speed as an endogenous variable. In the Time-

Dependent Pollution Routing Problem (TD-PRP), the speed also depends on the departure 

time of the vehicle because it is constrained during periods of traffic congestion. 

Congestion can be considered in different ways. (Moryadee et al., 2019) define 

three time periods, seen in Table 2.1: a starting period where there is free flow, a congestion 

time period in the morning rush hour, and free-flow time period for the rest of the day.  

 

Table 2.1. Impact of time period on vehicle speed (Moryadee et al., 2019) 

Franceschetti et al (2013) assume there is an initial period of congestion, 

followed by free flow for the rest of the day. In the congestion period a vehicle drives at a 

congestion speed smaller than the speed limit, during the peak time, but is only limited by 

the speed limit in off-peak times. The authors assume congestion speed and congestions 

times are constant that are already known. 

One characteristic of vehicle routing problems with time windows is the ability 

to arrive to a customer's location before the time window opens (with service only starting 

within the time window). However, these problems only allow for idle waiting before the 

service has begun, and do not consider waiting after a service has been completed as a 

congestion-reduction approach.  

(Franceschetti et al., 2013) formulate the TDPRP as a PRP with special 

restrictions on vehicle speed. The authors employ the "idle waiting" technique to include 

congestion into the PRP framework, to appropriately account for the negative impacts of low 

speeds induced by congestion.  
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2.4.2. Fleet Size and Mix Pollution Routing Problem 

Customer requests are addressed using heterogenous vehicle fleets in most real-

world distribution scenarios. The type of vehicle used has considerable influence on fuel 

usage, distance travelled, and CO2 emissions, and is, therefore, an important variable to be 

studied. 

Utilizing lower capacity trucks will likely the increase overall distance travelled 

when compared to a heavy-duty vehicle fleet, but each heavy-duty vehicle comes with a 

larger engine, which results in higher fuel consumption and emissions per km. Replacing a 

large vehicle with many trucks of various types can reduce CO2 emissions in some cases. 

Solving the Fleet Size and Mix Pollution Routing Problem (FSMPRP) is worthwhile for 

quantifying the benefits of using a flexible fleet in terms of fuel, emissions, and costs. 

(Koç et al., 2014) introduced the FSMPRP, which is formulated as a PRP with 

the objective of minimizing the total cost, which includes vehicle, driver, fuel, and emissions 

costs. The maximum number of vehicles available for each type is imposed by constraints. 

They found that employing a heterogeneous fleet without speed optimization results in a 

higher decrease in overall cost than using a homogeneous fleet with speed optimization, also, 

considering appropriate fixed speed produces results that are just marginally worse than 

optimizing the speed on each arc.  

 

2.4.3. Pollution Routing Problem with Simultaneous Pickup 
and Delivery 

(Tajik et al., 2014) proposes the Pollution Routing Problem with Simultaneous 

Pickup and Delivery (PRPSPD), a variant of the PRP that includes two groups of nodes: the 

first contains customers whose loads should be picked up, and the second covers customers 

whose demands should be delivered. After servicing all pickup customers, their loads are 

carried by trucks that distribute the loads among delivery customers, an example of which 

can be seen in Figure 2.2. Hence, the amount of the product with which each vehicle is 

loaded up at the depot is the total demands of delivery nodes visited during their routes minus 

the total loads collected from pickup points in the routes that they are assigned to. If the total 

picked-up products are over or equal to the total delivery demands during the route the 

vehicle follows, it leaves the depot empty.  
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Figure 2.2. Example of a PRPSPD solution (Tajik et al., 2014) 

 

The PRPPD is formulated as a PRP with the added distinction of pickups from 

and delivery to customers considering soft time windows (with a penalty in the OF for 

earliness and tardiness). 

2.4.4. Bi-Objective Pollution Routing Problem 

Most real-world problems involve multiple objectives to evaluate the merit of 

solution, which are generally conflicting and incommensurate. In the VRP, there exists for 

each vehicle an optimal speed yielding a minimum fuel consumption, but that same speed is 

generally lower than the speed preferred by vehicle drivers in practice. Increasing vehicle 

speed leads to a reduction of total time spent on a route, which leads to the reduction of 

driver–associated costs, but this, in turn, increases fuel costs and emissions.  

Since the two objectives of minimizing fuel and time are conflicting, using multi-

objective optimization models and methods allows for an evaluation of the possible trade-

offs. In the context of the PRP, (Demir et al., 2014) introduce the bi-objective PRP, 

consisting of a standard PRP problem where there are two conflicting objectives, namely the 

minimization of fuel consumption (using the fuel consumption formula presented in (Demir 

et al., 2012) and the total driving time.  
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The authors show that while the two objectives are conflicting, it is possible to 

achieve a strong reduction in fuel consumption without significantly increasing the total 

driving time, and vice-versa.  

2.4.5. Bi-level Pollution Routing Problem 

Bi-level optimization is most useful to model in situations where there is a 

leader-follower relation, meaning that the choices made by the leader restrict the follower’s 

problem, the optimal solution of which has an impact on the leader’s objective function. 

(Nath et al., 2019) employed bilevel optimization in PRP where the customers 

are assigned to the fleet of vehicles by the depot, which operates as a leader. Its aim is to 

determine the number of vehicles needed and the assignment of vehicles to consumers. The 

vehicle will thereafter decide as the follower. Its goal is to plan a route that minimizes the 

overall distance travelled while considering the depot's choice. This approach, while bi-level 

in formulation, results in a pair of leader-follower that have similar priorities and are not 

affected by the choice of the other level, reducing the necessity of portraying this relation as 

a bi-level one. 

Qiu et al (2020) also proposed a Bi-level PRP, seeking to minimize road freight 

transport carbon emissions by taking into account both the authority and the freight 

company, and their complex relationship, as seen in Figure 2.3.  

 
Figure 2.3. Conceptual model for a Bi-level PRP (Qiu et al., 2020) 
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In this model the authority sets prices for carbon emissions to minimize their 

cost, the freight company develops routes that minimize the total cost considering those 

emissions, which in turn leads to the authority changing the prices to again minimize carbon 

emissions. This back and forth continues until an equilibrium is reached between the upper 

and lower level objectives. Resolving disagreements between the authority and the freight 

business should be prioritized in order to jointly reduce road freight transport carbon 

emissions from the viewpoints of the authority and the freight company 

2.5. Uncertainty in Vehicle Routing Problem 

The consideration of uncertain parameters is a difficult aspect of the VRPs to 

solve. In order to address unknown events in demand, displacement time, and service time 

in a VRP, various approaches have been developed. The two main approaches - stochastic 

and robust techniques – are now distinguished.  

The goal of the Stochastic Vehicle Routing Problem (SVRP) is to identify the 

objective function's near-best solution while accounting for all uncertain occurrences with 

defined probability distributions (Nasri, Hafidi, et al., 2020; Nasri, Metrane, et al., 2020). 

However, in practice, one may not be aware of the travel and service timings 

ahead of time. Weather or traffic circumstances, for example, may cause travel durations 

between two vertexes to be uncertain. Furthermore, distribution technology, driver expertise, 

parking circumstances, and other factors may influence service times (Li et al., 2010). 

A different strategy to deal with uncertain parameters is robust optimization, 

which does not rely on probability distributions for uncertain parameters, instead optimizing 

against the worst-case scenario that may be caused by the source of uncertainty, making the 

obtained solution as much as possible “immune” to it (Nasri, Hafidi, et al., 2020; Nasri, 

Metrane, et al., 2020).  

2.5.1. Stochastic Routing 

There is a striking difference between deterministic and stochastic VRP 

formulations: for all SVRP variants, the DM must decide the solution (at least partially) 

before the exact values of all parameters are completely known as these are independent 

continuous or discrete random variables with a probability distribution, such as uniform, 
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exponential, or normal (Li et al., 2010).The solution may fail when it is implemented with 

the realized data in opposition to the deterministic problem, where the DM has complete 

information when making the plans. There are two common ways of modelling stochastic 

problems: as a chance constrained program or as a stochastic program with recourse. 

 

2.5.1.1. Chance Constrained Programming  

Chance constrained programming (CCP) was proposed by (Charnes et al., 1959) 

as a method of stochastic programming. It provides a way of modelling stochastic decisions 

on the premise that the stochastic constraints will hold at least with probability 𝛼.  

The problem is solved by ensuring that the probability of route failure is below 

a certain level and the cost of failures is typically ignored (Oyola et al., 2018). The objective 

is typically deterministic. The CCP model can be generically written as  

𝑀𝑖𝑛⁡𝑓(𝑥)⁡ 

𝑆𝑢𝑏𝑗𝑒𝑐𝑡⁡𝑡𝑜⁡⁡ 

𝑃𝑟𝑜𝑏⁡(𝑥⁡𝑋) ≥ 1 − 𝛼 (3) 

The DM provides the parameter value 𝛼 giving the acceptable probability of 

failing to meet the constraints. The confidence level also influences the problem tightness, 

computational difficulty, and feasibility. A large enough confidence level may lead to 

unrealistic solutions (Oyola et al., 2018). 

 

2.5.1.2. Stochastic Programming with Recourse 

Although simple, the CCP model does not consider the possibility of route 

failure, nor does it take into account the correction costs in case of route failure (Li et al., 

2010). In Stochastic Programming with Recourse (SPR), one allows route failures, but the 

DM must define a recourse policy, describing what actions to take to repair the solution after 

a failure(Oyola et al., 2018).  

The recourse policy leads to different variants of an SVRP formulation. Three 

common recourse policies are:  

1. When capacity is exceeded when servicing a customer, the vehicle 

interrupts its route and returns to the depot, resuming the route at the 

same customer. 
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2. Before route failure happens the vehicle preemptively travels to the 

depot. This method is averse to failure and attempts to prevent it from 

happening. 

3. Each route is continuously optimized, and the vehicle path may change 

in route due to higher variations in demand than expected, route failure, 

or restocking. 

 

2.5.2. Robust Routing  

The most popular methods for coping with uncertainty are stochastic procedures, 

but they have two significant disadvantages: information accessibility and tractability. The 

first occurs when it is unknown what probability distribution describes the uncertain 

parameters, which frequently occurs when there is insufficient historical data. In addition, 

when there are many random variables, tractability may become a problem, making it 

prohibitively difficult to finish the optimization (Wang et al., 2021).  

Robust optimization is an alternative paradigm that just assumes that uncertain 

parameters are expressed as variables that fall into a predetermined set, and searches for the 

best routing architecture that is immune to all possible parameter realizations within that set 

(Wang et al, 2021). 

(Soyster, 1973) proposed a linear optimization model to construct a solution that 

is feasible for all data that belong to a convex set. The author considers the following nominal 

linear optimization problem. 

Consider a row 𝑖 of a nominal matrix A, with size 𝑛 ∗ 𝑛. Let 𝐽𝑖 be the set of 

coefficients in row i that are subject to uncertainty. Each entry 𝑎̅𝑖𝑗, 𝑗 ∈ 𝐽𝑖 takes values 

according to a symmetric distribution with a mean equal to the nominal value in the interval 

[𝑎𝑖𝑗 − 𝑎̂𝑖𝑗, 𝑎𝑖𝑗 + 𝑎̂𝑖𝑗]. The authors formulate the linear model with auxiliary variable 𝑦𝑗 as 

such. 

𝑀𝑎𝑥𝑖𝑚𝑖𝑧𝑒⁡⁡∑𝑐𝑗𝑥𝑗

𝑛

𝑗=1

 

𝑠𝑢𝑏𝑗𝑒𝑐𝑡⁡𝑡𝑜 
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∑𝑎𝑖𝑗𝑥𝑗

𝑛

𝑗=1

+⁡∑ 𝑎̂𝑖𝑗 ⁡𝑦𝑗
𝑗∈𝐽𝑖

≤ 𝑏𝑖⁡, ∀𝑖 = 1,2, … , 𝑛 

(4) 

−𝑦𝑗 ≤ 𝑥𝑗 ≤ 𝑦𝑗 ⁡, ∀𝑗 = 1,2, … , 𝑛 (5) 

𝑙𝑗 ≤ 𝑥𝑗 ≤ 𝑢𝑗 , ∀j = 1,2, … , n (6) 

𝑦𝑗 ≥ 0⁡, ∀j = 1,2, … , n (7) 

At optimality, to allow 𝑥𝑗 to take the greatest value possible 𝑦𝑗 will be as low as 

possible, therefore 𝑦𝑗 = |𝑥𝑗
∗| which implies: 

∑𝑎𝑖𝑗𝑥𝑗
∗

𝑗∈𝐽𝑖

+⁡∑ 𝑎̂𝑖𝑗⁡|𝑥𝑗
∗|

𝑗∈𝐽𝑖

≤ 𝑏𝑖⁡∀𝑖 = 1,2, … , 𝑛⁡ 
(8) 

∑ â𝑖𝑗|𝑥𝑗|𝑗∈𝐽𝑖
 gives the necessary protection to the ith constraint by maintaining a 

gap between ∑ 𝑎𝑖𝑗𝑥𝑗
∗

𝑗  and 𝑏𝑖. The resulting model is capable of withstanding severe 

uncertainty; however, it produces considerably worse solutions, when compared to the 

deterministic problem, in order to ensure said robustness. 

(Ben-Tal & Nemirovski, 2000) proposed a less conservative model by 

considering an uncertain linear problem, now with auxiliary variables 𝑢𝑖𝑗 and 𝑖𝑖𝑗 

guaranteeing feasibility within an ellipsoidal uncertainty set.  

𝑀𝑎𝑥𝑖𝑚𝑖𝑧𝑒⁡⁡∑𝑐𝑗𝑥𝑗

𝑛

𝑗=1

 

𝑠𝑢𝑏𝑗𝑒𝑐𝑡⁡𝑡𝑜⁡⁡⁡⁡⁡⁡ 

∑𝑎𝑖𝑗𝑥𝑗

𝑛

𝑗=1

+⁡∑ 𝑎̂𝑖𝑗⁡𝑢𝑖𝑗
𝑗∈𝐽𝑖

+ Ω𝑖√∑𝑎̂𝑖𝑗
2 ⁡𝑖𝑖𝑗

2 ⁡

𝑗∈𝐽𝑖

≤ 𝑏𝑖⁡, ∀𝑖 = 1,2, … , 𝑛 

(9) 

−𝑢𝑖𝑗 ≤ 𝑥𝑗 − 𝑖𝑖𝑗 ≤ 𝑢𝑖𝑗 ⁡, ∀𝑖, 𝑗 ∈ 𝐽𝑖 (10) 

𝑙𝑗 ≤ 𝑥𝑗 ≤ 𝑢𝑗 ⁡, ∀j = 1,2, … , 𝑛 (11) 

𝑢𝑖𝑗 ≥ 0⁡, ∀⁡i = 1,2, … , n⁡, ∀⁡j⁡ = 1,2, … , 𝑛 (12) 

Where Ωi is a positive number. The authors have shown that the probability that 

the ith constraint is violated is at most 𝑒−Ω
2/2⁡. Models following ellipsoidal uncertainty are 

less conservative than the one proposed by (Soyster, 1973), as every feasible solution to the 

latter problem is a feasible solution to the former problem, but leads to nonlinear models, 

which are more demanding computationally (Bertsimas & Sim, 2004).  
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(Bertsimas & Sim, 2004) propose an approach for robust linear optimization that 

retains the linear formulation but offers control over the level of robustness of the solution. 

Consider the 𝑖𝑡ℎ⁡constraint of the same nominal problem. For each i there is a 

parameter τ𝑖 that governs the robustness of the solution and takes values in the interval [0, 

|𝐽𝑖 |]. The aim is to be protected against all cases when up to ⌊τ𝑖⌋ of these coefficients can 

change, and one coefficient a𝑖𝑡 changes by (τ𝑖 −⁡⌊τ𝑖⌋) ∗ â𝑖𝑡 , therefore, only a subset of the 

coefficients adversely affects the solution with the rest of the uncertain parameters taking 

their deterministic value. 

The linear model is formulated as  

𝑀𝑎𝑥𝑖𝑚𝑖𝑧𝑒⁡⁡∑𝑐𝑗𝑥𝑗

𝑛

𝑗=1

 

𝑆𝑢𝑏𝑗𝑒𝑐𝑡⁡𝑡𝑜⁡⁡⁡⁡⁡⁡ 

∑𝑎𝑖𝑗𝑥𝑗

𝑛

𝑗=1

+⁡𝑧𝑖τ𝑖 ⁡+ ⁡∑𝑝𝑖𝑗
𝑗∈𝐽𝑖

≤ 𝑏𝑖⁡⁡∀𝑖 = 1,2, … , 𝑛 

(13) 

𝑧𝑖 + 𝑝𝑖𝑗 ≥ â𝑖𝑗⁡𝑦𝑗 ⁡⁡∀𝑗 = 1,2, … , 𝑛 (14) 

−𝑦𝑗 ≤ 𝑥𝑗 ≤ 𝑦𝑗 ⁡⁡⁡∀𝑗 = 1,2, … , 𝑛 (15) 

𝑙𝑗 ≤ 𝑥𝑗 ≤ 𝑢𝑗 ⁡⁡∀𝑗 = 1,2, … , 𝑛 (16) 

𝑝𝑖𝑗 ≥ 0⁡⁡∀𝑖, 𝑗⁡ ∈ 𝐽𝑖 (17) 

𝑦𝑗 ≥ 0⁡⁡∀𝑗 = 1,2, … , 𝑛 (18) 

𝑧𝑖 ≥ 0⁡⁡∀𝑖 = 1,2, … , 𝑛 (19) 

The box, ellipsoidal and polyhedral sets can also be intersected to form new sets: 

“box+ellipsoidal”, “box+polyhedral” and “box+ellipsoidal+polyhedral” uncertainty sets, 

which are the intersection between ellipsoid and box, polyhedral and box, and ellipsoidal, 

polyhedral and box set, respectively. 

(Li, Z., Floudas, 2012; Wang et al., 2021) study some of the most prevalent 

uncertainty sets used in the Robust Optimization (RO) literature considering consumer 

demand and vehicle travel time uncertainty and reduce the uncertainty sets studied by 

(Bertsimas & Sim, 2004). 

The authors model the demand and travel time uncertainty as the following 

cardinality constrained sets. 
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Q𝐺 ∶= ⁡ {⁡q ∈ ℝ𝑛 ∶ q𝑖 = q𝑖
0 ⁡+⁡ q̂𝑖⁡𝜛𝑖⁡∀i⁡ ∈ ⁡ {1, 2, … , n},∑ ⁡𝜛𝑖

𝑛

𝑖=1

< Γ𝑞⁡, 𝜛i ∈ [0,1]𝑛⁡} 
(20) 

Τ𝐺 ∶= ⁡ {⁡t ∈ ℝ𝑛 ∶ t𝑖𝑗 = t𝑖𝑗
0 ⁡+ ⁡ t̂𝑖𝑗 ⁡𝜍𝑖𝑗⁡∀i, j⁡ ∈ ⁡A⁡,∑ ⁡𝜍𝑖𝑗

𝑛

𝑖=1

< Γ𝑡⁡, 𝜍𝑖𝑗 ∈ [0,1]𝑛∗𝑛⁡} 
(21) 

Where 𝑁0 is the set of customers, 𝐴 is the set of arcs,⁡q𝑖 is the demand of 

customer 𝑖 and 𝑡𝑖𝑗 is the travel time between node i and j. q𝑖
0 ∈ ℝ>0

𝑛 ⁡ , q̂ ∈ ℝ>0
𝑛   , Γ𝑞 ∈

⁡[0, |𝑁0|]⁡ and t𝑖𝑗
0 ∈ ⁡ℝ>0

𝑛 ⁡ , t̂𝑖𝑗 ∈ ℝ>0 , Γ𝑡 ∈ ⁡ [0, |A|]⁡ are parameters that need to be specified 

by the modeler for the demand and travel time sets, respectively, and 𝜛𝑖 and 𝜍𝑖𝑗 are variables 

indicating where demand or travel time worsening happen.  

If the uncertainty sets Q𝐺  and Τ𝐺 are compact and convex, then they can be 

replaced by Ext(Q𝐺) and Ext(Τ𝐺) where Ext(Q𝐺) or Ext(Τ𝐺) denotes the set of extreme points 

of Q𝐺  or Τ𝐺, respectively. The demand and travel time uncertainty sets can therefore be 

reduced to the sets of their extreme points. 

Furthermore, if the uncertainty sets Q𝐺  and Τ𝐺 are compact and convex, then 

they can be replaced by 𝐸𝑥𝑡̅̅ ̅̅ ̅(Q𝐺) and 𝐸𝑥𝑡̅̅ ̅̅ ̅(Τ𝐺),  where 𝐸𝑥𝑡̅̅ ̅̅ ̅(Q𝐺) ⊆ ⁡Ext(Q𝐺)⁡and 𝐸𝑥𝑡̅̅ ̅̅ ̅(Τ𝐺) ⊆

⁡Ext(Τ𝐺)⁡denotes the set of non-dominated points of Ext(Q𝐺) and Ext(Τ𝐺), respectively. 

Robust solutions following polyhedral uncertainty sets can provide good enough 

protection against uncertainty at a smaller cost premium over the deterministic situation 

(Rouky et al., 2018). Choosing the amount of uncertainty to consider is mostly left to the 

DM.  

(Nasri, Hafidi, et al., 2020; Rouky et al., 2018) studied the VRPTW with 

uncertain travel and service times. The authors formulate two polyhedral uncertainty sets 

based on (Nasri, Metrane, et al., 2020), where the travel time interval  [𝑡𝑖𝑗, 𝑡𝑖𝑗 +⁡Δ𝑖𝑗⁡𝜀𝑖𝑗] and 

the customer service time interval is [𝑃𝑖⁡, 𝑃𝑖 +⁡δ𝑖 ⁡𝜔𝑖], where 𝑡𝑖𝑗 and 𝑃𝑖 denote the nominal 

values, and  Δ𝑖𝑗 and δ𝑖 are the maximum positive perturbations, and⁡𝜀𝑖𝑗 and 𝜔𝑖 variables 

controlling the level of uncertainty .𝑁 is the set of nodes, 𝑊 is the set of vehicles, and 𝐴 is 

the set of arcs. They defined the sets 𝑈𝑡 and 𝑈𝑝  in a similar fashion as (20) and (21), 

respectively. 

𝑈𝑡 = {𝑡̃ ∈ 𝑅|𝐴|⁡/⁡⁡𝑡̃𝑖𝑗 = 𝑡𝑖𝑗 +⁡Δ𝑖𝑗⁡𝜀𝑖𝑗 ⁡ ∑ 𝜀𝑖𝑗 ≤ Γ, 0 ≤ 𝜀𝑖𝑗 ≤ Г⁡, ∀(𝑖, 𝑗) ∈ 𝐴}
(𝑖,𝑗)∈𝐴

⁡⁡(1) 
(22) 
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𝑈𝑝 = {𝑃̃ ∈ 𝑅|𝑁|⁡/⁡⁡𝑃̃𝑖 = 𝑃𝑖 +⁡δ𝑖 ⁡𝜔𝑖 ⁡∑𝜔𝑖 ≤ Λ⁡,0 ≤ 𝜔𝑖 ≤ Λ, ∀⁡𝑖 ∈ 𝑁}

𝑖∈𝑁

 
(23) 

Where Г and Λ vary respectively between 0 and |𝑁| + |W|, and 0 and |𝑁|, and 

define the maximum number of travel times and customer service times that may be subject 

to uncertainty. 

The model that guarantees the feasibility of a solution for all possible realizations 

of uncertain travel and service times is much harder to compute, as it may have to solve a 

model with as many as a very large number more scenarios. 

(Munari et al., 2019) simplify the formulation of robust VRPTW models with 

travel time and demand uncertainty, reducing the complexity of formulating the constraints 

by adapting them to be Miller-Tucker-Zemlin (MTZ), introducing MTZ based constraints 

that guarantee feasibility for all realizations of uncertain travel time and demand without 

requiring the numerous constraints proposed by (Nasri, Hafidi, et al., 2020; Rouky et al., 

2018). 

2.5.3. Robust Routing in PRP 

There is little literature relating to the implementation of robust PRP models.  

(Eshtehadi et al., 2017) consider a special case of the PRP where the objective 

function solely depends on the total fuel consumption rather than the total cost of fuel 

consumed and driving time as in the PRP. 

The authors formulate three models, each representing a different approach to 

robustness: the Hard Worst Case (HWC), a boxed uncertainty set that protects the solution 

for all possible realizations of 𝑞𝑖; Soft Worst Case (SWC), which protects the solution for a 

certain number of realizations of 𝑞𝑖, and chance constrained robust model (which the authors 

classify as realistic approach), that protects the solution for 1-α realizations of 𝑞𝑖.  

The hard worst case robust optimization approach is modelled as a standard PRP 

problem with the following constraints added: 

∑𝑓′𝑖𝑗
𝑗∈𝑁

−∑𝑓′
𝑗𝑖

𝑗∈𝑁

= 𝑞̅𝑖 −⁡𝑞̂𝑖 ⁡⁡∀𝑖⁡ ∈ ⁡𝑁0⁡ 
(24) 

∑𝑓𝑖𝑗
𝑗∈𝑁

−∑𝑓𝑗𝑖
𝑗∈𝑁

= 𝑞̅𝑖 +⁡𝑞̂𝑖⁡⁡∀𝑖⁡ ∈ ⁡𝑁0 
(25) 
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𝑓𝑖𝑗𝑥𝑖𝑗 ≤ (𝑄 −⁡ 𝑞̅𝑖 −⁡𝑞̂𝑖)⁡𝑥𝑖𝑗 ⁡⁡⁡∀𝑖, 𝑗⁡ ∈ ⁡𝐴 (26) 

𝑓𝑖𝑗𝑥𝑖𝑗 ≥ (𝑞̅𝑗 +⁡𝑞̂𝑗)⁡𝑥𝑖𝑗 ⁡⁡⁡∀𝑖, 𝑗⁡ ∈ ⁡𝐴 (27) 

𝑓0𝑗𝑥𝑖𝑗 ≤ 𝑓′0𝑗 ⁡∀𝑖⁡ ∈ ⁡𝑁0 (28) 

∑𝑓𝑖𝑗
𝑗∈𝑁

−∑𝑓𝑗𝑖
𝑗∈𝑁

−∑𝑓′
𝑖𝑗

𝑗∈𝑁

+∑𝑓′
𝑗𝑖

𝑗∈𝑁

= ⁡2𝑞̂𝑖⁡⁡∀𝑖⁡ ∈ ⁡𝑁 
(29) 

𝑓′𝑖𝑗 ≥ 0⁡⁡∀𝑖, 𝑗 ∈ ⁡𝐴 (30) 

Where the continuous variable 𝑓′
𝑖𝑗

 is defined as the flow through the arc (𝑖, 𝑗) 

in the worst-case scenario where each customer receives a lower bound of demand when 

vehicles are loaded with an upper bound of demand,⁡𝑓𝑖𝑗 is the flow through the arc (𝑖, 𝑗),𝑞̅𝑖 

is the nominal demand of customer 𝑖,𝑞̂𝑖 is the variation in demand of customer i and 𝑥𝑖𝑗 is a 

binary variable that indicates whether arc between nodes i and j is travelled or not.  

Constraints (24)-(25) define the relation between 𝑓𝑖𝑗 and 𝑓′𝑖𝑗, and together make the 

constraint (29) redundant. Constraints (26)-(27) define the flow through an arc when 

demands take their worst value, and constraints(28)-(30) guarantee 𝑓𝑖𝑗
′  assumes only feasible 

values. 

The soft worst-case robust optimization approach is modelled as PRP problem 

with the following constraints added. 

⁡∑𝑓𝑖𝑗
𝑗∈𝑁

−∑𝑓𝑗𝑖
𝑗∈𝑁

= 𝑞̅𝑖 +⁡Γ𝑖𝑞̂𝑖⁡⁡∀𝑖⁡ ∈ ⁡𝑁0 
(31) 

𝑓𝑖𝑗𝑥𝑖𝑗 ≤ (𝑄 −⁡ 𝑞̅𝑖 −⁡Γ𝑖𝑞̂𝑖)𝑥𝑖𝑗 ⁡⁡⁡∀𝑖, 𝑗⁡ ∈ ⁡𝐴 (32) 

𝑓𝑖𝑗𝑥𝑖𝑗 ≥ (𝑞̅𝑗 +⁡Γ𝑖𝑞̂𝑗)𝑥𝑖𝑗 ⁡⁡⁡∀𝑖, 𝑗⁡ ∈ ⁡𝐴 (33) 

𝑓0𝑗𝑥𝑖𝑗 ≤ 𝑓′0𝑗 ⁡∀𝑖⁡ ∈ ⁡𝑁0 (34) 

∑𝑓𝑖𝑗
𝑗∈𝑁

−∑𝑓𝑗𝑖
𝑗∈𝑁

−∑𝑓′
𝑖𝑗

𝑗∈𝑁

+∑𝑓′
𝑗𝑖

𝑗∈𝑁

= (1 + Γ𝑖)𝑞̂𝑖⁡⁡∀𝑖⁡ ∈ ⁡𝑁 
(35) 

∑Γ𝑖
𝑗∈𝑁

= 𝜓 
(36) 

Γ𝑖 ∈ {0,1}⁡∀𝑖⁡ ∈ ⁡𝑁0 (37) 

Where binary variables Γ𝑖 are defined in (37), and control the degree of 

conservation in each constraint i in which Γ𝑖 is equal to 1 if customer 𝑖 receives its upper 

bound value (otherwise it takes 0). The parameter 𝜓 indicates how many uncertain variables 
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take their worst value and can be selected as any value in the interval [0;|N|], and is given 

values representative of generic situations, as seen in Table 2.2. Constraints (31) and (35) 

are the SWC equivalent of (24) and (29). Constraints (32)-(33)  are the SWC equivalent of 

(26)-(27) , and define the flow through an arc when demands take either the worst value or 

the nominal value, indicated by variable Γ𝑖, which can only be 1 𝜓 times, guaranteed by 

constraint (36). 

 

 

 Table 2.2. Values taken by 𝝍 for different robustness levels (Eshtehadi et al., 2017) 

The chance-constrained robust optimization PRP problem is modelled with the 

following constraints added. 

∑𝑓′𝑖𝑗
𝑗∈𝑁

−∑𝑓′
𝑗𝑖

𝑗∈𝑁

= 𝑞̅𝑖 −⁡(1 − 𝛼)𝑞̂𝑖⁡⁡∀𝑖⁡ ∈ ⁡𝑁0 (38) 

∑𝑓𝑖𝑗
𝑗∈𝑁

−∑𝑓𝑗𝑖
𝑗∈𝑁

= 𝑞̅𝑖 +⁡(1 − 𝛼)𝑞̂𝑖⁡⁡∀𝑖⁡ ∈ ⁡𝑁0 
(39) 

∑𝑓𝑖𝑗
𝑗∈𝑁

−∑𝑓𝑗𝑖
𝑗∈𝑁

= 𝑞̅𝑖 +⁡(1 − 𝛼)𝑞̂𝑖⁡⁡∀𝑖⁡ ∈ ⁡𝑁0 
(40) 

𝑓𝑖𝑗𝑥𝑖𝑗 ≤ (𝑄 −⁡ 𝑞̅𝑖 −⁡(1 − 𝛼)𝑞̂𝑖)⁡𝑥𝑖𝑗⁡⁡⁡∀𝑖, 𝑗⁡ ∈ ⁡𝐴 (41) 

𝑓𝑖𝑗𝑥𝑖𝑗 ≥ (𝑞̅𝑗 +⁡(1 − 𝛼)𝑞̂𝑗)⁡𝑥𝑖𝑗 ⁡⁡⁡∀𝑖, 𝑗⁡ ∈ ⁡𝐴 (42) 

∑𝑓𝑖𝑗
𝑗∈𝑁

−∑𝑓𝑗𝑖
𝑗∈𝑁

−∑𝑓′
𝑖𝑗

𝑗∈𝑁

+∑𝑓′
𝑗𝑖

𝑗∈𝑁

= ⁡2(1 − 𝛼)𝑞̂𝑖⁡⁡∀𝑖⁡ ∈ ⁡𝑁 
(43) 

Where 𝛼 is the chance of 𝑞𝑖 taking its worst value, when demand follows a 

uniform distribution. Constraints (39)-(40) are the chance constrained equivalent of (24)-

(25), with a similar redundancy appearing in (43), and constraints (41)-(42) are the chance 

constrained equivalent of (26)-(27). 

The authors found that the robust solution leads to reliable routes, while only 

requiring a marginal increase in fuel consumption. Feasibility in all realizations of uncertain 
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values can be achieved with only a marginal increase in distance travelled and fuel 

consumed. 

The authors also redefine the speed limits when studying travel time uncertainty, 

where low travel uncertainty is defined as 𝑅 = {40;… ; 75𝑘𝑚/ℎ} whereas the high travel 

uncertainty is defined as 𝑅 = {40;… ; 55𝑘𝑚/ℎ}.However, this approach reduces the study 

of travel time uncertainty to the study of speed limit scenarios, which results in 

overconservative solutions (as in most cases not every road is constrained by the same speed 

limit) and does not account for delays that may happen when travelling. 

(Tajik et al., 2014) study the Time Window Pickup and Delivery Pollution 

Routing Problem (TWPDPRP), extending the standard PRPSPD and guaranteeing the 

feasibility of the solution for all realizations of boxed uncertainty sets of service time, travel 

time, fuel cost and emissions cost.  

After studying a specific instance, the authors found that increasing the capacity 

has no effect on the objective function until a certain size is reached, after which the increase 

in capacity allows for longer routes with one vehicle, which reduced the total cost of 

operation.  

 

Figure 2.4. Impact of increasing vehicle capacity in the OF (Tajik et al., 2014) 

Their findings corroborate the idea that one of the main cost drivers is the 

number of vehicles used. The authors also found, however, that certain cases exist where 
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smaller capacity constraints impose to much of a burden on fuel costs, leading to solutions 

with fewer vehicles being better. Figure 2.4 shows the optimal solution for different 

capacities, and although solutions using three or four vehicles exist at all capacity levels, the 

solution with four vehicles is more efficient until 55 tons capacity is reached.
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3. PROBLEM DESCRIPTION 

3.1. Pollution Routing Problem 

The PRP is defined on a complete graph 𝐺 = (𝑁; 𝐴) with 𝑁 = {0,1,2,… , 𝑛} as 

the set of nodes and A as the set of arcs defined between each pair of nodes. Node 0 is the 

depot. There exists a homogeneous set of vehicles W, each with capacity Q. The set 𝑁0 =

{1,2, … , 𝑛} is the customer set and every customer 𝑖⁡ ∈ ⁡𝑁0 has demand 𝑞𝑖 and a request to 

be served within a prespecified time interval [𝑎𝑖, 𝑏𝑖]. The time taken by a vehicle to serve 

customer i is denoted by⁡𝑡𝑖, and the distance from i to j is denoted by 𝑑𝑖𝑗.  

A binary variable 𝑥𝑖𝑗 is equal to 1 if a vehicle travels on arc (𝑖, 𝑗) ∈ 𝐴. For a 

given arc (𝑖, 𝑗) ∈ 𝐴, 𝑓𝑖𝑗and 𝑣𝑖𝑗 respectively represent the amount of commodity flowing and 

the speed at which a vehicle travels on this arc. Variable 𝑦𝑗 is the time at which service at 

node ⁡𝑗⁡ ∈ ⁡𝑁0 starts, and 𝑠𝑗 is the service time of the route with the last customer 𝑗⁡ ∈ ⁡𝑁0. 

The fuel consumption formula used in this dissertation is presented in (Demir et 

al., 2012) and is calculated as the following: 

𝐹(𝑣) = ⁡𝜆(𝑘𝑁𝑉 + 𝑤𝛾𝛼𝑣 + ⁡𝛾𝛼𝑓𝑣 + ⁡𝛽𝛾𝑣3) ∗ ⁡
𝑑

𝑣
 (44) 

 

where 

𝜆 = ⁡
𝜉

𝜅Ψ
 (45) 

𝛾 =
1

1000 ∗⁡𝜂𝑡𝑓 ∗ 𝜂
 

(46) 

𝛼 = ⁡𝜏 + 𝑔 sin 𝜃 + 𝑔𝐶𝑟 cos 𝜃 (47) 

𝛽 = 0.5⁡𝐶𝑑𝜌𝐴 (48) 

 

𝜆 and 𝛾 are constants, 𝛼 is an arc-specific constant and 𝛽 is a vehicle-specific 

constant. f; v; 𝜏; 𝜃; d, w, denote the vehicle payload, vehicle speed, acceleration, road 
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gradient, distance, and curb weight of an empty vehicle, respectively. The definition of all 

parameters and their typical values are given in Table 3.1. 

Table 3.1. Parameters used in instances 

 

 

There is a set of R equidistant non-decreasing speed levels 𝑣̅𝑟 = {1, 2, . . . , R}. A 

binary variable 𝑧𝑖𝑗
𝑟  assumes 1 if a vehicle travels at speed level 𝑟⁡ ∈ ⁡𝑅 on arc (𝑖, 𝑗), and 0 

otherwise.  

The standard PRP is then formulated: 

 

𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑒⁡⁡ ∑ fc⁡𝑘𝑁𝑉𝜆𝑑𝑖𝑗 ⁡
(𝑖,𝑗)∈𝐴

∑𝑧𝑖𝑗
𝑟

𝑅

𝑟=1

/𝑣̅𝑟 (49) 

+⁡ ∑ fc⁡𝑤𝛾𝜆𝛼𝑖𝑗𝑑𝑖𝑗𝑥𝑖𝑗 ⁡
(𝑖,𝑗)∈𝐴

 (50) 

+ ∑ fc⁡𝛾𝜆𝛼𝑖𝑗𝑑𝑖𝑗𝑓𝑖𝑗 ⁡
(𝑖,𝑗)∈𝐴

 
(51) 
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+⁡ ∑ ⁡fc𝛽𝛾𝜆𝛼𝑖𝑗𝑑𝑖𝑗∑𝑧𝑖𝑗
𝑟

𝑅

𝑟=1

(𝑣̅𝑟)2⁡
(𝑖,𝑗)∈𝐴

 

(52) 

+⁡∑ ⁡𝑓𝑑𝑠𝑗⁡

𝑗∈𝑁0

 
(53) 

 

𝑠𝑢𝑏𝑗𝑒𝑐𝑡⁡𝑡𝑜⁡⁡⁡⁡⁡⁡ 

∑⁡𝑥𝑗0⁡

𝑗∈𝑁

≥ 1 (54) 

∑⁡𝑥𝑖𝑗 ⁡

𝑗∈𝑁

= 1⁡, ∀𝑖 ∈ ⁡𝑁0⁡ (55) 

∑⁡𝑥𝑖𝑗 ⁡

𝑖∈𝑁

= 1⁡, ∀𝑗 ∈ ⁡𝑁0 
(56) 

𝑞𝑗𝑥𝑖𝑗 ≤ 𝑓𝑖𝑗 ≤ (𝑄 − 𝑞𝑖)𝑥𝑖𝑗⁡, ∀(𝑖, 𝑗) ∈ 𝐴 (57) 

𝑦𝑖 −⁡𝑦𝑗 + 𝑡𝑖 +∑𝑑𝑖𝑗 ⁡𝑧𝑖𝑗
𝑟 𝑣̅𝑟

𝑅

𝑟=1

≤ M(1 − 𝑥𝑖𝑗)⁡, ∀𝑖 ∈ 𝑁, ∀𝑗 ∈ ⁡𝑁0, 𝑖 ≠ 𝑗 

(58) 

𝑎𝑖 ≤ 𝑦𝑖 ≤ 𝑏𝑖⁡, ∀𝑖 ∈ ⁡𝑁0 (59) 

𝑦𝑗 −⁡𝑠𝑗 + 𝑡𝑗 +∑𝑑𝑗0⁡𝑧𝑗0
𝑟 ⁡/⁡𝑣̅𝑟

𝑅

𝑟∈1

≤ 𝑀(1 − 𝑥𝑗0)⁡, ∀𝑗 ∈ ⁡𝑁0 

(60) 

∑𝑧𝑖𝑗
𝑟 ⁡

𝑅

𝑟=1

= 𝑥𝑖𝑗 ⁡, ∀(𝑖, 𝑗) ∈ 𝐴 

(61) 

𝑓𝑖𝑗 ≥ 0⁡, ∀(𝑖, 𝑗) ∈ 𝐴 (62) 

𝑧𝑖𝑗
𝑟 ∈ {0,1}⁡, ∀(𝑖, 𝑗) ∈ 𝐴, 𝑟 = 1,2, … , 𝑅 (63) 

𝑦𝑖 −∑∑max {0, 𝑎𝑗 − 𝑎𝑖 + 𝑡𝑗 +
𝑑𝑗𝑖

𝑣̅𝑟
}

𝑟∈𝑅𝑗∈𝑁

𝑧𝑗𝑖
𝑟 ≥ 𝑎𝑖, ∀𝑖 ∈ 𝑁0⁡ 

(64) 

𝑦𝑖 +∑∑max {0, 𝑏𝑖 − 𝑏𝑗 + 𝑡𝑖 +
𝑑𝑖𝑗

𝑣̅𝑟
}

𝑟∈𝑅𝑗∈𝑁

𝑧𝑖𝑗
𝑟 ≤ 𝑏𝑖, ∀𝑖 ∈ 𝑁0⁡ 

(65) 

The objective function contains five components: (49) takes into account fuel 

consumption for speeds under 40 km/h, (50) and (51) measure the costs due to vehicle 

payload and curb weight,(52) measures the cost accrued by variations in speed. The last 

component (53) measures the total amount paid to the drivers. Constraint (54) means that at 



 

 

Bi-objective robust optimization for the pollution-routing problem under uncertainty in travel time and 
demand   

 

 

28  2022 

 

least one vehicle departs from the depot. Constraints (55) and (56) guarantee that each 

customer is visited exactly once. The balance of flow is described through constraints (57) 

which model the flow as increasing by the amount of demand of each visited customer and 

having a hard limit in vehicle capacity. Constraints (58), (59) and (60) impose time window 

limits. Constraints (61) impose the choice of speed level in an arc, and that a speed level 

only exists if the arc is travelled by a vehicle.(62)-(63) define the variables 𝑓𝑖𝑗 and 𝑧𝑖𝑗
𝑟 . 

Constraints (64)-(65) reduce solving times. 

As stated in (Demir et al., 2014), increasing vehicle speed leads to the reduction 

of total time spent on a route, which leads to the reduction of driver–associated costs, but 

this, in turn, increases fuel costs and emissions. Two conflicting objective functions can then 

be defined, one pertaining to driver related costs, and one relating to emissions. 

The bi-objective PRP can then be formulated as: 

𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑒 ∑ ⁡σ𝑘𝑁𝑉𝜆𝑑𝑖𝑗⁡
(𝑖,𝑗)∈𝐴

∑𝑧𝑖𝑗
𝑟

𝑅

𝑟=1

/𝑣̅𝑟 (66) 

+⁡ ∑ ⁡σ𝑤𝛾𝜆𝛼𝑖𝑗𝑑𝑖𝑗𝑥𝑖𝑗⁡
(𝑖,𝑗)∈𝐴

 (67) 

+ ∑ ⁡σ𝛾𝜆𝛼𝑖𝑗𝑑𝑖𝑗𝑓𝑖𝑗 ⁡
(𝑖,𝑗)∈𝐴

 
(68) 

+⁡ ∑ ⁡σ𝛽𝛾𝜆𝛼𝑖𝑗𝑑𝑖𝑗∑𝑧𝑖𝑗
𝑟

𝑅

𝑟=1

(𝑣̅𝑟)2⁡
(𝑖,𝑗)∈𝐴

 

(69) 

𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑒⁡ ∑ ⁡𝑓𝑑𝑠𝑗 ⁡

𝑗∈𝑁0

 
(70) 

 

𝑆𝑢𝑏𝑗𝑒𝑐𝑡⁡𝑡𝑜 (54)-(65) 
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3.2. Robust Counterpart of the PRP formulation 

3.2.1. Robust Pollution Routing Problem with Uncertain 
Demand 

We follow (Eshtehadi et al., 2017) to model for robust demand uncertainty. As 

described in Section 2.3.1, a parameter 𝜓 is defined as an uncertainty budget, that states only 

a certain number of customers receive their upper bound value. Binary variables Γ𝑖 reflect 

whether customer i receives the upper bound of its demand or not. Variable 𝑞̂𝑖 indicates the 

uncertain part of the demand of customer i, equal to 10% of 𝑞𝑖. According to the description 

of the SWC in 2.5.3, a new robust approach can be formulated as follows. 

𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑒⁡⁡ ∑ ⁡fc𝑘𝑁𝑉𝜆𝑑𝑖𝑗 ⁡
(𝑖,𝑗)∈𝐴

∑𝑧𝑖𝑗
𝑟

𝑅

𝑟=1

/𝑣̅𝑟 

(71) 

+⁡ ∑ ⁡fc𝑤𝛾𝜆𝛼𝑖𝑗𝑑𝑖𝑗𝑥𝑖𝑗 ⁡
(𝑖,𝑗)∈𝐴

 
(72) 

+ ∑ ⁡fc𝛾𝜆𝛼𝑖𝑗𝑑𝑖𝑗𝑓′𝑖𝑗⁡
(𝑖,𝑗)∈𝐴

 
(73) 

+⁡ ∑ ⁡fc𝛽𝛾𝜆𝛼𝑖𝑗𝑑𝑖𝑗∑𝑧𝑖𝑗
𝑟

𝑅

𝑟=1

(𝑣̅𝑟)2⁡
(𝑖,𝑗)∈𝐴

 

(74) 

+⁡∑ ⁡𝑓𝑑𝑠𝑗⁡

𝑗∈𝑁0

 
(75) 

𝑆𝑢𝑏𝑗𝑒𝑐𝑡⁡𝑡𝑜⁡(54) − (56), (58) − (65), 𝑎𝑛𝑑⁡⁡⁡⁡⁡⁡ 

⁡∑𝑓𝑖𝑗
𝑗∈𝑁

−∑𝑓𝑗𝑖
𝑗∈𝑁

= 𝑞𝑖 +⁡Γ𝑖𝑞̂𝑖⁡, ∀𝑖⁡ ∈ ⁡𝑁0 
(76) 

𝑓𝑖𝑗 ≤ (𝑄 −⁡𝑞𝑖 −⁡Γ𝑖𝑞̂𝑖)𝑥𝑖𝑗⁡, ∀𝑖, 𝑗⁡ ∈ ⁡𝐴 (77) 

𝑓𝑖𝑗 ≥ (𝑞𝑗 +⁡Γ𝑖𝑞̂𝑗)𝑥𝑖𝑗 ⁡, ∀𝑖, 𝑗⁡ ∈ ⁡𝐴 (78) 

𝑓0𝑗 ≤ 𝑓′
0𝑗
⁡, ∀𝑖⁡ ∈ ⁡𝑁0 (79) 

∑𝑓𝑖𝑗
𝑗∈𝑁

−∑𝑓𝑗𝑖
𝑗∈𝑁

−∑𝑓′
𝑖𝑗

𝑗∈𝑁

+∑𝑓′
𝑗𝑖

𝑗∈𝑁

= (1 + Γ𝑖)𝑞̂𝑖⁡, ∀𝑖⁡ ∈ ⁡𝑁 
(80) 

∑ Γ𝑖
𝑖∈𝑁0

= 𝜓 
(81) 

Γ𝑖 ∈ {0,1}⁡, ∀𝑖⁡ ∈ ⁡𝑁0 (82) 
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Constraints (77)-(78) are the robust counterparts of constraint (57). (79) states 

that the worst-case value for flow must be equal or greater to the nominal flow. Constraints 

(76) and (80) define the relation between 𝑓𝑖𝑗 and 𝑓𝑖𝑗
′ , (81) states that only 𝜓 customers have 

increased demand and (82) defines the variables Γ𝑖. 

This formulation is nonlinear due to (77) and (78), and is linearized by defining 

two new auxiliary variable sets,𝑣 and 𝑣′. 

 

𝑣𝑖𝑗 = Γ𝑖𝑥𝑖𝑗 (83) 

𝑣𝑖𝑗
′ = Γ𝑗𝑥𝑖𝑗 (84) 

 

and the following constraints 

 

𝑓𝑖𝑗 ≤ (𝑄 − 𝑞𝑖)𝑥𝑖𝑗 − 𝑞̂𝑖𝑣𝑖𝑗 , ∀(𝑖, 𝑗) ∈ 𝐴 (85) 

𝑓𝑖𝑗 ≥ 𝑞𝑗𝑥𝑖𝑗 + 𝑞̂𝑗𝑣′𝑖𝑗 , ∀(𝑖, 𝑗) ∈ 𝐴 (86) 

𝑣𝑖𝑗 ≤ 𝑥𝑖𝑗, ∀(𝑖, 𝑗) ∈ 𝐴 (87) 

𝑣𝑖𝑗 ≤ Γ𝑖, ∀(𝑖, 𝑗) ∈ 𝐴 (88) 

Γ𝑖 + 𝑥𝑖𝑗 ≤ 1 + 𝑣𝑖𝑗 , ∀(𝑖, 𝑗) ∈ 𝐴 (89) 

𝑣𝑖𝑗
′ ≤ 𝑥𝑖𝑗, ∀(𝑖, 𝑗) ∈ 𝐴 (90) 

𝑣𝑖𝑗
′ ≤ Γ𝑗 , ∀(𝑖, 𝑗) ∈ 𝐴 (91) 

Γ𝑗 + 𝑥𝑖𝑗 ≤ 1 + 𝑣𝑖𝑗
′ , ∀(𝑖, 𝑗) ∈ 𝐴 (92) 

𝑣𝑖𝑗 ∈ {0,1}, ∀(𝑖, 𝑗) ∈ 𝐴 (93) 

𝑣𝑖𝑗
′ ∈ {0,1}, ∀(𝑖, 𝑗) ∈ 𝐴 (94) 

3.2.2. Robust Pollution Routing Problem with Uncertain Travel 
Time 

3.2.2.1. Formulation I 

In a similar fashion to Section 3.2.1 a new parameter 𝜙 can be defined to control 

the conservatism of the solution. Binary variables Ε𝑖𝑗 control the degree of conservation and 

assume the value of 1 if the arc suffers from a delay, and 0 otherwise.⁡𝑡̂ represents the amount 

of delay, in seconds. 
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Contrary to the demand uncertainty case, the travel time uncertainty was 

formulated as a constant increase in travel time instead of a percentual increase. This is 

because a delay in travel time is not necessarily larger the longer the travel is, contrarily to 

demand uncertainty, where it is more likely for a customer with an order of 5000 units to ask 

for 500 units more than it is for a smaller customer with an order of 500 units. 

It is also necessary to quantify the impact a delay has on the objective function, 

which depends on what one considers a delay is: a reduction of speed in a subsection of the 

arc, a halting of the car with the engine running, or a complete stop with engine stopped. The 

complete stop without engine halting case was studied. The impact a full engine stop has on 

fuel consumption is obviously null, but the same does not apply when the engine is kept 

running. 

When considering the halting of the car with the engine still running the impact 

the delay has on fuel emissions is independent of arc that suffers the delay. 

Starting with the fuel consumption formula defined in (Demir et al., 2012) 

 

𝐹𝑅(𝑔/𝑠) =  
ξ(𝐾𝑁𝑉 + 𝑃)

𝑘
 

(95) 

𝑃 =
𝑃𝑡𝑟𝑎𝑐𝑡
𝜂𝑡𝑓

+  𝑃𝑎𝑐𝑐 
(96) 

𝑃𝑡𝑟𝑎𝑐𝑡 = (𝑀𝜏 +𝑀𝑔 𝑠𝑖𝑛𝜃 + 0.5𝐶𝑑𝜌𝐴𝑣
2 +𝑀𝐺𝐶𝑟 cos 𝜃) ∗

𝑣

1000
 

(97) 

When the car suffers the delay it stops, therefore the speed when suffering the 

delay is 0. 

𝑣 = 0 ⟹ 𝑃𝑡𝑟𝑎𝑐𝑡 = 0 ⇒ 𝑃 = 0 ⟹ 𝐹𝑅 = 
ξ 𝐾𝑁𝑉

𝑘
 (98) 

𝐶𝑜𝑠𝑡⁡𝑎𝑠𝑠𝑜𝑐𝑖𝑎𝑡𝑒𝑑⁡𝑡𝑜⁡𝑎⁡𝑑𝑒𝑙𝑎𝑦 = 𝑓𝑐 ∗
ξ 𝐾𝑁𝑉

𝑘
∗

1

Ψ
∗ Ε𝑖𝑗 ∗  𝑡̂ (99) 

𝐶𝑜𝑠𝑡⁡𝑎𝑠𝑠𝑜𝑐𝑖𝑎𝑡𝑒𝑑⁡with⁡𝑎𝑙𝑙⁡𝑑𝑒𝑙𝑎𝑦𝑠 = ∑ 𝑓𝑐 ∗ 𝐾𝑁𝑉𝜆 ∗ ⁡Ε𝑖𝑗 ∗  𝑡̂

(𝑖,𝑗)∈𝐴

 
(100) 

In the cost associated with all delays only Ε𝑖𝑗 is a variable. Since 

∑ ⁡Ε𝑖𝑗(𝑖,𝑗)∈𝐴 = ⁡𝜙  (101) 

The equation can be reduced to 

𝐶𝑜𝑠𝑡⁡𝑎𝑠𝑠𝑜𝑐𝑖𝑎𝑡𝑒𝑑⁡with⁡𝑎𝑙𝑙⁡𝑑𝑒𝑙𝑎𝑦𝑠 = ⁡𝑓𝑐 ∗ 𝐾𝑁𝑉𝜆 ∗  𝑡̂ ∗ ⁡𝜓 (102) 
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The definition of the delay value also deserves attention. In the real world, a 

delay may be anything from a few minutes to several hours. While the impact of increasing 

delay amounts is also studied, for simplicity’s sake, the delay was set as 20% of the average 

travel time in all arcs in a certain instance, calculated as the average of distances/average 

speed, then rounded to 1000 seconds. 

The SWC delay formulation is as follows: 

𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑒⁡ ∑ ⁡fc𝑘𝑁𝑉𝜆⁡(
(𝑖,𝑗)∈𝐴

𝑑𝑖𝑗∑𝑧𝑖𝑗
𝑟

𝑅

𝑟=1

/𝑣̅𝑟 ⁡+ 𝑡̂⁡Ε𝑖𝑗)⁡ 

(103) 

+⁡ ∑ fc𝑤𝛾𝜆𝛼𝑖𝑗𝑑𝑖𝑗𝑥𝑖𝑗 ⁡
(𝑖,𝑗)∈𝐴

 (104) 

+ ∑ fc𝛾𝜆𝛼𝑖𝑗𝑑𝑖𝑗𝑓𝑖𝑗 ⁡
(𝑖,𝑗)∈𝐴

 
(105) 

+⁡ ∑ ⁡fc𝛽𝛾𝜆𝛼𝑖𝑗𝑑𝑖𝑗∑𝑧𝑖𝑗
𝑟

𝑅

𝑟=1

(𝑣̅𝑟)2⁡
(𝑖,𝑗)∈𝐴

 

(106) 

+⁡∑ ⁡𝑓𝑑𝑠𝑗⁡

𝑗∈𝑁0

 
(107) 

Subject to (54),(56) - (57),(59),(61) - (63) 

And 

𝑦𝑖 + 𝑡𝑖 +∑(𝑑𝑖𝑗 ∗
𝑧𝑖𝑗𝑟

𝑣𝑟
) + Ε𝑖𝑗 ∗

𝑅

𝑟=1

𝑡̂ ≤ 𝑀 ∗ (1 − 𝑥𝑖𝑗) + 𝑦𝑗 , ∀(𝑖, 𝑗) ∈ 𝐴 

(108) 

𝑦𝑗 + 𝑡𝑗 +∑(𝑑𝑗0 ∗
𝑧𝑗0𝑟

𝑣𝑟
) + Ε𝑗0 ∗

𝑅

𝑟=1

𝑡̂ ≤ 𝑀 ∗ (1 − 𝑥𝑗0) + 𝑠𝑗 , ∀(𝑖, 𝑗) ∈ 𝐴 

(109) 

Ε𝑖𝑗 ≤ 𝑥𝑖𝑗, ∀(𝑖, 𝑗) ∈ 𝐴 (110) 

∑  Ε𝑖𝑗 = 𝜙 

𝑖,𝑗𝜖𝐴 

 
(111) 

Ε𝑖𝑗 ∈ {0,1}⁡, ∀(𝑖, 𝑗) ∈ 𝐴 (112) 

𝜙 ∈ {0,1, … , |𝑁| + |𝑊|} (113) 

Constraints (108) - (109) are the robust counterparts of (58) and (60). Constraint (110) 

guarantees that a delay only occurs on travelled arcs, and constraint (111) defines only 𝜙 

arcs suffer delays. Constraints (112)-(113) define Ε𝑖𝑗 and 𝜙. 
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3.2.2.1. Formulation II 

While simpler to study and implement, the previous formulation for the time 

travel delay has the variables that represent the choice of where the delay happens as 

endogenous, meaning the model choses where the delays happen, therefore, when only some 

arcs suffer delay, the models cannot guarantee the feasibility of a solution for all possible 

combinations of delays (equivalent to ensuring feasibility inside a polyhedral uncertainty 

set). Another formulation, derived from (Munari et al., 2019), which can guarantee 

feasibility inside a polyhedral uncertainty set, is proposed. 

Variables 𝑦𝑗 and 𝑠𝑗 are replaced by 𝑦𝑗𝑛 and 𝑠𝑗𝑛, respectively, where 𝑦𝑗𝑛 is the time service 

starts at j when n arcs have suffered delays, and 𝑠𝑗𝑛 is the service time of the route with the 

last customer being j when n arcs have suffered delays. 

The model is defined as follows. 

Minimize⁡ ∑ ⁡fc𝑤𝛾𝜆𝛼𝑖𝑗𝑑𝑖𝑗𝑥𝑖𝑗 ⁡
(𝑖,𝑗)∈𝐴

 
(114) 

+ ∑ ⁡fc𝛾𝜆𝛼𝑖𝑗𝑑𝑖𝑗𝑓𝑖𝑗 ⁡
(𝑖,𝑗)∈𝐴

 
(115) 

+⁡ ∑ ⁡fc𝛽𝛾𝜆𝛼𝑖𝑗𝑑𝑖𝑗∑𝑧𝑖𝑗
𝑟

𝑅

𝑟=1

(𝑣̅𝑟)2⁡
(𝑖,𝑗)∈𝐴

 

(116) 

+⁡ ∑ ⁡fc𝑘𝑁𝑉𝜆⁡(
(𝑖,𝑗)∈𝐴

𝑑𝑖𝑗∑𝑧𝑖𝑗
𝑟

𝑅

𝑟=1

/𝑣̅𝑟⁡)⁡ 

(117) 

+⁡𝑓𝑐𝑘𝑁𝑉𝜆 ∗  𝑡̂ ∗ 𝜙 (118) 

+⁡𝑓𝑑Η⁡ (119) 

Subject to (54)- (57),(59),(61),(62),(63) and 

𝑦𝑖𝑛 + 𝑡𝑖 +∑(𝑑𝑖𝑗 ∗
𝑧𝑖𝑗𝑟

𝑣𝑟
)

𝑅

𝑟=1

≤ 𝑀 ∗ (1 − 𝑥𝑖𝑗) + 𝑦𝑗𝑛, ∀(𝑖, 𝑗) ∈ 𝐴, 𝑛 ∈ {0,1, … , 𝜙} 

(120) 

𝑦𝑖𝑛−1 + 𝑡𝑖 +∑(𝑑𝑖𝑗 ∗
𝑧𝑖𝑗𝑟

𝑣𝑟
) +

𝑅

𝑟=1

𝑡̂ ≤ 𝑀 ∗ (1 − 𝑥𝑖𝑗) + 𝑦𝑗𝑛, ∀(𝑖, 𝑗) ∈ 𝐴, 𝑛 ∈ {0,1, … , 𝜙} 

(121) 
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𝑦𝑗𝑛 + 𝑡𝑗 +∑(𝑑𝑗0 ∗
𝑧𝑗0𝑟

𝑣𝑟
)

𝑅

𝑟=1

≤ 𝑀 ∗ (1 − 𝑥𝑗0) + 𝑠𝑗𝑛, ∀(𝑖, 𝑗) ∈ 𝐴, 𝑛 ∈ {0,1, … , 𝜙} 

(122) 

𝑦𝑗𝑛−1 + 𝑡𝑗 +∑(𝑑𝑗0 ∗
𝑧𝑗0𝑟

𝑣𝑟
) +

𝑅

𝑟=1

𝑡̂ ≤ 𝑀 ∗ (1 − 𝑥𝑗0) + 𝑠𝑗𝑛, ∀(𝑖, 𝑗) ∈ 𝐴, 𝑛 ∈ {0,1, … , 𝜙} 

(123) 

𝑎𝑖 < 𝑦𝑖𝑛 < 𝑏𝑖, ∀𝑖 ∈ 𝑁0⁡, 𝑛 ∈ {0,1, … , 𝜙} (124) 

𝑎0 < 𝑠𝑖𝑛 < 𝑏0, ∀𝑖 ∈ 𝑁0⁡, 𝑛 ∈ {0,1, … , 𝜙} (125) 

Η ≥∑𝑠𝑗𝑛𝑗
𝑗

⁡,⁡⁡⁡∀⁡𝑛𝑗 ∈ {0,1, … , 𝜙⁡}⁡|⁡𝑗 ∈ 𝑁0 ∧⁡∑𝑛𝑗
𝑗

= 𝜙⁡ 
(126) 

Constraints (120) and (121) recursively define the arrival time at a customer as 

the highest of two cases: either all n delays have happened, and the path between the last 

customer and i suffers no delay, or only 𝑛 − 1⁡delays had happened, and the path between 

the last customer and customer 𝑖 suffers a delay. Constraints (122) and (123) define 𝑠𝑗𝑛 in a 

similar way, and allow for the model not having an extra node for the depot, as created in 

(Munari et al., 2019). 

Constraints (124) and (125) guarantee feasibility for all possible realizations of 

the delay. 

This model better adheres to the previously mentioned concept budget 

uncertainty but obtaining the service time for (119) is significantly more challenging, as we 

now have a collection of service times to choose from. Since robustness refers to minimizing 

the worst case, the model must select the set of service times with the largest sum, where the 

sum of all second indexes equals 𝜙, this was implemented in (126). 

A representation of the problem created is shown in Figure 3.1 which features a 

feasible solution with three routes to a hypothetical four customer problem where two arcs 

suffer a delay.  
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Figure 3.1. Example of solution to a 4-node problem with Formulation II with the worst combination of 𝒔𝒊𝒋 

highlighted 

To obtain the value of (119) one must search for all possible combinations of 

one 𝑠1𝑛,𝑠3𝑛 and 𝑠4𝑛 where the sum of all n indexes is two. This can be generalized to obtain 

the number of constraints introduced by (126), since it involves choosing one value of 𝜙 +

1 possibilities, |𝑁0| times, which means it will introduce no more than (𝜙 + 1)|𝑁0| 

constraints, an amount that quickly gets prohibitively complicated to handle.  

There are some techniques that can help reduce the amount of possibilities: every 

combination where there is at least one 𝑠𝑖𝑛 where n is greater than 0 and the node i is not the 

last customer in a route can be discarded, as one can easily obtain a total sum equal or greater 

with the combination where all n delays present in 𝑠𝑖𝑛 are allocated to a different route 

service time where the corresponding node is the last in a route. While theoretically helpful, 

we were not able to define the corresponding formulation and computational 

implementation. Also, the existence of multiple service times and the choice that must be 

made make the use of (64) and (65), impossible in this model, which results in even worse 

performance. 
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3.2.3. Robust Pollution Routing Problem with Uncertain Travel 
Time and Demand 

The formulations in Section 3.2.1 and Section 3.2.2.1 can be joined in order to 

create a model robust to both demand and travel time uncertainty. 

Minimize⁡ ∑ ⁡fc𝑤𝛾𝜆𝛼𝑖𝑗𝑑𝑖𝑗𝑥𝑖𝑗 ⁡
(𝑖,𝑗)∈𝐴

 (127) 

+⁡ ∑ ⁡fc𝛽𝛾𝜆𝛼𝑖𝑗𝑑𝑖𝑗∑𝑧𝑖𝑗
𝑟

𝑅

𝑟=1

(𝑣̅𝑟)2⁡
(𝑖,𝑗)∈𝐴

 

(128) 

+ ∑ ⁡fc𝛾𝜆𝛼𝑖𝑗𝑑𝑖𝑗𝑓′𝑖𝑗⁡
(𝑖,𝑗)∈𝐴

 
(129) 

+ ∑ ⁡fc𝑘𝑁𝑉𝜆⁡(
(𝑖,𝑗)∈𝐴

𝑑𝑖𝑗∑𝑧𝑖𝑗
𝑟

𝑅

𝑟=1

/𝑣̅𝑟 ⁡+ 𝑡̂⁡Ε𝑖𝑗)⁡ 

(130) 

+⁡∑ ⁡𝑓𝑑𝑠𝑗⁡

𝑗∈𝑁0

 
(131) 

𝑆𝑢𝑏𝑗𝑒𝑐𝑡⁡𝑡𝑜⁡(54)-(56),(59),(61),(63)-(65),(76)- (82),(85)-(94),(108)-(113) 

 

And its bi-objective counterpart. 

Minimize⁡ ∑ ⁡σ𝑤𝛾𝜆𝛼𝑖𝑗𝑑𝑖𝑗𝑥𝑖𝑗 ⁡
(𝑖,𝑗)∈𝐴

 (132) 

+⁡ ∑ ⁡σ𝛽𝛾𝜆𝛼𝑖𝑗𝑑𝑖𝑗∑𝑧𝑖𝑗
𝑟

𝑅

𝑟=1

(𝑣̅𝑟)2⁡
(𝑖,𝑗)∈𝐴

 

(133) 

+ ∑ ⁡σ𝛾𝜆𝛼𝑖𝑗𝑑𝑖𝑗𝑓′𝑖𝑗 ⁡
(𝑖,𝑗)∈𝐴

 
(134) 

+ ∑ ⁡σ𝑘𝑁𝑉𝜆⁡(
(𝑖,𝑗)∈𝐴

𝑑𝑖𝑗∑𝑧𝑖𝑗
𝑟

𝑅

𝑟=1

/𝑣̅𝑟 ⁡+ 𝑡̂⁡Γ𝑖𝑗)⁡ 

(135) 

Minimize⁡ ∑ ⁡𝑓𝑑𝑠𝑗 ⁡

𝑗∈𝑁0

 
(136) 

𝑆𝑢𝑏𝑗𝑒𝑐𝑡⁡𝑡𝑜(54)-(56),(59),(61),(63)-(65),(76)- (82),(85)-(94),(108)-(113) 

 

 



 

 

  Results 

 

 

João Daniel Machado Martins  37 

 

 

4. RESULTS 

4.1. Data and Experimental Settings 

In order to validate the proposed mathematical models, we resort on the library 

created by (Demir et al., 2012), whose instances represent randomly selected cities from the 

UK and use real geographical distances. All instances are available for download from 

http://www.apollo.management.soton.ac.uk/prplib.htm. Implementations of all formulations 

were done in Python, using the Python CPLEX API to interact with CPLEX. Preliminary 

analysis was conducted on a PC with an i7-4720hq and 8GB of RAM. Experiments were 

conducted on a server with an Intel Xeon Gold 6138@3.7GHz processor and 320GB of 

RAM.  

All parameters were used as previously defined in Table 3.1. There was a three-

hour time limit on each run. Unless indicated otherwise, a problem ran until optimality was 

achieved. Instances that reached the time limit have the corresponding gap to the best 

possible solution indicated. Studying all possible cases of uncertainty would be excessive, 

and generate too much information, making it difficult to draw conclusions, therefore we 

choose to use values that represent some plausible level uncertainty and maximum 

uncertainty, which are show in Table 4.1. 

Table 4.1. Values of 𝝍 and 𝝓 for different robustness levels 

 
 

For demand uncertainty we considered maximum uncertainty when all 

customers take their worst values, and some level of uncertainty as half (rounded up) of the 

customers take their worst values. Travel time uncertainty is more challenging, as the total 

amount of arcs run by vehicles is equal |𝑁0| + |𝑊|, however, the number of vehicles is an 

endogenous variable, which means the maximum number of arcs is only known after the 

instance is run. The maximum number of arcs cannot be known, but a minimum to this value 



 

 

Bi-objective robust optimization for the pollution-routing problem under uncertainty in travel time and 
demand   

 

 

38  2022 

 

can, since each car has a certain capacity and all customer demand has to be met. The 

minimum number of vehicles used can be derived by dividing the sum of all demands and 

the capacity of a single vehicle and rounding up the result. This means we can obtain a 

minimum number of arcs travelled, which is used when the maximum number of arcs suffers 

the delay, and half of that is used when some arcs suffer delay. 

 

4.2. Results of RPRP-TTD 

4.2.1. RPRP-TTD with formulation I  

The following tables show the solutions to 10 and 20 node instances of the PRP. 

Ten instances were run for each node count. All problems with 10 nodes ran to optimality, 

while no optimal solution could be reached with any of the 20-node problems. Table 4.2 and 

Table 4.3 show the OF values for the 10-node instances under some and maximum 

uncertainty, and Table 4.5 and Table 4.6 show the CPU runtimes for the corresponding 

instances. Table 4.7 and Table 4.8 show the OF values and CPU runtimes for the 20-node 

instances under maximum uncertainty. 

In the following tables, “OF” represents the value obtained for the objective 

function, and “%OF” represents the percentual difference between the objective function 

value from a certain instance to the objective function value of corresponding deterministic 

problem. Similarly, “Time” represents the time spent in seconds by the CPU to obtain the 

optimal solution, and ”%Time” is the percentual difference between time from a certain 

instance and the time in the corresponding deterministic problem. Each couple of numbers 

represents the value of uncertain parameters used in the columns directly below – the left 

number corresponding to the amount of demand uncertainty 𝜓, and the right number to the 

amount of travel time uncertainty 𝜙. 
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Table 4.2. OF values for the 10-node instances under some uncertainty 

 
 

The 10-node instances under some uncertainty show on average a 0.25% 

worsening of the objective function value when only demand uncertainty is concerned, while 

delays in travel time result in a 10.98% increase in total cost. The impact a moderate amount 

of uncertainty has on the objective function value is similar between instances. 

 
Table 4.3. OF values for the 10-node instances under maximum uncertainty 

 
 

The 10-node instances under maximum uncertainty show a stronger difference 

between the impact delays and increases in demand have on the total cost – on average, the 

increase of demand of all customers results in a slight increase of 1.17% in cost, while delays 

in travel time result in a 23.19% increase in total cost. The two uncertainties are mostly 

independent, as when both happen simultaneously the impact in the OF value is close to the 

sum of the two individual problems. However, the impact delays have on operation cost is 
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partially avoidable: all models were run with the assumption that the engine is left running 

when a vehicle is at a standstill, and, as previously discussed, the impact of keeping the 

engine running has on the objective function is shown in Figure 4.1. 

 

Figure 4.1. Reduction in operation costs resulting of shutting the engine down 

When 6 arcs suffer a delay the impact of keeping the engine running in the OF 

is 8.55 euros, when 12 arcs suffer a delay, the impact is 17.09 euros. Such values are 

considerable and can easily be avoided by simply shutting the engine down when stopped. 

Table 4.4 shows the impact shutting the engine down has on the OF. In the following table 

“OF” represents the value obtained for the objective function, “OF-SS” is the value of the 

objective function for the same route when start-stop system is active, and “%OF-SS” is the 

percentual difference between “OF” and “OF-SS”. 

Table 4.4. Savings caused by shutting the engine down in 10-node instances 

 

When 6 delays are considered, shutting down the engine leads to a reduction in 

total operation costs averaging 4%, irrelevantly of whether demand uncertainty happens or 
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not. When uncertainty increases, so does the impact of stopping the engine – there is on 

average a 7% reduction in the total costs. 

Such reductions are easy to achieve – modern vehicles possess a start-stop 

system, that automatically stops the car when it is at a standstill. These results show the 

relevance of this system to logistic companies, as they incur a smaller cost when faced with 

the inevitable delays on their delivery routes. 

 
Table 4.5. Runtime values for 10-node instances under some uncertainty 

 
 

Table 4.6. Runtime values for 10-node instances under maximum uncertainty 

 
 

The time increase in solving instances follows some of the patterns as the OF 

value increase, where demand uncertainty has a smaller impact in computational time, while 

travel time uncertainty in some instances takes almost five times as long to solve, when 

compared to deterministic version. However, when solving instances with demand and travel 

time uncertainty, the solving time suffers a larger increase than the sum of the previous two 

increases, being on average 359.97% slower than the original problem. The impact travel 

time uncertainty has on CPU runtimes varies greatly depending on the instance. 
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Table 4.7. OF values for 20-node instances under maximum uncertainty 

 
 

The impact both uncertainties have on the problems stays the same, when 

considering instances with more customers. On average, uncertainty in demand results in an 

increase of 3.65% in cost, while delays in travel time result in a 30.45% increase in total 

cost, with the impact of both uncertainties happening at the same time is close to the sum of 

the impacts of each type of uncertainty. However, the percentual increase in cost driven by 

demand uncertainty is quite variable, sometimes provoking a 10% worse value in OF, and 

sometimes having a negligible impact. On the contrary, the effect of delays is less dependent 

on the instance. 

Table 4.8. Savings caused by shutting the engine down 20-node instances 

 

As shown in Table 4.8, the impact of engine stop in 20-node problems is slightly 

larger than the one in the worst case in the 10-node problem – there is on average more than 
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8% reduction in operation costs when start-stop systems are used. However, there is a larger 

variation of savings within 20-node instances. Table 4.9 shows the impact shutting the 

engine down has on the OF value, with “Gap(%)” indicating the percentual gap between the 

obtained solution and possible best solution. 

Table 4.9. CPU runtime values for 20-node instances under maximum uncertainty 

 
 

Solving times balloon when considering 20-node instances, not obtaining 

optimal solutions within three hours. Gaps remain the same when only demand uncertainty 

exists and increase when uncertainty in travel time is introduced. 

4.2.2. RPRP-TTD with Formulation II  

While theoretically important, the second formulation of the travel time delay 

suffers heavily from poor performance, compared to the Formulation I. The performance in 

similar instances will be soon compared, but this formulation suffers from lack of 

performance in another manner: formulating the model itself is computationally expensive, 

due to the combinations of service times that must be individually analyzed to see if they 

belong in the model. As previously mentioned in Section 3.2.2.1, implementing (126) 

requires studying (ϕ + 1)|𝑁0| constraints to see which are valid, and, since the proposed 

simplifications could not be implemented, for a 10-node instance with maximum travel time 

delay, this means parsing through 137 858 491 849 constraints to see whether or not they are 

valid. As such an amount could not be done in acceptable time (models were not being 

completely generated within 24 hours) the following results contain only results for 10 node 

instances with some uncertainty. 
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Table 4.10 and Table 4.11 show the solutions and CPU runtimes for the 10-node 

instances. The meaning of column values is the same as previously described. 

Table 4.10. OF values for 10-node instances under some uncertainty 

 
 

As expected, when only demand uncertainty is present, the solutions are equal 

to the ones obtained with the Formulation I in Table 4.2. However, when, travel time delay 

occurs, the OF value worsens, compared with Formulation I. This is consistent with the 

different definitions of uncertainty present in each model. While this model presents 

solutions that withstand all possible combinations of up to 6 delays, the first model only has 

to guarantee that a solution is capable of withstanding 6 specific delays, therefore, it can 

choose where the delays occur to obtain a better OF value, which comes at a cost of the 

solution robustness. 

Table 4.11. Runtime values for 10-node instances under some uncertainty 

 
 

When considering solving times, this model is clearly inferior to the first one. 

On average, this model requires double the time to solve an instance, when compared to 

Formulation I. This is due to two factors: the model is more complex - while the first model 
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can easily assign delays to certain arcs in a solution, and deal with travel time uncertainty 

(due to the permissive arrival and departure times customers have in these instances), 

Formulation II does not have the same ease of solving, as it still must consider all possible 

arrival times, with or without delays. Moreover, the lack of the two subtour breaking 

constraints (64)-(65) hurt solving times. 

Overall, the model with recursive arrival times, although it is a relevant 

formulation for considering polyhedral uncertainty in the PRP, requires further development: 

the insertion of the maximum service time constrains must be optimized, to formulate the 

model for larger instances or for higher levels of uncertainty, and constraints that optimize 

solving times must be reintroduced. 

4.3. Results of Bi-Objective RPRP-TTD 

As the objective functions are conflicting, there is no feasible solution that 

optimizes both objective functions simultaneously. Therefore, we need to characterize 

(totally or partially) the nondominated solution set constituting the Pareto front, i.e., the 

feasible solutions for which one can only improve an objective function accepting to 

degrade, at least, another objective function value. As the proposed model is a MILP model, 

an approximation of the Pareto front was found using the ε-constraint method : the objective 

function (136) was set as an increasingly more difficult constrain – decreasing in steps of 

one,  and the objective function (132)-(135) was chosen to be optimized. 
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4.3.1. Bi-Objective RPRP-TTD 

Figure 4.2 shows Pareto fronts for the instances of the problem 10_2, under 

different levels of uncertainty. 

 

Figure 4.2. Pareto fronts for 10-node instances under different levels of uncertainty 

Three groups of three Pareto fronts can be identified, where within each group 

all members have similar nondominated solution sets. The main distinction between 

members of different groups is the uncertainty in travel time: the leftmost group has certain 

travel times, the middle group has half of the arcs travelled suffering delays, and the 

rightmost group has the maximum number of arcs suffering delays. Within each group 

another pattern emerges: an increase in demand uncertainty drives a slight worsening of the 

Pareto front (when compared to an increase in travel time uncertainty). This means that 

increasing delays in routes have a more adverse effect in the total operation cost. A similar 

saving through the start-stop mechanism can be applied to the emissions of each solution. 

The savings have increasing impact in the third group, but they have no other effect than 

bringing the groups closer.  
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 Figure 4.3 shows Pareto fronts for the different instances of the problem 20_1, 

under different levels of uncertainty. 

 

Figure 4.3. Pareto fronts for 20-node instances under different levels of uncertainty 

When increasing the number of customers, the same three groups distinguished 

by the level of travel time uncertainty remain; however, the impact of demand uncertainty 

changes drastically: while some uncertainty leads to marginally worse solution space, 

maximum uncertainty severely worsens the operation environmental performance, having 

no effect in operation costs, in the cases where only some arcs have uncertain travel times. 

When the worst-case scenario is reached in both cases – not only is the environmental 

performance worse, but the increase in requirements coupled with the many delays 

necessitate the inclusion of another vehicle. 

4.3.2. Impact of increasing delay amount 

Although previous results were obtained using 1000 seconds delay, in the real-

world delays may be distinct, and the impact of different delays can be different, and not 

reduced only to somewhat increasing emissions and driver cost. Multiple instances of one 

10-node and one 20-node problem were run, where the maximum time travel delay was 

considered, but each time the delay magnitude increased. Instances were initially run with 

500 seconds delay and an increase of 100 seconds was applied, until 2000 seconds were 

reached. 
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Figure 4.4 shows Pareto fronts for the instances of the problem 10_2, with 

maximum uncertainty and increasing delay amounts. 

 

Figure 4.4. Pareto fronts for a 10-node instance under maximum uncertainty with increasing delay amount 

When studying the effect of the delay amount has in this instance, we can easily 

distinguish two groups: one composed of delays under 1000 seconds, and another with 

delays equal or greater than 1000 seconds. The former has Pareto fronts of similar shape, 

with each one being a slightly worse version of the previous. This is due to the impact a 

delay has on fuel consumption and travel time, while the routes obtained remain mostly the 

same within this group. Increasing the delay magnitude results in more time the engine is 

running while the car is at a standstill, and in an increase in service time. However, when 

jumping from 900 seconds delay to 1000 seconds, there is a drastic change in the 

nondominated solutions – while the minimum amount possible of operation costs remains a 

linear increase from the previous minimum, minimizing emissions now results in a sharp 

increase in driver costs. This is because minimization of fuel consumption, which is 

correlated with emissions minimization, happens at a speed below the maximum amount, 

and with delays larger than 900 seconds three vehicles no longer can satisfy the time 

constraints of all customers, requiring another vehicle, that leads to a strong increase in the 

driver cost. Delay amounts larger than 1200 seconds contain only solutions with 4 vehicles 

and delays smaller than 1000 seconds contain only solutions with 3 vehicles. Delays of 1100 
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and 1200 seconds are particularly important, as they show the differences between routes of 

3 and 4 vehicles, which are shown in Figure 4.5, alongside with 900 and 1300 second delays 

for comparison. 

 

Figure 4.5. Pareto fronts for a 10-node instance under maximum uncertainty with increasing delay amount 

Delays of 1000 and 1100 seconds are the only ones that contain solutions with 3 

and 4 vehicles, and the change between the two values can be seen in their Pareto fronts: 

when the main aim is to minimize emissions, both run 4 cars, and are shaped similarly to 

solution spaces with 1200 seconds delay or larger, which allows them to attain optimal 

speed, and reduce emissions. However, at a certain point (operation cost below 116€) such 

operation costs cannot be attained with four drivers, and solutions change to using three 

vehicles only, with the rest of the Pareto front taking similar shape as the ones created with 

delays 900 seconds or lower. 

Figure 4.6 shows the Pareto fronts for the instances of the problem 20_1, with 

maximum uncertainty and increasing delay amounts. 
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Figure 4.6. Pareto fronts for a 20-node instance under maximum uncertainty with increasing delay amount 

Similarly to the 10-node problem, we can distinguish two groups: one composed 

of delays under 1300 seconds, and another one with delays equal or greater than 1400 

seconds. The former has Pareto fronts of similar shape, with each one being a slightly worse 

version of the previous one. However, when jumping from 1300 seconds delay to 1400 

seconds, there is a drastic change in the nondominated solutions – while the minimum 

amount possible of operation costs remains a small increase from the previous minimum, 

minimizing emissions results in a sharp increase in driver costs, due to an increase in the 

number of vehicles. 
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5. CONCLUSION 

In this dissertation we developed a collection of models for the Pollution Routing 

Problem with travel time and demand uncertainty, defining the impact each type of 

uncertainty has on the objective function, thus extending robustness approaches to green 

routing problems.  

5.1. Main contributions 

By using several robust techniques, we have showed that it is possible to deal 

with data uncertainty and to obtain reliable solutions with a limited worsening of the 

objective function values. Obtaining solutions that are robust for demand uncertainty only 

marginally increases operation costs. Solutions unaffected by travel time uncertainty have a 

greater effect on operation cost. Therefore, the DM should carefully evaluate between 

robustness vs. optimality of solution. 

We also showed that the benefits of stopping the engine when at a standstill: 

reduce total operation cost by 4% when some delays happen, and the impact increases with 

the number of delays. 

Using the shown robust techniques, companies can reduce the risk of unmet 

demand and late arrivals. While solutions obtained with this method are more costly when 

compared with non-robust solutions, when realized, non-robust solutions may fail, and result 

in unsatisfied customers and extra operation costs. The solution robustness can also be 

controlled, allowing for the DM to find a balanced point in between solution robustness and 

optimal routing. 

We also showed obtaining robust solutions has a different impact on objective 

functions tradeoff – while demand uncertainty results only in a worsening of emissions, 

travel time uncertainty worsens both environmental and travel time performance. However, 

while obtaining reliable solutions for different uncertainties has different impacts on the 

Pareto front, its shape remains similar for different uncertainty levels. The impact of an 

increase in delay is also studied, and remains stable until a certain threshold is reached, at 
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which an increase in the number of vehicles is necessary, which results in a stronger 

worsening of the Pareto front, and a change in its shape. 

 

5.2. Future Work 

The most extensively researched model in this dissertation, Formulation I,  while 

simple to implement, suffers from demand and travel time variables not belonging to a 

polyhedral uncertainty set, which reduces the robustness of solutions with some uncertainty 

obtained with this formulation. While this has been partially addressed with Formulation II, 

the second model is difficult to formulate and to solve, and only guarantees polyhedral 

uncertainty for travel time delays. Expanding this model to include demand uncertainty and 

optimizing its creation and solving times are both two possible avenues of research. 
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