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Abstract

The future Transactive Energy (TE) communities rely on economic and control
mechanisms for managing consumption and generation through enabling end-use energy
trading. The optimization of such communities needs strategies where the prediction
of the net energy demand is the main key to achieving better performance levels of the
control systems. Such prediction usually relies on net-demand information, but each
building can have additional private information, since the actual building automation
systems have the capability of collecting large amounts of data, which has a critical role
in the prediction systems.

Data generated through building automation systems are mainly considered private.
In such a context, Federated Learning (FL), in recent years, has been used in many
different areas where the main purpose is data protection. A FL strategy can be used
for the prediction systems in TE communities, in order to use their private data and
improve the forecast models. This strategy also enables a collaborative community where
all participants can ensure benefits from the participation of other participants, without
issues in terms of sharing private data.

A novel approach for predicting net-demand in TE communities based on FL is
proposed in this dissertation. The developed framework allows the integration of third-
party data providers, and the coordination by a server of two distinct forecast systems
(one for generation and the other for demand). It ensures the forecast of net-demand in an
indirect way by using the forecasted demand and generation, and collaborative learning
among the buildings without sharing private data.

The proposed approach was tested using two different scenarios. The first scenario is
in Portugal and uses data collected from several buildings on a campus of the University
of Coimbra. This dataset was used to test the first stage of the developed framework
that has only the forecast of demand and uses local data of generation to evaluate the
net-demand. The second scenario uses a dataset provided by the National Renewable
Energy Laboratory (NREL) for buildings in California, United States of America. Such a
dataset has buildings with and without a photovoltaic (PV) system, and the buildings
that have such a system have the data of the power demand separated from the data
relative to the generation, as needed to test the developed framework.

The results present a high level of accuracy and adaptability to different situations, for
instance, seasonal variations. The framework developed has a generalization associated
that allows being introduced in different community types (a university campus and a
residential community was tested), and also different types of buildings (with or without
a PV system integrated).

Keywords: Federated Learning, Artificial Neural Networks, Net Energy Demand Forecast,
Transactive Energy Community, Smart Grid.
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Resumo

As futuras comunidades de energia transativa dependem de mecanismos de económicos
e de controlo para a gestão do consumo e da geração através da comercialização de energia
entre edificios. Para otimizar as comunidades de energia são cruciais os sistemas para a
previsão do consumo de energia ĺıquida. Tais sistemas de previsão por norma usam dados
históricos da energia ĺıquida, mas podem ser melhorados ao incluir também informações
privadas dos edif́ıcios.

Os sistemas de automação em edif́ıcios permitem a recolha de dados em grandes
quantidades que podem serem usados pelos sistemas de previsão, mas estes dados são
maioritariamente classificados como privados. Nesse contexto, o Federated Learning (FL),
tem sido abordado em diversas áreas com o objetivo principal de proteger os dados
privados dos utilizadores. Nas comunidades de energia pode ser aplicado um sistema
de FL para implementação de sistemas de previsão, para aproveitar os dados privados
associados a cada edif́ıcio para melhorar a capacidade de aprendizagem. O FL também
permite que não se perca a colaboração entre os utilizadores finais, que podem beneficiar
do treino ocorrido noutro utilizador sem terem que abdicar da privacidade.

Nesta dissertação é proposta uma nova abordagem para a previsão da energia ĺıquida
em comunidades de energia com base num sistema de FL. A estrutura implementada
prevê a integração de entidades terceiras como fornecedores de dados, e dois sistemas de
previsão (um para o consumo e outro para a geração), ambos geridos pelo mesmo servidor,
que irão permitir que se faça a previsão do consumo ĺıquido de energia elétrica.

Foram usados dois cenários para testar a estrutura proposta. O primeiro cenário é
de um campus universitário em Portugal, o Pólo 2 da Universidade de Coimbra, e foram
utilizados 6 edif́ıcios para a recolha de dados. Este cenário serviu como primeiro teste
à estrutura implementada, onde estava a apenas implementado o sistema de previsão
do consumo, e utilizou-se os dados de geração para se determinar o consumo ĺıquido
de energia. O segundo cenário utilizou um conjunto de dados fornecidos pelo National
Renewable Energy Laboratory, onde foi selecionado o estado da Califórnia, EUA. Este
conjunto de dados possúı edif́ıcios com e sem sistemas de geração fotovoltaica, sendo que
as que possuem tais sistemas têm os dados da geração e do consumo separados. Esta
separação de dados torna assim posśıvel o teste completo da estrutura proposta.

Dos resultados obtidos foi posśıvel observar que os sistemas de previsão atingiram um
bom ńıvel de precisão e de adaptabilidade, por exemplo a variações sazonais. A estrutura
implementada permite ainda ser introduzida em diferentes tipos de comunidades, como
mostrado com o teste que mostra a sua capacidade de generalização e adaptação. De notar
ainda que no segundo cenário, ainda foi mostrado o uso da estrutura numa comunidade
onde estavam integrados edif́ıcios que poderiam possuir ou não um sistema de geração.

Palavras-chave: Aprendizagem Federada, Redes Neuronais Artificiais, Previsão do
Consumo de Energia, Comunidade de Energia Transativa, Rede Elétrica Inteligente.
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Chapter 1

Introduction

1.1 Motivation and Scope

Planet Earth is facing very drastic climatic changes, and the cooperation of all countries
is needed to prevent drastic consequences. European Union and other countries signed an
agreement, the Paris agreement with the main objective to limit global warming to below
2ºC compared to pre-industrial levels and to make efforts to limit the increase to 1.5°C [1].

According to [2], the Power System (PS) is responsible for about 29% of Greenhouse
Gases Emissions (GEE). Therefore, one of the goals is the decarbonization of the PS and
to ensure it, according to the same source, it is possible to reduce GEE by 99% related to
the PS based on actual technologies and the knowledge about the future evolution related.
The increasing penetration of renewable generation into the grid and into buildings has
been leading to new challenges, namely intermittency, variability of the generation, and
the mismatch between the profile of generation and demand in buildings.

In such a context, Smart Grid (SG) are the evolution of power systems with the
integrated communications and technologies of Edge Computing bringing more intelligence
and enabling micro-systems to operate independently of the main control station. EC
is assent in 4Cs: communication, computation, caching, and control [3], allowing new
approaches, as well as encouraging the appearance of new technologies, like energy storage
systems, electrical vehicle charging, Demand Response (DR), and distributed generation.

Distributed Generation allows a building to generate energy to supply its own de-
mand, passing from consumers of electricity to prosumers, consumers and producers, and
consequently active agents of the electricity market [4]. However, typically, the profiles
of PV generation and the electricity demand in buildings have a strong mismatch [5],
and new technologies and methodologies are needed to ensure the required flexibility for
the coordination between the available generation and demand. For instance, Figure 1.1,
presents the mismatch between the demand and the generation registered on 1 January
2020, in a building at the University of Coimbra (Department of Electrical and Computer
Engineering).

The flexibility technologies, such as battery energy storage [5] and DR [6], can be used
to ensure the optimization of the energy prosumption at the building level, but also provide
services to the electrical grid. However, to ensure such an objective a traditional approach
with the Distribution System Operator (DSO) predicting the load at the substation level
and adapting the grid resources is not enough. The prediction of the prosumption in
each individual building is essential, together with the knowledge of the availability of
flexibility resources.

1
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Figure 1.1: Example of demand and generation values recorded during a day.

These issues are more critical in future Transactive Energy (TE) systems that are
defined as economic and control mechanisms for managing consumption and generation
through enabling end-use energy trading [7]. In such a context, to improve the accuracy
of prosumption prediction, collaboration between multi buildings is needed to create a
multi-agent TE. However, that implies the sharing of data, which most of the participants
do not want to share, since it can reveal sensitive commercial information and buildings
strategy for participating in the TE market.

The most accurate solutions in the state of the art are based on aggregated loads
at the substation level. However, for the management of communities using flexibility
resources at the building level, the prediction of prosumption at every building level is
required. Different works that ensure prediction at the building level are based on the
net-metering data, losing the differentiated impact on demand and generation, do not
take into account privacy issues, do not use private data (e.g. occupancy data), and do
not make use of collaboration systems.

FL is a Machine Learning (ML) technique that allows training models in decentralized
edge devices without sharing the data [8], reaching the possibility to use private data to get
better results and creating collaborative systems without putting the problem of revealing
sensitive data between the users. This approach has been mainly used in mobile and
edge device applications. However, the use in other areas has been increasing, including
communications [9], cloud computing [10], text recognition [11], smart manufacturing [12],
health [13] or security [14]. FL for the forecast of net energy consumption in building
communities makes it possible to achieve better prediction results in different energy grid
levels.

1.2 Objectives

This work intends to develop a novel federated machine learning model for predicting
the temporal energy needs of future connected communities. To increase the reliability
of the prediction of net-demand two distinct forecast systems should be used, one for
predicting demand, and the other dedicated to the prediction of the generation. The
combination of these two predictions will return the prediction of the net-demand.

The proposed solution lends itself well to a multi-agent structure of connected energy
communities where agents are willing to collaborate to improve their prediction accuracy.
The framework to be developed is an adaptation of the FL model architecture to the
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architecture of the SG. To achieve this purpose, it is necessary to develop all the components
related to the FL, in order to ensure the correct adaptation of each part of the framework
to the context. Additionally, this framework should introduce two FL models working
independently, one for each forecasting system, under the coordinator of the same server.

The results of the developed models will be crucial for the optimization of energy
resources in smart cities. Such data sharing empowers effective management of energy
resources (such as battery energy storage and electric vehicles) and ensures (economically
and technically) viable transition to future decarbonized energy systems.

1.3 Main Contributions

The main contribution of this work includes introducing a federated learning framework
to enhance the prediction accuracy of buildings’ net demand, predicting the demand and
generation independently. The proposed solution lends itself well to TE systems where
buildings, aggregators, and DSO are decision-making entities. It is assumed that DSO
shares the net-demand metering data with aggregators. The clients will collaborate to
fine-tune their models by executing the training program using their data while keeping
their data private. The aggregator will then update the model weights to improve the
prediction of all buildings in the community.

The implemented approach is based on a Horizontal Federated Learning (HFL) model,
but it introduces as a novelty the use of a third party to provide information in common
to all buildings (e.g., weather data), the use of two HFL systems working in parallel
under some coordination, and adaptability to the context of the formula used to calculate
the average of the weights. While the proposed approach is presented in the context of
net-demand prediction, it is envisioned that it can be extended to transactive energy
communities’ coordination problems.

The preliminary results of this work were accepted for publication in the following
conference paper, presented in Appendix C:

• Mendes, N., Moura, P., Mendes, J., Salles, R., & Mohammadi, J. (2022) Feder-
ated Learning Enabled Prediction of Energy Consumption in Transactive Energy
Communities. In 12th IEEE PES Innovative Smart Grid Technologies Europe 2022
(ISGT-Europe 2022), Novi Sad (Serbia), 10− 12th October 2022.

The final results of this work are now being adapted to be submitted soon to the IEEE
Transactions on Smart Grid.

1.4 Structure

The remainder of the dissertation is organized as follows. The Background and
Literature Review are presented in Chapter 2. The Methodology is described in Chapter 3,
and the Data and Scenarios are presented in Chapter 4. The achieved results are presented
in Chapter 5. Finally, the main conclusions are highlighted in Chapter 6.
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Chapter 2

Background and Literature Review

This chapter intends to introduce the main background of the work. First, a review
of the Smart Grid (SG)s is presented and the following section provides the principal
aspects related to Machine Learning (ML), and its importance in the SG context. The
third section explains the origin of the FL, the principal aspects, and the advantages of
this implementation on the SG, resolving some disadvantages of the ML in such a context.
The last section presents, some literature review relatively to the three main topics (SG,
ML, and Federated Learning (FL)).

2.1 Smart Grid

SG is the evolution of the traditional energy grid, relying on the use of the new
digital technologies, such as the latest information and communication technologies. Such
evolution has the objectives to save energy, increase the integration of renewable generation,
reduce costs, and improving the reliability of the grid [15].

A SG conceptual model was introduced by National Institute of Standards and
Technology (NIST). This model intends to focus on the main domains that are part of
the SG system, as well as on their connections. As shown in Figure 2.1, it is the model
adopted by European Union (EU), which is based on what was proposed by the agency
NIST. This adapation was introduced in a report made in 2012 by CEN-CENELEC-ETSI
Smart Grid Coordination Group [16]. The main difference between these models is the
addition of a new domain, the Distributed Energy Resources, on the European Union (EU)
version. Unlike the domain of Bulk Generation, Distributed Energy Resources includes
small-scale generation (renewable generation) or storage, closer to the edge of the PS.
The approach taken by the EU leads to the main goal of finding the balance between
generation and demand as locally as possible (at building or neighborhood levels).

PS are in a restructuration with the objective of reducing the Greenhouse Gases
Emissions associated with the generation, by integrating renewable generation, such as
solar or wind power. However, such power plants are based on intermittent resources and
are not dispatchable. Therefore, to keep the PS balance new options of flexibility are
needed, such as energy storage or the control of demand.

Due to the restructuration of the Bulk Generation domain and the integration of
Distributed Energy Resources, most parts of these types of power plants are designed as
non-dispatchable, i.e., central with lower control capacity, one consequence of this is the
need to control more the consumption instead of the generation to balance the system, so
new strategies are needed to achieve this purpose. Alternatively, is the increment of the

5
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Figure 2.1: EU version of the SG conceptual model proposed by NIST agency [16].

“flexibility” to the power system and this can be done with the integrated energy storage,
locally on the power plant or in a distributed way using, for instance, strategies related to
electrical vehicles.

Demand-Side Management (DSM) are a set of measures between the service provider,
market, and operations domains with the final customers, and can be defined as: “the
planning, implementation, and monitoring of those utility activities designed to influence
customer use of electricity in ways that will produce desired changes in the utility’s load
shape, i.e., changes in the time pattern and magnitude of a utility’s load.” [17].

DSM can be split into two main areas [6]: energy efficiency and DR. Energy efficiency
can be distinguished from DR through the time span of the impact. Energy efficiency can
ensure medium and long-term impacts on the load diagram, having as goals not only the
reliability and cost-effective operation of the grid, but also energy and cost savings, with
the associated environmental and economic impacts.

Figure 2.2 presents the main objectives of the DSM related to the change of the load
shape. The strategies presented from Figs. 2.2a to 2.2e ensure a change of the load diagram
in the medium and long-term. If the objective is for short-term or real-time flexibility,
another approach is needed, being implemented DR strategies, represented by Figure 2.2f.
DR is defined as a strategy for end-use customers to reduce their use of electricity in
response to power grid needs, economic signals from a competitive wholesale market, or
special retail rates.

(a) Strategic conservation. (b) Strategic load growth. (c) Strategic shifting.

(d) Valley filling. (e) Peak clipping. (f) Flexible load shape.

Figure 2.2: Demand-Side Management objectives [17].
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To perform these new services and improve the electrical grid, one major requirement
is a reliable and secure telecommunications infrastructure, which needs to be well adapted
to the electrical grid. NIST designed a conceptual model to the telecommunication
infrastructure [18]. Such model is presented in Figure 2.3, and is noteworthy the connection
made between a smart meter until the Meter Data-Management System (MDMS). MDMS
has the function of supporting the applications of the power systems by providing storage,
management, and processing of meter data received from the Data Aggregator Unit
(DAU) [6]. These DAUs are collectors of data that receive, from multiple smart meters,
the monitored data of electricity demand and/or generation (in the case of prosumers) in
buildings. In [19], the information that is assessed by the MDMS is categorized into three
categories: usage data (net-metering power energy), profile data (personal information
about each building), and events (incidents that affect the metering). The same work
presents the features of the MDMS, with two strongly aligned with the objectives of
this dissertation: “Delivery of meter usage & weather data to the short term forecasting
system”, and “The security for the customers to access to proprietary meter usage data”.

Figure 2.3: Hierarchical overview of Smart Grid communication infrastructure and NIST
Domains [6].

Concepts like Transactive Energy (TE) are being introduced in this renovation of PS.
GridWise Architecture Council launched a report in July 2019 with a framework for TE
systems [20] where TE is defined as: “A system of economic and control mechanisms that
allows the dynamic balance of supply and demand across the entire electrical infrastructure
using value as a key operational parameter”. This new paradigm is very important, since
it will give more flexibility to the PS in order to integrate more smart control options to
ensure the optimization of local energy communities. Additionally, such options can ensure
a reduction of costs for the customers, through the use of price information to best manage
their assets, namely by ensuring a reliable integration of renewable resources. With the
use of modern technologies that are able to exchange and make use of information, it is
possible to achieve higher efficiency in the management of the community of buildings. New
options of advanced automation and optimization allow more effective use of intelligent
management systems on the edge of the electrical grid.
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TE will require new and wider data exchange, unlocking opportunities for new services,
which will be crucial for the future operation of the PS. Control systems need to know
the expected demand and availability of energy assets, in order to find the best control
options. In the context of the PS this is made by predicting some crucial parameters
like the electricity generation or demand in each building of the community. Therefore,
prediction models will be the base of this type of system and to improve the implemented
management strategies, it is crucial to improve such prediction models.

2.2 Machine Learning

Tomas M. Mitchell in [21] introduce the definition of learning from a computer program
perspective: “A computer program is said to learn from experience E with respect to
some class of tasks T and performance measure P, if its performance at tasks in T ,
is measured by P, improves with experience E .”. Therefore, ML can be defined as a
computer algorithm that learns with experience retained from data, being the result of
this process a model out of the data [22].

The two most common problem types of machine learning tasks are classification and
regression [22]. These are usually supervised learning processes, i.e., the model is trained
knowing the correct outputs and the objective is to minimize the difference between the
real results and the results provided by the model. The classification models are used to
determine a specific class, in contrast, the regression models are made to estimate a value.
An example of a classification task is the identification of an object that is represented in
a particular image. Relatively to a regression, an example can be the prediction of future
insurance prices [23].

An ANN is a method to provide a robust approach to approximating real-valued target
functions and, according to [24], ANN is the principal ML method used for the prediction
of energy in buildings. ANN can be defined as a set of interconnected model neurons
or units imitating the logic of a brain [25]. Like a human brain, an ANN is constituted
by multiple neurons, which are separated into three principal layers: input, hidden, and
output. The training is made by adjusting the connection between neurons, layer by layer.
This adjustment is made by changing the values of the weights. Figure 2.4 presents a
representation of an artificial neural network architecture, where the circles represent the
neurons.

Input Layer Hidden Layers Output Layer

Figure 2.4: Architecture of an artificial neural network. Adapted from [25].
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2.3 Federated Learning

FL was introduced by Google [26, 27, 28], and is a concept that praises the protection
of private data by preventing data leakages. It can be defined as a distributed collaborative
ML approach that allows for data training by coordinating multiple devices with a central
server without sharing actual datasets. Therefore, the main objective is to train a model
at each location where a data source is available, and then let the sites communicate their
respective models weights to reach a consensus for a global model. Figures. 2.5 shows a
comparison between a train centralized with a federated learning approach in edge devices
on buildings. In Figure 2.5a the data are shared with the main server, and this one train
a model that will be sent back to the devices. Figure 2.5b edge devices do not share data
and train their local models, in the end, the weights are shared. With these ones, the
server computes the global weights, which will be sent back to the devices to update their
local models.

(a) Centralize machine learning train. (b) Federated learning train.

Figure 2.5: Comparison between a train centralised with a federated learning approach in
edge devices.

One of the first applications of this new approach was on Gboard systems, which is
Google’s keyboard, for auto-completion of words. This application is very important,
taking into consideration that this type of model trains with private data collected from
personal devices (like smartphones or tablets). With these strategies, it is possible to
avoid sharing the data by training the models locally and not dismissing the collaboration
between the devices for achieving better models for predictions.

The structure of FL is explained by [29], exposing the different options in terms of
approaches, schemes, and categories. A FL system can be designed using two different
approaches, a Business-to-Business or Business-to-Consumer (B2C). The Gboard system
is an example of B2C where the business was represented by Google and had the objective
to provide a better service for their users. The consumers can keep the privacy of their
data, as well as increase the performance, since the communication will be faster due to
the lower need for information to be broadcasted to the server. Behind these advantages,
this structure does not lose the capacity for collaboration between different final users,
allowing the learning process between the users to improve the prediction models and
consequently increase their performance.
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The model architecture of FL can be defined with the integration of a central coordina-
tor or without it, i.e., in a client-server model or a peer-to-peer model. The peer-to-peer
system is more secure, but on the other side needs more computation capacity, due to the
high levels of encryption. In such a case, the client-server has the possibility of a higher
level of control, but needs a connected third party.

FL can be split into three different categories: Vertical Federated Learning (VFL),
Horizontal Federated Learning (HFL), and Federated Transfer Learning. The different
categories are related to the constitution of the datasets to train, more specifically with the
features available in each client and how they are related to each other. If all clients have
overlapping data features on a sample, it is categorized as HFL. If the sample is composed
of features that are divided between the clients it is considered Vertical Federated Learning
(VFL). Federated Transfer Learning is when it is not possible to apply none of the above
categories, i.e., the features in the clients do not match and together do not form a sample.

Figure 2.6 portrays the example of the Gboard system where it applies a HFL approach,
so the training will be considering the same features in the clients. These cases can be
considered as B2C since the targets are different users and they are an active part of a
system that a business implements, with the objective of guaranteeing the privacy of their
own data and, collaboratively, helping on the improvement of the system.
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Figure 2.6: Example of Horizontal Federated Learning.

Figure 2.7 presents an example of a possible situation where a VFL approach is used.
In such an example an insurance company wants to build a ML model to help in then
the evaluation of a client, Person A. To improve the model, a hospital will be part of the
system, but an exchange of data between the entities cannot be implemented. In this
situation are two entities having mostly different features, but with a common objective
(the target). So the aggregation of these features will allow form samples to train a
machine learning model. Therefore, a VFL approach is ideal in this scenario. This type
of approach is also a Business-to-Business design.
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Person A Person A
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Figure 2.7: Example of Vertical Federated Learning.
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Wearable healthcare devices, like for example smart watches, are increasing as an
essential accessory of daily life. Therefore, a high quantity of data is being collected and
predictive models can be produced for example to prevent some critical events like heart
attacks. However, this is private data, and people use multiple different devices generating
multiple different features. Figure 2.8 presents the example where a Federated Transfer
Learning approach can be used, that is in scenarios with a lower overlap in terms of data
samples and in terms of features. In this approach, the model will learn in each device
and transfer their learning to others, where other features are applied to the same model.
The common features between the devices can be used to tune in the model.
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Figure 2.8: Example of Federated Transfer Learning.

2.4 Related Works

Energy prediction models have a critical role in energy policy and energy management
in buildings. For demand prediction, the prevailing techniques used in large-scale building
applications, include white-box, black-box, and grey-box based methods [30]. White-box
approaches are physical techniques that can describe the thermal behavior of a building
by mapping the inputs-outputs by first-principle equations. With the study of heat
transfer, it is possible to implement better solutions with the objective of increasing energy
efficiency. Recently, the booming development of deep learning techniques brings more
exactitude to the black-box approaches, bringing promising alternatives to conventional
data-driven approaches [31]. Black-box approaches the mapping of the inputs-outputs is
derived from the data (data-driven modeling), not requiring transfer equations, or thermal
and geometrical parameters. In agreement with what was exposed in Section 2.2, the
reference [32] highlighted that statistical approaches, in concrete ANNs, are the most used
ones for this type of forecast. Grey-box is a hybrid approach that embraces withe-box
and black-box models, in a conventional way. This methodology makes use of the physical
interpretation and uses statistical methods to determine the right parameters to use [33].
Figure 2.9 presents a diagram that exposes the difference between the white and black
models type, as well as represents the grey-box model approach.

2.4.1 White-Box Models

J.A. White et. al in 1996 [34] introduces a new method to predict the monthly building
energy demand using average monthly temperatures. Until the date of this publication,
the methods used for load calculation are, for example, hourly simulation models like the
DOE2 or ACESS, or for calculating cooling energy requirements the Equivalent Full Load
Hours method is referenced [34]. In comparison with these methodologies, the proposed



Chapter 2. Background and Literature Review 12
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Figure 2.9: Representation of the white, black and grey models approaches. Adapted
from [33].

method reveals is higher accuracy and can be applied to multiple types of buildings. In [35]
a method for the prediction of daily demand profile for domestic buildings is presented.
Such an approach used cluster analysis of the factors that made vary the load profile: daily
energy-consumption for each appliance, ownership of each appliance, and occupied period.
For the heating load profile is used: climate features, thermal characteristics, orientation,
etc. The authors highlighted the fact that this method will have the capacity to adapt to
different seasonalities, but need an adaptation considering the average daily-consumption
of that seasons. Therefore, the method was only implemented for the winter months and
will not work so well in summer conditions.

In [36], the thermo-aeraulic behavior of buildings with high energy efficiency is studied.
The simulation platform SimSpark was used with the aim of selecting the best conditions in
terms of energy efficiency. The conclusion was that counter-flow ventilation is indispensable
to obtaining high energy efficiency. Ivan Korolija et al. in [37] present parameterized
archetypal simulation models for the UK office building stock with the objective of
predicting building energy consumption from heating and cooling demands.

In [38] a methodology that can be used in the design process to quickly assess the
potential impact of daylighting in order to minimize the energy use associated with
electrical lighting is presented. This method considers the physical characteristic of a
building allowing to determine the percent savings in annual use of artificial lighting. This
approach is done by using daylighting controls in office buildings.

The above five examples allow concluding that some of the disadvantages of this type
of model can be the absence of a direct prediction of the power demand and having low
adaptability to different contexts. These factors will increase the errors associated with
the prediction. Another disadvantage is the need of knowing the characteristics of each
building to study the thermal behavior, which is a strong barrier when different buildings
need to be considered.

2.4.2 Grey-Box Models

Grey-Box models use the statistical model to optimize the parameters of the physical
equations. For example, Che-Chiang Hsu and Chia-Yon Chen in [39] improve a grey-box
model to predict the power demand by adding a ANN. This type of approach is not
exclusive to predicting the power consumption, and can also be used to predict PV output
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power. An example is [40], where a grey-box neural network was introduced, with the
prediction being done over weather data to improve the parameters of the physical model.
The two presented examples show how this approach can predict demand and generation.
However, the disadvantages are the complexity of this framework and the difficulty of
collaboration between buildings.

2.4.3 Black-Box Models

Artificial Neural Networks

The use of ANNs in the context of PSs has been showing a strong increase [41]. Since
the ’90s this type of model is being used to forecast power load. Recently, the growth are
being exponential, this is mainly due to the efforts made to improve ANNs techniques.
This development brings new techniques, like deep learning, also with notable growth
in the last years. Figure 2.10 presents the number of journal papers over the last three
decades about load forecast, where it is possible to visualize the growth of the use of this
technique in the energy power field.

Figure 2.10: The number of journal papers with “load forecast” and “AI/ML techniques”,
in the title and in the abstract [41].

For example, a novel approach hybrid convolutional neural network with a long short-
term memory autoencoder model was introduced by Zulfiqar Ahmad Khan et al. in [42]
with the objective of predicting the electricity consumption in residential and commercial
buildings. In [43], an ANN was used to predict the electricity consumption in Europe
and Siberia. The results showed that ANN are adaptable to different regions, without
changing the architecture itself just changing the reference data to train it.

For the prediction of power demand, it is also very important to set the considered
time horizon. In [44] a novel framework was developed for the prediction of the total
electricity consumption in commercial buildings with a day-ahead time horizon and with
a 15 minute temporal resolution. For long-term forecasting, A.Azadeh et al. in [45]
used an ANN approach to predict the annual electricity consumption in high energy
consumption industrial sectors. Such a prediction has additional difficulties associated
with the nonlinear variations of demand (strong variations), and due to the heterogeneity
of industrial sectors. The paper shows that ANN fits well in such a situation, with a mean
absolute percentage error of 0.0099.

The evolution of the PS brings more emphasis to distributed energy resources, and
mainly to distributed generation based on renewable energy, and its integration needs
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new management options. Distributed generation is mainly ensured by PV generation in
buildings. However, the generation profile usually does not match the demand profile. In
order to improve the matching, it is critical to also predict the generation. To ensure such
prediction, numerical weather data is widely used. Figure 2.11 represents the traditional
approach to forecasting the power load, where the weather data has a crucial role.

Load History

Weather History

Model 
Processing

Forecasting 
Process Load Forecast

Model

Weather Forecast

Figure 2.11: Common load forecast. Adapted from [41].

In [46] a neural network-based numerical weather prediction model was developed
to be used in a framework with the objective to forecast solar power generation in a
residential microgrid. Deep learning models are also being applied to this purpose, for
example, [47] presents multiple models of this typology intending to forecasting the solar
energy output.

In [48] a direct prediction of the net demand power for a residential building with a
resolution of 15 minutes is done. Another example is [49] where a model was developed
to predict the net load power, in this case, a forecast for a day ahead with a resolution
of one hour was proposed. Such work also highlights the importance of adding weather
features to increase the accuracy of the models.

S. Ehsan Razavi et al. in [50] studied the effects on the forecast when added PV
generation to the system, at a residential level and at an aggregated level. Figure 2.12
presents the forecast error distribution. It can be concluded that the forecast at a
residential level is less accurate, for a higher percentage of the time. It is also possible
to conclude that increasing the PV generation increases the error in the hours with the
highest generation level from the PV system.

Forecast at an aggregate level appears to be less challenging. This can be due to the
biggest amount of data to train the prediction models. Another reason is the aggregation of
multiple renewable power, which will generate an effect of cancellation over the associated
intermittency to these types of power plants. The cancellation effect stabilizes the profile
of the power generation, being more easier to achieve more accurate models.

A solution to approximate the forecast errors of the residential level to what is verified
at an aggregate level can be forecasting independently the PV generation and the power
consumption. This is based on the difference in terms of features used to ensure the
prediction of power demand and power generation. Another solution can be taking
advantage of the collaborative opportunities between buildings with similar characteristics,
each one with private data resources that can be important to the other buildings. These
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Figure 2.12: Forecast error on a residential level and an aggregated level. Comparing the
forecast of power consumption with the forecast of net energy [50].

data silos have private information, like sub-metering data, occupancy data or private
routines, but most buildings do not intend to publicly share such data making this
approach unfeasible.

Federated Learning

The use of private data in collaborative machine learning problems on decentralized
data where privacy is paramount has been ensured using FL [8]. Such approaches have
been used primarily in mobile and edge device applications, but the use of FL in power
systems is limited.

In the context of the SG, data silos issues are a concern mainly due to the privacy of
the data. On another side, the aggregation of data from different buildings will increase
the number of patterns, which will improve the learning process of the ML models. These
models will be more prepared for different situations, getting more adaptability, being
this the main reason for collaboration between buildings. These two situations, with
an apparent contradiction, can be guaranteed with an FL approach. Some works have
been using FL in power systems. For example, Junyang Li et el. in [51] used FL, in a
client-server architecture, to predict the energy consumption, and with such a method
it was possible to resolve the data silos problem. This type of structure does not avoid
the typical issues of the ANN, like for example seasonality variations. In [52], FL was
applied to predict electrical load, but using a short period of time to avoid the weather’s
fluctuations and seasonality. Christopher Briggs et al. present in [53] a comparison
between FL, using a Long Short-Term Memory (LSTM) network, with two strategies: a
non-private centralized training approach and a fully private localized learning approach
for predicting residential energy demand. One of the conclusions was that FL models can
outperform centralized learning, but perform worse than localized learning.

Recently, Xinxin Zhou et al. in [54] presented a FL model for household load forecasting.
In such work, a non-intrusive load monitoring method based on the CNN-LSTM hybrid
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model is used. This local structure forecasts the consumption per appliance, and the sum
of these values will generate the predicted power load.

FL has been apply on the edge of the power systems for different objectives, for example
in [55] FL is used to identify the socio-demographic characteristics of electricity consumers,
in [56] FL is used for the prediction of energy demand in electrical vehicles networks,
in [57] a FL approach using clustered aggregation is implemented for the prediction of
electricity demand, and [58] presents two case studies for predict power consumption,
using HFL and VFL.

Such works presented that FL can be employed in the power system to resolve the
data silos problem and the concerns relative to the privacy of the data, and can be used
to achieve different goals. However, FL has not yet been used to enhance the prediction
of net-demand in communities of buildings, predicting in an independent way the power
generation and demand.



Chapter 3

Methodology

3.1 Framework

This dissertation considers a Transactive Energy (TE) environment that includes
buildings, servers, Distribution System Operator (DSO) and third-party data providers,
as presented in Figure 3.1. This structure is a representation of a local power system,
respecting the fundamentals of the National Institute of Standards and Technology (NIST)
model. In this setup, the DSO oversees the power flow between each building and the
grid and has, therefore, access to all buildings’ historical generation and demand metering
data.

Figure 3.1: Power and data flow in the community.

Each building can also have additional information, such as separated generation
and demand profiles, sub-metering, and occupancy data. However, in most situations,
due to privacy concerns, the buildings do not intend to share their data with the server.
Such information is relevant not only for the building owning the data, but also to other
buildings since there is a high correlation between the photovoltaic (PV) generation in
buildings in the same community and the demand correlation between buildings with the
same user can also be high. This data can be used to increase the reliability of forecast
systems, being such systems a critical part of a future TE environment. Other relevant
data in common for all buildings, such as weather data, can be obtained from third-party

17
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data providers. This data can be very helpful, for example, to the forecast of generation,
because of the relation the PV production has with the radiation values.

Figure 3.2 presents the Federated Learning (FL) implementation in this dissertation,
respecting the NIST model and aligned with the previous structure (Figure 3.1). In this
chosen approach the weights from the Artificial Neural Network (ANN), implemented in
each building, will be sent to a server, and net-metering data sent to the DSO. The net-
metering data in a TE community can be aggregated in a Data Aggregator Unit (DAU),
to increase his privacy [59], for example, and then sent to the Meter Data-Management
System (MDMS) where will be processed.

Third-Party  
Data Provider

Distribution System
Operator (DSO)

Server Buildings

Data Aggregator 
Unit (DAU)

Mater Data 
Management 

System (MDMS)

Physical System Information

Figure 3.2: Framework implemented. This structure use a client-server architecture, with
a Horizontal Federated Learning model.

In the same community in a given location, there is almost a perfect correlation between
the PV generation variation in the several buildings (the only factors affecting it can be
slightly different slops and orientation of panels or an eventual shading in some buildings).
In the case of demand, even considering the same type of buildings, the correlation is not
so high, since it is affected by factors with a different impact on the several buildings,
such as temperature, schedule of services and number of users. Considering directly the
net-demand would attenuate such correlations. For instance, on a sunny day with high
temperatures, the PV generation and demand will be high, with the generation increase
attenuating the demand increase, but with a differentiated impact in different buildings.
Therefore, a separate prediction for generation and demand increases the reliability of the
net-demand prediction.

This dissertation proposes a FL scheme for the presented setup. This strategy will
enable the non-sharing of personal data by training locally the forecast models of power
demand, and generation. This approach also provides collaboration inside of the TE
community. In this setup, the buildings instead of sharing their personal information will
only need to share the information relative to the forecast models.

In order to integrate the proposed system into the setup present in Figure 3.1, it is
necessary to have a setup to ensure a global training with specific characteristics, namely:
all the buildings will have the same features (for each forecast system), the structure of the
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model will be the same for all buildings, and is necessary to have a coordinator, the server.
To ensure such characteristics, a FL approach was selected, with a client-server structure
designed to a Business-to-Consumer (B2C) model. The FL approach will increase the
protection of the private data of the buildings, while the use of a client-server structure
has the objective to ensure a higher level of control, and have an independent entity
connected to the DSO. The B2C model was chosen because in this case, the objective is
the improvement of a model in multiple buildings with high overlap in terms of features,
therefore fitting in the Horizontal Federated Learning (HFL) category.

The selected architecture fits on global structure presented in Figure 3.1, where the
server will be responsible for the system coordination. The clients will be the buildings,
where each building has its own system for training its personal forecasting(s) model(s).
To protect the location information of the buildings these are identified by an ID, the set
of IDs is represented by B. Additionally, a third party was added to the system, which
will be responsible for proving weather data. This approach intends to reduce the number
of entities connected to the buildings, increasing their protection.

3.2 Server

The server is the coordinator of the two systems, one to forecast power demand and a
second to forecast generation, being also responsible for interacting with the participants
and controlling their learning process. The server is constituted by multiple algorithms
that are used by both systems, but each one is used in an independent way, without any
interaction between the systems.

Figure 3.3 represents the proposed structure for the server, with five variables as
beginning inputs. These variables are the number of participants per round K, the
maximum number of rounds allowed per system: Rd (demand forecast) andRg (generation
forecast), a dataset provided from a third-party Dcf (represented as TP), and, the fifth
variable, rst, is always pre-set as true and allows to decide how it is the beginning of the
training. Figure 3.3, also includes other inputs, represented as 4 and 5, which are the
weights returned by the participants at the end of a round and the minimum value of the
loss Lmin, respectively.

The proposed framework adds a connection between the server and a third-party,
represented in Figure 3.3 with TP. This third-party will provide a dataset with common
features for all clients, Dcf . The server will supervise the data and have the responsibility
to share it with its clients. This third-party entity has data that is not classified as private
and is of significant importance to achieving higher scores on the resultant forecast models.
This approach also increases the security for the clients, since they have fewer connections
to auxiliary parties.

Algorithm 1 presents the defined structure at the server level, where the systems are
identified by g for the generation forecast and by d when comes to the power demand
forecast. To simplify the pseudo-code, the independent cycles for power demand and
generation forecasts are written in a unique cycle, where is use {rg, rd} to differentiate
the independent variables. This algorithm follows the architecture presented in Figure 3.3.
After establishing the initial parameters, the algorithm advances for two loops rd =
0, 1, . . . ,Rd − 1 and rg = 0, 1, . . . ,Rg − 1 (line 5). For each round, r{g,d}, a random set of
buildings, Br, is selected by the Participant Selector Algorithm (PSA) (Algorithm 3) (line
6).



Chapter 3. Methodology 20

SERVER

Rounds

Selection of
participants 

3d

3g

END 
GLOBAL TRAIN

BEGIN GLOBAL
TRAIN

2TP

B

1
rd

Federated
Average
Equation

rg
4

Federated
Average
Equation

Train Evaluation 5

Figure 3.3: Proposed framework implementation for the server.

A inner loop iterate over the selected participants Br (b = b0, b1, · · · , bK−1) (line 7),
activating the local trains with the CMA (Algorithm 4) (line 9 or 11). The CMA algorithm
returns the last local weights Wb

r{d,g}
, as well as the minimum loss Lb

r{d,g}
. The returned

local weights (Wb
r{d,g}

, for b = b0, · · · , bK−1) are concatenated in WBr
r{d,g}

.

Variable rst allows requesting different things to the CMA algorithm, by defining
different inputs. Therefore, according to the rst value, the following steps are implemented:

• rst= True: The first K participants will receive from the server the dataset of
the common features Dcf shared by the third-party, and the beginning weights
Wbegin{d,g} when rst is defined as True, and is the first round (r = 0) (line 9). If the
condition is not verified, the CMA will receive the weights updated by the Federated
Average Equation (FAE) (line 11), and the dataset of common features Dcf .

• rst= False: Before starting the FL train, a function (λ) is activated, receiving as
input a previous test number Tn, and the number of the round from which it is
intended to continue Rn. This function will collect the weights from the train and
defined round (WBr

r{d,g}
), from the collected weights, being used the FAE to compute

the updated weights (Wu{d,g}).

When rst= False, the objective is to continue a previous training, enabling the use of
the weights from a previous round in a specific global train. This approach can be useful
in a scenario like, for example, the addition of a new building to the community or in
debugging situations. Therefore, this continuous train will receive more developed models
for the two systems of forecasting (d and g).

At the end of the loop over the participants, the updated weights (Wu{d,g}) are
calculated, by the FAE which will receive the concatenated weights for all participants
(WBr

r{d,g}
).
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Algorithm 1 Server Main Algorithm

Variables:

• Inputs: rst, R{d,g}={Rd,Rg}, K, Dcf , Tn, Rn.

• Train Inputs: Wb
r{d,g}

, Lb
r{d,g}

.

• Outputs: Wu{d,g}={Wud
,Wug}, Dcf .

• Local: WBr
r{d,g}

, Wbegin{d,g} , Br, B.

Pseudo-code

1: if rst = False then:

2: WBr
r{d,g}

← λ(Tn,Rn)

3: Wu{d,g} ← FAE(WBr
r{d,g}

) (Equation (3.2))

4: end if

5: for r{d,g} = 0, 1, · · · ,R{d,g} − 1 do

6: Br ← PSA(B, K, Dcontrol) (Algorithm 3)

7: for b = b0, b1, · · · , bK do

8: if rst = True ∧ r = 0 then

9: Wb
r{d,g}

, Lminr{d,g}
← CMA(Dcf , Wbegin{d,g}) (Algorithm 4)

10: else

11: Wb
r{d,g}

, Lminr{d,g}
← CMA(Dcf , Wu{d,g}) (Algorithm 4)

12: end if

13: WBr
r{d,g} ⌢Wb

r{d,g}

14: end for

15: Wu{d,g} ← FAE(WBr
r{d,g}

) (Equation (3.2))

16: end for
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3.2.1 Control and Evaluation of the FL Training

The server has control over the local training, having a dataset where the following
parameters are registered, for each client: building ID, system (power demand or genera-
tion), alpha value (α), round when α achieve the value of zero, minimal loss, round of the
minimal loss, a datapoint for a occurred local error, and the number of the total rounds.

To control the learning process an algorithm based on an early stopping strategy [23]
was developed. The idea behind is “Instead of running the optimization algorithm until a
(local) minimum of validation error is reached, it runs until the error on the validation
set has not improved for some amount of time.”. Algorithm 2 adapt this strategy to
the developed FL framework, for each participant in each round. At the end of each
local training, the respective participants analyze their own training and the minimal loss
achieved (Lmin) is shared with the server. The Lmin value received is compared with the
previously recorded one (Lminactual

), being recorded when the value is lower. When the
minimal loss shared by the client is higher than the recorded, the values are not saved
and the α values decreases one unit.

Algorithm 2 Early Stopping Algorithm for Federated Learning.

Variables:

• Input: Dcontrol, Lmin, rn.

• Local: Lminactual
, α.

Pseudo-code:

1: Lminactual
← Dcontrol

2: if Lmin < Lminactual
then

3: update Dcontrol ← Lmin, rn

4: else

5: α ← Dcontrol

6: α = α - 1

7: update Dcontrol ← α

8: end if

Observation:

• In Algorithm 3, line 2, a function ψ verifies the control dataset. From this verification

process, if α = 0 the client will not be selected. This complements the early stopping

algorithm proposed, not allowing the client training anymore.

This global analysis checks also if the train occurs without any problems by checking
the existence of not-a-number values in the loss set. This information is shared with the
server, and the server will record the same information on the control dataset (Dcontrol),
on a variable that records if an error occurred. If the server receives the information of a
registered error, the number of total rounds of that client is not updated, the respective
variable is updated to one (in the beginning, all clients have this parameter as zero), and
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the Algorithm 2 are not been activate for the correspondent participant. When any error
occurs, the number of total rounds is updated, and the Algorithm 2 is triggered.

Locally, the objective is to achieve the minimal value for the validation loss. Firstly,
during the training, the early stopping strategy over the values of the validation loss is
implemented. When the training is concluded the algorithm advances to verify if any error
occurred. By checking the values of the validation loss the existence of non-a-number
values is verified, being its existence an indication of an occurred error in the training
process. With the global and local analysis, the validation loss and the loss values are
assessed. These strategies allow a complete analysis over the ANN train in each client.

3.2.2 Participant Selector Algorithm

The Participant Selector Algorithm (PSA), introduced in Algorithm 3, has the objective
of selecting K clients per round, maintaining the number of participating rounds for each
building balanced with a randomness characteristic associated. The PSA gets as input
the building IDs (B), the control dataset of the server (Dcontrol), and the number of
participants per round (K). Being the final set, Br, composed by different K building IDs,
and mandatory with K buildings selected.

To proceed to this selection the control dataset (Dcontrol) is used, first by selecting
the intended system (demand or generation), and after by selecting the participants that
have no register of an occurred error and with α value higher than zero (line 2). From the
resultant set of buildings, for each system, the number of clients selected is checked and if
it is lower than K, the server does not select any client to train and, consequently, the
server will stop the FL train for that system (line 4). Between lines 5 and 7, the following
is done: When the selected clients are equal to or higher than K, the lowest number of
total rounds done by a client is recorded, being selected all clients with the exact same
total rounds. With this resultant set of buildings, the number of buildings is again verified,
to check if this set is higher than K, being the final set of buildings selected through a
random function. When the selected clients are lower than K, such value is incremented
to the value of minimal rounds, and the process is repeated until achieving K clients.

3.2.3 Federated Average Equation

The Federated Average Equation (FAE) was based on the “FedAVG Algorithm”
proposed by H. Brendan McMahan et al. in [28]. On the “FedAVG Algorithm”, the
coordinator takes the weighted average of the received models’ weights, by using equa-
tion (3.1).

Weighted average =Wu ←
Br∑

b=0

nb

n
Wb

r . (3.1)

This equation assumes a global dataset D, where the data is partitioned by clients
in each round. Db is the set of indexes of data points on client b, being n = |D| and
nb = |Db|. Accordingly to equation 3.1, it is possible to infer that this approach values a
client with a larger dataset.

In a Transactive Energy (TE) community, different buildings will have different profiles
of consumption. To enable the forecast models to achieve more accurate predictions in
distinct profiles, all participants need to contribute with their “learning” at the same
rate. Therefore, in this context, it is important to enhance the models to different target
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Algorithm 3 Participant Selector Algorithm (PSA).

Variables:

• Inputs: B, K, Dcontrol.

• Outputs: Br.

Pseudo-code:

1: for s ∈ d, g do

2: Bs ← ψ (Dcontrol, s)

3: if n(Bs) < K then

4: return Bs = {}
5: else

6: while n(Bs) ̸= K do

7: Bs ← γ(B)
8: end while

9: end if

10: end for

11: return Bs

profiles, and for this reason, a client with more samples should not have a higher impact
when compared with the other ones. Therefore, equation (3.1) needs to be adapted, being
proposed Equation (3.2). Equation (3.2) does not weight the average by the size of the
dataset, using instead the number of clients per round without any error (Np). With
this approach, all clients without any error in the training process take equal importance
regardless of the number of local samples. The models’ weights of the clients that register
an error on the local train, will not be used in this equation, avoiding error propagation
through the FL train.

FAE(WBr
r{d,g}

) =Wu ←
Br∑

b=0

1

Np

Wb
r . (3.2)

3.3 Client

Clients are all the buildings connected to the server, being the PSA algorithm used by
the server to select K buildings that will be designated as participants. The architecture
of the FL assembly in each participant is represented in Figure 3.4. The training process
is presented in Algorithm 4.

Figure 3.4 has two independent but similar parts, one for the demand forecast system
and a second for the generation forecast system. Circles numbered with 1, 2, 3d, and 3g
are the input variables. Input variable 1 represents the rst variable. Variable 2 is the Dcf

sent by the server, and, if rst= False, the variables 3g and 3d will provide the values of
the weights for the forecast model of generation and power demand, respectively. The
circle with the number 4 in Figure 3.4 represents the output variable Wb

r{d,g}
. When the
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variable rst was defined as False, the algorithm inside of the block that says “Weights
Recovery” is computed, and the resultant variables are sent back to the server by circle
number as 4. The block named “’Loss Evaluation’ is where the values of the loss received
from the train are checked. If not-a-number values are found, the variable Vtrain is set as
False, and Lminset as an empty variably. Otherwise, Vtrain is set as True, and Lmin is
defined. Circles numbered with 5 and 6, are the remaining output variables of Vtrain and
Lmin, respectively.

Figure 3.4 also represents the final part of the FL train in each client when the
global train has ended. At that point, each client has a forecast model for demand and
another for the forecast of generation. The prediction of net-demand, Pnd, will then be
computed through the values of the predicted demand, Pd, and the predicted generation,
Pg. Therefore, the forecast of the net-demand will be obtained by Equation (3.3).

Pnd = Pd − Pg . (3.3)
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Figure 3.4: Proposed framework implementation for each client.
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The Algorithm 4 presents the implemented code for a local train. In each participant,
data processing is done: starting by concatenating the local data, Db

pvt{d,g} , with the data
provided from the server Dcf (line 1). The second stage is standardizing this resultant
dataset (function ϕ, lines 2-8). To ensure it, the availability of the scaler is checked, Φb{d,g}.
If this is true the scaler is read. Otherwise, it is necessary to compute it by calculating
the mean and the standard deviation of the data [60]. Then, the scaler is saved for the
next rounds. Standard deviation, in a generic way, for the set of N values x1, x2, · · · , xN ,
is calculated in three steps: first, the mean can be computed by Equation (3.4) and
the standard deviation is the square root of the variance (Equation (3.5)), as given by
Equation (3.6).

Mean = x =

∑N
i xi
N

, (3.4)

Variance = s2 =

∑N
i (xi − x)2
N − 1

, (3.5)

Standard Deviation = s =
√
s2. (3.6)

The standardized datasets, Dres−SD{d,g} , will be split into a training dataset and a
test dataset (line 9). The training data will be used to train the local forecast model,
and the testing data to verify it. The next step is to split the data into features X and
targets Y. In line 10, a function ζ is used to make the adjustments to the data in order
to be used by the ANN. This procedure will depend on the number of observations that
are defined to make the prediction Npo and the range of that prediction Nfo. In line 11,
the W is defined as being equal to Wu{d,g} or Wbegin{d,g} , depending on their existence.

The train of the ANN is done in line 12, where will be returned the final weights Wb
r{d,g}

,

the loss Lb
r{d,g}

, and the validation loss Vb
r{d,g}

. During the training, the process of early

stopping is implemented and an extra function that saves the best model according to the
validation loss values is also implemented. To finish the CMA, the loss and the validation
loss are saved (line 14), and line 16 returns the weights, the minimum value of the loss
Lmin (achieved in line 15), and a variable that validates or not the train. This variable is
defined in line 13, through function ξ that verifies if not-a-number values exist in the loss
registered during the train.
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Algorithm 4 Client Main Algorithm (CMA)

Variables:

• Input: Dcf , Wu{d,g} , Wbegin{d,g} .

• Output: Wb
r{d,g}

, Lb
r{d,g}

.

• Local: Db
pvt{d,g} , Φb

r{d,g}
Nfo, Npo.

Pseudo-code:

1: Dres{d,g} ← Dcf ⌢ Db
pvt{d,g}

2: if ∃ Φb{d,g} then

3: read Φb{d,g}

4: else

5: Φb{d,g} ← ϕ(Dres{d,g})

6: save Φb{d,g}

7: end if

8: Dres−SD{d,g} ← Φb{d,g}(Dp)

9: {Dtrain{d,g} ,Dtest{d,g}} ← Dres−SD{d,g}

10: X{d,g} , Y{d,g} ← ζ(Dtrain{d,g} , Npo, Nfo)

11: W ← available(Wu{d,g} , Wbegin{d,g})

12: Wb
r{d,g}

, Lb
r{d,g}

, Vb
r{d,g}

← ANN(X{d,g} , Y{d,g}, W , Nl, E)
13: Vtrainr{d,g}

← ξ (Lb
r{d,g}

)

14: save Lb
r{d,g}

, Vb
r{d,g}

15: Lb
r{d,g}

← min(Lb
r{d,g}

)

16: return Wb
r{d,g}

, Lminr{d,g}



Chapter 3. Methodology 28



Chapter 4

Data and Scenarios

This chapter presents the datasets and the scenarios used for the validation of the
proposed framework presented in Chapter 3. The validation was divided into two phases.
The first phase was used to validate the forecast power demand framework, and the second
phase tested the whole framework with more complex tests. Two distinct scenarios were
used, one for each phase, to test the proposed framework. First, Scenario A is referent
to the Polo 2 campus at the University of Coimbra, and the main goal of this scenario
was to ensure an initial test of the part of the framework relative to the power demand
forecast and use the Equation (3.3) to calculate the net-demand. Scenario B uses a
dataset with synthetic data from NREL [61], where the main goal is to test the completed
developed framework. NREL provide a collection of datasets, with synthetic data that
simulates the energy consumption and generation profiles in the United States residential
and commercial buildings stock.

4.1 Scenario A

Scenario A was a preliminary test, testing only the system of demand forecast. Fig-
ure 4.1 presents the used diagram in the initial phase relatively to the client. The server
was designated “Aggregator” because his main purpose was aggregate the weights and
do the computation of the average of the weights (Equation (3.2)). At this point of
development, the function of train evaluation was not implemented, and the selection of
the participants had a more simple version, only randomly selecting without any associated
conditions.

The used data belongs to the Polo 2 campus at the University of Coimbra. In particular,
six buildings from the University of Coimbra were selected: the Department of Civil
Engineering, Department of Chemical Engineering (DChE), Department of Electrical and
Computer Engineering (DECE), Department of Earth Sciences, Department of Informatics
Engineering, and Department of Mechanical Engineering.

In this scenario, the dataset of the buildings only had data of net-demand, with the
exception of the DECE which also had generation data. To use this dataset to predict
the net-demand, it was decided that all buildings will have a generation profile based on
the data from DECE, corrected by the ratio between the installed PV power in the two
buildings. This decision was made due to the physical proximity of the buildings, leading
to a high correlation in the available solar radiation. Before the implementation of the
test, according to Equation (3.3), the data was updated by adding the generation data to
obtain the demand in each building. After obtaining the demand forecast, the generation

29
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Figure 4.1: Initial phase of the client framework.

data was subtracted to obtain the forecasted net-demand to be compared with the initial
data, the net-demand in each building.

The private dataset for all buildings needs to match in terms of features. The common
feature set includes: (i) each building’s net-demand, and (ii) on-site PV generation data
(which was based on the generation of the DECE building). This information allows
for calculating electricity demand. However, since the buildings belong to a University,
there is a clear seasonality of activities and therefore other included features were the
academic calendar (classes, exams and vacations) and the days of the week (weekends
and weekdays).

The buildings do not directly collect any weather data, therefore requiring the partici-
pation of a third party to provide such data. Additionally, due to the physical proximity
of the buildings, only one weather dataset is needed. The “Wunder Ground” website [62]
served as a third-party temperature, humidity, and solar radiation data provider. This
part was implemented in the framework using a technique called Web scrapping, which
makes the download of the intended data directly from the website.

The net-demand and PV generation data have a periodicity of 15 min, and therefore
one year corresponds to a total of 35040 samples per building. The academic calendar
and days of the week are categorical data. In order to convert this data into numeric
values, a process who is known as One Hot Encoding (OHE) [23] was implemented. This
process consists of splitting the categories associated with variables and each sample.
Put differently, correspondent sub-categories are identified with one while others are
assigned zero. For example, in the simulations, three sub-categories were considered
for the academic calendars: classes, exams, and vacations. Weekends and weekdays are
separated as well.

The weather dataset presents a variable sampling frequency and, consequently, such
data needed to be processed to match the private data on the buildings (net demand and
PV generation). The weather data is a temporal time series and was processed day by
day to not get a high loss in the temporal pattern. For each day, and for each feature, the
existence of non-values was checked to eliminate the correspondent sample. Therefore,
considering the frequency of the net demand and PV generation, one single day needs to
have at least 96 samples and at least 4 samples per hour and if one of these conditions is
not verified the entire day is eliminated. The result of this process was a loss of 10.41% of



31 4.2. Scenario B

data, corresponding to the elimination of 38 days, with 3648 sample losses. It should be
noted that such days also need to be eliminated from the private’s datasets.

The proposed FL framework was validated by splitting the dataset of each building
into two parts: 74% dedicated to training (used to train the local models) and the rest to
testing (utilized to test the obtained models after the global training). The months of
January, August, and October were selected for testing the models in different seasonal
conditions. The remaining months were allocated to the training dataset. The model uses
25% of the training dataset for validation in the local training. Figure 4.2 illustrates the
division realized over the dataset in each building.

training  validation test

Figure 4.2: Dataset division: training dataset is represented in yellow, the validation
dataset in red, and the test dataset in blue.

4.2 Scenario B

NREL provides a database directed for energy [61], composed of 2336 different territorial
regions and 3107 distinct weather zones. Where a territorial region can have multiple
climate zones, and a climate zone can belong to different territorial regions. To select from
the available datasets, the buildings and regions that better fit the requirements to test
the framework developed were selected based on criteria such as the number of buildings
with PV or the climate region to which each building belongs. The commercial buildings
were discarded, since the buildings used in the dataset do not have PV systems. Such
buildings can only be used to test the demand forecast. Therefore, this type of building
was excluded, being decided to use only residential buildings.

4.2.1 Analysis of Buildings

To implement the analysis of the dataset the building characteristics were provided
on a file called metadata. In such a file, a feature that identifies if the building has or
not a PV system is provided. Using such information a list of the fifty zones with the
highest number of buildings with PV was done. The objective was to identify zones with
a high share of buildings with PV, in order to create a community of buildings with a
high penetration of PV. It was concluded that all regions with a high share of PV are
part of the California state, and possess three climate different areas. These areas are
identified with the following codes: G0600650, G0600710, and G0600730. The climate
datasets are a very important characteristic in the pattern associated with the profile of
PV generation, and also relevant for the power demand load profile.

To verify if these climate areas have similar patterns, allowing to be approached by the
same forecast system, the degree of correlation between the features of the three different
datasets was calculated using the Pearson correlation coefficient [63]. The analyzed
features were the temperature, humidity, and solar radiation, since these are the ones to
be used by the forecast system. The matrices of the Person correlation are presented in
Fig. 4.3. It was possible to conclude that temperature and solar radiation have a very good
correlation between the three different climate areas. Relatively to the humidity, the same
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is not verified. As can be seen in Fig. 4.3a, the dataset G0600710 has a lower correlation
(0.45 and 0.6) than the other two, and for this reason, such dataset was discarded.

(a) Over the humidity feature. (b) Over the radiation feature.

(c) Over the radiation feature.

Figure 4.3: Pearson correlation matrices.

After selecting the two climate areas, a cross-over was implemented with the list of
the regions that contain the highest number of PV systems in buildings. The resultant
regions were introduced in the software JOSM using the correspondent GeoJSON file,
which is available in the NREL database.

Fig. 4.4a represents the regions resulting from the explained analysis, and can be ob-
served that there is a set of intermediate regions that were not selected. Such intermediate
regions were not initially selected due to the lower share of PV, but they have buildings
with PV that can be integrated into the considered regions.

(a) Initial set of regions chosen. (b) Final set of regions chosen.

Figure 4.4: Selected regions printed on JOSM software

Therefore, to select these intermediate regions, the restriction of including only the
regions with the highest number of buildings with PV was deleted. Then, Fig. 4.4b
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represents the final selection of regions. It should be noted that the large area in the lower
right corner was not selected, since it belongs to a different climate area.

To have a final collection of datasets to test all functionalities of the proposed framework,
it was decided to not use all available buildings without PV, in order to ensure a higher
share of buildings with PV in the dataset. Therefore, 15%− 20% of the buildings without
a PV system were selected. Such buildings will only have the forecast models for power
demand. Table 4.1 presents the number of selected buildings per climate area with and
without a PV system.

Table 4.1: Amount of buildings selected per climate area.

Climate area
Number of buildings

Total
with PV without PV

G0600650 194 38 232
G0600730 303 65 368
Total 497 103 600

4.2.2 Features Analysis

In the selected dataset, there are two types of time series: stationary and non-stationary.
In the stationary time series, the statistical properties do not change over time. The
variables themselves can be distinguished between numerical and categorical: categorical
data represents qualitative properties being more understandable using natural language
description, and numerical data is for quantitative approaches. In order to convert
categorical data into numeric values, the OHE was used.

Table 4.2 presents the variables chosen from the NREL dataset. The decision of this
set was based on the objective of getting variables that are related to the electric energy
performance of a building and with characteristics related to the PV system. It should be
noticed that the variables with a n/a label in range/categories are considered non-stationary,
and from the others variables, only the first three are numerical. Therefore, excluding
these variables, the remaining variables needed to be submitted to OHE transformation
to be used.

Table 4.2 have double lines to separate three different groups of features. The first
one is the set of features that will be used by the system of forecast power demand, the
second group will be used by the system of the generation forecast, and the third has the
common features of the two systems, being this set provided by the third-party to the
aggregator. Behind the presented features, for the system of forecast power demand, one
additional feature was added: the labeling of the days, that is if the day belongs to a
week or a weekend. This type of information is important due to the lower level of power
demand associated with different days of the week.

The samples associated with the climate features are available with an hour frequency,
instead of a quarter-hour like the other ones. For the objective of this framework,
it is a better solution to do a forecast with a frequency of 15 min, being needed to
add more samples to the climate features. To ensure it, a linear interpolation was
implemented using a equation of a straight line, Equation 4.1, between two consecutive
points, for example (x1, y1) and (x2, y2). Where m can be calculated using the two selected
points, Equation (4.2), and b calculated with m and a single point of the two selected,
Equation (4.3).
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Table 4.2: Variables that were chosen from the NREL dataset.

Variables discription Units Range / Categories
Number of bedrooms n/a [1-5]
Number of occupants n/a [1 - 10]

Floor area m2 [30 - 1250]
Usage level of electric cooking range n/a eletric-100%; eletric-80%; other

Type of building foundation n/a
ambient; heated basement; unheated bas.
slab; unvented crawlspace; vented crawl.

Presence and type of cooling system n/a central AC; room AC; heat pump; none
Presence, type,

and fuel of heating system
n/a

ASHP; baseboard; electric boiler;
elect. furnace; shared heating; other or none

Orientation of the building n/a
east; north; northeast; northwest;
south; southeast; southwest; west

Presence of occupants n/a occupied; vancant
Year in which the

building was constructed
n/a

<1940; 1940s; 1950s; 1960s; 1970s;
1980s; 1990s; 2000s; 2010s

Total electric energy consumed kWh n/a

Orientation of rooftop PV system n/a
east; north; northeast; northwest;
south; southeast; southwest; west

Capacity of rooftop PV system kWDC 0 - 5; 6 - 10; +10
Generation of rooftop PV systems kWh n/a

Temperature C n/a
Humidity % n/a

Global Solar Radiation W/m2 n/a

Equations (4.1) to (4.3) were used to calculate three middle points. In this way, instead
of having a value per hour, the set of data has four values per hour, ensuring a frequency of
15 min. Another approach considered was to repeat a value for three additional points, but
as can be observed in Fig. 4.5 such solution is less linear. This data can be tendentiously
more outlying if a comparison with real data with the intended frequency (15”) is made.

y = mx+ b , (4.1)

m =
y2 − y1
x2 − x1

, (4.2)

b = y1 −mx1 . (4.3)

To finalize this adaptation the results were checked making a graphic that plotted the
solar radiation and the generation, being identified as an offset of about two and a half
hours. This is an error from the original dataset, probably caused by the existence of
different time zones, since in normal conditions the radiation and the generation have an
almost perfect correlation. After checking and confirming that the process of frequency
adaptation does not cause this error, and the same error was verified in the two climate
areas selected, it was confirmed that this is an error belonging to the original data. To fix
it, an offset in the opposite direction was added. Figure 4.6 presents the solar radiation
(blue line), the original generation (grey line), and the updated generation (yellow line).
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(a) Direct interpolation method. (b) Linear interpolation method.

Figure 4.5: Frequency adaptation for climate features, using one day of relative humidity.
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4.2.3 Dataset Split

Each building will have a dataset for each system, meaning that all buildings will have
a dataset to demand forecast and the buildings with PV will have another dataset for the
generation forecast. These datasets have data from one year and needed to be split to
train the systems and to test the learned models.

The test dataset usually is around 20%− 25% of the total dataset and is also intended
to test the generalization of the ANN models relative to the seasonality variations. To
accomplish this criterion, it was selected the set of data for April, August, and December
for test. Thus a total of 24× 4× (30 + 31 + 31) = 8832 samples were selected over a total
of 24× 4× 365 = 35040 available, achieving around 25% for test, as intended.
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Experimental Results

5.1 Architecture and Parameterization

5.1.1 Architecture

The type of local models needs to be equal for all clients, in terms of features and
architecture. Therefore, based on related works (Section 2.4.3), it was decided to use a
LSTM architecture. To enhance the performance of the local model, tests were made to
decide the number of LSTM hidden layers, between two and three. Table 5.1 presents the
ANN model structure with three LSTM hidden layers. For testing with only two layers,
the same model is used but without a LSTM layer and the following dropout layer.

Table 5.1: Proposed Artificial Neural Network architecture.

Layer Type LSTM cells Activation Function
LSTM Input 64 Relu
LSTM Hidden 32 Relu
Dropout(0.2) Hidden - -
LSTM Hidden 32 Relu
Dropout(0.2) Hidden - -
LSTM Hidden 32 Relu
Dropout(0.2) Hidden - -
Dense Output - -

5.1.2 Parameterization

To choose the most promising architecture, a test was realized and the results achieved
by the two proposals were compared. The dataset presented in Section 4.1 was used, being
employed two thirds of the dataset for training, and one third for testing. The parameters
associated with the structure implementation were the number of hidden layers Nl, the
number of LSTM cells for the input layer Nci, number of LSTM cells for the hidden
layers Nch, number of batch size Bs, number of training cycles (epochs) E , number of past
observations Nop, and number of forecast observations Nof . More details of LSTM model
can be founded in [64, 65].

Considering the predicted values (ŷ1, ŷ2, · · · , ŷn), the real values (y1, y2, · · · , yn), and
the number of samples (n), the MSE is calculated using Equation (5.1), and the Root

37
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Mean Square Error (RMSE) is calculated using Equation 5.2.

MSE =
n∑

i=1

(ŷi − yi)2
n

. (5.1)

RMSE =
√
MSE . (5.2)

Three tests were performed for each architecture: one with 2 LSTM, and other with 3
LSTM hidden layers, being the results presented in Table 5.2. The following parameters
were used to test the proposed architectures: Nci = 64, Nch = 32, Bs = 32, E = 6,
Nop = 96, and Nof = 1. The presented results demonstrate that the most promising
option as architecture for the chosen parameters is a ANN with two LSTM in hidden
layers, which managed to score the lower RMSE values on two of the three implemented
tests.

Table 5.2: Artificial Neural Network architecture - performance test.

Nr. LSTM hidden layers
Tests Scores (RMSE)
1 2 3

2 20.619 5.822 13.889
3 11.479 27.182 22.150

5.1.3 Scenario B Parameterization

Scenario B (Section 4.2) has a total of 600 buildings, as presented in Table 4.1.
Consequently, it required the train of 1097 ANNs models: 600 associated with the forecast
of power demand, and 497 with the forecast of the generation. Due to the increment of
models to train, by around 182 times, to implement this train in a reasonable time period,
some local parameters of ANN were changed only for this scenario. Table 5.3 presents
the made changes in the ANN parameters. The impact on the duration time, and also
the achieved minimum loss value calculated using the MSE (Equation 5.1), for one client
randomly selected. From the presented results a compromise needs to be done, or higher
duration and possible better forecast models or a lower time period with the possible
consequence of less reliable forecast models. Being the aspect of duration a crucial aspect
due to the increase of ANNs models that needed to be trained, the proposed changes on
the ANN parameters were used. The remaining parameters associated with the locals
ANNs remain the same, with Npo= 96, and Nfo= 1. The global variables were set as:
Rd = Rg = 32, and K= 9. Figure B.1, in Appendix B, presents two prints of an example
of two trains, where the first uses the B parameters, and the second uses the A parameters,
being outlined in red the time for each epoch.

Table 5.3: Impact by changing the Artificial Neural Network parameters.

ANN parameters Train Time Min. loss value
Nci Nch Bs E Demand Generation Demand Generation

A 64 32 32 6 4’ 46” 4’ 30” 0.183 0.047
B 32 16 96 5 1’ 24” 1’ 32” 0.416 0.110
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5.2 Forecast Systems

To enhance the forecast of net-demand, different tests were implemented to decide
the forecast system. According to Equation 3.3, the net-demand can be predicted using
two systems of the forecast, one for generation and a second for power demand. However,
another approach would be to directly forecast the net-demand.

Using the dataset presented in Section 4.2, since this dataset also has generation
information, a random building with a PV system was selected. Tests were made using
a local ANN model with the architecture and parameterization defined in the previous
section (parameters for Scenario B), for all forecast systems. Table 4.2 has the features
of the two forecast systems. In the case of a direct forecast of the net-demand, only the
features related to the demand can be used. The generation features were not added
because a building can have or does not have a generation system and the ANN model
structure needs to have the same features independently of the buildings. Therefore, for
that reason, only features related to the forecast of the power demand can be used.

Using the RMSE as an evaluation metric, the three forecast systems were tested: a
direct forecast of net-demand, and an indirect way using two systems: one to forecast
demand, and a second to forecast generation. The results are presented in Table 5.4. It is
possible to conclude that the forecast of the net-demand through the forecast of demand
and generation, in an independent way using the Equation 3.3 achieves a decrease of
approximately 30% when compared with a direct forecast of net-demand. Such results
allow concluding that a separated forecast model will have the most promising results for
the intended objective.

Table 5.4: Forecast systems - performance test.

Single system Two systems
net-demand demand generation net-demand

RMSE 0.257 0.132 0.149 0.182

5.3 Framework Debugging

The debugging is a very difficult task, mainly due to the complexity of the framework
which can generate multiple different situations. The first trains occurred with a small
number of buildings only to test the framework and check possible errors. After completing
this debugging phase, the complete framework was tested with all buildings.

Due to the higher number of models operating in the realized test considering all
buildings (600 for the demand system and 497 for the generation system), making a total
of 1097 models to train, to save time, it was decided to fix the errors and activate the
rst variable to continue the train. Additionally, a second machine was used to analyze
the results achieved during the train. With these strategies, it was necessary to stop
the train more 3 times until solving all errors and getting a fully functional framework.
Therefore, the first complete test done over the developed framework was not a success in
terms of being done over a fully functional framework, since the occurred errors can have
influenced the final results. For this reason, it was decided not to use these results, and
consider this test only for the debug phase.
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The test implemented over the full group of buildings proves the proper function of
the implementation of the framework, and the option of continuing the train by choosing
a previous set point defining the rst variable as False. It allowed also the optimization
of some algorithms, as well as the addition of new resources such as the control dataset.
Before this implementation, a strategy was being used that did not allow the visualization
of critical parameters associated with training. Lastly, it was added the implementation
of an algorithm that records all the α values associated with each model. This resultant
dataset allows visualizing the behavior of the early stopping algorithm adapted for the
developed framework (Algorithm 2) during the training process.

5.4 Results of Scenario A

In that initial stage, some algorithms, like the Local Evaluation, were not yet developed.
Therefore, the following parameters were used to test the proposed structure: R = 60,
K = 3, Nl = 2, Nci = 64, Nch = 32, Bs = 32, E = 6, Nop = 96, and Nof = 1. It should be
noted that, instead of defining a learning rate value, the Adam optimizer was used, which
inherently uses an adaptive learning rate method.

Table 5.5 presents the obtained results: the θ value is the number of rounds that
each building participated, Ltraining is the lower loss value, and r is the corresponding
round number of the global training. p is the number of local rounds that each building
participated in before round r. Put it differently, a building achieves the lower loss value
Ltraining on round r, where r ∈ R, and to arrive at that around the building participated on
p rounds. However, the same building participated in a total of θ rounds. The remaining
variable is the RMSE calculated using the Equatinon (5.2) over the loss results achieved
when the test data was applied over the model saved on round r.

Table 5.5: Achieved score results.

Building ID θ
Results on Training Results on Test
Ltraining p r RMSE (r)

DCE 14 0.06878 12 27 5.39172
DChE 17 0.03807 15 27 4.19676
DECE 17 0.02663 8 14 3.25616
DES 13 0.03695 10 23 4.85933
DIE 21 0.03076 20 31 3.02867
DME 17 0.04138 16 31 5.89367

As can be concluded from the results presented in Table 5.5, the proposed FL setup
ensures the participation of each client in the global training, in between 13 and 21 local
trains. It can also be observed that in the round where achieved the lower loss values occur
before the last local train (p < θ). This result shows the need for the implementation of
the global evaluation over the loss values, to detect when the models start converging.
On the final version of the framework, this algorithm was implemented (Algorithm 2).

Taking the building Department of Chemical Engineering (DChE) as an example,
Figure 5.1 presents the loss value as of the global training convergences throughout rounds.
It should be noted that in Figure 5.1 the rounds start with the number zero, and in
Table 5.5 start with one. Therefore, the r value in Table 5.5 needs a decrement of one
unit to match with the number presented in Figure 5.1. MSE (Equation (5.1)) was used
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as the evaluation metric to obtain the discussed results. The loss graph showcases the
decrease throughout the rounds and demonstrates learning over the course of training.
Overlapping this graph with the green vertical lines depicts that the loss presents higher
values when the Federated Average calculus is implemented.

Figure 5.2 presents the predicted and real values for the test dataset for the building
DChE, to show an example of the net-demand prediction achieved by the model, where
the lower loss value on the training was achieved. Comparing the obtained results over
different months reveals the adaptability of the proposed model with respect to the
seasonal variations.

Figure 5.1: MSE values obtained throughout the global training in the Department of
Chemical Engineering (DChE) building.

5.5 Results of Scenario B

This section presents the results obtained with the proposed FL framework on Scenario
B (Section 4.2). A representative group of buildings was selected to test the developed
framework, by selecting 36 buildings with PV system. The group of buildings is split in
half according to the climate area. Therefore, 18 buildings are from the G0600650 climate
area, and the other 18 belong to the G0600730 climate area.

In Section 3.2.1, the control and evaluation of the FL realized by the server were
presented. In this process a dataset of control was created to record different variables,
being this dataset called the “control dataset”. The control dataset has information on
the total number of rounds that each client participated in. With this information, the
Participant Selector Algorithm (Algoritm 3) can be applied, which has the objective of
keeping the number of rounds balanced between the clients, but always with associated
randomness. Figure 5.3 presents the obtained results. It can be observed that the average
number of rounds is 8 (in booth systems), and the number of rounds above and below the
average, for about 95% of the buildings, is only one. The higher difference in the number
of rounds is caused by a lower number of rounds, but the algorithm prioritizes such clients
to be selected in the next rounds. Therefore, it is possible to conclude that the algorithm
is reaching its goal. Additionally, the randomness of the code can be verified through the
non-linearity of the number of rounds participated by each client.

The control dataset also provides information on the minimum values achieved for
the loss, Lmin, in each client. This values are calculated using the MSE (Equation (5.1).
Figure 5.4 presents the minimum loss values, being possible to identify the clients that
achieve the lowest MSE values (represented by green color). For the demand system,
the client with the lowest values is identified with the ID= 547267 who accomplish an
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Figure 5.2: Net-demand in the building Department of Chemical Engineering (DChE) in
the global round r = 27 (real values in blue and prediction in orange).
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(a) Forecast demand system.
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(b) Forecast generation system.

Figure 5.3: Number of rounds per client in the realized test.

Lmin= 0.5596, and this client participated in 7 rounds in this system. For the generation
system, it is the client identified with the ID= 428446 who accomplish an Lmin= 0.0.03038,
and this client participated in 9 rounds.

From Figure 5.4 is noticed that the minimum loss achieved by each client, is more
similar in the generation forecast system. This difference is explained since the generation
profile has a higher correlation between the different buildings. Additionally, this system
has a high correlation with the weather features, who are shared by all buildings, and
consequently, the performance of the forecast models is similar.

The results of client 501994 on the demand system can also be highlighted since
they present a MSE value significantly higher in comparison with the other clients.
During the analyses of the loss results for this client, it was observed the existence of 10
recorded datasets of training, which is not in agreement with the information presented
in Figure 5.3a, where only 9 rounds are registered. Checking the control dataset of the
server for this client, one local error was registered, justifying the identified mismatch.
Since this do not directly justify the high MSE value, the α values were studied to detect
the global convergence (Algorithm 2).

Figure 5.5 presents a plot of the values of the loss for the client 501994, as well as the
respective α values. The values marked in green are the minimum MSE values in a round.
The beginning of a round is marked with a dotted green line. Through this analysis, it
was possible to verify the good behavior of the Algorithm 2, since after the first decrement
of the α, in the following round the Lmin value decreases and a reset is done, respecting
the imposed conditions. In the latest two consecutive rounds, the value of Lmin does not
change, since the train for that client ended. This client presents the train without any
indication of a possible error in the FL training. It can then be admitted that this type of



Chapter 5. Experimental Results 44

88
12

28
44

9
51

07
0

85
09

1
13

19
77

15
54

10
16

85
14

17
12

45
18

35
30

22
26

94
30

43
64

39
57

18
40

17
92

46
44

82
47

32
90

48
33

58
52

59
25

54
93

04 7
25

69
2

81
23

4
88

73
1

11
00

47
11

87
52

18
07

73
40

79
12

41
75

76
41

92
05

42
61

74
42

84
46

43
78

20
48

53
53

50
19

94
51

08
81

54
46

62
54

72
67

Buildings Code

M
SE

0.
07

47
6

0.
06

04
8

0.
06

85
6

0.
14

87
7

0.
11

76
6

0.
13

90
7

0.
08

04
1

0.
06

58
2

0.
06

82
5

0.
06

43
1

0.
06

99
4

0.
09

38
6

0.
09

45
9

0.
06

40
5

0.
15

87
7

0.
18

12
9

0.
12

39
6

0.
07

98
9

0.
23

67
5

0.
20

22
1

0.
07

87
3

0.
12

11
6

0.
11

20
3

0.
11

21
9

0.
07

90
7

0.
16

92
8

0.
15

55
4

0.
14

60
1

0.
09

54
6

0.
19

22
4

0.
51

99
9

0.
08

94
0.

78
10

3
0.

07
53

5
0.

14
03

0.
05

59
6

(a) Forecast demand system.

88
12

28
44

9
51

07
0

85
09

1
13

19
77

15
54

10
16

85
14

17
12

45
18

35
30

22
26

94
30

43
64

39
57

18
40

17
92

46
44

82
47

32
90

48
33

58
52

59
25

54
93

04 7
25

69
2

81
23

4
88

73
1

11
00

47
11

87
52

18
07

73
40

79
12

41
75

76
41

92
05

42
61

74
42

84
46

43
78

20
48

53
53

50
19

94
51

08
81

54
46

62
54

72
67

Buildings Code

M
SE 0.

03
14

1
0.

03
10

9
0.

03
30

2
0.

03
10

4
0.

03
34

3
0.

03
08

7
0.

03
18

4
0.

03
15

6
0.

03
08

2
0.

03
04

0.
03

14
1

0.
03

23
6

0.
03

11
9

0.
03

40
1

0.
03

36
1

0.
03

04
4

0.
03

32
5

0.
03

15
2

0.
03

12
1

0.
03

09
0.

03
15

2
0.

03
36

4
0.

03
39

1
0.

03
33

8
0.

03
10

6
0.

03
18

2
0.

03
15

0.
03

09
5

0.
03

22
2

0.
03

03
8

0.
03

13
9

0.
03

13
5

0.
03

12
1

0.
03

37
6

0.
03

35
7

0.
03

33
8
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Figure 5.4: Minimum loss values achieved per client.

case can occur because the local models do not get the capability to learn as well as the
others. The clients with the lowest Lmin value recorded for each system, ID = 547267 for
the demand system, and with ID = 428446 for the generation system, were selected to
test the forecast of the net-demand. The validation loss recorded in each round was used
to choose the most promising model. This selection was done by picking the model of the
round where the lowest MSE value of the validation is registered. It should be noted that
the algorithm of the local train has a function that saves only the “best” model. Where
this “best” model is the model of the epoch where the lowest MSE value was recorded.
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Figure 5.5: Loss (red line) and αs values (blue line) recorded in the forecast demand
system for client 501994. The vertical green lines represent the beginning of a round.

Figure 5.6 presents the graphs for the validation for each system to the selected clients
(547267 and 428446). In agreement with the implemented strategy, the model was saved
using the same logic to select the select round, and consequently the most promising
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model. From the analysis done over the graphs the following models were selected:

• Client ID = 428446:

– Demand system: r = 17 (Figure 5.6a);

– Generation system: r = 4 (Figure 5.6b).

• Client ID = 547267:

– Demand system: r = 20 (Figure 5.6c);

– Generation system: r = 11 (Figure 5.6d).

Section 4.2.3 exposes how the split of the data was done, being used for testing data
from April, August, and December. The Npo and Nfo are the parameters to adjust the
data. As Npo = 96, and the data have a sampling period of 15 minutes the model will
use the data collected for 24 hours to predict a unique sample (Nfo = 1). Taking as an
example the month of April, as the data is relative to the year 2018, the first day is a
Sunday. Therefore, the first sample predicted, for this case, will be the first 15 minutes of
Monday. Figure 5.7 and Figure 5.8 present the forecast of the net-demand relative to the
first week available on each training dataset (April, August, and December).

Figure 5.7 and Figure 5.8 present the forecast for three different periods of time
with different weather conditions. Table 5.6 presents the values of the metrics in the
realized test on the selected clients. The metrics are the same used previously: the MSE
(Equation (5.1)), and the RMSE (Equation (5.2)). Although these two clients belong to
the same climate area. the results allow to observing the good adaptation of the models
in terms of seasonality. Another aspect is the selected round number. For example, client
ID = 428446 participated in 4 rounds before the round where the model was selected for
the demand system. For these clients, in none of the cases the selected model was the first
participating round. Therefore, the clients sharing their learning enhances the learning
process of other clients, demonstrating s a good collaboration in a TE community. It is
also possible to verify in these results the existence of negative values, which happens
when the generation is higher than the demand (Equation (3.3)).

A second test of the framework was implemented with the same parameterization.
However, this second test uses two other regions, and 5 of the 26 buildings that make
part of these regions are buildings without an integrated PV system. The objective of
this test was to show the implemented framework running with buildings without the
need for generation system. Additionally, it also uses the train previously implemented to
study the training process in a similar (but different) community. The buildings without a
generation forecast are identified by the following IDs: 662, 2513, 1866, 8156, and 10687.

Figure 5.9 presents the rounds realized per client before ending their training. Making
a comparison between Figure 5.3 and Figure 5.9 it is possible to verify that using the
FL framework in a new community through continuous training from a pre-implemented
framework in another community speeds up the learning process. In the first train, where
the implemented framework runs for the first time, the average of the rounds was 8, for
booth systems (Figure 5.3). In the second test (Figure 5.9), for the demand forecast, each
client needs on average around 5 rounds to implement the training, and for the generation
forecast, each client needs on average between 4 and 5 rounds.
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(a) Client ID = 428446, demand forecast system.
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(b) Client ID = 428446, generation forecast system.
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(c) Client ID = 547267, demand forecast system.
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(d) Client ID = 547267, generation forecast system.

Figure 5.6: MSE values obtain from the validation test done in each epoch.
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(a) Net energy demand forecast between 2 and 8 April of 2018.
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(b) Net energy demand forecast between 2 and 8 August of 2018.
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(c) Net energy demand forecast between 2 and 8 December of 2018.

Figure 5.7: Net energy demand forecast during a week for the client ID = 428446, in three
different months.
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(a) Net energy demand forecast between 2 and 8 April of 2018.
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(b) Net energy demand forecast between 2 and 8 August of 2018.
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(c) Net energy demand forecast between 2 and 8 December of 2018.

Figure 5.8: Net energy demand forecast during a week for the client ID = 547267, in three
different months.
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Table 5.6: Achieved score results for two clients, in scenario B.

Client ID Month System MSE RMSE

547267

April
generation 0.00036 0.03515
demand 0.00128 0.03537

net-demand 0.00211 0.04594

August
generation 0.00025 0.03283
demand 0.00148 0.03482

net-demand 0.00191 0.04365

December
generation 6e-05 0.02543
demand 0.00087 0.03066

net-demand 0.00101 0.0317

428446

April
generation 0.00236 0.13105
demand 0.02274 0.15678

net-demand 0.02642 0.16254

August
generation 0.00135 0.09334
demand 0.01174 0.11134

net-demand 0.01306 0.11427

December
generation 0.00097 0.11991
demand 0.02068 0.14521

net-demand 0.02149 0.14661
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(b) Forecast generation system.

Figure 5.9: Number of rounds per client in the second realized test.
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To analyze the performance of the developed FL framework in comparison with a
more common approach, a complementary test was done. In this test, a local model was
trained for the demand forecast in the building where the minimum value for the loss was
achieved in the first test (Figure 5.4a), the client with ID = 547267. In the system of
generation forecast, the client with ID = 428446 was the client with the lowest loss value
(Figure 5.4b), being the generation model trained using the data from such client.

Using a common approach, when a new building is added to a community, these two
trained models are the most promising options to achieve the highest accuracy in the
prediction of the net energy demand in the new building. However, in the proposed
FL framework, this new client can be any of the clients of the second implemented test.
Therefore, by randomly selecting one of these clients, the client with the ID= 68010 was
selected. Figure 5.10 compares the forecast using the common approach and the forecast
using the model trained using the proposed FL framework. Table 5.7 presents the MSE
and RMSE values for the two forecasts, where the metrics achieved with the model using
the FL structure are 55% lower than those achieved with the common approach.

(a) Forecast using a common approach.

(b) Forecast using the implemented FL approach.

Figure 5.10: Net energy demand forecast for client ID= 68010, with a common and a FL
approach.
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Table 5.7: Achieved score results for client ID= 68010, with a common and a FL approach.

Forecast
MSE RMSE

FL common FL common
Net energy demand 0.02329 0.07536 0.1526 0.27452

Demand 0.01359 0.06597 0.13578 0.26583
Generation 0.00574 0.00589 0.11918 0.22153
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Chapter 6

Conclusions and Future Work

6.1 Conclusions

This dissertation starts by introducing the theoretical concepts of Smart Grid (SG),
Machine Learning (ML), and Federated Learning (FL) following a literature review of the
same concepts. Relatively to the SGs, its concept was introduced, as well as its evolution
and the main need to integrate the concept of Transactive Energy (TE) communities.
TE will unlock new opportunities for new services, that will be crucial for reliability and
optimization of future Power System, where traditional power plants will be replaced by
renewal generation, and where the control of flexibility resources will be fundamental.

To enhance the control of such resources, systems to forecast demand and generation
are needed. To understand the forecast systems that can be applied to ensure the forecast
of variables like energy generation, demand and net-demand, the concepts of ML were
studied. ML is a computer program that has the capability to learn from his experience
and it was concluded that Artificial Neural Network (ANN) is the principal ML method
used for the prediction of energy in buildings. Such a study also allowed to understand that
private features and collaboration between buildings can enhance the forecast systems for
these variables. However, the sharing of private features can be a concern from the user’s
point of view. Therefore, to find a solution that embraces collaboration and protection of
the data the concept of FL was studied. FL was firstly introduced by Google and applied
to Gboard systems for auto-completion of words. In a simple way, FL trains a ML model
on edge devices, and instead of sending the data to the server sends the weights of each
model. In the server, the weighted average of the weights is applied. In this way, it allows
collaboration between multiple end devices without sharing any private data.

This dissertation had the main objective of developing a novel framework to be
implemented in a Transactive Energy community based on FL to enhance the prediction
of net energy demand. The use of a framework based on FL, will have the advantage of
ensuring a local forecast of the main variables crucial for the building management systems,
enhancing the forecast models using private data, while ensuring private data protection,
as well as ensuring a more accurate forecast of the net energy demand. Therefore, this
dissertation had the purpose of developing a FL structure adapted to the architecture of
the SG, as defined by the NIST model. To match both systems, it was decided to use a
FL system with a client-server architecture, where the server will ensure the connection
to the Distribution System Operator. Behind this architecture, a Horizontal Federated
Learning approach was selected, since all clients have the same features and the same
target. Traditionally, FL has a unique forecast system, being in this work adapted to work
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with two forecast systems (one for power demand forecast, and the second for generation
forecast). A connection between the server and a third-party was also added to provide
additional data (non-private and common to all clients).

First, the framework was implemented only to forecast the power demand, using the
values of the generation to ensure a complete study of the net-demand. This first phase also
ensured the integration of the third-party data provider, as well as the implementation of
the algorithms for the aggregator and for the clients. The second stage was the development
of the full framework, integrating the second system to also predict the generation, as
well as the improvement of some algorithms and the addition of new ones. For example,
the Algorithm 2 adopted the early stooping technique to the FL environment, in order to
analyze the global learning process of a forecast model.

Scenario A was used to test the first phases of the implementation. This scenario
was constituted by six buildings that are part of the Polo 2 campus at the University of
Coimbra, using real data values of the net-demand. Only for one building, the Department
of Electrical and Computer Engineering, it was possible to collect the demand and the
generation, separately. Such data was used as the basis for the created dataset for this
scenario, extrapolating the generation for the other buildings and enabling splitting the
generation from the demand. The academic calendar and the weekdays were added using
the One Hot Encoding process, and with an implemented algorithm for web scrapping
weather data information (temperature, radiation, and humidity) were collected from the
Wunder Ground website.

Scenario B was used to test the fully developed framework. This scenario uses synthetic
data for several buildings from all states of the United States of America for the 2018
year, provided by National Renewable Energy Laboratory. Behind energy data, the
dataset also contains other features related to the characteristics of the buildings and
the weather. The state of California was selected due to a higher percentage of buildings
with a photovoltaic (PV) system. This database also ensured the separation of buildings
by climate areas and regions. Therefore, by assessing the correlation, it was possible to
reduce the climate areas to two, being selected a set of buildings with and without PV
to constitute Scenario B. It should be noted that all these buildings are residential. The
same database also has commercial buildings, but such buildings were not included due
to the very low penetration of PV system.

The implemented test for the first stage, with the datasets from scenario A, was the
first test done over the implemented FL structure. Such a scenario tested the flow of the
implemented framework and the capability of learning the local forecast models. Therefore,
it was possible to conclude that seasonal variations are well detected by the local forecast
models. It was also concluded that such models also reveal good learning capabilities,
achieving good results in the forecast.

Scenario B allowed the implementation of a final and complete test over the developed
framework, where all implemented algorithms were tested. From these results, it was
possible to conclude that the framework is able to ensure all defined objectives. The
capability to work with two different forecast systems separately and the algorithms
developed to achieve the most promising models resulted in good results for the forecast
of net energy demand, as intended. The forecast results show the capabilities of learning
from different profiles and collaboratively learning from each other to enhance their
forecast models. Additionally, with the results of the implemented tests, it was possible
to demonstrate the behavior of crucial algorithms implemented in this phase, namely the
adaptation of the early stopping technique into the FL. The second test done over this
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scenario proves that this approach can be also very important in terms of making easier
the implementation in new communities. The FL framework implemented when tested
in a new community reveals faster learning of the profiles from the users, and also the
capability to work with buildings that do not have an PV system integrated. Finally, the
last test shows that the implemented FL framework is able to achieve more promising
results than a more common approach. This test achieved a decrease of 55% on the
RMSE value when, instead of the more common approach, the framework proposed in
this dissertation is adopted.

6.2 Future Work

In future work, the objective is to continue improving the developed framework by
integrating new algorithms. In the server, a forecast system for weather needs can be
created to have a more complete system of forecasts. Optimization algorithms to achieve
more promising models can also be studied and applied to the framework.

In terms of optimization, two main tasks can be defined:

1. Adapt the code to the hardware where it will be running;

2. Tunning of parameters.

The code was developed in python, where there are many options of optimization
according to the used hardware. In terms of parameterization tunning, this can be
approached by firstly implementing a local tunning in the local models, for example with a
grid search technique. After it, instead of applying the Adam optimizer. the approach can
be based on the use of a value for the learning rating according to the round number [66].

Additionally, the integration of the developed framework to improve other optimization
algorithms and create a full system of energy management can also be studied. For example,
the development of a framework for effective management of energy resources (such as
battery energy storage and electric vehicles) ensuring economic and technical benefits
for buildings, communities, and utilities, taking advantage of the improved predictions
provided by the FL models [67, 68, 69, 70, 71].
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Josh Gardner, Zachary Garrett, Adrià Gascón, Badih Ghazi, Phillip B Gibbons, Marco
Gruteser, Zaid Harchaoui, Chaoyang He, Lie He, Zhouyuan Huo, Ben Hutchinson,
Justin Hsu, Martin Jaggi, Tara Javidi, Gauri Joshi, Mikhail Khodak, Jakub Konecný,
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tion of key variables in wastewater treatment plants using machine learning models.
In Proc. 2022 IEEE International Joint Conference on Neural Networks (IJCNN
2022), at the 2022 World Congress on Coomputational Intelligence (WCCI 2022),
pages 1–9, Padova, Italy, July 18-23 2022. IEEE.

[66] Stephanie Holly, Thomas Hiessl, Safoura Rezapour Lakani, Daniel Schall, Clemens
Heitzinger, and Jana Kemnitz. Evaluation of hyperparameter-optimization approaches
in an industrial federated learning system. CoRR, abs/2110.08202, 2021.

[67] Pedro Moura, Uday Sriram, and Javad Mohammadi. Sharing mobile and stationary
energy storage resources in transactive energy communities. pages 1–6, 06 2021.

[68] Pedro Moura, Greta K.W. Yu, and Javad Mohammadi. Multi-objective decision-
making for transactive interactions in vehicle-to-building systems. In 2021 IEEE
PES Innovative Smart Grid Technologies Europe (ISGT Europe), pages 1–5, 2021.

[69] Javad Mohammadi, Gabriela Hug, and Soummya Kar. A fully distributed cooperative
charging approach for plug-in electric vehicles. IEEE Transactions on Smart Grid,
9(4):3507–3518, 2018.

[70] Soummya Kar and Gabriela Hug. Distributed robust economic dispatch in power
systems: A consensus + innovations approach. In 2012 IEEE Power and Energy
Society General Meeting, pages 1–8, 2012.

[71] Yuhan Du, Meiyi Li, Javad Mohammadi, Erik Blasch, Alex Aved, David Ferris, Philip
Morrone, and Erika Ardiles Cruz. Learning assisted agent-based energy optimization:
A reinforcement learning based consensus + innovations approach. In 2022 North
American Power Symposium, pages 1–6. IEEE, 2022.

https://www.wunderground.com/


Appendix A

Complete diagram of the proposed
framework

63



Appendix A. Complete diagram of the proposed framework 64

Generation Train

Model ANNModel ANN

Train Model

Data Processing

CLIENT

Model ANN

Train Model

weights

Generation Train

Train Data

Predicted
Generation

Updated
Model

Test Data

Local
Data

Data Processing

3g

save

Train Model

weights

Demand Train

Train Data

Predicted
Demand

Updated
Model

Test Data

Local
Data

Data Processing

2

3d

Model ANN

Weights 
Recovery

1

Loss
Evaluation

5

save Loss
Evaluation4

Predicted
Net Demand

save

SERVER

Rounds

Selection of
participants 

3d

3g

END 
GLOBAL TRAIN

BEGIN GLOBAL
TRAIN

2TP

B

1
rd

Federated
Average
Equation

rg
4

Federated
Average
Equation

Train Evaluation 5

THIRD PARTY

Local DataTP

Figure A.1: Complete diagram of the proposed framework. Constituted by the server, the
third-party, and the client.



Appendix B

Example of a train in the Federated
Learning devoloped framework.

65



Appendix B. Example of a train in the Federated Learning devoloped framework. 66

Figure B.1: Comparison between time performances with different parameters.
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Abstract—The prediction of the net electricity demand is
crucial to the management and optimization of transactive en-
ergy communities. Such prediction usually relies on net-demand
information, but each building can have additional information,
such as separated generation and demand profiles, weather,
or occupancy data. Such information is not only relevant for
the net-demand prediction of each building, but also to other
buildings with the same type of use. However, buildings avoid
sharing such information due to privacy concerns. This paper
proposes a novel federated learning framework for predicting
building temporal net-demand in transactive energy communi-
ties. The proposed approach leverages centralized oversight of
a central agent (aggregator) to inform distributed collaboration
among each client (buildings), which are willing to collaborate
to improve their prediction accuracy. The proposed approach
was tested using a dataset collected from several buildings
from a University campus (from the University of Coimbra
in Portugal), predicting the electricity demand, and then using
the local generation data to evaluate the net-demand, in the
community of buildings.

Index Terms—Federated Learning, Distributed Computation,
Transactive Energy, Energy Consumption, Energy Community.

I. INTRODUCTION

A. Motivation

The increasing penetration of renewable generation has
been leading to new challenges in electrical grid management,
due to the intermittency and variability of the generation
sources. In the context of buildings and communities, the use
of solar photovoltaic (PV) generation is strongly increasing.
However, typically, the profiles of PV generation and the
demand in buildings can have a strong mismatch, and new
technologies are needed to ensure the required flexibility
for the coordination between the available generation and
demand. Flexibility options, such as battery energy storage
and demand response, including the management of charging

This research was supported by FCT through the project ML@GridEdge
(UTAP-EXPL/CA/0065/2021) and by the ERDF and national funds through
the project EVAICharge (CENTRO-01-0247-FEDER-047196).

of electrical vehicles (EV) have been integrated into build-
ings. The flexibility technologies can be used to ensure the
optimization of the self-consumption and costs at the building
and community levels [1]. However, to ensure such an
objective, a traditional approach with the Distribution System
Operator (DSO) predicting the load at the substation level
and adapting the grid resources is not enough. Therefore, to
ensure effective management of resources the prediction of
the net-demand in each individual building is essential [2].

These issues are more critical in future Transactive Energy
(TE) systems that are defined as economic and control mech-
anisms for managing consumption and generation through en-
abling end-use energy trading [3]. TE systems enable scalable
operation and optimization of heterogeneous producers and
consumers (as known as prosumers) assets in communities,
and to ensure such an objective the prediction of net-demand
is critical. In a community of buildings, managed by an
aggregator, the buildings’ interests are aligned, hence, they
are willing to collaborate to increase the prediction accuracy
in order to achieve better resource management and energy
cost reduction.

However, most buildings are not interested in sharing
their data with other buildings, since such data can reveal
sensitive commercial data such as the number of occupants
or strategies for participating in the TE market. To solve such
an issue, this paper presents a novel federated learning (FL)
model for predicting the net demand of several buildings
in transactive energy communities. In FL, multiple entities
collaborate in solving a machine learning problem, under the
coordination of an aggregator or in a peer-to-peer scheme,
being the raw data of each client locally stored and not ex-
changed or transferred [4]. This paper proposes an approach
with the centralized oversight of a central agent (aggregator)
to inform distributed collaboration among each client agent
(buildings). With such an approach, clients maintain their
private information as confidential, but simultaneously con-
tributed not only to improving the prediction in their building,
but also in other buildings of the community.978-1-6654-8032-1/22/$31.00 ©2022 IEEE
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B. Related Works
Energy prediction models have a critical role in energy

policy and energy management in buildings. For demand
prediction, the prevailing techniques used in large-scale build-
ing applications, include white-box, black-box, and grey-
box based methods [5]. Recently, the booming development
of deep learning techniques brings more exactitude to the
”black-box” approaches, bringing promising alternatives to
conventional data-driven approaches [6]. For instance, [7]
proposes deep learning-based techniques for day-ahead multi-
step load forecasting in commercial buildings.

However, with the integration of renewable generation in
buildings, load forecasting is not enough, being fundamental
to take into account the generation, by predicting the net-
load. The net-load is often predicted for communities of
residential buildings and in [8] an Artificial Neural Network
based model was designed to predict short-term micro-scale
residential net-load profiles. The most accurate solutions
are mainly found for the prediction of aggregated loads
at the substation level, predicting the load for the entire
community. However, for the management of communities
using flexibility resources at the building level, the prediction
of energy consumption at every building level is required.

For instance, in [9] a hybrid convolutional neural net-
work with a long short-term memory autoencoder model
was used for future energy prediction in residential and
commercial buildings. However, such works are focused
on individual buildings, without taking advantage of the
collaborative opportunities between buildings with similar
characteristics each one with private data resources that can
be important to the other buildings. Therefore, such methods
are only based on the net-metering data, therefore losing the
differentiated impact on demand and on the generation or
they just assume that the individual generation and demand
data can be available without taking into account that most
buildings do not intend to publicly share such data. Such
methods also do not take into account the availability of other
private information that can be available in some buildings
(e.g. weather, comfort, or occupancy data).

The use of private data in collaborative machine learning
problems on decentralized data where privacy is paramount
has been ensured using FL [4]. Such approaches have been
used primarily in mobile and edge device applications, but
the use of FL in power systems is limited. In [10] FL
is used to identify the socio-demographic characteristics of
electricity consumers, in [11] FL is used for the prediction
of energy demand in EV Networks, and in [12] a clustered
aggregation is implemented for the prediction of electricity
demand. However, FL has not yet been used to enhance the
prediction of net demand in communities of buildings.

C. Contribution
The main contribution of this work includes introducing a

federated learning framework to enhance the prediction accu-
racy of buildings’ net demand. The proposed solution lends
itself well to TE systems where buildings, aggregators, and
DSO are decision-making entities. It is assumed that DSO
shares the net-demand metering data with aggregators. The
clients will collaborate to fine-tune their models by executing
the training program using their data while keeping their data

private. The aggregator will then update the model weights to
improve the prediction of all buildings in the community. The
implemented approach is based on a Horizontal Federated
Learning (HFL) model. Still, it introduces as a novelty the
use of a third party to provide information in common to all
buildings (e.g., weather data). While the proposed approach
is presented in the context of net-demand prediction, it is
envisioned that it can be extended to transactive energy
communities’ coordination problems.

D. Paper Organization

The remainder of the paper is structured as follows. The
Federated Learning framework is presented in Section II.
The data and scenarios are described in Section III, and the
achieved results are presented in Section IV. Finally, the main
conclusions are highlighted in Section V.

II. FEDERATED LEARNING FRAMEWORK

This paper considers a TE environment that includes build-
ings, aggregators, DSO, and third-party data providers, as
presented in Fig. 1. In this setup, the DSO oversees the power
flow between each building and the grid and has access to all
buildings’ historical net-demand metering data. Each building
can sign up with one aggregator, and with the building’s
permission, the aggregator will get access to net-demand
metering of that building collected by the DSO. Additionally,
each building may access additional information, such as
separated generation and demand profiles, sub-metering, and
occupancy data. Other relevant data in common for all build-
ings, such as weather data, can be obtained from third-party
data providers. Due to privacy concerns, the building does not
intend to share its data with the aggregator. However, such
information is relevant for the building owning the data and
other buildings. In fact, there is a high correlation between
the PV generation in buildings in the same community, and
the demand correlation between the same type of buildings
can also be high.

Fig. 1: Power and data flows in the community.
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A separate prediction for generation and demand increases
the reliability of the net-demand prediction. In the same
community in a given location, there is almost a perfect
correlation between the PV generation variation in the several
buildings (the only factors affecting it can be slightly different
slops and orientation of panels or an eventual shading in some
buildings). In the case of demand, even considering the same
type of buildings, the correlation is not so high, since it is
affected by factors with a different impact on the several
buildings, such as temperature, schedule of services and
users. Considering directly the net-demand would attenuate
such correlations. For instance, on a sunny day with high
temperatures, the PV generation and demand will be high,
with the generation increase attenuating the demand increase,
but with a differentiated impact in different buildings.

In order to integrate the proposed system into the setup
present in Fig. 1, it is necessary a model that ensures global
training with specific characteristics, namely: all the buildings
will have the same features, the structure of the model will
be the same for all buildings, and it is necessary to have a co-
ordinator, the aggregator. To ensure such characteristics, this
approach is based on an HFL model [13] with a client-server
architecture. FL is an edge collaborative machine learning
technique that allows the training of an algorithm that already
has been trained in a certain device. In such a context, HFL
is a model that is used when the participants have the same
features with different samples, to train an equal model. In
terms of learning, this will improve the models, since they
will be trained in multiple different situations.

The selected architecture fits on the global structure pre-
sented in Fig. 1, where the server will be the aggregator, who
will be responsible for the system coordination. The clients
will be the buildings B and each building has its own system
for training its personal predicting model. Additionally, a
third party was added to the system, which will be responsible
for providing weather data. This approach intends to reduce
the number of entities connected to the buildings, increasing
their protection. The proposed Federated Average Algorithm
was adapted from [14], and the pseudocode associated with
the aggregator is presented in Algorithm 1.

Algorithm 1 Aggregator Algorithm

• Input: K; R; Dcf .
1: for r = 1, 2, . . . ,R do
2: Br = {b1, b2, . . . bk} ∈ B
3: if Fgt then
4: Wa ←W0

5: else
6: Wa ← 1

K
∑Br

b=1Wb
r

7: end if
8: for b = 1, 2, . . . ,Br in parallel do
9: Wb

r+1, Vb
r+1, Lb

r+1←BuildingUpdate(Wa , Dcf )
10: Wb

r ←Wb
r+1

11: V⌢Vb
r+1

12: L⌢Lb
r+1

13: end for
14: end for

This architecture ensures global training by averaging the
weights Wb

r of the predicted model in each participant. This

assurance is preserved by interactions between the partici-
pants and the respective aggregators. The aggregator imple-
ments R rounds iteratively. For each round, K buildings are
selected from B, know as participants Br, where K < n(B).
This is done to require less computation capacity, and since
this selection is made randomly there is a high probability
that all buildings being selected for at least one round in
the global training. There is only one interaction where the
averaging is not implemented, which is the first time that the
system initializes. In this specific case, random weights are
sent to all participants. Fgt indicates if this situation occurs
or not.

The aggregator received from a third-party a dataset with
common features Dcf to the buildings, namely the dataset
with the weather information. The objective of this approach
is to reduce the number of entities connected to the final
user, as well as the redundancy between users. In [13],
HFL is introduced with all data allocated on the client’s
system. However, in the implemented setup the weather data
will be sent from the aggregator, and when the aggregator
communicates the updated weights Wa to the participants,
the weather data Dcf is also sent.

In [14], the calculation of the updated weights is done
considering the number of samples. Therefore, each partici-
pant influences the average depending on the ratio between
their quantity of samples and the total number of samples in
all aggregated participants. There is then the assumption that
the larger the dataset, the greater is their importance in this
calculation. However, in this work, all the participants have
the same ”importance” since the averaging is independent of
the number of samples. Line 6 of Algorithm 1 shows the
selected function to implement the averaging of the weights.

The next step is to execute local training (i.e., (2)) in
parallel for all the participants. Each building b returns its
final weights Wb

r+1, loss Lb
r+1, and validation loss Vb

r+1

associated with its local training. Wb
r gets the values of all

weights received from all participants in each round, L and V
concatenates all Lb

r+1 and Vb
r+1, respectively, for all rounds.

At the end of the global train, these variables contain all
values of loss and validation loss from all participants in all
rounds.

Algorithm 2 Building Update Algorithm

• Executed by: all buildings seleted, the participants Br,
Algorithm 1.

• Input: Wa , Dcf .
1: Db ← Dcf

⌢Dpd

2: Wb
r+1,Vb

r+1,Lb
r+1 ← ParticipantUpdate(Wa , Db)

The diagram of the system associated with the buildings
is presented in Fig. 2. This structure presents the flow of the
proposed Federated Average Algorithm and represents the
algorithm for predicting the net-demand. Line 2 of Algorithm
2, receives the weights (Wa) and these are sent directly
to the Artificial Neural Network (ANN) model, which will
be responsible for predicting the demand. The ANN model
proposed is presented in Table 1, with a Long Short-Term
Memory (LSTM) architecture.
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Fig. 2: Structure implemented in the buildings.

TABLE I: Proposed LSTM architecture.

Layer Type LSTM cells Activation Function
LSTM Input 64 Relu
LSTM Hidden 32 Relu
Dropout(0.2) Hidden - -
LSTM Hidden 32 Relu
Dropout(0.2) Hidden - -
Dense Output - -

The datasets of the common features (Dcf ) are concate-
nated to the private dataset (Dpd), which is represented
in Fig. 2 as Dcf

⌢Dpd, and in Algorithm 2 on line 1.
Both datasets are constituted by time series, and to proceed
with the aggregation an algorithm that implements the time
matching between both was employed. The resulting dataset
is used to train the model, and the final loss Lb

r+1, validation
loss Vb

r+1, and weights Wb
r+1 returned by the model are sent

back to the aggregator. In order to calculate the net-demand,
a dataset DG with the predicted generation was used.

The parameters associated with the structure implementa-
tion were the number of hidden layers Nl, the number of
LSTM cells for the input layer Nci, number of LSTM cells
for the hidden layers Nch, number of batch size Bs, number
of training cycles (epochs) E , number of past observations
Nop, and number of forecast observations Nof .

III. DATA AND SCENARIOS

The used data belongs to the University campus. In par-
ticular, six buildings from the University of Coimbra were
selected. This dataset is identified by the department IDs:
DCE (Department of Civil Engineering), DChE (Department

of Chemical Engineering), DECE (Department of Electrical
and Computer Engineering), DES (Department of Earth Sci-
ences), DIE (Department of Informatics Engineering), and
DME (Department of Mechanical Engineering).

The private dataset for all buildings needs to match in
terms of features. The common feature set includes: (i) each
building’s net-demand, and (ii) on-site PV generation data.
This information allows for calculating electricity demand.
However, since the buildings belong to a University, there is
a clear seasonality of activities and therefore other included
features were the academic calendar (classes, exams and va-
cations) and the days of the week (weekends and weekdays).

The buildings do not directly collect any weather data,
therefore requiring the participation of a third party to provide
such data. Additionally, due to the physical proximity of the
buildings, only one weather dataset is needed, as defined in
the previous section as Dcf . The ”Wunder Ground” website
served as a third-party temperature, humidity, and solar
radiation data provider.

The net-demand and PV generation data have a periodicity
of 15 min, and therefore one year corresponds to a total of
35040 samples per building. The academic calendar and days
of the week are categorical data. In order to convert this data
into numeric values, a process known as One Hot Encoding
[15] was implemented. This process consists of splitting the
categories associated with variables and each sample. Put
differently; correspondent sub-categories are identified with
one while others are assigned zero. In the simulations, three
sub-categories were considered for the academic calendars:
classes, exams, and vacations. Weekends and weekdays are
separated as well.

The proposed FL framework was validated by splitting the
dataset of each building into two parts: 74% dedicated to
training (used to train the local models) and the rest to testing
(utilized to test the obtained models after the global training).
The months of January, August, and October were selected
for testing the models in different seasonal conditions. The
remaining months were allocated to the training dataset. The
model uses 25% of the training dataset for validation in the
local training.

IV. RESULTS

The following parameters are used to test the proposed
structure: R = 60, K = 3, Nl = 2, Nci = 64, Nch =
32, Bs = 32, E = 6, Nop = 96, and Nof = 1. It should
be noted that instead of defining a learning rate value, the
Adam optimizer was used, which inherently uses an adaptive
learning rate method.

The local models start converging after round 33, imposed
by the stopping criteria of the global model. Table II presents
the obtained results: the θ value is the number of rounds in
which each building participated, Ltraining is the lower loss
value, r is the corresponding round number of the global
training. Also, p is the number of local rounds before stopping
the global model at round r. The Root Mean Square Error
(RMSE) of the model corresponding to the round r over the
test dataset was calculated.

As can be inferred from the results of Table II, the proposed
FL setup is implemented between 13 and 21 local trains in
each building. It can also be observed that the round with
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TABLE II: Achieved score results.

Building ID θ
Results on Training Results on Test
Ltraining p r RMSE (r)

DCE 14 0.06878 12 27 5.39172
DChE 17 0.03807 15 27 4.19676
DECE 17 0.02663 8 14 3.25616
DES 13 0.03695 10 23 4.85933
DIE 21 0.03076 20 31 3.02867

DME 17 0.04138 16 31 5.89367

lower loss values occurs before the last local train. Taking the
building DChE as an example, Fig 3 presents the loss value as
of the global training convergences throughout rounds. Mean
Squared Error (MSE) was used as the evaluation metric to
obtain the discussed results. The loss graph showcases the
decrease throughout the rounds and demonstrates learning
over the course of training. Overlapping this graph with the
green vertical lines depicts that the loss presents higher values
when the Fevederated Average calculus is implemented.

Fig. 4 presents the predicted and real values for the test
dataset for the building DChE, to show an example of the
net-demand prediction achieved by the model where the
lower loss value on the training was achieved. Comparing the
obtained results over different months reveals the adaptability
of the proposed model with respect to the seasonal variations.

Fig. 3: MSE values obtained throughout the global training
in the DChE building.

Fig. 4: Net-demand in the building DChE in the global round
r = 27 (real values in blue and prediction in orange).

V. CONCLUSIONS

This paper proposes a novel approach for predicting net-
demand in transactive energy communities based on Feder-
ated Learning. The developed structure allows the integration
of third-party data providers, coordination by an aggregator,
and collaborative learning among the buildings without shar-
ing private data. The results present a high level of accuracy
and adaptability to different situations, for example, seasonal
variations.

In future work, the objective is to (i) develop a local model
to predict on-site generation, (ii) devise a model for the
aggregator to predict the weather accurately, and (iii) enhance
local information processing units to select the best models
for each global training.
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