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Abstract

Object detection is a crucial task that has multiple applications, including autonomous
vehicles, security, agriculture and many applications in manufacturing and smart cities.
The majority of these applications use IoT devices, the problem with these edge devices
is their limited computing power and limited energy resources. As a result, a significant
percentage of their computing is performed in the cloud, and as a result, there is always a
delay in these solutions, and many of them consume a significant amount of computational
power, resulting in high energy consumption. To improve this aspect, it is necessary to
perform some computing locally, providing fast, low-cost and energy-efficient solutions.
The proposed solution focuses on implementing YOLOv3,v4,v5 Neural Networks (NN) in
Graphics Processing Unit (GPU)s and Central Processing Unit (CPU)s (simulating cloud
computing) and on Field Programable Gate Array (FPGA)s (simulating edge computing).
The implementations were tested using the Common Objects in Context (COCO) dataset,
involving a total of 14 NN models. In these implementations, energy consumption was
measured, allowing for precise comparisons of the most energy-efficient models across
different types of hardware. These implementations aim to achieve a balance between ac-
curacy and energy efficiency by taking into account computationally lightweight solutions.
To perform inference on the FPGA, two frameworks, Pynq[1] and Vitis-Ai[2], were used.
Due to its complexity, parallelization was not performed in the Pynq framework, however,
it was possible to achieve 1.23 Frames Per Second (FPS) while achieving 0.09 frames/joule.
Parallelization within the Vitis-AI framework allowed for the achievement of 57.93 FPS
at 2.25 frames per joule.
Finally, object detection models that operate in real time (more than 30 FPS on GPU
and FPGA) have been developed, achieving 2.25 frames/joule on FPGA implementations
and 1.31 frames/joule on GPU implementations, respectively.
Comparing the most efficient FPGA implementation to the most efficient GPU implemen-
tation, the FPGA is 1.78 times more efficient.

Keywords: FPGA, IoT, YOLO, Object Detection, Edge Computing.
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Resumo

A detecção de objetos é uma tarefa crucial que possui várias aplicações, incluindo
véıculos autônomos, segurança e inúmeras aplicações em fábricas e cidades inteligentes. A
maioria destas aplicações usa dispositivos IoT, o problema com textitedge devices é seu
possuirem baixo poder computacional e serem limitados pelo baixo consumo de energias.
Como resultado, uma percentagem significativa de sua computação é realizada na cloud
e, deste modo, há sempre um atraso nestas soluções, e a maioria delas utiliza grande
poder computacional, promovendo alto consumo de energia. Para melhorar esse aspecto, é
necessário realizar alguma computação localmente, fornecendo soluções rápidas, de baixo
custo e energeticamente eficientes.
A solução proposta envolve a implementação de Redes Neuronais Neural Networks (NN)
YOLOv3,v4,v5 em Graphics Processing Unit (GPU)s e Central Processing Unit (CPU)s
(simulando cloud computing) e em Field Programable Gate Array (FPGA)s (simulando
edge computing ). As implementações foram testadas utilizando o dataset Common
Objects in Context (COCO), envolvendo um total de 14 modelos de redes neuronais.
Nestas implementações, o consumo de energia foi medido, permitindo comparações precisas
dos modelos mais eficientes em termos de energia nos diferentes tipos de hardware. Estas
implementações visam alcançar um equiĺıbrio entre precisão e eficiência energética, levando
em consideração soluções computacionalmente leves.
Para realizar a inferência na FPGA, foram utilizadas duas frameworks, Pynq[1] e Vitis-
Ai[2]. Devido à sua complexidade, a paralelização não foi realizada na framework Pynq,
no entanto, foi posśıvel atingir 1,23 Frames Per Second (FPS) e atingir 0,09 frames/joule.
A paralelização na framework Vitis-AI permitiu atingir 57,93 FPS e 2.25 frames/joule.
Por fim, foram desenvolvidos modelos de detecção de objetos que operam em tempo real
(mais de 30 FPS em GPU e FPGA), alcançando 2,25 frames/joule em implementações na
FPGA e 1.31 frames/joule em implementações de GPU, respectivamente.
Comparando as implementações mais eficientes em FPGA e GPU, a FPGA é 1.78 vezes
mais eficiente.

Palavras-chave: FPGA, IoT, YOLO, Deteção de objetos.
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Chapter 1

Introduction

1.1 Motivation and Scope

Object detection [3][4] is a method in computer vision [5] that determines if an object
is present or not in an image [6]. Examples include recognizing objects with autonomous
vehicles, animal detection in agriculture, and people detection in security.

In smart cities there are also numerous applications incorporating object detection.
Traffic management is one of them. In Los Angeles, for instance, an intelligent transport
solution was implemented to monitor and control traffic flow [7]. Integrated pavement
sensor transmit real-time updates of traffic flow to a central traffic management platform,
which analyzes the data and instantly adjusts traffic lights to the traffic situation. Simul-
taneously, historical information is used to predict where traffic can flow, and none of
these processes require human intervention [8].

In recent years, Deep Learning (DL) has been widely implemented across a variety
of fields. Convolutional Neural Networks (CNN) provide the most accurate solutions to
real-world problems in DL [9]. CNN are used in a wide range of everyday applications,
including voice recognition, document analysis, face recognition and estimation of human
pose [9]. These Neural Networks (NN) make use of Convolutional layers, these extract
features from the input data, followed by Classification layers that make decisions [10].
One of the problems found in these NNs is their high computational weight, since they
usually require billions of operations in order to process an input.

Generally, the computing power of IoT devices is limited, which makes it challenging
to implement deep learning applications on these devices. Field Programable Gate Array
(FPGA)s are excellent candidates for this type of problem due to their high processing
power, low power consumption, and low latency. Also FPGAs have an inherently parallel
architecture that makes them suitable for ML applications [11] [12]. FPGAs circuits are
capable of being reconfigured at any time.

More than 55% of the world’s population is now urbanized [13] (68% by 2050 is
projected [14]). Problems related to health, traffic, pollution, waste management and poor
infrastructure arise and hence development of city falls apart [13]. This has prompted
the use of technology as a solution for all of these problems and to address them in a
more intelligent manner. Hence the Smart Cities concept. With the help of Big Data and

1
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IoT, smart cities ensure a sustainable environment. According to [15], the AI industry
applied in smart cities will be worth 190$ billion by 2025. With this massive increase in
IoT devices, the junction between IoT and AI is expected. It can be said that this has
numerous advantages. For example, bringing the power of AI to IoT, reducing data center
operation and maintenance costs.

1.2 Objectives

The objective of this work is to have low-power object detection implementations.
For this, we will use the current You Only Look Once (YOLO) architectures (versions:
3, 4 and 5). These Neural Networks will be compared in terms of energy performance
(frames/joule) while taking their mAP into account. Additionally, conclusions will be
drawn on the speed of inference and the detection of multiple objects.

These implementations will be focused on heterogeneous platforms that combine low
power consumption, CPU, GPU and FPGA. With these three solutions, we will analyze
in detail the most energy efficient solution for object detection.

The implementation in FPGA, will not be carried out from scratch, taking into account
the complexity of these Neural Networks. Frameworks suck as Pynq [1] and Vitis-AI [2]
that facilitate the deployment of these NN will be addressed.

The steps involved in this work are briefly described in the Figure 1.1.

Figure 1.1: Example of YOLOv5s network detection output for an image (left). Diagram
of the steps performed (right).

1.3 Related Work

Some works related to this theme will be presented to contextualize this work with
the state of the art.

The work done in [16] explains all of the benefits that edge computing can bring.
Data processing at the edge can result in faster response times and higher reliability.



3 1.3. Related Work

Furthermore, bandwidth could be saved if more data could be handled at the edge rather
than uploaded to the cloud.

Given the low processing power in IoT devices, new methods have been developed and
are being developed to process some of the data locally.

The work presented in [17] proposes a strategy for processing CNN in IoT devices,
using the streaming hardware accelerator. This improves energy efficiency by avoiding
unnecessary data movement. This accelerator can support the most popular CNN and
achieve 434 GOPS/W energy efficiency, which makes it ideal for integration with IoT
devices. However, the NN in question (LeNet-5 [18]) is not complex enough to detect
multiple objects.

The work described in [6] detects objects using the YOLOv3-tiny NN, which is capable
of 7 to 14 Frames Per Second (FPS) with low cost FPGAs. This Neural Networks was
modified with 16 - and 8 - bit quantizations, achieving mAP50 values of 31.5 and 30.8,
respectively, using COCO [19] dataset.

The YOLOv3, YOLOv4, and YOLOv5 NN were compared in [20] for the purpose of
Autonomous Landing Spot Detection. As a result, although all of these Neural Networks
served the intended purpose, they considered the YOLOv5-l NN to be the best. Further-
more, the differences in Neural Networks architectures are succinctly summarized in this
article, which includes comparisons with other articles involving different datasets, image
resolutions, and other algorithms in addition to YOLO.

Graphics Processing Unit (GPU)s are currently the dominant programmable archi-
tecture for DL accelerators, but as previously stated, more energy-efficient solutions are
being sought. As a result, the work in [21] involves the use of a heterogeneous acceleration
method (FPGAs + GPU) that outperforms GPU acceleration. They show that Direct
Hardware Mapping (DHM) of a CNNs on an embedded FPGA outperforms a GPU
implementation in terms of energy efficiency (about a 25% reduction in energy) and
execution time (21% latency reduction). A direct comparison of FPGAs and GPUs using
DNNs was performed by [22], and the results show that the FPGA in question (Stratix
10) can achieve more GOP/s/Watt than the GPU (Nivida Titan X), about 2.3x to 4.3x
speedups.

The framework mentioned in the 1.2, Pynq, was the subject of research and imple-
mentation in [23], with one of the implementations using the dataset Cifar10 [24] and a
simple NN Lenet-5 [18], as detailed in [25], obtaining a precision of 75.2%. The results
obtained with this framework were approximately 42 times faster (compared to CPU
implementations), using only 2.063 Watts per 132 images.
Using various accelerators such as Vitis-AI [2] (which makes use of the Deep Learning
Processor Unit (DPU) present in some FPGAs) and Finn [26]. The work done in [27]
included the creation of a network called LittleNet as well as another YOLOFINN. The
implementation in Vitis-AI proved useful consumming arround 3 watts for both Neural
Networks, with 123.3 FPS for the LittleNet network and 53.2 FPS for the YOLOFINN NN.

Although the implementation of these networks from scratch using High Level Synthesis
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(HLS) would be advantageous from an energy standpoint, this option requires extensive
and complex work, so the approach with frameworks that facilitate this entire process
is more adequate for the objectives of this dissertation. It should be noted that these
frameworks (Pynq and Vitis-AI) are obviously limited. However, given the complexities of
YOLO Neural Networks and the material we have access to, they are an excellent starting
point for this work. (discussed in 3.1).

Given these works, there is limited information on the implementation of these Neural
Networks in the FPGA, however, the existing information does not detail the results that
this type of implementation achieves in terms of energy consumption and the measurement
process is not fully explained.



5 1.4. Key Contributions

1.4 Key Contributions

This work makes the following key contributions:

• Comparison between several YOLO Neural Networks (v3, v4 and v5) using the
COCO [19] dataset.

• CPU, GPU and FPGA Pynq framework implementations of YOLO Neural Net-
works(versions: v3, v3-tiny, v5l, v5s).

• Vitis-AI framework implementations of YOLOv3-tiny and YOLOv5-small Neural
Networks.

• Benchmark in terms of performance FPS and energy consumption(kWh and frames/joule),
taking into account the mean Average Precison (mAP) of the Neural Networks, and
comparing to CPU, GPU, and FPGA (Pynq and Vitis-AI) implementations.

• It was proved that performing an inference in reconfigurable logic requires less energy.
(The YOLOv3-tiny NN, for instance, spent 6.34× 10−4 kWh on the GPU and 3.70
kWh on the FPGA.)

• Evaluation of performance (FPS) and energy consumption of the YOLO Neural
Networks present in Model Zoo [28].

1.5 Structure of the Dissertation Project

This dissertation is structured as follows:

• Chapter 1 presents the motivation of this work, the main objectives, the related
work and contributions provided to the scientific community of this dissertation.

• Chapter 2 provides a concise description of how Convolutional Neural Networks
function, as well as distinctions between YOLOv3,v4,v5 architectures.

• Chapter 3 presents the three types of hardware to be tested, the tools used to
evaluate the energy consumption and the frameworks used for the implementation
in reconfigurable logic.

• The results and analysis, comparisons between hardware are present in Chapter 4.

• Some final considerations are presented in Chapter 5.
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Chapter 2

Background and state-of-the-art

The sections that follow explain how traditional Convolutional Neural Networks (CNN)
work and some related concepts. A brief introduction to YOLO networks, differences
between these networks, and comparisons with other algorithms (Single-Shot Detector
(SSD) [29] and faster Region-based Convolutional Neural Network (R-CNN) [30]).

2.1 Convolutional Neural Networks

Neural Networks (NN) teach computers to do what humans do naturally. Deep Learn-
ing (DL) models include Artificial Neural Networks (ANN), Recurrent Neural Networks
(RNN) and Reinforcement Learning (RL). However, one model in particular has made
major contributions to the field of computer vision and image analysis, and that is the
Convolutional Neural Networks.
Convolutional Neural Networks are members of a DNN class that can recognize and classify
features from from tensors (A tensor is a multidimensional array in which data is stored).
Image classification, medical image analysis, language processing, and autonomous or
self-driving vehicles are just a few of the many applications of CNN.
Yann LeCun [25] proposed a CNN in 1989 to recognize handwritten characters in zip
codes. After several successful iterations, the same scientist presented the famous network
Le-Net5 [18].
Alex Krizhevsky [31] presented the AlexNet NN in 2012, which was a deeper and much
wider version of the LeNet and won the difficult ImageNet [32] competition by a large
margin.

Basic CNN Architeture

Some key components of these NN are as follows:

• Feature extraction - Convolutional/pooling layers that separate and identifies the
various features of the image.

• Classification - Fuly connected layer that uses the feature extraction process output
to predict the image class.

• As shown in the figure 2.1 architecture diagram, there are numerous CNN layers.

A CNN architecture is built using three types of layers: 1-convolutional layers, 2-
pooling layers, and 3-Fully Connected (FC) layers. These will be summarized and defined

7
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Figure 2.1: CNN architecture diagram example [33].

in subsections: 2.1.1, 2.1.2, 2.1.3.
There are also two important parameters not shown in Figure 2.1, dropout layer and
activation function layer, these will be explained in 2.1.4 and 2.1.5.

2.1.1 Convolutional Layers

These are the first layers, wich are used to extract various images features. Convolution
is a mathematical operation performed between an input image and a filter of size M x M.
The dot product between the filter and the parts of the input image with respect to the
size of the filter is calculated by sliding the filter over the input image (M x M). Figure
2.2 shows an example of these calculations.

The resulting feature map contains information regarding the image, including its
corners and edges. This feature map is then fed to other layers, which learn additional
features from the input image.
When the convolution operation is applied to the input, the convolution layer in CNN
passes the result to the next layer. The spatial relationship between pixels is preserved by
convolutional layers, which is a great benefit.

2.1.2 Pooling Layers

A pooling layer typically follows the convolutional layer. It seeks to reduce the feature
map’s size and reduce computational costs. Depending on the type of pooling used, it
summarizes the features produced by the convolutional layer.
The largest element from the feature map is used in Max Pooling. Average Pooling
computes the average of the elements in a predefined image section size. Sum Pooling
computes the total sum of the elements in the predefined section. The Pooling Layer is
typically used to connect the Convolutional Layer and the Fully connected Layer.
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Figure 2.2: Convolutional layer calculations example.

2.1.3 Fully Connected Layers

This layer is typically located at the end of every CNN architecture. Each neuron in
this layer is connected to all neurons in the previous layer, an approach known as Fully
Connected (FC). It is used as Convolutional Neural Networks classifier. As a type of
feed-forward Artificial Neural Networks (ANN), it follows the fundamental method of the
conventional multiple-layer perceptron NN [34]. The previous pooling or convolutional
layer serves as the input to the FC layer. This input is in the form of a vector, which
is created by fattening the feature maps. As shown in Figure 2.3, the output of the FC
layer represents the final CNN output [35]. Connecting two layers is necessary because
two FC layers outperform one connected layer [36].

2.1.4 Dropout

Overfitting in the training dataset is common when all features are connected to the
FC layer. Overfitting occurs when a model performs so well on training data that it has a
negative impact on the model’s performance when applied to new data [35].
To address this issue, a dropout layer is implemented, in which a small number of neurons
are removed from the neural network during training, resulting in a smaller model. When
a dropout of 0.4 is reached, 40% of the Neural Networks nodes are randomly removed [36].
Dropout improves the performance of a ML model by preventing overfitting by simplifying
the network. During training, it removes neurons from Neural Networks.
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Figure 2.3: Fully Connected layer [35].

2.1.5 Activation Functions

Lastly, the activation function is a crucial CNN model parameter. They are used to
learn and approximate any type of continuous and complex network variable relationship.
In other words, it determines at the NN end which model information should be fire
foward and which should not. It introduces nonlinearity into the network. ReLU, Softmax,
tanH and Sigmoid are some of the most common activation functions. Each of these
functions serves a distinct purpose. For a CNN model with binary classification, the
Sigmoid and Softmax functions are preferred, while softmax is typically used for multiclass
classification. In conclusion, CNN activation functions determine whether a neuron should
be activated.

2.2 YOLO architectures

This section provides a summary of how the YOLO Neural Networks operates. The
differences between the three most recent YOLO architectures (versions 3, 4, and 5) and
the benefits and drawbacks of each Neural Networks. Newer versions like v6 and v7 [37]
will not be addressed.

In 2016, Joseph Redmon [38] introduced a novel approach to object detection, the
YOLO network. The authors use a single NN to process the entire image. This network
divides the image into regions and forecasts bounding boxes and probabilities for each
object. The predicted probabilities are used to quantify these bounding boxes. Compared
to classifier-based systems, the model has several advantages. At test time, it examines
the entire image, so its predictions are informed by the image’s global context. It also
predicts with a single network evaluation, as opposed to R-CNN [39], which requires
thousands for a single image. This allows it to be 1000x faster than R-CNN and 100x faster
than Fast R-CNN [40]. Figure 2.4 shows and briefly explains how this NN(YOLOv1) works.
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Figure 2.4: The model’s operation [38](YOLOv1). It divides the image into an SxS grid
and for each grid cell predicts B bounding boxes, confidence for those boxes, and C class
probabilities. These predictions are encoded as an SxS x (B * 5 + C ) tensor. [38]

Some terms used in YOLO architectures will be summarized:

• Backbone: Feature extractor Network, this ”block” aims to extract features from
the input, typically with a lot of convolutional layers and some pooling layers.

• Neck: The neck includes additional layers between the backbone and the neck
and these layers are usually used to collect feature maps from different stages [41].
Usually, the neck is composed of several bottom-up paths and several top-down
paths.

• Head: As to the head part, it is usually categorized into two kinds, i.e., one-stage
object detector and two-stage object detector [41]. The most representative two-
stage object detector is the R-CNN series [39], including fast R-CNN [40], faster
R-CNN [30].

2.2.1 YOLOv3

Regarding the old versions YOLOv1 [38] and YOLOv2(also know as YOLO9000 [42]),
these had some problems in detecting small objects. In this new NN an improved backbone
extractor feature was created from the previous ”Darknet19” [42] to ”Darknet53”[43] to
improve this problem. Figure 2.5 shows this backbone architecture.

Residual block, skip connections and up-sampling were implemented to significantly
enhance the algorithm’s accuracy. YOLOv3 uses similar concept to Feature Pyramid
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Figure 2.5: Architecture of Darknet-53 [43].

Network (FPN) [44] as a neck, the main role of this neck is to extract feature maps from
different stages wich is composed of several bottom-up and top-down paths and the head
is composed of YOLO layer.
The YOLO layer produces the results after the image has been fed to Darknet53 for
feature extraction and the pyramid network for feature fusion.

2.2.2 YOLOv4

The YOLOv4, a modified version of the YOLOv3. It uses Cross Stage Partitial Network
(CSPNet) on Darknet, and uses the CSPDarknet53 backbone as feature extractor. The
convolution architecture is a modified version of DenseNet [45].
YOLOv4 increased the map by about 10% compared to YOLOv3 and its FPS increased
by 12% [41].
Spatial Pyramid Pooling (SPP) layer and Path Aggregation Network (PAN) make up the
YOLOv4 neck. In order to increase the receptive field and short out crucial features from
the backbone, feature agregation is done using the SPP layer and PAN.
In short, first the image is fed to CSPDarknet53 for feature extraction, then it is fed
to PAN for fusion, finally the YOLO layer generates the results. The YOLOv4 similar
to YOLOv3 also uses bag of freebies [46] and bag of specials [41] to improve algorithm
performance [20].
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2.2.3 YOLOv5

Although there is no paper regarding this version, YOLOv5 will be briefly discussed as
well as the benefits it brought over previous versions. Glenn Jocher the founder and CEO
of Ultralytics [47] released its open source implementation of YOLOv5 repo on GitHub [48].

This version replaces Darknet with Pytorch and uses CSPDarknet as its backbone.
This backbone is able to reduce inference speed, improve accuracy, and reduce model
size by reducing parameters because it solves repetitive gradient information in large
backbones and integrates gradient change into the feature map [20].

YOLOv5 uses Path Aggregation Network as neck, this one uses a new FPN with
some bottom ups and top downs layers, with this new PAN it is possible to increase the
accuracy of object location and boost the information flow.
This newer version, adopts a Focus layer, the main purpose of the Focus layer is to reduce
layers, parameters, FLOPS, CUDA memory and to increase forward and backward speed
while minimally impacting mAP 1.
The NN architecture of YOLOv5 is shown in figure 2.6.

Figure 2.6: Architecture of YOLOv5. It consists of three parts: (1) Backbone: CSPDark-
net, (2) Neck: PAN, and (3) Head: YOLO Layer. The data are first input to CSPDarknet
for feature extraction, and then fed to PAN for feature fusion. Finally, YOLO Layer
outputs detection results (class, score, location, size)[49].

In summary, in most applications, YOLOv5 achieves higher mAP than its predecessors
while suffering for a small percentage of its obtained FPS.

1https://github.com/ultralytics/yolov5/discussions/3181m1
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2.2.4 Main Diferences between YOLO, R-CNN and SSD archite-
tures

Reference Dataset Used Algorithms Conclusions/Findings

[50]

Pill image dataset
Training: 5131 images
Testing: NA
Resolution: NA

Faster R-CNN
YOLOv3
SSD

Faster R-CNN has higher mAP, but
less than 10 FPS. YOLOv3 can detect
multiple bounding boxes, and
achieving 51 FPS, SSD
32 FPS .

[51]

Images collected by
GF-1 and GF-2 satellites.
Training: 825
Testing: 276
Resolution: 300 x 300,
416 x 416, 500 x 500,
1000 x 100

Faster R-CNN
YOLOv3
SSD

YOLOv3 has higher mAP.
YOLOv3 has 6 times more FPS than
Faster R-CNN and 2 times more FPS
than SSD.

[52]

MS COCO dataset
Training: 118k images
Testing: 5k images
Resolution: NA

YOLOv3
YOLOv4

Average precision of YOLOv4 is
higher than YOLOv3.

[20]

DOTA dataset
Training: 11k images
Testing: NA
Resolution: NA

YOLOv3
YOLOv4
YOLOv5l

YOLOv5l has the highest mAP.
YOLOv3 detects faster than the
others, but has low Recall.
F1 score of YOLOv4/v5l are higher
compared to YOLOv3.

[53]

MS COCO dataset
Training: 118k images
Testing: 5k images
Resolution: 640 x 640

YOLOv3
YOLOv4
YOLOv5

YOLOv5l has higher mAP than YOLOv3
and YOLOv4.
YOLOv3 still has the most FPS than
YOLOv4/v5l.

[54]

sign language dataset
Training: 2k images.
Testing: NA
Resolution: NA

YOLOv3
YOLOv4
YOLOv5

YOLOv5 has the highest : Precision,
Recall and mAP0.5.

[55]

MS COCO dataset
Training: 118k images
Testing: 5k images
Resolution: 640 x 640

YOLOv3
SSD300
Faster R-CNN

If we are dealing with a small
dataset, the best option is R-CNN
as it has extremely high mAP
and Recall. SSD300 is more efficient
and accurate than YOLOv3,
however is not good for
smaller objects.

2.3 Summary/Conclusions

Due to the conclusions drawn in 2.2.4, YOLO Neural Networks were assumed to be
the starting point for this work, with the other mentioned Neural Networks, R-CNN [39],
fast R-CNN [40], faster R-CNN [30], and SSD [29], being discarded.
Thus, the most recent versions of YOLO (versions: 3, 4 and 5) will be implemented on
different types of hardware: CPU, GPU and FPGA (with frameworks: Pynq [1] and
Vitis-AI [2]).
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In addition to implementing these Neural Networks, the power consumed by each will be
evaluated, obtaining the frames per joule of each.
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Chapter 3

YOLO Implementations, frameworks
and tools used

This chapter describes all the hardware and software used, both for the implementation
of YOLO Neural Networks and for measuring energy consumption.

3.1 Hardware, software and tools used

Hardware and Software:

The experimental setup used to implement YOLO Neural Networks consists of a
desktop with an Intel core i5-12400 6 - Core CPU, a 12GB RTX 3060 GPU, and 16GB of
RAM. For implementations in reconfigurable logic the FPGA Zynq UltraScale+ MPSoC
ZCU104 was used.

The desktop used has Windows 10 as the operating system with all updated drivers
and CUDA version 11.3.
Pynq and Vitis-AI environments were used in on the FPGA. The board image versions
utilized were: Pynq 2.7 and Vitis-AI v2022.1 - v2.5.0.

Auxiliary Tools used:

The power consumption of the Desktop and FPGA was measured using a multimeter
(Uni-t UT803. driver: v1.0 [56] and a DC power supply (GPE-3323 GW INSTEK). Some
”crocodile” cables were also used to make the necessary connections.

3.1.1 Methods for measuring power consumption.

To measure the energy consumption in the different hardware, we used:

• Computer/Desktop - 220 volts were measured at the socket and the same were
assumed for the remaining measurements. From an extension coord that is connected
to a socket, the cables were cut to be able to measure the Amps in series, from
there it is possible to plot the energy consumed by the Desktop, to calculate the

17
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watts just multiply the 220 volts constant for the amps supplied. The Figure 3.1
illustrates the measurement procedure.

P = V I (3.1)

Figure 3.1: Illustration of how Desktop power consumption measurements were performed.

The information regarding to the ampere measurements was exported via (.xls),
after which the watts were calculated and time plots were created.The figure 3.2
shows an example of power measurement.

Figure 3.2: Watt measurement during 18 seconds, Desktop in ”idle” (Total Watts consumed
by the Desktop).

• FPGA - Using Pynq framework - There is a Python package to calculate
the power consumed quite accurately. The figure 3.3 shows an example of power
measurement on Pynq framework.
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Figure 3.3: Watt measurement overtime, FPGA in ”idle”. The red line indicates the
average watts (16.16 Watts).

Every 1 second, 10 measurements are taken and saved in a dataframe, which can
then be manipulated to create plots. With so much data saved, all measurements
were later added up and divided by the number of measurements taken. This
calculates the average wattage consumed by the FPGA.
The figure 3.4 shows the snippet of the Python code to manipulate the dataframe
created, thus achieving the minimum and maximum wattage, as well as the average
wattage.

Figure 3.4: Dataframe manipulation, getting min and max watts, as well as average watts.
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• FPGA - Using Vitis-AI framework - To perform power measurements with this
framework, a different approach is required as it is not possible to perform these mea-
surements using the Pynq framework. For this, a DC power supply (GPE-3323 GW
INSTEK) was used to supply constant 12 Volts to the FPGA, and the current was
measured using a multimeter. The Figure 3.5 illustrates the measurement procedure.

Figure 3.5: Illustration of how measurements of power consumption were performed on
the FPGA (17.79 Watts average).

Later, with the data obtained, graphs similar to the one in Figure 3.6 were created.

Figure 3.6: Power consumption measurement example on Vitis-AI framework during 18
seconds, FPGA in ”idle”.
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3.2 Implementation Notes

We attempted to utilize implementations that were compatible with the hardware in
all three versions. For example, because the Pynq [1] framework does not allow Tensorflow
[57], we are limited to using PyTorch [58] in its implementations.
Since there is excellent material with Pytorch implementations of the YOLOv3 [43] and
YOLOv5 [48] NN , these will be implemented and tested on different types of hardware.
The table in the figure 3.1 shows the differences between the four tested models, input
size, mAP0.5:0.95, mAP0.5 and parameters.

Model Size mAP0.5:0.95 mAP0.5 Parameters (M)
YOLOv3 640 x 640 0.467 0.661 61.9
YOLOv3-tiny 640 x 640 0.190 0.367 8.8
YOLOv5l 640 x 640 0.489 0.675 46.5
YOLOv5s 640 x 640 0.374 0.571 7.2

Table 3.1: Differences between implemented and tested models (MS COCO dataset [19].
These values were obtained using pre-trained models, and 5000 images were used for
validation.

Regarding YOLOv4, it has little support for Pytorch , so there were always a lot of
bugs despite its implementation, so the implementation in these three types of hardware
was not carried out, so it will not be documented, and it will only be in the Vitis-AI
framework [2].

The implementations tested in sections 3.3 and 3.4.1 were carried out with inference
from a video (taken from: [59] ) with a resolution of 1280 x 720 pixels, with 1 minute,
this video has 50 FPS, that is, a total of 3000 frames.
Before simply running the video inference, some changes were made to the detection script
in order to provide the user with the total time spent in the video inference.

3.3 CPU and GPU implementation

The four models listed in Table 3.1 were tested on CPU and GPU. Using the scripts
[48], a video inference and power consumption measurement were performed for each of
these models.

Using the two types of hardware tested(CPU and GPU), the power consumed by the
Desktop was plotted, as well as the time spent for each inference. The figure 3.7 shows an
example of the final result of the watt measurement plot.

3.4 FPGA implementation

3.4.1 Using Pynq framework

Pynq framework is and open-source project from Xilinx [60] [1]. It uses Python
language and libraries, so users can take advantage of programmable logic. Pynq was
created with the purpose of facilitating the deployment of applications, without users
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Figure 3.7: Watt measurements overtime, performing inference from a video on GPU
using YOLOv3-tiny. Time: 17.81 seconds. (Total Watts consumed by the Desktop, 128.17
watt average).

having a hardware design background [61].
Figure 3.8 presents the possibilities that this framework offers.

Figure 3.8: Pynq framework dataflow.
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With the creation of Jupyter Notebooks [62], the user can make use of several libraries
at his disposal, he can also make use of existing overlays or use his own. With this, it is
possible to create high performance applications with:

• Parallel hardware execution.

• High frame-rate video processing.

• Hardware accelerated algorithms.

• Real-time signal processing.

• High bandwidth IO and low latency control.

Creating Intellectual Property (IP)s is a challenging task, especially for Neural Net-
works as complex as YOLO. One solution discovered was the ability to reload the weights
of any layer during runtime [23], however, this solution is only relevant to simpler Neural
Networks, such as LeNet-5.

Discarding the possibility of accelerating the computation of these networks with the
Pynq framework, the models listed in table 3.1 were tested and implemented. These tests
were using only the sequential computing power provided by quad-core ARM Cortex-A53
and dual-core Cortex-R5 processors. As with the implementation of these models, the
energy consumed is also measured, Figure 3.9 shows a graph of the watts overtime, using
the YOLOv5l NN.

Figure 3.9: Watt measurement overtime, performing inference from a video, using
YOLOv5l NN. Time: 16965.2 seconds. (Total Watts consumed by the FPGA, 13.71
Watt average).
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3.4.2 Using Vitis-AI framework

Vitis AI [2] is a full-featured AI inference development platform based on Xilinx
devices, boards, and Alveo data center acceleration cards. It includes a large number of
AI models, optimized Deep Learning Processor Unit (DPU) cores, tools, libraries, and
example designs for AI on the edge and in the data center. It is designed with high
efficiency and ease of use in mind, allowing AI acceleration on Xilinx FPGAs and adaptive
System on a Chip (SoC) to reach its full potential.

Figure 3.10 shows what this framework offers the user.

Figure 3.10: Applications possibilities using Vitis-AI .

In the context of Convolutional Neural Networks, Vitis-AI provides:

• Pre-optimized AI models, ready to deploy on Xilinx devices.

• Powerfull open-source AI quantizer that supports pruned and unpruned model
quantization, calibration and fine-tunning. (In Machine Learning (ML), pruning is
removing unnecessary neurons or weights, reducing the Neural Networks parameters
and obviously the size of the model.)

• A user-friendly compilation and deployment flow to meet costumer defined model
and operators( This compiler generates a DPU instruction to later be used in the
final application).

• Offers the AI library with open-source high-level C++ and Python APIs for maxi-
mum portability from edge to cloud.

• Different environments, such as: Tensorflow(versions: 1.15 and 2.8) [57], Pytorch
[58] and Caffe [63].
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• DPU IP cores that are efficient, scalable, and customizable in order to meet various
needs such as throughput, latency, power, and lower precision.

AI Model Zoo

AI Model Zoo is available to all users with deep learning models from popular frame-
works including Pytorch, Tensorflow, Tensorflow 2, and Caffe. AI Model Zoo offers
optimized and retrainable AI models that allow for faster deployment, performance ac-
celeration, and productization across all Xilinx platforms. Figure 3.11 summarizes the
possibilities that the Model Zoo offers.

Figure 3.11: Applications possibilities using Vitis-AI .

AI Optimizer, Quantizer and Compiler

With cutting-edge model compression technology, the AI optimizer reduces model
complexity by a factor of 5X to 50X with minimal impact on accuracy. The performance
of your AI inference is enhanced by the use of deep compression.

By converting 32-bit floating-point weights and activations to INT8 fixed-point, the AI
Quantizer can reduce computational complexity without sacrificing prediction accuracy.
The fixed-point network model requires less memory bandwidth than the floating-point
model, resulting in faster speed and greater power efficiency.

The AI compiler maps the AI model into an instruction set and data flow that is highly
efficient. In addition, it performs complex optimizations such as layer fusion, instruction
scheduling, and reuses on-chip memory as much as possible. Figure 3.12 illustrates what
these tools offer in general.
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Figure 3.12: Illustration of the possibilities that these tools offer.

AI Profiler, AI Library

The performance profiler enables programmers to conduct an in-depth analysis of the
AI inference implementation’s efficiency and utilization.

The Vitis AI Library is a set of high-level APIs and libraries designed for AI inference
with DPU cores. It is based on the Vitis AI runtime (VART) and provides unified APIs
and user-friendly interfaces for the deployment of AI models on Xilinx platforms.

3.4.2.1 DPUCZDX8G Overview

The DPUCZDX8G is the Deep Learning Processor Unit designed for the Zynq Ul-
traScale+ MSoC. It is a configurable computation engine that has been optimized for
Convolutional Neural Networks. The degree of parallelism utilized by the engine is a
design parameter that can be chosen based on the device or application being targeted.
The DPU is a microcoded compute engine with an efficient, optimized instruction set
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capable of supporting the inference of the majority of Convolutional Neural Networks.

The DPUCZDX8G top-level interfaces are shown in the Figure 3.13. The Top-Level
entity is shown in Figure 3.13, as well the block diagram in Figure 3.14.

Figure 3.13: DPU IP top level entity [64].

Figure 3.14: DPU IP Top-Level Block Diagram

The diagram 3.15 illustrates the DPUCZDX8 hardware architecture in greater detail.
After start-up, the DPUCZDX8G fetches instructions from off-chip memory to control
the operation of the computing engine. The instructions are generated by the Vitis AI
compiler, which performs significant optimizations, such as layer fusion.

To achieve high throughput and efficiency, input activations, intermediate feature-
maps, and output meta-data are buffered on-chip. Data is reused as frequently as possible
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to reduce external memory bandwidth needs. A deep pipelined design is used for the
computing engine.

Figure 3.15: DPU Hardware Architecture.

Brief Introduction

The DPUCZDX8G IP provides some user-configurable parameters to optimize resource
usage and customize different features. Different configurations can be selected for Digital
Signal Processing (DSP) slices, Look Up Table (LUT), block RAM, and UltraRAM usage
based on the amount of available programmable logic resources.
There are also options for additional functions, such as channel augmentation, average
pooling, depthwise convolution, and softmax. Furthermore, there is an option to determine
the number of DPUCZDX8G cores that will be instantiated in a single DPUCZDX8G IP.
The DNN features and the parameters supported by the DPUCZDX8G are shown in the
table 3.2.

It is also possible to set the number of cores, convolution architecture, DSP cascade
and usage, ultra RAM usage.
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Features Description

Convolution

Kernel Sizes w, h: [1, 16]
Strides w, h: [1, 8]
Padding w: [0, kernel w - 1] h: [0,kernel h - 1]
Input Size Arbitary
Input Channel 1∼256 * channel parallel
Output Channel 1∼256 * channel parallel
Activation ReLU, ReLU6, LeakyReLU, Hard Sigmoid and Hard Swish

Depthwise
Convolution

Kernel Sizes w, h: [1, 256]
Strides w, h: [1, 256]
Padding w: [0, min(kernel w - 1,15)] h: [0, min(kernel h - 1,15)]
Input Size Arbitary
Input Channel 1∼256 * channel parallel
Output Channel 1∼256 * channel parallel
Activation ReLU, ReLU6, LeakyReLU, Hard Sigmoid and Hard Swish

Tranposed
Convolution

Kernel Sizes kernel w/stride w: [1, 16]
kernel h/stride h: [1, 16]Strides

Padding w: [0, kernel w - 1] h: [0, kernel w - 1]
Input Size Arbitary
Input Channel 1∼256 * channel parallel
Output Channel 1∼256 * channel parallel
Activation ReLU, ReLU6 and LeakyReLU

Depthwise
Transposed
Convolution

Kernel Sizes kernel w/stride w: [1, 16]
kernel h/stride h: [1, 16]Strides

Padding w: [0, kernel w - 1] h: [0, kernel h - 1]
Input Size Arbitary
Input Channel 1∼256 * channel parallel
Output Channel 1∼256 * channel parallel
Activation ReLU, ReLU6, LeakyRelu, Hard Sigmoid and Hard Swish

Max
Pooling

Kernel Sizes w, h: [1, 256]
Strides w, h: [1, 256]
Padding w: [0, min(kernel w - 1,15)] h: [0, min(kernel h - 1,15)]

Average
Pooling

Kernel Sizes w, h: [1, 256]
Strides w, h: [1, 256]
Padding w: [0, min(kernel w - 1,15)]∼ h: [0, min(kernel h - 1,15)]

Element-wise
- Sum

Input Channel 1∼256 * channel parallel
Input Size Arbitrary
Feature Map N 1∼4

Element-wise
- Multiply

Input Channel 1∼256 * channel parallel
Input Size Arbitrary
Feature Map N 2

Concat Output Channel 1∼256 * channel parallel
Reorg Strides stride * stride * input channel ≤ 256 * channel parallel
Fully
Connected

Input Channel Input channel ≤ 2048 * channel parallel
Output Channel Arbitrary

Table 3.2: Features and parameters supported by the DPUCZDX8G, more information
available at [64].
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Architectures of DPUCZDX8G

It is important to note that DPU can be configured with various convolution architec-
tures, these have the designations: B512, B800, B1024, B1152, B1600, B2304, B3136, and
B4096.
There are three dimensions of parallelism in the DPU: Pixel Parallelism (PP), Input
Channel Parallelism (ICP), and Output Channel Parallelism (OCP). The figure 3.16 shows
shows a visualization of these three levels of parallelism.

Figure 3.16: DPU Architecture, ICP = 3, OCP = 3, and PP = 2. OCP is equivalent to
the number of kernels using during a convolution computation. The pixels used in the
figure are arbitrary to maintain clarity [64].

It is important to state that different architectures require different programmable
logic resources. Obviously larger architectures can achieve higher performance with more
resources. The parallelism for the different architectures is listed in the following Table
3.3. The architecture in bold ”B4096” was used in this work.

DPUCZDX8G
Architecture name

Pixel Parallelism
(PP)

Input Channel
Paralelism (ICP)

Output Channel
Paralelism (OCP)

Peak Ops
(operations/per cycle)

B512 4 8 8 512
B800 4 10 10 800
B1024 8 8 8 1024
B1152 4 12 12 1150
B1600 8 10 10 1600
B2304 8 12 12 2304
B3136 8 14 14 3136
B4096 8 16 16 4096

Table 3.3: Parallelism for different convolution architectures [64]. In each clock cycle, the
convolution array performs a multiplication and an accumulation, which are counted as
two operations. Thus, the peak number of operations per cycle is equal to PP * ICP *
OCP * 2.
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Resource utilization of the DPUCZDX8G

Table 3.4 shows the resource utilization used by the DPU with a single core example.

DPUCZDX8G
Architecture name

LUT Register Block RAM DSP

B512 26391 34141 72 118
B800 28863 40724 90 166
B1024 33796 48144 104 230
B1152 31668 46938 121 222
B1600 37894 58914 126 326
B2304 41640 69180 165 438
B3136 45856 80325 208 566
B4096 51351 98818 255 710

Table 3.4: The data is based on the ZCU102 platform with low RAM usage, channel
augmentation, alu parallel = PP/2, conv: leaky ReLU + ReLU6, alu: ReLU6 features,
and high DSP usage.

There are other architecture options, such as: ultraRAM that uses more BRAM36k
blocks. Note that the architecture used was ”B4096” and to use lighter architectures it
would be necessary to change the board image to the new architecture, as well as compile
the models again.

3.4.2.2 Notes on the different environments and examples followed

With the materials available in [65], two examples (07-yolov4-tutorial and 09-mnist pyt,
one in Tensorflow [57] and the other in Pytorch [58] were developed as a starting point
for the work in this framework.

3.4.2.3 YOLOv3, v4, v5 implementation - Tensorflow and Pytorch

YOLOv5 Implementation
Following the example mentioned above ”07-yolov4-tutorial” [65] and the materials

avaliable [66] we tried to implement the YOLOv5s NN using the Tensorflow environment
as in the example, with the following steps:

• Docker setup and Windows setup (vitis-ai-tensorflow-1.15).

• Float training (meeting the DPU requirements using [66], with some tweaks on the
”yolo5 small darknet” architecture ).

• Model conversion to Tensorflow frozen graph.(”yolov5s.h5” to ”yolov5s.pb”).

• Model Quantization.

• Evaluate the quantized model.

• Model compilation.

• Model deployment on ZCU104.
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Although these tasks seem easy to accomplish, since this framework had all the built-in
quantization and compilation dataflow, new problems appeared each time.
During the implementation, using this framework, the versions that support GPU docker
were not working, so the training had to be performed on the CPU. In order to speed up
the deployment process, training’s were performed in a few epochs due to time constraints.

Changing the YOLOv5 NN is a complex and time-consuming task, as is the entire
process until deployment. After the pre-deployment steps were completed successfully,
the deployment process did not produce satisfactory results. The maximum achievable
frame rate was 0.75 FPS.

Following example (09-mnist pyt) [65], the NN was modified with the addition of one
more convolutional layer. After that, the steps followed:

• Train the NN for 3 epochs, achieving 98.95% accuracy.

• Quantizes the model in 2 modes: calibration and test, obtaining 98.99% and 98.94%
of accuracy respectively.

• Compiling the model for the targeted board (ZCU104 in this case).

• Finally, a model in the format ”CNN zcu104.xmodel” is obtained that can be used
in the Pynq framework.

Figure 3.17: Throughput generated by the model (Mnist Dataset).

Then, starting from the example mentioned above, we tried to change it for the
”YOLOv5s” NN.

The level of work complexity in both the Tensorflow [57] and Pytorch [58] environment
is identical. So progress over time was very little. Due to constant errors in the consoles,
sometimes it was necessary to create a docker from scratch, since the simple update of a
package can damage the entire Linux system. The YOLOv5 NN could only be deployed
in the Tensorflow environment.

It was also found that Xilinx [60] already has versions of YOLOv5 that work in this
framework, however, due to licensing issues, these implementations will not be available
to the public in the near future.

YOLOv3 and v4 Implementation

The YOLOv3-tiny NN implementation was successful. Models present in the Model
Zoo [28] were also tested and the respective energy consumption measurements were
performed. The Table 3.5 shows the tested models as well some metrics, the last two
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Model Name Dataset Framework Input size Pruned Float Ops Quantized Acc
YOLOv4 COCO Dk 416 x 416 0.36 38.2G NA
YOLOv4 COCO Dk 416x 416 NO 60.1G NA
OFA-YOLO COCO Pt 640 x 640 0.5 24.62G 0.378
OFA-YOLO COCO Pt 640 x 640 0.3 34.72G 0.401
OFA-YOLO COCO Pt 640 x 640 NO 48.88G 0.421
YOLOv3 COCO Tf2 416 x 416 NO 65.9G 0.331
YOLOv4 COCO Tf 416 x 416 NO 60.3G 0.393
YOLOv4 COCO Tf 512 x 512 NO 91.2G 0.412
YOLOv3-tiny COCO Tf 416 x 416 NO * *
YOLOv5small COCO Tf 640 x 640 NO * *

Table 3.5: Models tested. * (Float ops were not possible to calculate, the Quantized
accuracy in these two models was quite low as both were trained for only 5 epochs.)

models referred to in the table were the models implemented from scratch.

To complement the Table 3.5, here is the meaning of some abbreviations:

• Dk - Darknet.

• Pt - Pytorch.

• Tf - Tensorflow 1/2.

• Pruned - Percentage of the pruned model.(Pruning models - use Vitis-AI optimizer
tool, reduce the complexity of the model).

• OFA - (Once for all) Optimized models, such as Super-Resolution OFA-Residual
Channel Attention Networks (RCAN) and Object Detection OFA-YOLO.

To measure the energy consumption of this ten models, an inference of a 1280 x
720 image was made for 30 seconds in single thread. The figure 3.18 shows the energy
consumption during this 30 second inference (with pre-trained model YOLOv4 pruned
0.36%), achieving 18.02 FPS.

3.5 Summary/Conclusions

Technical problems regarding the implementation of YOLO Neural Net-
works

To begin, the CPU and GPU implementations were the easiest to implement, however,
it was difficult and time-consuming to find old versions of Python that supported all
of the packages required for the implemented versions. When creating different Python
environments for each network, they occasionally became inoperable due to package
compatibility issues.

Compared to the Pynq framework, it had greater compatibility problems. As stated
in section 3.2, it only supports Pytorch, so the majority of work was accomplished using
these two frameworks. Finding all of the packages supported by this framework and the
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Figure 3.18: Watt measurement overtime - Dk YOLOv4 COCO 416 416 0.36 38.2G.

YOLO Neural Networks used was a difficult task.

The framework that received the most attention was Vitis-AI. Despite the vast amount
of information (available at [67]), there were numerous errors, the majority of which were
not displayed in the console output. The fact that the Zynq UltraScale+ MPSoC ZCU104
DPU does not support some YOLOv5 NN operations was not discovered until the final
stages of implementation, so the results for this implementation (YOLOv5), although it
was possible, the results were not satisfactory. The YOLOv3-tiny was implemented in
this framework, obtaining excellent results, 2.25 frames/joule.

Performance and energy consumption conclusions for the different imple-
mentations

YOLOv3/v5 Neural Networks were implemented on CPU, GPU, and Pynq framework.
In the Vitis-AI framework, the YOLOv3-tiny and YOLOv5-small models were imple-
mented from scratch. As well as checking the performance and energy consumption of the
models present in the Model Zoo (Table 3.5).

Comparing FPGA and GPU implementations, it was possible to obtain more frames
per joule using reconfigurable logic, proving that the same amount of data can be computed
using less energy.

The FPGA implementation of the YOLOv3-tiny NN achieved 2.25 frames/joule, while
the GPU implementation achieved 1.25 frames/joule.

All the results obtained with Neural Networks (NN) in the three types of hardware
(CPU, GPU and FPGA) are present in Chapter 4 and the graphs of the energy consumed
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in appendices C, D and E.

Conclusions regarding Pynq and Vitis-AI frameworks.

Although the Pynq framework is more user-friendly, the parallelization of YOLO
Neural Networks is quite complex, and no solution was found, therefore, parallelization
was not addressed using this framework.

The Vitis-AI framework provides the user with capabilities that help quantification,
compilation, and deployment of these types of Neural Networks, despite the fact that this
process is time-consuming and requires the knowledge of these tools and the operations
that the DPU supports. Currently, it is concluded that the entire process of implementing
YOLOv3 and YOLOv4 Neural Networks is feasible, with applications achieving more
than 30 FPS. In relation to YOLOv5, the process is more complicated because the entire
architecture must be redesigned and scripts must be created to test the model on the
FPGA.

It is important to note that this framework was introduced at the beginning of 2020,
and that over time, all the tools it provides have improved. As a result, it is expected
that the entire process of implementing complex Neural Networks will become easier or
even, with better performance results.
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Chapter 4

Results and analysis

This Chapter presents the results obtained regarding the performance of the models
tested on different types of hardware. To make it easier to analyze these results, tables
were created for each type of hardware and framework.
In each subsection there is a plot of the power consumed over time for one of the models
tested, the graphs of all the four models are presented in the appendices C, D and E.
A,B present the packages used for YOLOv3,v5 and Pynq framework environments.

4.1 Raw performance

The results obtained were performed under the inference of a 1-minute 1280x720 video,
totaling 3000 frames.
For each created/tested model, the execution time and power consumption during inference
were measured. The average watts, FPS, kWh, and frames/joule were calculated based
on these values.

4.1.1 CPU and GPU results

The Figure 4.1 shows the energy consumption of the YOLOv3 NN on CPU, obtaining
an average of 129.68 Watts.
The following Table 4.1 shows the results of the four Neural Networks tested on the CPU
and GPU. The most important metrics are: mAP0.5, FPS, kWh and frames/joule.

Hw Model FLOPS mAP0.5 Time (s) Avg Watts FPS kWh frames/joule

CPU

v3 155.9G 0.661 1518.72 129.68 W 1.97 5.47× 10−2 0.01523
v3-tiny 13.2G 0.367 267.96 127.46 W 11.19 9.49× 10−3 0.08783
v5l 109.1G 0.675 1304.10 129.91 W 2.30 4.71× 10−2 0.01770
v5s 16.5G 0.571 308.01 129.14 W 9.74 1.10× 10−2 0.07541

GPU

v3 155.9G 0.661 60.81 196.75 W 49.33 3.32× 10−3 0.25074
v3-tiny 13.2G 0.367 17.81 128.19 W 168.44 6.34× 10−4 1.31402
v5l 109.1G 0.675 50.86 199.08 W 58.98 2.81× 10−3 0.29629
v5s 16.5G 0.571 25.71 159.45 W 116.65 1.14× 10−3 0.73157

Table 4.1: CPU and GPU results (Inference from a 1 minute video 1280x720 pixels with a
total of 3000 frames).

Looking at table 4.1, it can be seen that the GPU has a higher energy efficiency
compared to the CPU. Comparing the results obtained in GPU, between the YOLOv3 and

37
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Figure 4.1: Power consumption measurement results, YOLOv3 on CPU.

YOLOv5l NN, which both present an identical mAP0.5, we can see that the YOLOv5l NN
performs the inference faster, obtaining more 9.65 FPS, while still spending less energy,
obtaining higher frames/joule than the YOLOv3 NN.

In terms of lightweight versions of these two networks (YOLOv3-tiny and YOLOv5s),
YOLOv3-tiny should get more FPS since this NN is generally faster than YOLOv5 versions.
Although this NN had the best energy performance results, with lower kWh and higher
frames/joule than all other Neural Networks, it should be noted that it only has 0.367
mAP0.5, which is unsatisfactory for high precision implementations. With about 79%
more energy, it is possible to have a solution (YOLOv5s) with significantly higher mAP0.5,
but getting the frame rate reduced by 30%.

4.1.2 FPGA results (Pynq framework)

The figure 4.2 shows the energy consumption of the YOLOv5l NN.
The following table 4.2 shows the results of the four Neural Networks tested on the

Pynq framework. The most important metrics are: mAP0.5, FPS, kWh and frames/joule.

Model FLOPS mAP0.5 Time (s) Avg Watts FPS kWh frames/joule
YOLOv3 155.9G 0.661 23171.36 13.75 W 0.13 8.85× 10−2 0.00942
YOLOv3-tiny 13.2G 0.367 2441.14 13.51 W 1.23 9.16× 10−3 0.09097
YOLOv5l 109.1G 0.675 16965.2 13.71 W 0.18 6.46× 10−2 0.01290
YOLOv5s 16.5G 0.571 3653.45 13.44 W 0.82 1.36× 10−2 0.06109

Table 4.2: Pynq framework results (Inference from a 1 minute video 1280x720 pixels with
a total of 3000 frames).

The results obtained with this framework were identical to those obtained in CPU
implementations, obtaining a low energy efficiency in both cases. The maximum FPS
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Figure 4.2: Power consumption measurement results, YOLOv5s on Pynq framework. The
red line indicates the average watts (13.44 Watts).

obtained were 1.23 and 11.19 in the case of YOLOv3-tiny in Pynq framework and CPU
implementations respectively, which is not ideal in real-time implementations.

4.1.3 FPGA results (Vitis-AI framework)

The following figure 4.3 shows the energy consumption of the NN ”pt OFA-YOLO COCO
640 640 0.5 24.62G”, during a 30-second inference under and image with a resolution of
1280x720 pixels.

During the tests of all Neural Networks mentioned in 3.5, inferences of 30 seconds
were performed for images with 1280x720 pixels, with this to have accurate results under
comparisons with CPU, GPU and Pynq framework.
In the table 4.3 (based on the obtained FPS result), the time it would take to infer 3000
frames was calculated, as well the energy that would be spent.

”Qacc” means Quantized accuracy, as in choosing these models, information is only
available on this metric and not on the mAP0.5.

To measure the mAP it is necessary to run some scripts that only work in the Vitis-AI
environment on the GPU, as these environments were not working properly, it was not
possible to evaluate this metric.

However, it is known that the model present in the table 4.3(”tf yolov4 coco
512 512”) has a mAP0.5 of 0.602, so it is expected that the others have a mAP0.5 greater
than the Quantized accuracy of about 45%.
Regarding the results obtained, it is possible to obtain a very interesting tradeoff with the
OFA models, which are pruned and optimized by the tools present in Vitis-AI(optimizer).



Chapter 4. Results and analysis 40

Figure 4.3: Power consumption measurement results, YOLOv4 OFA, pruned 0.5 on
Vitis-AI framework.

Model FLOPS Qacc Time (s) Avg Watts FPS kWh Frames/joule
dk yolov4 coco
416 416 0.36

38.2G NA 166.45 27.27 18.02 1.26× 10−3 0.66071

dk yolov4 coco
416 416

60.1G NA 226.92 27.80 13.22 1.75× 10−3 0.47545

pt OFA-yolo coco
640 640 0.5

24.62G 0.378 105.88 26.55 28.33 7.81× 10−4 1.06699

pt OFA-yolo coco
640 640 0.3

34.72G 0.401 132.69 27.78 22.60 1.02× 10−3 0.81371

pt OFA-yolo coco
640 640

48.88G 0.421 171.93 28.66 17.44 1.37× 10−3 0.60874

tf2 yolov3 coco
416 416

65.9G 0.331 224.54 28.33 13.36 1.77× 10−3 0.47159

tf yolov4 coco
416 416

60.3G 0.393 215.79 28.38 13.90 1.70× 10−3 0.48976

tf yolov4 coco
512 512

91.2G 0.412 287.98 29.42 10.41 2.35× 10−3 0.35404

YOLOv3-tiny coco
416 416

* * 51.78 25.70 57.93 3.70× 10−4 2.25347

YOLOv5-small coco
640 640

* * 4030.09 26.10 0.744 2.92× 10−2 0.02851

Table 4.3: Vitis-AI results (Inference from a 1 minute video 1280 x 720 pixels with a total
of 3000 frames).

Concerning the results of the implementations carried out from scratch YOLOv3-tiny
and YOLOv5-small (highlighted in Table 4.3), the YOLOv3-tiny achieved the highest
energy performance. As the YOLOv5 NN is improperly parallelized, inadequate results
are obtained.
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4.2 Comparison between hardware tested

The NN that stood out the most in terms of energy performance was YOLOv3-tiny
on GPU and FPGA obtaining 1.314 and 2.253 frames/joule respectively.

The OFA (Once For all) models also exhibit a positive tradeoff between frames/joule
and mAP, since, for instance, the ”pt OFA-yolo coco 640 640 0.5” model would exhibit
a mAP of arround 0.57 (0.20 more than the YOLOv3-tiny NN), and while this model
obtains 1.067 frames/joule.

With YOLOv5 models (in the Vitis-Ai framework) properly quantized and optimized,
it would be possible to have a much better mAP0.5, with a (expected) slight decrease in
energy consumed.

4.3 Draw conclusions concerning Neural Networks

YOLOv3, v4, v5

Figures 4.4, 4.5, 4.6 and 4.7 present the final result of the detection in an image of the
YOLOv3/v3-tiny and YOLOv5l/v5s Neural Networks.

Figure 4.4: Inference results - YOLOv3.
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Figure 4.5: Inference results - YOLOv3-tiny.

Figure 4.6: Inference results - YOLOv5l.

Given that both networks (YOLOv3 and YOLOv5l) have identical mAPs, the results
differ only slightly. YOLOv3, like YOLOv5, occasionally misidentifies certain objects.
However, both Neural Networks correctly and accurately detect the majority of vehicles,
with YOLOv5l performing the inference faster (As can be seen in Table 4.1).

Lighter Neural Networks (YOLOv3-tiny and YOLOv5s) sometimes detect multiple
objects when only one should be detected, which is not ideal, but considering the Neural
Networks are quite light, a very positive tradeoff is obtained.
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Figure 4.7: Inference results - YOLOv5s.

In this implementation with the COCO-dataset, our results show, in addition to having
a mAP0.5 larger than YOLOv3, the YOLOv5l NN performs inference 1.19 times faster
while consuming 15.36% less energy.

4.4 Discussion and notes

The results show that the implementations in CPU and Pynq framework are not
suitable for real-time applications, since the FPS obtained are quite low, and their energy
efficiency is also low.

It should be noted that all inferences were performed with videos of a significant
resolution (1280x720 pixels), which ultimately results in less FPS than these Neural
Networks are usually able to obtain, without performing any kind of pre-processing
( simulating raw results that would be obtained if images obtained from surveillance
cameras/underwater images were directly processed by the Neural Networks). To obtain
functional implementations in real-time applications(at least 30 FPS), it is necessary to
use GPU or implementations in FPGAs.

It is important to think about real-time applications in harsh environments (for exam-
ple: underwater environments, extreme weather environments). GPUs in these situations
would not be ideal unless they were low power (for example: NVIDIA Jetson Xavier NX,
able to get 35.6 FPS [68] with YOLOv3-tiny NN). GPUs (identical to NVIDIA RTX 3060)
are not suitable for this type of applications, given their higher power requirements and
energy consumption not to mention additional issues like heat dissipation.
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Due to all the benefits that FPGA bring, they are suitable for these environments,
with a lower energy consumption, as can be seen by comparing Table 4.1 Table 4.3.
Table 4.4 shows the results of implemented Neural Networks on FPGA and GPU that are
considered energy-efficient and achieve a respectable number of FPS, taking their energy
efficiency into account.

Hardware Model Avg Watts FPS kWh frames/joule

GPU
YOLOv3-tiny 128.19 168.44 6.34e-4 1.31402
YOLO5s 159.45 116.65 1.14e-3 0.73157

FPGA
Vitis-AI
Framework

dk YOLOv4 416 0.36 27.27 18.02 1.26e-3 0.66071
pt OFA-YOLO 640 0.5 26.55 28.33 7.81e-4 1.06699
pt OFA-YOLO 640 0.3 27.78 22.60 1.02e-3 0.81371
pt OFA-YOLO 640 28.66 17.44 1.37e-3 0.60874
YOLOv3-tiny 416 25.70 57.93 3.70e-4 2.25347

Table 4.4: Implementations on GPU and FPGA yielding greater energy efficiency results.

The results of the Table 4.4 are illustrated in the Figure 4.8 for better visualization.

Figure 4.8: Performance of the best models.

Due to temporal constraints, it was not possible to measure the wattage of the
”YOLOv5n” NN. However, this one has a mAP0.5 of 0.457 (YOLOv3-tiny has a mAP0.5

of 0.367) and achieves 135.15 FPS in the same inference.

The results presented in Table 4.4 and Figure 4.8 show that we have interesting
implementations that support support YOLOv3,v4,v5 Neural Networks using FPGAs.
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Conclusions and Future Work

5.1 Conclusion

The objective of this dissertation was to explore implementations of YOLO Neural
Networks in different types of hardware and to analyze the most efficient solutions, con-
sidering the purpose of the application (analyzing vehicle traffic in real time), clearly this
work is not restricted to this application, but rather to all others that may involve the use
of these Neural Networks.

Table 5.1 summarizes the Neural Networks implemented in different types of hardware,
as well as FPS, average watts, kWh and frames/joule results.

Hardware Model mAP0.5 Avg Watts FPS kWh frames/joule

CPU

YOLOv3 0.661 129.68 W 1.97 5.47× 10−2 0.01523
YOLOv3-tiny 0.367 127.46 W 11.19 9.49× 10−3 0.08783
YOLOv5l 0.675 129.91 W 2.30 4.71× 10−2 0.01770
YOLOv5s 0.571 129.14 W 9.74 1.10× 10−2 0.07541

GPU

YOLOv3 0.661 196.75 W 49.33 3.32× 10−3 0.25074
YOLOv3-tiny 0.367 128.19 W 168.44 6.34× 10−4 1.31402
YOLO5l 0.675 199.08 W 58.98 2.81× 10−3 0.29629
YOLO5s 0.571 159.45 W 116.65 1.14× 10−3 0.73157

FPGA
Pynq
Framework

YOLOv3 0.661 13.75 W 0.13 8.85× 10−2 0.00942
YOLOv3-tiny 0.367 13.51 W 1.23 9.16× 10−3 0.09097
YOLOv5l 0.675 13.71 W 0.18 6.46× 10−2 0.01290
YOLOv5s 0.571 13.44 W 0.82 1.36× 10−2 0.06109

FPGA
Vitis-AI
Framework

dk YOLOv4 416 0.36 unmeasured 27.27 W 18.02 1.26× 10−3 0.66071
dk YOLOv4 416 unmeasured 27.80 W 13.22 1.75× 10−3 0.47545
pt OFA-YOLO 640 0.5 unmeasured 26.55 W 28.33 7.81× 10−4 1.06699
pt OFA-YOLO 640 0.3 unmeasured 27.78 W 22.60 1.02× 10−3 0.81371
pt OFA-YOLO 640 unmeasured 28.66 W 17.44 1.37× 10−3 0.60874
tf2 YOLOv3 416 unmeasured 28.33 W 13.36 1.77× 10−3 0.47159
tf YOLOv4 416 unmeasured 28.38 W 13.90 1.70× 10−3 0.48976
tf YOLOv4 512 unmeasured 29.42 W 10.41 2.35× 10−3 0.35404
YOLOv3-tiny 416 unmeasured 25.70 W 57.93 3.70× 10−4 2.25347
YOLOv5-small 640 unmeasured 26.10 W 0.744 2.92× 10−2 0.02851

Table 5.1: Results obtained from all implementations performed.

For a better visualization of the results, Figures 5.1 and 5.2 illustrate the results of
table 5.1.

45
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Table 5.2 indicates the nominal power of the systems at idle, as well as their theoretical
maximum value.

Hardware
Nominal power
(”idle mode”)

Max nominal power
(theoretical)

Nominal power obtained with
our implementations

CPU 90∼100 W 200∼217 W 125∼150 W
GPU 90∼100 W 340∼360 W 125∼205 W
FPGA - Pynq 11∼12 W 48∼60 W 12∼16 W
FPGA- Vitis 17∼19 W 48∼60 W 25∼30 W

Table 5.2: Nominal power of CPU, GPU and FPGA systems at idle mode, theoretical
maximum value and the range obtained in all implementations performed .

Figure 5.1: Performance of models implemented with CPU and Pynq framework(FPGA).

It is important to remember that the tests were performed for the COCO dataset, wich
contains approximately 118k images and 80 classes. Consequently, simpler architectures,
such as YOLOv3-tiny, have a lower mAP0.5 (0.367) than YOLOv5-small, which has a
higher mAP0.5 (0.57).
So the choice of the NN to implement in real-time applications has to be adjusted to
the dataset to be used, for instance, using a dataset containing the desired classes (cars,
motorcycles, trucks, buses, scooters and bicycles) would result in a significantly higher
mAP0.5. Moreover, GPU comparisons of YOLOv3 and YOLOv5l (Neural Networks with
similar mAP0.5) reveal that the YOLOv5l NN uses less energy to compute the same
number of frames, so it is advantageous to use this architecture for real-time applications.
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Figure 5.2: Performance of the best models (GPU and FPGA). Note: In Vitis-AI YOLOv5,
the kWh are only scaled to 500X.
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Regarding the results obtained, implementations in CPU and FPGA (Pynq framework),
these are not energy efficient due to their extremely low frames/joule value. Using the
YOLOv3-tiny NN as a reference, a maximum of 11.19 FPS was obtained on CPU and
1.23 FPS on Pynq, wich are unsatisfactory results for real-time applications.

In terms of FPS and frames/joule, GPU and FPGA (Vitis-AI framework) implementa-
tions produced the best results. Once again using the YOLOv3-tiny NN as a reference,
on GPU, it was possible to achieve 168.44 FPS and on FPGA, 57.93 FPS. In terms of
energy efficiency, the FPGA is 1.78 times more efficient than the GPU implementation,
achieving 2.25 frames/joule compared to 1.31 frames/joule for the GPU implementation.

Regarding the Model Zoo pre-trained models (the first eight models listed in Table
5.1 of the Vitis-ai framework), they generally obtained good energy efficiency results.
The two Once For All (OFA) models (pruned at 0.5 and 0.3) take full advantage of the
quantization and optimization tools present in this framework, these models produce the
best frame/joules results.

It was found that it is possible to have very efficient FPGA (Vitis-AI) implemen-
tations, that can be applied in low power applications, such as robots, however, the
entire implementation process is quite complex, and the framework support is still rel-
atively limited considering the most recent Neural Networks(YOLOv5,v6,v7) architectures.

5.2 Future Work

The following list summarizes future work within the scope of this dissertation objec-
tives:

• Test implementations using a suitable data set (for instance, Open Images v6 [69]
using the desired classes).

• Modify the latest YOLOv5/v6/v7 Neural Networks to be compatible with Xilinx
DPU(Xilinx Zynq® UltraScale+™ Deep Learning Processor- DPU-DPUCZDX8G).

• Perform training, quantization, evaluation, optimization and compilation of this
newer architectures. With Vitis-ai Optimizer, perform model pruning and optimize
the created models without compromising precision.

• Implementations of YOLO Neural Networks in the FINN framework [26].

• Perform power measurements on all created implementations and compare to GPU
implementations.

With all the results obtained, choose the most beneficial NN for low power implemen-
tations.

When this essential part of the project is completed, a application from scratch must
be developed. One of the goals of this application is to perform the vehicle count through a
”imaginary line” using the various object detections it performs in real time, in an attempt
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to reduce vehicle traffic and accidents. In addition, this work may have other purposes for
future work, such as obtaining the instantaneous speed of vehicles and tracking them.

The ultimate goal of this dissertation would be to develop a functional prototype to
be implemented in reconfigurable logic, with the intention of being implemented in areas
where there is significant vehicle movement. This prototype would be able to detect and
classify different types of vehicles (cars, motorcycles, trucks, buses, scooters and bicycles),
perform their accounting throughout the day while being powered by batteries and small
solar panels.
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Appendix A

List of YOLOv3/v5 environment
packages (Desktop)

This appendix provides a list of packages required for YOLOv3 and YOLOv5 Neural
Networks implementations on CPU and GPU. Each has a distinct Python virtual envi-
ronment, version 3.7.0. (Note: although the Pytorch CUDA version is 11.1, the installed
CUDA version was 11.3, which is functional.)

YOLOv3 packages

Package Version

----------------------- --------------------

absl-py 1.2.0

cachetools 5.2.0

certifi 2022.6.15

charset-normalizer 2.1.0

click 8.1.3

colorama 0.4.5

cycler 0.11.0

docker-pycreds 0.4.0

fonttools 4.34.4

gitdb 4.0.9

GitPython 3.1.27

google-auth 2.9.1

google-auth-oauthlib 0.4.6

grpcio 1.47.0

idna 3.3

importlib-metadata 4.12.0

kiwisolver 1.4.4

Markdown 3.4.1

MarkupSafe 2.1.1

matplotlib 3.5.2

numpy 1.21.6

oauthlib 3.2.0

opencv-python 4.6.0.66

packaging 21.3

pandas 1.1.5
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pathtools 0.1.2

Pillow 9.2.0

pip 22.1

promise 2.3

protobuf 3.19.4

psutil 5.9.1

pyasn1 0.4.8

pyasn1-modules 0.2.8

pyparsing 3.0.9

python-dateutil 2.8.2

pytz 2022.1

PyYAML 6.0

requests 2.28.1

requests-oauthlib 1.3.1

rsa 4.9

scipy 1.7.3

seaborn 0.11.2

sentry-sdk 1.9.0

setproctitle 1.3.0

setuptools 62.3.2

shortuuid 1.0.9

six 1.16.0

smmap 5.0.0

tensorboard 2.9.1

tensorboard-data-server 0.6.1

tensorboard-plugin-wit 1.8.1

thop 0.1.1.post2207130030

torch 1.8.2+cu111

torchaudio 0.8.2

torchvision 0.9.2+cu111

tqdm 4.64.0

typing_extensions 4.3.0

urllib3 1.26.11

wandb 0.13.0

Werkzeug 2.2.1

wheel 0.37.1

zipp 3.8.1

YOLOv5 packages

Package Version

---------------------------- ---------------------

absl-py 1.0.0

argon2-cffi 21.3.0

argon2-cffi-bindings 21.2.0

astunparse 1.6.3

attrs 22.1.0

backcall 0.2.0

beautifulsoup4 4.11.1
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bleach 5.0.1

cachetools 5.1.0

certifi 2022.5.18

cffi 1.15.1

charset-normalizer 2.0.12

click 8.0.0

colorama 0.4.4

coloredlogs 15.0.1

cvu-python 0.0.1a1

cycler 0.11.0

Cython 0.29.30

debugpy 1.6.2

decorator 5.1.1

defusedxml 0.7.1

entrypoints 0.4

fastjsonschema 2.16.1

flatbuffers 1.12

fonttools 4.33.3

gast 0.4.0

google-auth 2.6.6

google-auth-oauthlib 0.4.6

google-pasta 0.2.0

GPUtil 1.4.0

gputils 1.0.6

grpcio 1.46.1

h5py 3.7.0

humanfriendly 10.0

idna 3.3

imageio 2.19.5

importlib-metadata 4.11.3

importlib-resources 5.9.0

ipykernel 6.15.1

ipython 7.34.0

ipython-genutils 0.2.0

ipywidgets 7.7.1

jedi 0.18.1

Jinja2 3.1.2

jsonschema 4.8.0

jupyter 1.0.0

jupyter-client 7.3.4

jupyter-console 6.4.4

jupyter-core 4.11.1

jupyterlab-pygments 0.2.2

jupyterlab-widgets 1.1.1

keras 2.9.0

Keras-Preprocessing 1.1.2

kiwisolver 1.4.2

libclang 14.0.1
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Markdown 3.3.7

MarkupSafe 2.1.1

matplotlib 3.5.2

matplotlib-inline 0.1.3

merge-args 0.1.4

mistune 0.8.4

mpmath 1.2.1

nbclient 0.6.6

nbconvert 6.5.0

nbformat 5.4.0

nest-asyncio 1.5.5

networkx 2.6.3

notebook 6.4.12

numpy 1.21.6

oauthlib 3.2.0

onnx 1.10.1

onnx2torch 1.4.1

onnxruntime 1.12.0

onnxruntime-gpu 1.12.0

opencv-python 4.5.5.64

opt-einsum 3.3.0

packaging 21.3

pandas 1.1.5

pandocfilters 1.5.0

parso 0.8.3

pickleshare 0.7.5

Pillow 9.1.1

pip 22.0.4

progressbar2 4.0.0

prometheus-client 0.14.1

prompt-toolkit 3.0.30

protobuf 3.19.4

psutil 5.9.1

pyasn1 0.4.8

pyasn1-modules 0.2.8

pycocotools 2.0.4

pycparser 2.21

pydantic 1.9.1

Pygments 2.12.0

pyparsing 3.0.9

pyreadline 2.1

pyrsistent 0.18.1

python-dateutil 2.8.2

python-utils 3.3.3

pytz 2022.1

PyWavelets 1.3.0

pywin32 304

pywinpty 2.0.6
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PyYAML 6.0

pyzmq 23.2.0

qtconsole 5.3.1

QtPy 2.1.0

requests 2.27.1

requests-oauthlib 1.3.1

rsa 4.8

scikit-image 0.19.3

scipy 1.7.3

seaborn 0.11.2

Send2Trash 1.8.0

setuptools 62.1.0

six 1.16.0

soupsieve 2.3.2.post1

sparseml 1.0.1

sparsezoo 1.0.0

sympy 1.10.1

tensorboard 2.8.0

tensorboard-data-server 0.6.1

tensorboard-plugin-wit 1.8.1

tensorboardX 2.5.1

tensorflow 2.9.1

tensorflow-estimator 2.9.0

tensorflow-io-gcs-filesystem 0.26.0

termcolor 1.1.0

terminado 0.15.0

thop 0.0.31.post2005241907

tifffile 2021.11.2

tinycss2 1.1.1

toposort 1.7

torch 1.8.2+cu111

torchaudio 0.8.2

torchvision 0.9.2+cu111

tornado 6.2

tqdm 4.64.0

traitlets 5.3.0

typing_extensions 4.2.0

urllib3 1.26.9

vidsz 0.2.0

wcwidth 0.2.5

webencodings 0.5.1

Werkzeug 2.1.2

wheel 0.37.1

widgetsnbextension 3.6.1

wrapt 1.14.1

yolov5 6.1.0

zipp 3.8.0
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Appendix B

List of YOLOv3/v5 environment
packages Pynq

This appendix lists the packages required to implement YOLOv3 and YOLOv5 Neural
Networks within the Pynq framework. All listed packages are compatible with both
versions of YOLOv3/v5 Neural Networks.

Package Version

--------------------------------- ---------------------

2ping 4.3

alabaster 0.7.12

anyio 3.1.0

argon2-cffi 20.1.0

async-generator 1.10

atomicwrites 1.1.5

attrs 19.3.0

Babel 2.9.1

backcall 0.2.0

beautifulsoup4 4.8.2

bitstring 3.1.9

bleach 3.3.0

blinker 1.4

blosc 1.7.0

brevitas 0.7.1

Brotli 1.0.9

certifi 2019.11.28

cffi 1.14.5

chardet 3.0.4

charset-normalizer 2.0.12

click 8.0.1

cloudpickle 1.3.0

CppHeaderParser 2.7.4

cryptography 2.8

cupshelpers 1.0

cycler 0.10.0

Cython 0.29.24

dash 2.0.0
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dash-bootstrap-components 0.13.1

dash-core-components 2.0.0

dash-html-components 2.0.0

dash-renderer 1.9.1

dash-table 5.0.0

dask 2.8.1+dfsg

dbus-python 1.2.16

decorator 4.4.2

defer 1.0.6

defusedxml 0.7.1

deltasigma 0.2.2

dependencies 2.0.1

distro 1.4.0

distro-info 0.23ubuntu1

dnspython 1.16.0

docker-pycreds 0.4.0

docutils 0.17.1

entrypoints 0.3

et-xmlfile 1.0.1

finn-base 0.0.3

finn-dataset-loading 0.0.5

finn-examples 0.0.4

Flask 2.0.1

Flask-Compress 1.10.1

fonttools 4.33.3

fsspec 0.6.1

future-annotations 1.0.0

gitdb 4.0.9

GitPython 3.1.27

gpg 1.13.1-unknown

gTTS 2.2.3

html5lib 1.0.1

httplib2 0.14.0

idna 2.8

imageio 2.4.1

imagesize 1.2.0

imgaug 0.4.0

importlib-metadata 1.5.0

imutils 0.5.4

install 1.3.5

ipykernel 5.5.5

ipython 7.24.0

ipython_genutils 0.2.0

ipywidgets 7.6.3

itsdangerous 2.0.1

jdcal 1.0

jedi 0.17.2

Jinja2 3.0.1
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joblib 1.1.0

json5 0.9.5

jsonschema 3.2.0

jupyter 1.0.0

jupyter-client 6.1.12

jupyter-console 6.4.0

jupyter-contrib-core 0.3.3

jupyter-contrib-nbextensions 0.5.1

jupyter-core 4.7.1

jupyter-highlight-selected-word 0.2.0

jupyter-latex-envs 1.4.6

jupyter-nbextensions-configurator 0.4.1

jupyter-server 1.8.0

jupyterlab 3.0.16

jupyterlab-pygments 0.1.2

jupyterlab-server 2.5.2

jupyterlab-widgets 1.0.0

jupyterplot 0.0.3

keyring 18.0.1

kiwisolver 1.0.1

language-selector 0.1

launchpadlib 1.10.13

lazr.restfulclient 0.14.2

lazr.uri 1.0.3

locket 0.2.0

lrcurve 1.1.0

lxml 4.5.0

macaroonbakery 1.3.1

Markdown 3.1.1

MarkupSafe 2.0.1

matplotlib 3.5.2

matplotlib-inline 0.1.2

mistune 0.8.4

mnist 0.2.2

more-itertools 4.2.0

mpmath 1.1.0

nbclassic 0.3.1

nbclient 0.5.3

nbconvert 6.0.7

nbformat 5.1.3

nbsphinx 0.8.7

nbwavedrom 0.2.0

nest-asyncio 1.5.1

netifaces 0.11.0

networkx 2.4

notebook 6.4.0

numexpr 2.7.1

numpy 1.22.3
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oauthlib 3.1.0

olefile 0.46

opencv-python 4.5.5.64

openpyxl 3.0.3

packaging 20.3

pandas 1.4.2

pandocfilters 1.4.3

parsec 3.9

parso 0.7.1

partd 1.0.0

pathtools 0.1.2

patsy 0.5.1

pbr 5.6.0

pexpect 4.8.0

pickleshare 0.7.5

Pillow 9.1.0

pip 22.0.4

pkg_resources 0.0.0

plotly 5.1.0

pluggy 0.13.0

ply 3.11

prometheus-client 0.10.1

promise 2.3

prompt-toolkit 3.0.18

protobuf 3.20.1

psutil 5.8.0

ptyprocess 0.7.0

py 1.8.1

PyAudio 0.2.11

pybind11 2.8.0

pycairo 1.20.1

pycparser 2.19

pycrypto 2.6.1

pycups 1.9.73

pycurl 7.43.0.2

pyeda 0.28.0

Pygments 2.9.0

PyGObject 3.36.0

pygraphviz 1.5

PyJWT 1.7.1

pymacaroons 0.13.0

PyNaCl 1.3.0

pynq 2.7.0

pynq-dpu 1.4.0

pynq-peripherals 0.1.0

pyparsing 2.4.6

pyRFC3339 1.1

pyrsistent 0.17.3
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pytest 4.6.9

pytest-sourceorder 0.5.1

python-apt 2.0.0

python-dateutil 2.8.2

pytz 2022.1

PyWavelets 0.5.1

PyYAML 5.3.1

pyzmq 22.1.0

qtconsole 5.1.0

QtPy 1.9.0

requests 2.27.1

requests-unixsocket 0.2.0

retrying 1.3.3

rise 5.7.1

roman 3.3

scikit-image 0.16.2

scikit-learn 1.0.2

scipy 1.8.0

seaborn 0.11.2

SecretStorage 2.3.1

Send2Trash 1.5.0

sentry-sdk 1.9.4

setproctitle 1.2.2

setuptools 44.0.0

Shapely 1.8.1.post1

shortuuid 1.0.9

simple-term-menu 1.4.1

simplegeneric 0.8.1

simplejson 3.16.0

six 1.14.0

smmap 5.0.0

sniffio 1.2.0

snowballstemmer 2.1.0

soupsieve 1.9.5

SpeechRecognition 3.8.1

Sphinx 4.2.0

sphinx-rtd-theme 1.0.0

sphinxcontrib-applehelp 1.0.2

sphinxcontrib-devhelp 1.0.2

sphinxcontrib-htmlhelp 2.0.0

sphinxcontrib-jsmath 1.0.1

sphinxcontrib-qthelp 1.0.3

sphinxcontrib-serializinghtml 1.1.5

SQLAlchemy 1.3.12

ssh-import-id 5.10

sympy 1.5.1

systemd-python 234

tables 3.6.1
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tenacity 8.0.0

terminado 0.10.0

terminaltables 3.1.10

testpath 0.5.0

testresources 2.0.1

thop 0.0.31.post2005241907

threadpoolctl 3.1.0

tokenize-rt 4.2.1

toolz 0.9.0

torch 1.11.0

torchvision 0.12.0

tornado 6.1

tqdm 4.62.3

traitlets 5.0.5

transitions 0.7.2

typing_extensions 4.1.1

ubuntu-advantage-tools 20.3

unattended-upgrades 0.1

urllib3 1.26.11

uvloop 0.14.0

voila 0.2.10

voila-gridstack 0.2.0

wadllib 1.3.3

wandb 0.13.1

wcwidth 0.1.8

webencodings 0.5.1

websocket-client 1.0.1

Werkzeug 2.0.1

wheel 0.37.1

widgetsnbextension 3.5.1

wurlitzer 3.0.2

xlrd 1.1.0

xlwt 1.3.0

zipp 1.0.0



Appendix C

Power measurements on CPU/GPU

This appendix provides comprehensive graphs of the energy consumption measure-
ments of the Neural Networks listed in Table 4.1 on CPU and GPU implementations.

CPU measurements:

Figure C.1: Watt measurement overtime - YOLOv3 - CPU
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Figure C.2: Watt measurement overtime - YOLOv3-tiny - CPU

Figure C.3: Watt measurement overtime - YOLOv5l - CPU
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Figure C.4: Watt measurement overtime - YOLOv5s - CPU
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GPU measurements:

Figure C.5: Watt measurement overtime - YOLOv3 - GPU

Figure C.6: Watt measurement overtime - YOLOv3-tiny - GPU
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Figure C.7: Watt measurement overtime - YOLOv5l - GPU

Figure C.8: Watt measurement overtime - YOLOv5s - GPU



Appendix C. Power measurements on CPU/GPU 74



Appendix D

Power measurements on Pynq
framework

This appendix provides graphs of the energy consumption measurements of the Neural
Networks listed in Table 4.2 for the Pynq framework. The fact that the inferences took a
long time resulted in graphs a little difficult to analyze, however, the average power was
marked with a red line along the inference.

Figure D.1: Watt measurement overtime - YOLOv3 - Pynq

75



Appendix D. Power measurements on Pynq framework 76

Figure D.2: Watt measurement overtime - YOLOv3-tiny - Pynq

Figure D.3: Watt measurement overtime - YOLOv5l - Pynq
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Figure D.4: Watt measurement overtime - YOLOv5s - Pynq
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Appendix E

Power measurements on Vitis-AI
framework

This appendix presents the graphs of the energy consumption measurements of the
Neural Networks mentioned in Table 4.3 in the Vitis-AI framework.

Figure E.1: Watt measurement overtime - Dk YOLOv4 COCO 416 416 0.36 38.2G
(27.26 Watts on average).
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Figure E.2: Watt measurement overtime - Dk YOLOv4 COCO 416 416 60.1G
(27.80 Watts on average).

Figure E.3: Watt measurement overtime - Pt OFA-YOLO COCO 640 640 0.5 24.62G.
(26.55 Watts on average)
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Figure E.4: Watt measurement overtime - Pt OFA-YOLO COCO 640 640 0.3 34.72G.
(27.78 Watts on average)

Figure E.5: Watt measurement overtime - Pt OFA-YOLO COCO 640 640 48.88G
(28.66 Watts on average).



Appendix E. Power measurements on Vitis-AI framework 82

Figure E.6: Watt measurement overtime - Tf2 YOLOv3 COCO 416 416 65.9G
(28.33 Watts on average).

Figure E.7: Watt measurement overtime - Tf YOLOv4 COCO 416 416 60.3G
(28.38 Watts on average).
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Figure E.8: Watt measurement overtime - Tf YOLOv4 COCO 512 512 91.2G
(29.42 Watts on average).

Figure E.9: Watt measurement overtime - YOLOv3-Tiny coco 416 416
(25.70 Watts on average).
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Figure E.10: Watt measurement overtime - YOLOv5-small coco 640 640
(26.10 Watts on average).
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