

Nuno André da Silva Marques

AUTONOMOUS SURFACE VEHICLE

NAVIGATION AND MAPPING IN RIVER

BASINS

Dissertação no âmbito do Mestrado em Engenharia Eletrotécnica
e de Computadores, do ramo de especialização em Robótica,

Controlo e Inteligência Artificial, orientada pelo Professor Doutor
Lino José Forte Marques e Mestre Hugo Magalhães e apresentada
ao Departamento de Engenharia Eletrotécnica e de Computadores

da Faculdade de Ciências e Tecnologia da Universidade de
Coimbra.

Setembro de 2022

Autonomous Surface Vehicle Navigation

and Mapping in River Basins

Nuno André da Silva Marques

Coimbra, September 2022

Autonomous Surface Vehicle Navigation

and Mapping in River Basins

Supervisor:

Prof. Doutor Lino José Forte Marques

Co-Supervisor:
Mestre Hugo Magalhães

Jury:

Prof. Doutor Rui Paulo Pinto Rocha

Prof. Doutor Manuel Marques Crisóstomo

Prof. Doutor Lino José Forte Marques

Dissertation submitted in partial fulfillment for the degree of Master of Science in

Electrical and Computer Engineering.

Coimbra, September 2022

Acknowledgements

First, I would like to express my gratitude to my Supervisor, Professor Lino Marques,

for all the support and suggestions given during the development of this dissertation and for

the opportunity to work in a great lab.

To my Co-Supervisor, Hugo Magalhães, a big thank you for all the help and work done

that made this dissertation possible and a little less intimidating.

To all my colleagues, João, Rui and Sedat in the Field Robotics Lab, who made the

adaptation really easy and helped me when I had any problems.

To all my friends, especially André, JP and Joca who were always by my side during this

big journey that was this course.

Lastly, to my family, in particular to my parents and grandmother, who gave me all the

support and motivation that I needed during these five years.

ii

Resumo

Os veículos autónomos de superfície (VAS) são veículos que operam na superfície da água

sem tripulação ou operador. Podem ser utilizados em tarefas de vigilância, monitorização

ambiental e cartografia do solo marinho/fluvial. Estas tarefas levam tempo e precisam de

ser automatizadas, pelo que o VAS deve navegar de forma autónoma. Para tal, podem ser

utilizados muitos tipos de sensores (LiDARs, Sonares, Pares de Câmaras Estéreo), mas um

dos mais versáteis é a câmara monocular.

Esta dissertação analisa o estado da arte de métodos de navegação e implementa uma

estratégia para mapear e evitar obstáculos. Para o conseguir, é implementada uma rede de

segmentação da água que atinge um dice score de 0, 9896 num dataset misto com imagens

do rio Mondego e imagens do dataset ROSEBUD ([18]). Foi desenvolvido um algoritmo

de reconstrução 3D que estima as distâncias com precisão e elimina o problema da escala,

utilizando a distância percorrida entre imagens. O algoritmo toma partido de uma câmera

calibrada para simplificar a computação. O desvio de obstáculos é conseguido através da

utilização de informação da máscara prevista pela rede neuronal convolucional. Dois algo-

ritmos foram desenvolvidos. Um baseado em controlo de posição e o outro usa controlo de

velocidade.

Como trabalho futuro, outros tipos de redes neuronais podem ser desenvolvidos e uma

estratégia the desvio de obstaculos mais robusta e eficiente pode ser implementada, tirando

partido da máscara prevista pela rede.

Palavras Chave: Veículos Autónomos de Superfície, Rio, Desvio Obstáculos, Câmara

Monocular, Estrutura a Partir de Movimento, Redes Neuronais Convolucionais

iv

Abstract

Autonomous Surface Vehicles are vehicles that operate on the surface of the water with-

out a crew or operator. They can be used in surveillance, environmental monitoring, and

sea/river floor mapping tasks. These tasks take time and need to be automated, so the ASV

must navigate autonomously. To achieve this, many types of sensors can be used(LiDAR,

Sonar, Stereo Camera Setup), but one of the most versatile is a single monocular camera.

This dissertation takes a look at the state-of-the-art methods for navigation and imple-

ments a strategy to map and avoid obstacles. To achieve this, a water segmentation network

is implemented that achieves a dice score of 0.9896 in a mixed dataset with images from

the Mondego River and the ROSEBUD dataset ([18]). A 3 Dimensional reconstruction al-

gorithm has been developed that estimates distances accurately and eliminates the problem

of scale by using the distance travelled between frames. This algorithm takes advantage of

a calibrated camera to simplify the distance estimations. Obstacle avoidance is achieved by

using information from the CNN prediction mask. Two algorithms were developed. One

based on position control and the other using velocity control

For future work, other types of CNN could be developed and a more robust and efficient

obstacle avoidance strategy could be implemented, taking advantage of the segmented water

mask. The 3D reconstruction needs to be optimized to run in real time in the Single Board

Computer (Nvidia Jetson Nano).

Keywords: Autonomous Surface Vehicle, Unmanned Surface Vehicle, River, Obstacle

Avoidance, Monocular Camera, Structure From Motion, Convolutional Neural Networks

v

“Ponho o carro, tiro o carro, à hora que eu quiser”

— Joaquim Barreiros, A Garagem da Vizinha

vii

Contents

Acknowledgements ii

Resumo iv

Abstract v

List of Acronyms xi

List of Figures xiii

List of Tables xv

1 Introduction 1

1.1 Context and Motivation . 1

1.2 Goals . 3

1.3 Document Overview . 3

2 Obstacle Detection and Mapping 4

2.1 Related Work . 4

2.2 Water Segmentation . 5

2.2.1 Watershed . 5

2.2.2 Neural Network . 7

2.3 Distance Estimation . 12

3 Method 18

3.1 Water Segmentation . 18

3.1.1 Morphological Watershed . 19

3.1.2 Convolutional Neural Network . 20

3.2 Obstacle Avoidance . 23

ix

3.2.1 Close Obstacle Detection . 24

3.3 Obstacle Mapping . 24

3.3.1 Camera Calibration . 25

3.3.2 Obstacle Position Estimation . 26

4 Experimental Results 27

4.1 Experimental Setup . 27

4.1.1 Hardware . 27

4.1.2 Software . 29

4.2 Water Segmentation . 30

4.2.1 Simulation . 30

4.2.2 Field Experiment . 31

4.3 Obstacle Mapping . 34

4.3.1 Simulation . 34

4.3.2 Field Experiments . 36

4.4 Obstacle Avoidance . 38

4.4.1 Simulation . 38

4.4.2 Field Experiment . 39

5 Conclusion 41

5.1 Future Work . 42

6 References 43

A 3D Designs 47

x

List of Acronyms

ASV Autonomous Surface Vehicle

BLDC Brushless Direct Current

CNN Convolutional Neural Network

FPS Frames Per Second

GNSS Global Navigation Satellite System

GPS Global Positioning System

HSV Hue Saturation Value

IMU Inertial Measurement Unity

ReLU Rectified Linear Unit

RGB Red Green Blue

ROI Region of Interest

ROS Robot Operating System

RTK Real-time kinematic positioning

SBC Single Board Computer

SFM Structure From Motion

SURF Speeded-Up Robust Features

USV Unmanned Surface Vehicle

VFF Virtual Force Field

VFH Vector Field Histogram

xi

xii

List of Figures

1.1 Mondego river during May 2022. 2

2.1 RGB Color Space (left) and HSV Color Space (right).[25] 6

2.2 Watershed Algorithm segmentation process.[32] 7

2.3 First 3 steps of a convolution.[11] . 8

2.4 First 2 steps of Max Pooling . 10

2.5 Activation Functions . 11

2.6 Transposed Convolution. Blue represents the input, grey the kernel and cyan

the output. Image retrieved from [6]. 11

2.7 Pinhole Camera Model . 13

2.8 Approximation of the second order Gaussian partial derivative in y (Dyy) and

xy (Dxy) . 15

2.9 Haar wavelet filters used to get the responses in x (left) and y (right) directions 15

2.10 Assignment of orientation to a interest point. Image retrieved from [2] 16

3.1 Workflow of the implemented work. 18

3.2 Results of the watershed algorithm in simulated and real images 19

3.3 The steps of the Morphological Watershed Algorithm 20

3.4 Pipeline to get the segmentation mask. 21

3.5 Architecture of the main CNN. 22

3.6 Data Augmentation Techniques . 23

3.7 Pattern used in camera calibration. 25

4.1 ASV Architecture . 27

4.2 Photographs of the ASV and Base Station. 29

4.3 Evolution of the Dice Scores during training in the Simulation Dataset . . . 31

4.4 Evolution of the Dice Scores during training in the Real Life Dataset #1 . . 32

xiii

4.5 Evolution of the Dice Scores during training in the Real Life Dataset #2 . . 33

4.6 SURF Features Matches of Truck Obstacle 34

4.7 SURF Features Matches of Tree Obstacle . 35

4.8 Distance to Obstacles Plot . 35

4.9 3D reconstruction of the tree . 36

4.10 SURF Features Matches of Boat Obstacle 37

4.11 Distance to Canoe Plot . 37

4.12 3D reconstruction of the canoe . 37

4.13 Scenario for Obstacle Avoidance Test . 38

4.14 Path described by the ASV during the test 38

4.15 False Positive Obstacle Detection . 39

4.16 Close Obstacle Detection . 39

4.17 Path described by the during the test . 40

A.1 3D Design of the Thruster Support . 47

A.2 3D Design of the Floater Tip . 48

A.3 3D Design of the Camera Support . 48

xiv

List of Tables

4.1 Simulation Dataset Training Hyper-Parameters 30

4.2 Results for Simulation Dataset . 31

4.3 Real Life Dataset Hyper-Parameters Combination #1 31

4.4 Results for Real Life Dataset #1 . 32

4.5 Real Life Dataset Hyper-Parameters Combination #2 33

4.6 Results for Real Life Dataset #2 . 33

xv

1 Introduction

All life on Earth depends on water for survival. It is the world’s most vital resource. Water

is a very plentiful resource, but the majority of it is salt water from the oceans. Less than

3% of the world’s total water resources are made up of freshwater, and of that, less than 1%

is found in the liquid freshwater that covers the Earth’s surface (the rest is in the planet’s

subsurface or is frozen in the ice caps) [12].

The amount of fresh water that is present on Earth supports a high level of biodiversity,

which includes both aquatic life and also land species that depends on inland waters.

The continuously use of chemical fertilizers and pesticides, the occurrence of chemical

spills and heavy rains that wash out hazard substances from land to water streams make

it important to make sure the water present in rivers is not polluted so that it can keep

providing support to all the biodiversity.

1.1 Context and Motivation

To protect water quality and avoid health related risks, natural waters streams require

monitoring systems that are able to detect the presence of pollutants. This can be done with

static sensor networks or mobile sensors [26]. The use of mobile sensors, such as underwater

or surface vehicles presents some advantages over sensors networks: dynamic coverage area

due to the ability of the vehicles to move in the environment and the possibility of deploying

these vehicles in places that suffered an environmental catastrophe to help find the sources

of pollution.

The task of monitoring water resources using mobile sensors is very time consuming and

has the need of several operators for the system to work. There is also health risks to the

operators if the type of pollution is toxic for humans. This way, Autonomous Surface Vehicles

(ASV) have the potential to provide cost and time savings by diminishing the number of

operators and also provide enhanced safety by reducing the probability of humans interacting

1

with hazard chemicals.

ASV, also known as Unmanned Surface Vehicles (USV), are vehicles that operate on the

surface of the water without a crew. They have a wide range of applications, including:

environmental and climate monitoring [7], sea/river floor mapping [1] and surveillance [24].

Unmanned vessels are not a new concept. Nikola Tesla envisioned aquatic drones in his

1898 patent for “Method of and apparatus for controlling mechanism of moving vessels or

vehicles” [30].

To achieve autonoumous navigation the ASV needs to have the capability to detect and

avoid obstacles. An obstacle can be any surface object that obstructs the navigation path

of the ASV, such as surface sandbanks, floating tree logs or canoes used for recreational

purposes. Just recently new advancements in autonomously navigating water environments

are being made. Many works focus on maritime environments, which present different chal-

lenges when autonomous navigation is the goal, when compared to river scenes. Some of

the challenges that may arise in this kind of environment in comparison of maritime ones

are: fast changing unpredictable water currents, shallow floor that may get the ASVs stuck,

a variety of obstacles including small islands and more frequent derbies (wood logs) and a

narrower navigation space with uneven margins.

To detect obstacles a variety of sensors can be used (sonars, radars, LiDARs, stereo

vision systems) that can be quite expensive and difficult to calibrate. Sonars can only sense

underwater and LIDARs are difficult to use due to water turbulence. Monocular cameras on

the other hand are relatively cheap, but detecting obstacles using vision can present some

challenges because of the complex river environment including: complex water-shore-line,

lots of reflections, a broad spectrum of water colors like blue, green, brown, and yellow [10].

Figure 1.1 illustrates some of these challenges. The sensor used in this work is a monocular

camera because of the previous stated advantages over other sensors, and for the fact that few

works are developed using only a camera as the source of perception in fluvial environments.

Figure 1.1: Mondego river during May 2022.

2

1.2 Goals

The goals of this dissertation can be divided in two major goals, and each major goal can

be further divided in other goals that need to be accomplished using a monocular camera as

the perception mean:

1. Make an ASV navigate in inland waters

• Water Segmentation

• Perceive if an obstacle is close

• Avoid obstacles

2. Map the obstacles that may appear during navigation

• Collect the necessary information to identify and map obstacles

1.3 Document Overview

The current dissertation is divided in 5 chapters. The first chapter is the Introduction, where

the uses of ASV are presented and an introduction to the problem of autonomous navigation

is made.

The second chapter is the "Obstacle Detection and Mapping", in which a theoretical

background about the techniques used will be presented, as well as a review of the state of

the art methods.

The third chapter is Method, in this chapter the solutions found to achieve the goals

proposed in 1.2 are presented. This Chapter is divided in 3 main sections. Each section

presents the solution for the problems of Water Segmentation, Obstacle Avoidance and Ob-

stacle Mapping, respectively.

The fourth chapter is "Experimental Results" and will contain the results of the con-

ducted experiments in simulation and real life. The experimental setup is also described in

this section

The fifth and last chapter is the Conclusion and Future Work were an overview of all the

work developed is made as well as suggestions for further improvement of the current state

of the work.

3

2 Obstacle Detection and Mapping

This section aims to provide a theoretical background to better understand the method used

to solve the problem of autonomous river navigation and mapping. A review of previous

developed works is conducted to identify the limitations that justify this dissertation.

2.1 Related Work

Monocular camera navigation and mapping is a challenge that was tackled in several studies.

Some of these studies implement Visual SLAM algorithms capable of using only a monocular

camera. Some examples of tese types of algorithms are the ORB-SLAM3 [3] and the Open

VSlam [29]. Merzlyakov and Macenski tested different Visual Slam algorithms in [20] that

include the ones previously refereed. The conclusion was that, outdoors, Open VSLAM and

ORB- SLAM3 out-performed all the others algorithms but using only a monocular camera

the algorithms were very dependent of light conditions and not very reliable.

One challenge to overcome to achieve autonomous navigation is to determine the region

of interest (ROI), which in the case of autonomous navigation in a river is the area under

the riverbank line since it reduces the area to search for obstacles in. A real-time riverbank

line detection algorithm is proposed in [9] that uses watershed algorithm and classical Sobel

operator for extracting the riverbank line. This work shows promising results but was not

tested in complex river environments and lacks evaluation metrics, so the method needs

further testing. In [21] a watershed algorithm is combined with the Vector Field Histogram

(VFH) algorithm to avoid obstacles. This article also lacks evaluation metrics and it is

unclear how the obstacle detection stage is implemented.

Another type of strategy to identify the ROI is based on Convolutional Neural Networks

(CNN). The work described in [28] uses several CNN based on the well-known U-Net [23] to

segment the water in an image and uses the resulting mask to compute the waterline and

detect obstacles. One of the networks used achieves an accuracy of 98.9% in the INTCATCH

4

Vision Dataset1 and can run at almost 10 frames per second (FPS) using a Jetson TX2.2

Ling et al [19] also use an image segmentation network based on U-Net and achieves 96.5%

accuracy on a dataset sampled from a ASV on several different rivers. In Chen et al work

[5] an encoder network is also used to segment water, although in a maritime environment

that does not present many reflections. The main drawback of using networks is the need to

have powerful hardware capable of performing the great amount of calculations in a small

time period.

Detecting and avoiding the obstacles is explored in [8] using an optical-flow based system

that runs on smartphones with a single source of perceptual sensing, via a monocular camera.

The challenge of estimating distances using a monocular camera was solved in [4] using

motion stereo where the camera position can be estimated using RTK GNSS and an IMU

(Inertial Measurement Unity). The 3D environment can be treated as a 2D space and feature

matching can be applied to two different images. The obstacle depth can be calculated using

motion parallax method. The method is tested in maritime environment and with a wide

baseline between frames that is not possible in most inland waters.

2.2 Water Segmentation

To segment the water and get the ROI two methods were implemented and tested. The

first one is based on the computer vision algorithm called Watershed [27], and the second is

an image segmentation network based on the U-Net. The following two sections provide a

theoretical background that allows the reader to understand the two methods.

2.2.1 Watershed

Before applying the watershed algorithm to an image it is necessary to apply pre-processing

techniques to create an image that is easier to segment. Below some of these processes are

explained.

Gaussian filtering is used to blur images and remove noise and detail. When working with

images, the two dimensional Gaussian function (2.1) must be used, where σ is the standard

deviation and x and y are the distances from the kernel center pixel (0, 0).

G(x, y) =
1

2πσ2
e−

x2+y2

2σ2 (2.1)

1http://profs.scienze.univr.it/farinelli/intcatchvisiondb/intcatchvisiondb.html
2https://developer.nvidia.com/embedded/jetson-tx2

5

http://profs.scienze.univr.it/farinelli/intcatchvisiondb/intcatchvisiondb.html
https://developer.nvidia.com/embedded/jetson-tx2

To reduce computational costs and because the pixels of an image have discrete coordi-

nates, the 2D Gaussian function is discretized in the form of a kernel. The kernel coefficients

are sampled from 2.1. Equation 2.2 shows a 3x3 convolution kernel that approximates a

Gaussian with a σ of 1.

ω =
1

16

1 2 1

2 4 2

1 2 1

 (2.2)

The kernel ω is then convoluted with the original image f(x, y) to create the blurred

image g(x, y) (2.3).

g(x, y) = ω ∗ f(x, y) (2.3)

Hue Saturation Value (HSV) is a color space that separates color from intensity and is

often used in computer vision and image processing. It is composed by the hue channel(H),

saturation channel(S) and brightness channel(V). The conversion from RGB to HSV is ex-

plained and documented in the OpenCV library documentation.3 Figure 2.1 exemplifies the

RGB and HSV color spaces.

Figure 2.1: RGB Color Space (left) and HSV Color Space (right).[25]

In the field of mathematical morphology, dilation is one of the two fundamental operators.

In order to dilate an image, each pixel must be given the highest value found over the

neighborhood of the structuring element (kernel). Dilation is represented in 2.4, in which

f(i, j) is a gray scale image, b(s, t) is the kernel and Dilate(i, j) is the dilated image.

Dilate(i, j) = max
(s,t)∈b

{f(i+ s, j + t)} (2.4)

Erosion is the other basic operator of mathematical morphology. The erosion of an

image involves assigning to each pixel, the minimum value found over the neighborhood
3https://docs.opencv.org/3.4/de/d25/imgproc_color_conversions.html

6

https://docs.opencv.org/3.4/de/d25/imgproc_color_conversions.html

of the structuring element (kernel). Erosion is represented in 2.5, where Erode(i, j) is the

eroded image.

Erode(i, j) = min
(s,t)∈b

{f(i+ s, j + t)} (2.5)

The classical watershed algorithm uses flooding simulation in 2D images (where the values

of the pixels are seen as heights), as described in [27]. The idea consists in viewing the image

as a height map that is going to be flooded with water sources starting from the lowest

points and dams are placed where different water sources meet. This dams are the lines that

segment the image. Figure 2.2 shows the segmentation process of the watershed algorithm.

Figure 2.2: Watershed Algorithm segmentation process.[32]

2.2.2 Neural Network

Since this work will use an encoder-decoder type of network for pixel-wise prediction of water,

some core concepts need to be explained to fully understand its architecture. An encoder-

decoder architecture can be divided in two networks. The first one receives an image and

outputs a sequence of numbers. The second network receives a sequence of numbers and

outputs an image (mask). These networks use convolutional and transpose layers that will

be explained below.

Convolutional Layer

A convolutional layer applies sliding convolutional filters to an input. This type of layer

convolves the input by moving the kernel vertically and horizontally over the input and

computing the dot product of the weights and the input, and then adding a bias value. The

output value of the layer with input size (Cin, H,W) and output (Cout, Hout,Wout) described

as:

out(Coutj) = bias(Coutj) +

Cin−1∑
k=0

weight(Coutj, k) ⋆ input(k) (2.6)

7

Where C is the number of channels (for example an RGB image has 3 channels), H

is the height of the input plane and W is the width of the input plane, and ⋆ is the 2D

cross-correlation operator, also known as the sliding dot product. The stride, the padding

and the kernel size are important parameters that need to be tuned to achieve the desired

result. The kernel slides from left to right and top to bottom during convolution until

it has passed through the entire input image. Stride (S) is defined as the kernel’s step.

Padding is used to increase the contribution of pixels at the corners and edges in the learning

procedure. If a padding of P is applied to an image of size W×H, the output has dimensions

(W + 2P)× (H + 2P). A convolution with the inputs:

• An image of dimensions Win ×Hin;

• A filter of dimensions K ×K;

• Stride S;

• Padding P ;

originates an output with dimensions:

• Wout =
Win−K+2P

S
+ 1

• Hout =
Hin−K+2P

S
+ 1

For a better understanding of the procedure, Figure 2.3 represents the first 3 steps of a

convolution, where the input has size 4× 4, the kernel size is 2× 2, the padding is 0 and the

stride is 1.

Figure 2.3: First 3 steps of a convolution.[11]

8

Batch normalization

Batch normalization improves the performance of neural networks by allowing the use of

higher learning rates, which significantly accelerates the learning process and also allows the

removal of Dropouts [16]. The dataset D is divided in batches B containing m values. Batch

Normalization executes a zero mean and unit variance regularization to each dimension of

the hidden layers. The batch mean, batch variance and normalization of a general activation

are defined in Equations 2.7, 2.8, 2.9 respectively, where x is a layer of the network. A small

constant ϵ is added for numerical stability.

µB =
1

m

m∑
i=1

xi (2.7)

σ2
B =

1

m

m∑
i=1

(xi − µB)
2 (2.8)

xi
(k) =

xi − µB√
σ2
B + ϵ

(2.9)

Normalizing the mean and standard deviation of a unit can reduce the expressive power

of the neural network containing that unit [13, Section 8.7.1]. To maintain the expressive

power of the network scale and shifting learnable parameters (γ(k) and β(k)) are used. In

other words, this operation allows the model to choose the optimum distribution for each

hidden layers. The final hidden unit activation becomes:

yi = γxi + β (2.10)

Max pooling

Max pooling layers are used to sub-sample the feature maps generated by the convolutional

layers. It maintains the majority of the dominant information (features) and similarly to

convolutional layers both the stride and the kernel size can be tuned. The kernel (pooling

window), slides through the plane and outputs the maximum of the values of the input plane

inside the pooling window. The max pooling output shape can be computed using equation

2.11, where I is the input shape (width or height), P is the pooling window size and S is

the stride. Figure 2.4 exemplifies the process with a stride of 2 and a polling window size of

2× 2.

9

Out = ⌊I − P

S
⌋+ 1 (2.11)

Figure 2.4: First 2 steps of Max Pooling

Activation functions

The primary job of an activation function in a neural network-based model, is to translate the

input to the output, where the input value is determined by summing the weighted inputs of

all the neurons and then adding bias to it. In other words, by generating the corresponding

output, the activation function determines whether or not a neuron will activate for a given

input. An activation function must be differentiable so that the optimizer can train the

model using error back propagation. The two used activation functions in this work are the

Sigmoid and the ReLU.

The sigmoid activation function takes real numbers as its input and bind the output be-

tween 0 and 1. The graph of the sigmoid function is shown in Figure 2.5a. The mathematical

representation of the sigmoid is:

S(x) =
1

1 + e−x
(2.12)

The ReLU is used to convert all the input values to positive numbers. The graph of the

ReLU function is shown in Figure 2.5b. The mathematical representation of the ReLU is:

R(x) = max(0, x) (2.13)

10

(a) Sigmoid function graph (b) ReLU function graph

Figure 2.5: Activation Functions

Transposed Convolutions

Transposed Convolutions are upscalers used in Encoder-Decoder architectures as decompres-

sors. They reconstruct the spacial resolution from before a convolution. Imagine a given

input as the outcome of a direct convolution applied to a starting feature map. One way to

conceptualise a transposed convolution on that input is to imagine the process that enables

the recovery of the shape of the initial feature map. To better understand the concept,

Figure 2.6 presents the transpose convolution of an 3× 3 kernel with an 2× 2 input padded

with 2× 2 border of zeros and a stride of 1.

Figure 2.6: Transposed Convolution. Blue represents the input, grey the kernel and cyan

the output. Image retrieved from [6].

Skip Connections

Skip connections concatenate two feature maps along the channels dimension. This allows the

gradients to more freely flow through the model, mitigating the issue of vanishing gradients

[15] and allow features from the encoder side of the network to pass to the decoder side of

11

the network, providing information that could otherwise be lost due to the downsampling

on the encoder side.

Loss Function

The Loss Function is used to calculate the prediction error generated by the model over the

training instances. The error tells how off is the prediction from the ground truth and is

optimized during the training process of the model. The Loss Function uses the prediction

of the network and the actual output (label or ground truth) to calculate the error. In this

work 3 different Loss Functions were used and are described below, assuming that x is the

prediction, y is the label and N is the size of the prediction vector.

Mean Absolute Error is a loss function where the loss is the mean of the absolute difference

between the prediction and the label. It can be written as:

MAE(x, y) =
1

N

N∑
i=0

|yi − xi| (2.14)

Mean Squared Error is similar to Mean Absolute Error but uses the mean of the squared

difference between the prediction and the label. It can be written as:

MSE(x, y) =
1

N

N∑
i=0

(yi − xi)
2 (2.15)

Binary Cross Entropy Loss is used in binary classification problems. Since the purpose of

the network is to predict is a pixel is water or not, it makes sense to use this Loss Function.

It can be written as:

BCE(x, y) =
1

N

N∑
i=0

yi · log(xi) + (1− yi) · log(1− xi) (2.16)

2.3 Distance Estimation

The reconstruction of a 3D scene from a single monocular camera is a complex process

that needs a theoretical background to be understood. The process of estimating the 3-D

structure of a scene from a set of 2-D images is know as Structure from Motion. Below some

of the key concepts to understand SFM are explained.

12

Pinhole Camera Model

The pinhole model explains the mathematical relationship of the projection of points in

three-dimensional space onto an image plane and is the simplest camera model. Figure 2.7

represents the pinhole model in which the virtual image plane is in front of the center of

projection.

Figure 2.7: Pinhole Camera Model

Considering that p = [xp yp zp]
′ and using triangle similarity, it can be derived that:

p′ =

xp

zp
f

yp
zp
f

 (2.17)

To express the projection as a linear process, homogeneous coordinates can be used:

P ′ =

fxp

fyp

z

 =

f 0 0 0

0 f 0 0

0 0 1 0

xp

yp

zp

1

 (2.18)

In the majority of cameras the pixel (0,0), known as the principal point (cx, cy), is often

located in the top left corner of the image grid, rather than the middle. Hence the previous

equation becomes:

P ′ =

fxp + cxzp

fyp + cyzp

z

 =

f 0 cx 0

0 f cy 0

0 0 1 0

xp

yp

zp

1

 (2.19)

The camera calibration matrix (intrinsic parameters) can be represented as:

13

K =

αx s cx

0 αy cy

0 0 1

 (2.20)

Where s is the skew coefficient, which is non-zero if the image axes are not perpendicular

and αx and αy are the focal lengths in pixels.

The ideal pinhole camera has no lens, hence the camera calibration matrix does not take

lens distortion into consideration. The camera model must take radial and tangential lens

distortion into account in order to effectively depict a genuine camera. Radial distortion

occurs when light rays bend more near the edges of a lens than they do at its optical center

and tangential distortion occurs when the lens and the image plane are not parallel 4.

To remove distortion from images and estimate the intrinsic parameters, camera calibra-

tion is performed [31].

SURF

Feature detection and matching is what allows a program to find the same point in two

separate images. Many feature detectors and describers are available to use, but in this

work the chosen one was SURF (Speeded-Up Robust Features) [2]. SURF is a scale and

rotation invariant feature detector and descriptor that does not use colour information (is

applied to gray-scale images).

The use of Integral images reduces the computation time by allowing fast calculation of

box type convolution filters. The integral image I∑ at a location x is defined as:

I∑(x) =
i<x∑
i=0

i<y∑
i=0

I(i, j) (2.21)

The detector is based on the Hessian matrix. Blob-like structures are detected where the

determinant is maximum. The Hessian matrix in a point x at a scale σ is defined as:

H(x, σ) =

Lxx(x, σ) Lxy(x, σ)

Lxy(x, σ) Lyy(x, σ)

 (2.22)

Where Lxx(x, σ) is the convolution of the Gaussian second order derivative ∂2

∂x2 g(σ) with

the image I in point x and similarly for Lxy(x, σ) and Lyy(x, σ). The approximation of the

Hessian matrix is made using box filters exemplified in Figure 2.8.
4https://www.mathworks.com/help/vision/ug/camera-calibration.html

14

https://www.mathworks.com/help/vision/ug/camera-calibration.html

Figure 2.8: Approximation of the second order Gaussian partial derivative in y (Dyy) and

xy (Dxy)

These approximations can be computed very fast using integral images. The determinant

of the approximated Hessian can be calculated as in Equation 2.23

det(H) = DxxDyy − (wDxy)
2 (2.23)

Where w is a weight used to balance the expression so that the determinant for the

simplified kernel roughly matches that of the continuous version. The determinant of the

Hessian represents the blob response in the image at point x. Several responses are stored

over different scales and local maxima are detected. Scale is implemented by up-scaling the

box filters size. The Figure 2.8 represents a 9x9 filter that is considered the initial scale

(aproximates the Gaussian derivatives with σ = 1.2).

To be invariant to rotations SURF needs to assign orientation to the interest points. This

is achieved using wavelet responses in horizontal and vertical direction using the filters in

Figure 2.9 inside a circular region around the interest point. Once again integral images can

be used to speed up the process.

Figure 2.9: Haar wavelet filters used to get the responses in x (left) and y (right) directions

As soon as the responses are computed, they are represented in a space as points. The

orientation is computed by summing all the points inside a rotating window of size π
3
. The

longest vector across all windows is defined as the orientation of the interest point. Figure

2.10 exemplifies the process.

The descriptor is another part of SURF. To extract descriptors, first a square region is

15

Figure 2.10: Assignment of orientation to a interest point. Image retrieved from [2]

constructed around the interest point and with the same orientation computed previously.

The region is split into 4x4 square sub-regions. At each region, the Haar wavelet responses

are computed at 5x5 spaced sample points. dx is the Haar wavelet response in horizontal

direction and dy in the vertical direction. A 4D descriptor vector v (Equation 2.24) is

assembled for each region. Because there is a total of 16 sub-regions the feature vector for

an interest point becomes 64D.

v = (
∑

dx,
∑

dy,
∑

|dx|,
∑

|dy|) (2.24)

Essential Matrix

The essential matrix E is used when the description of the geometric relations in a image

pair is desired. This can be in images taken by a stereo camera setup or in the case of this

work, a monocular camera moving in the environment. It contains all the information about

the relative orientation from corresponding points. It is a 3x3 homogeneous matrix with

rank 2. This rank deficiency is used to formulate the coplanarity constrain:

pT1 ∗ E ∗ p2 = 0 (2.25)

Where p1 and p2 are matching points in two images. To estimate the essential matrix a

minimum of 5 points is necessary. A efficient method to estimate the essential matrix was

proposed in [22]. After estimating the essential matrix, the rotation R and translation t

(up to a scale) of one camera relative to another can be computed. In [14, Chapter 9.6.2]

a method to obtain 4 solutions for R and t is presented using singular value decomposition.

To choose the correct solution it is only necessary to test with a single point to determine if

16

it lies in front of both cameras.

Camera Matrix

The camera matrix (P) is a 3x4 matrix which maps points in 3D world coordinates to 2D

image points:

P = K[R|t] (2.26)

Where K is the camera calibration matrix (Eq. 2.20) and R and t are the rotation and

translation matrix respectively. To map a 3D point X in homogeneous coordinates to 2D

image coordinates x it is only necessary to pre-multiply the camera matrix by it:

x = PX (2.27)

To compute the 3D world coordinates of a pair of matched points in two different im-

ages taken by a calibrated camera in two different positions, the triangulation method can

be applied. This method employs Direct Linear Transformation and is described in [14,

Chapter 12.2].

17

3 Method

In this chapter the method used to solve the problem of autonomous navigation using a

monocular camera is explained.

The solution implemented in this dissertation follows the workflow of Figure 3.1. First

an image is acquired through a RGB camera. After that the image is segmented in water

and not-water. If a obstacle is sensed to be close by, the ASV must avoid the obstacle and

also map the its.

Although two methods of water segmentation are implemented, the one based on CNN

is explored more thoroughly because the watershed failed when tested in real images.

Figure 3.1: Workflow of the implemented work.

3.1 Water Segmentation

Two methods of water segmentation were implemented. One based on classical computer

vision algorithms and the other using Convolutional Neural Networks (CNN).

The watershed based segmentation algorithm was chosen because, as presented in 2.1,

two articles use this method for water segmentation and both lack evaluation metrics. Con-

18

volutional Neural Networks were chosen because some works discussed in 2.1 achieved good

results of water segmentation using this method. Another advantage of using CNN is the

adaptability to different type of data reducing the need for human supervision to detect

important features.

3.1.1 Morphological Watershed

The first method is based on the the Morphological Watershed algorithm as proposed in

[9]. This approach takes a RGB image and blurs it using a 7x7 Gaussian filter and converts

the blurred image to HSV color space. The Value channel of the image is processed using

morphological dilation and erosion, to obtain two images (D and E). The morphological

gradient G is computed by subtracting E to D. The last step is to apply the watershed

algorithm to the image G. Figure 3.3 shows the evolution of an image through the algorithm

and Figure 3.2 shows the results of that algorithm both for simulated and real images.

(a) Simulation Original (b) Simulation Segmented

(c) Real Original (d) Real Segmented

Figure 3.2: Results of the watershed algorithm in simulated and real images

19

(a) Original (b) Blurred

(c) Value Channel (d) Dilation

(e) Erosion (f) Morphological Gradient

Figure 3.3: The steps of the Morphological Watershed Algorithm

As can be seen from Figure 3.2, the algorithm performs the correct segmentation with

images from simulation, but when the images are collected from the real world, the algorithm

fails. The lack of success with field data can be attributed to the complex environment. The

contrast between water and land is smaller than in the simulation images. Also some parts

of the sky are overexposed which leads to a detection as being water. For this reason the

method of using the morphological watershed algorithm for water segmentation was not

further explored.

3.1.2 Convolutional Neural Network

The second method of water segmentation is based on an Encoder-Decoder type of neural

network inspired in the U-Net [23] and the work done by Steccanella et al [28]. This type of

architecture has some advantages:

20

1. The concatenation of channels adds information that would have been lost during the

downsampling stage.

2. The training does not require a big amount of data.

3. This architecture doesn’t have dense layers. Therefore, the size of the incoming image

is not constrained. Convolutional layers have the ability to extract kernel features from

any input form while automatically adjusting padding. In contrast, dense layers need

to have fixed input size in their definition.

4. By adjusting the number of channels and encoding/decoding stages its possible to

easily create models that can run faster or slower obtaining different levels of accuracy.

The pipeline for getting a mask of what is water is shown in Figure 3.4. The image is

captured in high resolution (1920x1080) and resized to a smaller size (240x160). The resized

image is the input to the CNN which outputs a mask with the probability of a given pixel

being water. This mask is then transformed in a binary mask (probability bigger than 0.5

is considered water).

Figure 3.4: Pipeline to get the segmentation mask.

Several variations of architectures were tested, but the main one is presented in Figure

3.5.

The network is composed of an encoding stage that transforms the input image in a 256

feature vector and a decoding stage that transforms the feature vector in the output mask.

The encoding stage is composed of 3 sub-stages, each one made of two sets of 3x3 convo-

lutions, batch normalization and a Relu activation function, followed by a 2x2 max pooling.

The decoding stage is also composed of 3 sub-stages, each one made up of a 2x2 transpose

layer, followed by two sets of 3x3 convolutions, batch normalization and a Relu. In each

sub-stage of the decoding, a feature map coming from the encoding stage is concatenated

with the feature map coming from the transpose layers. In the end the 32 channels map is

projected in a single channel and passed through a Sigmoid function to get the probability

mask of belonging to the class "water".

21

Figure 3.5: Architecture of the main CNN.

To train and evaluate the CNN a dataset is required. Only as recently as of July 2022

that a dataset of fluvial scenes was released to public. This dataset is called ROSEBUD

[18] and is composed of 549 images taken from two rivers in the United States of America.

Since that at the beginning of the development of this dissertation ROSEBUD was not

available, a dataset from the Mondego river was put together, containing 156 images and

the corresponding 156 binary masks. The final used dataset was a fusion of both datasets,

156 images from the Mondego and 90 images from the ROSEBUD dataset, totalling 246

images. This dataset was divided in 3 datasets, one for training (70% of the images), one

for testing (20%) and one for validation (10%).

A method of expanding a dataset is making data augmentation. This process adds slightly

different versions of the same image to the dataset. The data augmentation techniques used

in this dissertation are listed bellow and depicted in Figure 3.6.

• Horizontal Flipping

• Image Rotation (the images collected through the ASV will suffer rotations due to

small waves)

• Brightness Adjustment (the ASV can be exposed to various lighting conditions)

• Hue and Saturation Adjustment (the color of the river water can vary a lot)

22

(a) Original

(b) Horizontal Flip (c) Rotation

(d) Brightness Adjustment (e) Hue Saturation Adjustment

Figure 3.6: Data Augmentation Techniques

3.2 Obstacle Avoidance

Two very simple avoidance algorithms are proposed, one based in position control and other

based in velocity control of the ASV.

In the first one, when an obstacle is detected to be in teh collision path of the ASV, it

receives a waypoint to a safe place approximately at the side of the obstacle. After reaching

that waypoint, the ASV returns to its original path. Knowing the position of the ASV in

the world (xW , yW , θ) and the new waypoint coordinates in the local ASV frame (xL, yL),

the new waypoint in world coordinates is:

xG = xW + (xL · cos(θ)− yL · sin(θ))

yG = yW + (xL · sin(θ) + yL · cos(θ))
(3.1)

The second one uses velocity control of the ASV. When an obstacle is detected to be

23

close by, the algorithm checks the mask to assign an angular and linear velocity so that the

ASV moves away from the obstacle. The angular velocity direction is determined by looking

to the segmented water mask and choosing left or right based on the section (left or right)

of the mask that contains less obstacle belonging to the class "not water".

3.2.1 Close Obstacle Detection

To detect a close obstacle in front of the ASV a simple method was implemented.

First the image of the camera is segmented into a mask containing pixels that are either

water or not water. Next, a limit in the y axis of the mask is defined. The number of pixels

bellow that limit, belonging to the not water class are counted. An obstacle is considered to

be close if the identified pixels are above a certain threshold.

3.3 Obstacle Mapping

To Reconstruct and Map the obstacles present in the environment, an algorithm that per-

forms structure from motion (SFM) from two views was implemented. This algorithm was

coded in MATLAB an was not tested in the field since is computational heavy and not very

optimized. It was tested using a recorded ROS Bag taken from the field, that contains the

images captured by the camera and the positions of the ASV at each moment. The segmen-

tation of the Bag images was done in real time in a laptop. The algorithm is described in

1.

The algorithm seeks to obtain two images of the same obstacle taken from different

positions, in order to perform feature matching. The output is the localization of the detected

features in the camera frame.

Since the reconstruction of the Obstacle Points can only be done up to a scale, the traveled

distance between images is used to calculate the right scale for the points 3D reconstruction.

This distance is obtained by the data fusion process running internally in the PixHawk. This

process combines information from GNSS RTK signal with the internal IMU data.

This reconstruction is made in the camera frame at the moment of acquisition of the first

image. The frame can be easily changed to world frame by using Equations 3.1.

24

Algorithm 1 SFM From 2 Views
1: t = 500ms

2: Mapping = True

3: while Mapping do

4: Get Original Image, Prediction Mask, ASV Position

5: if Obstacle Close then

6: Saves Image, Mask, Position as Old

7: waits(t)

8: Get New Image, Mask, Position

9: if Obstacle Close then

10: Convert Old Image and New Image to Gray scale

11: Computes Obstacle Points Positions and Camera Poses

12: Mapping = False

13: end if

14: waits(t)

15: end if

16: end while

17: ∆d = NewPosition−OldPosition

18: scale = norm(∆d)

19: Scale Obstacle Points Positions by scale

3.3.1 Camera Calibration

An important step in the SFM algorithm is the estimation of the relative camera poses.

The camera poses can be estimated using the Essential Matrix or the Fundamental Matrix,

but using the process of estimating the Fundamental Matrix is computationally heavier

and requires 8 matching points between images instead of 5 for the Essential Matrix [14,

Chapter 11.2]. For this reason a calibrated camera is useful because it allows the estimation

of the Essential Matrix. To calibrate the camera used in this dissertation the ROS package

camera_calibration 1 in conjunction with the chessboard pattern in Figure 3.7 were used.

Figure 3.7: Pattern used in camera calibration.

1http://wiki.ros.org/camera_calibration

25

http://wiki.ros.org/camera_calibration

3.3.2 Obstacle Position Estimation

To reconstruct the obstacle in 3D, and algorithm that uses feature matching, essential matrix

estimation, relative camera pose estimation and triangulation is used. This algorithm is

described in Algorithm 2, where image1 and image2 are a pair of images of the obstacle

retrieved from two different positions.

Algorithm 2 Obstacle Reconstruction
1: Get image1 and image2

2: Detect and extract features in image1 and image2 using SURF

3: Match Features

4: Estimate Essential Matrix using matched points and camera calibration matrix K

5: Compute the relative camera poses using the Essential Matrix

6: Triangulate the matched points using the estimated camera poses

7: Remove points with a big re-projection error

26

4 Experimental Results

To validate and test the implemented algorithms, it is necessary to conduct tests. Two types

of tests were performed: (1) simulations (2) field tests. Simulation allow the evaluation

of the developed algorithms without all the trouble of moving the ASV to the field an be

dependent on batteries, and also enables testing the algorithms with different combinations

of environmental parameters. Field tests validate the results obtained in simulation. This

occurs if the simulation is a good representation of the real life scenario.

4.1 Experimental Setup

4.1.1 Hardware

The main piece of hardware used in this work is the ASV developed by Hugo Magalhães and

Rui Baptista. Its components architecture is presented in Figure 4.1 and a photograph in

Figure 4.2a.

Figure 4.1: ASV Architecture

For sensing the environment a RGB camera is used, more specifically a Basler puA1920-

30uc1 that is able to deliver 30 FPS at a resolution of 1920x1080 . It is paired with a

Computar lens with adjustable focal length (3.5-8mm) and an aperture of f1.4.

The Nvidia Jetson Nano2 was used to run the developed algorithms and all the supporting
1https://www.baslerweb.com/en/products/cameras/area-scan-cameras/pulse/pua1920-30uc/
2https://developer.nvidia.com/embedded/jetson-nano-developer-kit

27

https://www.baslerweb.com/en/products/cameras/area-scan-cameras/pulse/pua1920-30uc/
https://developer.nvidia.com/embedded/jetson-nano-developer-kit

software. It is a powerful SBC with a 1.43 GHz Quad-core ARM A57 processor that can

run neural networks taking advantage of its own 128-core Maxwell GPU.

The Pixhawk 43 is an open-hardware platform that supports many different sensors and

can run autopilot software. It comes with integrated accelerometer, gyroscope, barometer

and compass.

The ASV needs to know its location in the world with precision to be able to navigate

to waypoints. For this reason Global Navigation Satellite System (GNSS) must be used. In

this case the Drotek GNSS RTK F9P4 module is used. GNSS Real-time Kinematic (RTK)

allows to correct the position of the ASV by using two receivers (one in the ASV and other

in a base station described later) and achieve centimeter level accuracy.

The ASV uses differential thrust for moving along the river, thus allowing for in place

rotations and very sharp turns. This is achieved by using two T200 Thrusters from Bluer-

obotics5 that use BLDC motors.

During the development of this work the thrusters supports where re-design as well as

the floater tips. A camera mount was design from scratch. This parts were then 3D printed

using Polyethylene Terephthalate Glycol (PETG). Figures of the designs are available in

Appendix A.

To allow the communication between a laptop and the ASV and to use RTK GNSS a base

station containing a WiFi Router and antenna was used (Figure 4.2b). This base station

was first developed for the project TIRAMISU 6.

The training process of the neural network and 3D reconstruction algorithms were run

in a laptop with a 2.4 GHz Intel Core i5-9300HF and a 4 GB NVIDIA GTX 1650.
3https://docs.px4.io/main/en/flight_controller/pixhawk4.html
4https://store-drotek.com/891-rtk-zed-f9p-gnss.html
5https://bluerobotics.com/store/thrusters/t100-t200-thrusters/t200-thruster-r2-rp/
6https://cordis.europa.eu/project/id/284747

28

https://docs.px4.io/main/en/flight_controller/pixhawk4.html
https://store-drotek.com/891-rtk-zed-f9p-gnss.html
https://bluerobotics.com/store/thrusters/t100-t200-thrusters/t200-thruster-r2-rp/
https://cordis.europa.eu/project/id/284747

(a) ASV (b) Base Station

Figure 4.2: Photographs of the ASV and Base Station.

4.1.2 Software

For the implementation of this work several software tools were used, either being open

source like ROS7 or commercial tools like MATLAB8.

ROS is an open-source system for robots. It provides the services similarly to an operating

system like hardware abstraction, low-level control, message-passing between processes and

package management. Through the use of tools and libraries it allows to obtain, write and

run code across multiple computers. The ASV is running a ROS node called MAVROS that

converts ROS messages and topics to MAVLink messages allowing the Jetson to communicate

with the Pixhawk running Ardupilot9 (an open source auto pilot framework).

MATLAB is a programming language based on matrix operations. Many different pack-

ages are available that add functionalities and simplify the coding of complex algorithms.

PyTorch10 is an open source deep learning library for tensor operations with support for

GPU and other hardware acceleration and efficient tools. It simplifies the process of coding

and running neural networks.

All the simulations where run in the Gazebo simulator which is fully integrated with
7https://wiki.ros.org/ROS/Introduction
8https://www.mathworks.com/products/matlab.html
9https://ardupilot.org/

10https://pytorch.org/

29

https://wiki.ros.org/ROS/Introduction
https://www.mathworks.com/products/matlab.html
https://ardupilot.org/
https://pytorch.org/

ROS.11 The worlds and models for the ASV used were taken from the repository Iq_Sim12

and from river reconstructions performed by the team in the Field Robotics Lab.

4.2 Water Segmentation

The performance of CNN classification was evaluated by using 3 metrics: accuracy (A), dice

score (DS) and worst dice score. These metrics are calculated from true positives (TP), true

negatives (TN), false positives (FP), and false negatives (FN) using the formulas below:

A =
TP + TN

TP + FP + TN + FN
(4.1)

DS =
2 · TP

2 · TP + FP + FN
(4.2)

The worst dice score is the smallest dice score achieved during the testing phase.

The training was executed during 40 Epoch and the optimizer Adam [17] was used in

all the experiments. The model of the epoch with the best Dice Score during training was

saved and the test dataset was run through it.

4.2.1 Simulation

To train and evaluate the performance of the CNN in the simulation environment, a small

dataset was collected and labelled from the Gazebo simulation (100 images). This dataset

was divided in training (70 images), test (20 images) and validation (10 images). The

architecture of the CNN is the same as the one presented in Figure 3.5. To facilitate repre-

sentations of alternative architectures the parameter features will be used. Each value of

features represents an encoding stage and the numbers of channels in that stage. For the

architecture in Figure 3.5, features is equal to [32, 64, 128]. The Hyper-Parameters used

during training are represented in Table 4.1.

Table 4.1: Simulation Dataset Training Hyper-Parameters

Model Name Learning Rate Batch Size Loss Function Features

Sim 0.0001 16 BCE [32, 64, 128]

11https://gazebosim.org/home
12https://github.com/Intelligent-Quads/iq_sim

30

https://gazebosim.org/home
https://github.com/Intelligent-Quads/iq_sim

The dice score of the validation dataset during training is shown in Figure 4.3 and more

results are present in Table 4.2.

Figure 4.3: Evolution of the Dice Scores during training in the Simulation Dataset

Table 4.2: Results for Simulation Dataset

Model Name Validation Max Dice Test Accuracy Test Dice Test Worst Dice

Sim 0.9980 0.9978 0.9971 0.9950

As can be seen by these results, the CNN has very high accuracy and dice scores when

run using simulated images.

4.2.2 Field Experiment

To evaluate the CNN capabilities in real life data, several Hyper-Parameters combinations

were tested. These combinations are represented in Table 4.3.

Table 4.3: Real Life Dataset Hyper-Parameters Combination #1

Model Name Learning Rate Batch Size Loss Function Features

LR1 (Standard) 0.0001 16 BCE [32, 64, 128]

LR2 0.0002 16 BCE [32, 64, 128]

LR3 0.00005 16 BCE [32, 64, 128]

MAE 0.0001 16 MAE [32, 64, 128]

MSE 0.0001 16 MSE [32, 64, 128]

31

The dice score of the validation dataset during training is shown in Figure 4.4 and more

results are present in Table 4.4.

Figure 4.4: Evolution of the Dice Scores during training in the Real Life Dataset #1

Table 4.4: Results for Real Life Dataset #1

Model Name Validation Max Dice Test Accuracy Test Dice Score Test Worst Dice

LR1 0,9905 0,9909 0,9896 0,9347

LR2 0,9882 0,9901 0,9886 0,9329

LR3 0,9844 0,9871 0,9853 0,9340

MAE 0,9874 0,9896 0,9881 0,9332

MSE 0,9857 0,9848 0,9825 0,9266

As can be seen in 4.4, the best performing combination in all the metrics is LR1. For

this reason it is this combination of Hyper-Parameters that will be used. As expected the

results are not as good as the simulation due to a bigger complexity and variety of images

in the Real Life dataset.

Another experiment that was carried out, was to try two more complex models of this

type of architecture. One with an extra encoding/decoding stage and another with more

channels per stage. The hyper-parameters of these more complex networks, as well as the

parameters of the LR1 combination (for comparison purposes) are represented in Table 4.5.

The dice score of the validation dataset during training is shown in Figure 4.4 and more

results are present in Table 4.6.

32

Table 4.5: Real Life Dataset Hyper-Parameters Combination #2

Model Name Learning Rate Batch Size Loss Function Features

LR1 (Standard) 0,0001 16 BCE [32, 64, 128]

FEA1 0,0001 16 BCE [32, 64, 128, 256]

FEA2 0,0001 8 BCE [64, 128, 256]

Figure 4.5: Evolution of the Dice Scores during training in the Real Life Dataset #2

Table 4.6: Results for Real Life Dataset #2

Model Name Validation Max Dice Test Accuracy Test Dice Test Worst Dice

LR1 (Standard) 0,9905 0,9909 0,9896 0,9347

FEA1 0,9926 0,9913 0,9901 0,9505

FEA2 0,9877 0,9889 0,9874 0,9023

For training the combination FEA2 the batch size was reduced because the GPU didn’t

have sufficient memory to carry out the training with a batch size of 16. As can be seen from

Table 4.6, FEA1 outperformed every other combination in all metrics. The big disadvantage

of this model is the size and complexity that does not allow it to run in real-time in the

Nvidia Jetson Nano.

33

4.3 Obstacle Mapping

The goal of obstacle mapping is not only to estimate the distance of an obstacle to the

ASV, but also do some 3D reconstruction of the obstacle in question. In reality, no map

was constructed; instead, a plot of points in real-world scale representing the position of the

obstacles features was created.

4.3.1 Simulation

The simulated world is built in Gazebo and contains two different obstacles that need to be

mapped. The first one is a truck that is partially submerged, and the other is a big tree

in the middle of the water. For the ground-truth distance a LiDAR was added to the ASV

model.

Figures 4.6 and 4.7 show the result of feature matching using SURF features. As can be

seen, SURF does a good job of matching features in both cases, with very few mismatches.

Figure 4.8 presents the result of distance estimation to the obstacle. It is a plot of a top

view of the 3D reconstruction, in which the red dots are the estimated points and the blue

dots are the ground-truth achieved using the LiDAR. The ASV position is at the origin.

Figure 4.9 represents the 3D reconstruction of the tree. The two figures show good results

in both tasks (the distance error between the estimated and the ground-truth is less than 30

cm).

Figure 4.6: SURF Features Matches of Truck Obstacle

34

Figure 4.7: SURF Features Matches of Tree Obstacle

(a) Truck Obstacle

(b) Tree Obstacle

Figure 4.8: Distance to Obstacles Plot
35

Figure 4.9: 3D reconstruction of the tree

4.3.2 Field Experiments

The data for the real life tests was collected in Mondego river and a canoe was used as an

obstacle. For the ground-truth the position of the two extremes of the canoe was extracted

using GNSS RTK.

Figure 4.10 shows the result of feature matching using SURF features. SURF was able

to extract and match features bellowing to the canoe with success, but also extracted some

features of the background hills and trees.

Figure 4.11 presents the result of the estimation of distance to the obstacle. It is a plot

of a top view of the 3D reconstruction, in which the blue dots are the estimated points and

the red line is the ground-truth for the position of the canoe. Figure 4.12 represents the 3D

reconstruction of the canoe. The two figures show good results at both tasks but the number

of points in the reconstruction of the canoe is a little low and some outliers are present in

the distance plot.

36

Figure 4.10: SURF Features Matches of Boat Obstacle

Figure 4.11: Distance to Canoe Plot

Figure 4.12: 3D reconstruction of the canoe

37

4.4 Obstacle Avoidance

4.4.1 Simulation

The simulated world is built in Gazebo and a partially submerged truck was used as an

obstacle (Figure 4.13). The mission of the ASV was to move twenty meters forward from its

starting position without crashing with the truck. The waypoints used to avoid the obstacle

when detected were (1; 3) and (4; 3.5). The path of the ASV is presented in Figure 4.14,

where the red rectangle represents the truck.

As can be seen from Figure 4.14, the ASV was able to detect the obstacle within a

safe distance that allowed for an in place rotation to move to a safe place and finish the

starting mission. The velocity avoidance algorithm was not successful in simulation. This

was because the big dimensions of the simulated ASV that caused it to crash with the truck

when turning.

Figure 4.13: Scenario for Obstacle Avoidance Test

Figure 4.14: Path described by the ASV during the test

38

4.4.2 Field Experiment

To test the obstacle avoidance algorithm in the field, a floating obstacle consisting of 3

empty water jugs tied together was used (Figure 4.16a). The mission of the ASV was to

move to a pre-programmed location in the river. The obstacle avoidance algorithm tested

was the velocity control since the CNN presented a big number of false positives detections

of obstacles. This was due to the water being particularly choppy and reflections that

overexposed the image in some areas (Figure 4.15). Figure 4.17 depicts the path of the ASV

during one successfully obstacle avoidance test and Figure 4.16 shows the image and mask

of the obstacle close by.

(a) Image of the obstacle far away (b) Mask containing a false positive obstacle

Figure 4.15: False Positive Obstacle Detection

(a) Image of the obstacle close by (b) Mask when the obstacle is close by

Figure 4.16: Close Obstacle Detection

39

Figure 4.17: Path described by the during the test

During the field tests many runs were not successful because of false detections of the

obstacle and some failled due to the GNSS RTK not working and depending only in the

GNSS, which didn’t allow a accurate velocity control. The RTK did not work properly due

to some sort of electromagnetic interference that occurred when the Jetson was running at

full power (segmenting the images).

40

5 Conclusion

This dissertation aimed to develop a method that would allow an ASV to autonomously

safely navigate and map obstacles in river basins using only a monocular camera as the

source of perception and different types of algorithms were studied.

The developed algorithms can be divided into three categories: Water Segmentation, 3D

Reconstruction, and Obstacle Avoidance. For water segmentation, an approach based on

Neural Networks was used since this task proves to be too complex and unpredictable for

classical computer vision algorithms like the watershed. The developed CNN was computa-

tionally light enough to run in real time in a SBC (Nvidia Jetson Nano) and accurate enough

to detect and avoid obstacles safely in simulation. In real life some false positives limited

the success of the obstacle avoidance task. The Obstacle Mapping algorithm takes advan-

tage of a calibrated camera to simplify the distance estimations and allow more accurate

results. This algorithm uses many computer vision concepts such as: calibration matrix, es-

sential matrix, triangulation and feature detection and matching that when combined result

in a 3D mapping/reconstruction of the obstacles. For the Obstacle Avoidance algorithm,

a simple waypoint reactive avoidance strategy has been implemented, as well as a velocity

control strategy. The waypoint strategy worked in the simulation but failed in the real world

scenario due to a high number of false positives obstacle detections. The velocity control

strategy didn’t work in simulation but in real life had moderate success, but with lots of

false positives.

In short, the developed CNN was fast and accurate in simulation but it often failed in

real life due to overexposed reflections being detected as obstacles and used almost all the

processing power of the SBC. The 3D reconstruction worked well for obstacles with texture,

but when the obstacles presented a more plain texture, the number of reconstructed points

was low, although the distance estimation was accurate for both cases. Since the algorithm

was sub-optimized, it needed to be run on a separate computer. The obstacle avoidance

algorithm has lots of room for improvement.

41

5.1 Future Work

In spite of the fact that the ASV navigates well in simulation and is able to map obstacles in

both natural environments and simulation, some improvements can be made in future work.

New CNN architectures are being developed each day and can be tested in the task of

water segmentation. A lighter/more optimised network could be developed that would allow

to free some of the processing power of the SBC and solve the problem of false positives

obstacle detections. Few datasets of complex water environments are publicly available.

The ones available present some limitations: the majority are from maritime environments

and the ROSEBUD dataset lacks variety of weather conditions and obstacles. A creation of

an opensource database of field data collected using ASVs could solve the problem of data

scarcity and propel the use of deep learning in aquatic scenarios.

A number of optimizations can be made to the mapping algorithm to be able to run in

real-time in the SBC. Moving from MATLAB to C++ and using well optimised libraries

could reduce the computational time. Testing other feature descriptors and matching algo-

rithms can further improve computational time. The fact that the plot of features belonging

to the obstacles is already in real world scale and the distances predictions are accurate

allows an implementation of a mapping algorithm in the future.

The obstacle avoidance can be severely enhanced. An algorithm based on VFH or VFF

could be combined with the mask outputed by the network to decide the best path to take in

order to avoid the obstacle. Finally, tests in different rivers and seasons could be conducted

to assess the robustness of the algorithms.

42

6 References

[1] Muhammad Faiz Abu Bakar and M.R. Arshad. ASV data logger for bathymetry map-

ping system. In 2017 IEEE 7th International Conference on Underwater System Tech-

nology: Theory and Applications (USYS), pages 1–5, 2017.

[2] Herbert Bay, Andreas Ess, Tinne Tuytelaars, and Luc Van Gool. Speeded-up robust

features (SURF). Computer Vision and Image Understanding, 110(3):346–359, 2008.

[3] Carlos Campos, Richard Elvira, Juan J. Gómez Rodríguez, José M. M. Montiel, and

Juan D. Tardós. ORB-SLAM3: an accurate open-source library for visual, visual-inertial

and multi-map SLAM. 2020.

[4] Jiaying Chen and Han Wang. An obstacle detection method for USV by fusing of

radar and motion stereo. In 2020 IEEE 16th International Conference on Control &

Automation (ICCA), pages 159–164, 2020.

[5] Xiang Chen, Yuanchang Liu, and Kamalasudhan Achuthan. WODIS: Water obstacle

detection network based on image segmentation for autonomous surface vehicles in mar-

itime environments. IEEE Transactions on Instrumentation and Measurement, pages

1–13, 2021.

[6] Vincent Dumoulin and Francesco Visin. A guide to convolution arithmetic for deep

learning. ArXiv e-prints, 2016.

[7] Matthew Dunbabin and Lino Marques. Robots for environmental monitoring: Signifi-

cant advancements and applications. IEEE Robotics & Automation Magazine, 19(1):24–

39, 2012.

[8] Tarek El-Gaaly, Christopher Tomaszewski, Abhinav Valada, Prasanna Velagapudi, Bal-

ajee Kannan, and Paul Scerri. Visual obstacle avoidance for autonomous watercraft

using smartphones. In Proceedings of AAMAS ’13 Workshop on Autonomous Robots

and Multirobot Systems (ARMS ’13), 2013.

43

[9] Tianwei Feng, Junfeng Xiong, Jinchao Xiao, Jinqing Liu, and Yuqing He. Real-time

riverbank line detection for USV system. In 2019 IEEE International Conference on

Mechatronics and Automation (ICMA), pages 2546–2551, 2019.

[10] John R. Gardner, Xiao Yang, Simon N. Topp, Matthew R. V. Ross, Elizabeth H.

Altenau, and Tamlin M. Pavelsky. The color of rivers. Geophysical Research Letters,

48(1), 2021.

[11] Anirudha Ghosh, A. Sufian, Farhana Sultana, Amlan Chakrabarti, and Debashis De.

Fundamental Concepts of Convolutional Neural Network, pages 519–567. 2020.

[12] P.H. Gleick. Water in Crisis: A Guide to the World’s Fresh Water Resources. Oxford

University Press, 1993.

[13] Ian Goodfellow, Yoshua Bengio, and Aaron Courville. Deep Learning. MIT Press, 2016.

http://www.deeplearningbook.org.

[14] R. I. Hartley and A. Zisserman. Multiple View Geometry in Computer Vision. Cam-

bridge University Press, 2004.

[15] Thien Huynh-The, Cam-Hao Hua, Jae-Woo Kim, Seung-Hwan Kim, and Dong-Seong

Kim. Exploiting a low-cost CNN with skip connection for robust automatic modulation

classification. pages 1–6, 2020.

[16] Sergey Ioffe and Christian Szegedy. Batch normalization: Accelerating deep network

training by reducing internal covariate shift. In Proceedings of the 32nd Interna-

tional Conference on International Conference on Machine Learning - Volume 37, page

448–456. JMLR.org, 2015.

[17] Diederik Kingma and Jimmy Ba. Adam: A method for stochastic optimization. Inter-

national Conference on Learning Representations, 2014.

[18] Reeve Lambert, Jalil Chavez-Galaviz, Jianwen Li, and Nina Mahmoudian. ROSEBUD:

A deep fluvial segmentation dataset for monocular vision-based river navigation and

obstacle avoidance. Sensors, 22(13), 2022.

[19] Gui Ling, Feiyang Suo, Zhen Lin, Yanjun Li, and Ji Xiang. Real-time water area

segmentation for USV using enhanced U-Net. In 2020 Chinese Automation Congress

(CAC), pages 2533–2538, 2020.

44

http://www.deeplearningbook.org

[20] Alexey Merzlyakov and Steve Macenski. A comparison of modern general-purpose visual

SLAM approaches. In 2021 IEEE/RSJ International Conference on Intelligent Robots

and Systems (IROS), pages 9190–9197, 2021.

[21] Hua Ni, Wei Guan, and Chaoyang Wu. USV obstacle avoidance based on improved

watershed and VFH method. In 2020 11th International Conference on Prognostics

and System Health Management (PHM-2020 Jinan), pages 543–546, 2020.

[22] D. Nister. An efficient solution to the five-point relative pose problem. IEEE Transac-

tions on Pattern Analysis and Machine Intelligence, 2004.

[23] Olaf Ronneberger, Philipp Fischer, and Thomas Brox. U-Net: Convolutional networks

for biomedical image segmentation. In Nassir Navab, Joachim Hornegger, William M.

Wells, and Alejandro F. Frangi, editors, Medical Image Computing and Computer-

Assisted Intervention – MICCAI 2015, 2015.

[24] Jack Rowley. Autonomous unmanned surface vehicles (USV): A paradigm shift for

harbor security and underwater bathymetric imaging. In OCEANS 2018 MTS/IEEE

Charleston, 2018.

[25] Felippe Roza, Vinicius Silva, Patrick Pereira, and Douglas Bertol. Modular robot used

as a beach cleaner. Ingeniare. Revista chilena de ingeniería, 24, 2016.

[26] Soledad Rubio and Dolores Pérez-Bendito. Recent advances in environmental analysis.

Analytical chemistry, 81, 2009.

[27] Pierre Soille and Luc M. Vincent. Determining watersheds in digital pictures via flooding

simulations. In Murat Kunt, editor, Visual Communications and Image Processing ’90:

Fifth in a Series, volume 1360, 1990.

[28] Lorenzo Steccanella, Domenico Bloisi, Alberto Castellini, and Alessando Farinelli. Wa-

terline and obstacle detection in images from low-cost autonomous boats for environ-

mental monitoring. Robotics and Autonomous Systems, 124, 2019.

[29] Shinya Sumikura, Mikiya Shibuya, and Ken Sakurada. OpenVSLAM: A versatile visual

SLAM framework. 2019.

[30] Nikola Tesla. Method of and apparatus for controlling mechanism of moving vessels or

vehicles, Nov 1898.

45

[31] Z. Zhang. A flexible new technique for camera calibration. IEEE Transactions on

Pattern Analysis and Machine Intelligence, 22(11), 2000.

[32] Tao Zheng, Zhizhao Duan, Jin Wang, Guodong Lu, Shengjie Li, and Zhiyong

Yu. Research on distance transform and neural network Lidar information sampling

classification-based semantic segmentation of 2D indoor room maps. Sensors, 2021.

46

Appendix A

3D Designs

Figure A.1: 3D Design of the Thruster Support

47

Figure A.2: 3D Design of the Floater Tip

Figure A.3: 3D Design of the Camera Support

48

	Acknowledgements
	Resumo
	Abstract
	List of Acronyms
	List of Figures
	List of Tables
	1 Introduction
	1.1 Context and Motivation
	1.2 Goals
	1.3 Document Overview

	2 Obstacle Detection and Mapping
	2.1 Related Work
	2.2 Water Segmentation
	2.2.1 Watershed
	2.2.2 Neural Network

	2.3 Distance Estimation

	3 Method
	3.1 Water Segmentation
	3.1.1 Morphological Watershed
	3.1.2 Convolutional Neural Network

	3.2 Obstacle Avoidance
	3.2.1 Close Obstacle Detection

	3.3 Obstacle Mapping
	3.3.1 Camera Calibration
	3.3.2 Obstacle Position Estimation

	4 Experimental Results
	4.1 Experimental Setup
	4.1.1 Hardware
	4.1.2 Software

	4.2 Water Segmentation
	4.2.1 Simulation
	4.2.2 Field Experiment

	4.3 Obstacle Mapping
	4.3.1 Simulation
	4.3.2 Field Experiments

	4.4 Obstacle Avoidance
	4.4.1 Simulation
	4.4.2 Field Experiment

	5 Conclusion
	5.1 Future Work

	6 References
	A 3D Designs

