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Resumo

Atualmente, tem sido cada vez mais importante proporcionar uma reabilitação adequada

em casa e determinar estratégias para prevenir lesões devido ao aumento da expectativa de

vida, à prevalência de doenças crónicas e ao sedentarismo, para ajudar as pessoas a viver de

forma independente e melhorar a sua qualidade de vida. Para possibilitar uma recuperação

mais rápida, prática e económica, a reabilitação física do paciente em casa precisa de ser

monitorizada e avaliada para fornecer feedback ao utilizador.

Deste modo, nesta dissertação propõe-se um sistema de avaliação da postura e do de-

sempenho do utilizador a executar exercícios físicos. O pipeline proposto pode ser dividido

em duas partes principais: contagem e segmentação de repetições e a avaliação de cada

repetição. Inicialmente, a pose humana é estimada com o MediaPipe para um vídeo de

CrossFit. Os landmarks estimados são a entrada do algoritmo K-Nearest Neighbors (KNN)

para segmentar os exercícios em repetições. Seguidamente, cada repetição é avaliada pela

rede attentive Bidirectional Long Short-Term Memory (BiLSTM). Esta dissertação está a

ser desenvolvida no âmbito do projeto Intelligent Platform for Autonomous Collaborative

Telerehabilitation (INPACT), que pretende produzir um protótipo de sistema de telereabil-

itação funcional.

O sistema desenvolvido atinge uma accuracy média de 79.21% para a segmentação de ex-

ercícios de Push-Ups (valor mais baixo) e 93.97% para segmentação de exercícios de Jumping

Jacks (valor mais elevado). Para a avaliação de desempenho foi implementada uma solução

binária e multiclasse, alcançando uma accuracy de 95.21% e F1-Score de 94.18% para o

primeiro caso e uma accuracy de 89.51% e F1-Score de 61.25% para o segundo caso.

Os resultados comprovam que este sistema tem potencial para uma aplicação doméstica

automatizada, sendo prático, simples e flexível, uma vez que requer apenas o uso de uma

câmara Red Green Blue (RGB) comum por parte do paciente.

Palavres Chave: Reabilitação; Estimação de Pose Humana; KNN; Long Short-Term

Memory (LSTM); Mecanismo de Auto-Atenção.
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Abstract

With increased life expectancy, prevalence of chronic diseases, and sedentary lifestyles, it is

becoming increasingly important to provide appropriate home rehabilitation and establish

injury prevention strategies to help people live independently and improve their quality of

life. In order to provide a faster, more practical and affordable recovery, the patient’s physical

rehabilitation at home needs to be monitored and assessed to provide feedback to the user

to improve his ability and perform exercises correctly.

Thus, in this dissertation, a system for posture and performance evaluation of human

locomotion is proposed. The proposed pipeline can be divided into two main parts: Repeti-

tion Counting and Segmentation and Performance Evaluation. First, given an input video,

the human pose in each frame is estimated using MediaPipe BlazePose. The estimated land-

marks are the input to the KNN algorithm for exercise segmentation and counting. Then,

each repetition is fed into an attentive BiLSTM to evaluate performance. This disserta-

tion is being developed as part of the INPACT project, which aims to produce a functional

telerehabilitation system.

The proposed pipeline manages to achieve a mean accuracy of 79.21% for exercise repeti-

tion segmentation of Push-Ups (lowest value) and 93.97% for exercise repetition segmentation

of Jumping Jacks (higher value). For performance evaluation we implemented a binary and

a multi-class solution, achieving an accuracy of 95.21% and F1-Score of 94.18% for the first

case and an accuracy of 89.51% and F1-Score of 61.25% for the second one.

The results show that this system has potential for automated domestic application, being

practical, simple, and flexible since it only requires the use of an ordinary RGB camera.

Keywords: Rehabilitation; Human Pose Estimation; KNN; LSTM; Self-Attention Mech-

anism.
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“All progress takes place outside the comfort zone.”

— Michael John Bobak
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1 Introduction

In this chapter, we provide a general contextualization of the research that addresses the

project’s problem, the necessity for its development, and its objectives and contributions.

1.1 Motivation and Context

Physiotherapy as a rehabilitation process is fundamental for the recovery, treatment and

prevention of injuries or dysfunctions in the skeletal muscle complex. Therefore, treatment

with rehabilitation exercises aims to strengthen and achieve a quality of movement. To

accomplish this, it is necessary to monitor the body alignment and the efficiency of the

exercises performed. In addition, the duration, intensity and frequency of the exercises

must be defined according to the patient’s problem and regularly adapted according to the

patient’s evolution [56].

Rehabilitation of patients is usually carried out in clinics. However, it would be desirable

to perform it at home to avoid trips to clinics and thus additional costs. Since a specialist is

not always available, automated systems must be developed to monitor the patient at home

during exercises [4].

It is crucial to assess whether the exercises are performed correctly, for the motivation

and evolution of patients. Therefore, it is proposed a method for evaluating the performance

of patients executing rehabilitation exercises using machine and deep learning algorithms [4].

This dissertation is part of the INPACT project whose goal is to develop a telerehabilitation

system for autonomous monitoring and evaluation of rehabilitation exercises.

In order to create a model that can analyze human motion, data must be collected

using a motion capture system. One possible approach is motion capture with marker-based

suits, which are very accurate but expensive, require a complex setup, assume a controlled

environment, and are impractical for home use [54].

The proposed solution will rely solely on an ordinary camera to acquire an image of the
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user performing the rehabilitation exercises. Machine Learning (ML) algorithms will be used

to obtain the skeleton of the user from a regular RGB image. The analysis of the motion

of the skeleton joints will enable the assessment of the quality of the exercise by comparing

it with examples provided by a professional in the field. To train the algorithms, one needs

a dataset with several videos containing repetitions of the exercises to be evaluated. In

this dissertation, a dataset with five CrossFit exercises is used. This dataset includes video

recordings of 47 participants with temporal and categorical annotations at a frame level.

It includes variations of those exercises performed with the most frequent errors users do

when performing them. It also contains the ground truth for segmenting each repetition and

evaluating the subjects’ performance [16].

1.2 Proposed Work Overview

A framework for evaluating human activities was proposed and implemented. The system

consists of two core steps: Exercise Counting and Segmentation and Performance Assess-

ment.

In the first step, a KNN algorithm is used to segment the repetitions of the exercise. To

do that, initially, the RGB videos are converted to skeleton data using MediaPipe BlazePose.

Then, we use the KNN algorithm to segment and count the repetitions.

In the second step, human motion sequences are evaluated using an attentive BiLSTM.

To do this, each repetition needs to be pre-processed. The output of this stage will indicate

if the exercise was performed well or not, which allows the system to provide feedback to

the user.

Figure 1.1 presents a simplified conceptual global overview of the proposed framework.

A more detailed diagram and extensive description of the system behavior can be found in

chapter 3.
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Figure 1.1: Overview of the proposed solution pipeline.

1.3 Objectives

With this work, we intend to propose a system capable of analyzing and giving feedback to

the user when performing therapeutic exercises. To achieve this goal, the following specific

objectives were outlined:

1. Select and pre-process the dataset that will be used;

2. Estimate the patient’s human pose of exercise sequences;

3. Develop a model capable of evaluating the performance of the user executing the

exercises;

4. Give feedback to the user on the exercise’s performance and suggest improvements if

the exercise is performed incorrectly.

1.4 Main Contributions

The present dissertation proposes a method that results in two main contributions, summa-

rized as follows:

1. Select and pre-process a new dataset, covering a few physical exercises with different

action speeds, into a set of skeleton landmarks;

2. Implementation of a system combining human pose estimation, exercise repetition

counting and segmentation, assessment and feedback generation.
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1.5 Outline

This dissertation is organized into six chapters. Chapter 1 presents a general contextualiza-

tion of the research addressing the project’s problem, the justification for the development

of the work as well as the objectives. Chapter 2, addresses the state of the art about the

different methods available for exercise segmentation and counting and performance analysis

of human motion sequences. Chapter 3 describes all the proposed methods, in particular

the MediaPipe BlazePose, KNN algorithm and attentive BiLSTM. In chapter 4, all details

of the implementation of this project are described. The tests performed and the respective

results and analysis of the developed system are described in chapter 5. Finally, chapter 6

presents the main conclusions of the developed system, points out the identified limitations,

and proposes new directions for development.
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2 State of the Art

Over the last few years, the importance of taking advantage of technological and scientific

advances in the maintenance and improvement of the health and physical condition of the

population has become increasingly important, specifically for patients with musculoskeletal

limitations and injuries. Therefore, analyzing and evaluating patient activity in videos is

an increasingly required task, being important in the field of computer vision. This type of

technology helps the population to be more independent and have a more peaceful and easier

life as it has applications in terms of entertainment, and surveillance and also to facilitate

daily tasks [5].

In recent years, the importance of using technological and scientific advances to maintain

and improve the health and physical condition of the population has become increasingly

important, especially for patients with musculoskeletal limitations and injuries. However,

many times, the patient does not have the possibility to attend rehabilitation clinics, giving

up or performing the exercises incorrectly and inconsistently, hindering their recovery and

well-being. The use of an automated system to assess the patients’ rehabilitation at home

can remedy this situation by providing more motivation and adapting the exercises to the

patient’s needs [45] [56].

However, these tasks present some challenges due to the high dimensionality of video

data and changes in appearance characteristics (scene, context, and point of view variation)

[5]. Machine learning can be extremely useful in this context, as it can be used to learn

complex models from data observation. However, in order to train these models, a large

dataset must be provided. This dataset must be sufficiently diversified to create a model

capable of identifying and evaluating patient performance given the above mentioned factors.

A widely used system for capturing human motion from video sequences requires the use of

special suits and markers. However, this type of motion capture system is expensive and

requires calibration, which is not suitable for a domestic application. It is essential to create

a more practical and simple system, that uses an ordinary camera. To overcome some of
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these restrictions and limitations, (3D) Human Pose Estimation (HPE) using BlazePose with

MediaPipe is used to describe human motion [7]. Thereby, the HPE is used to identify and

classify the joints of the human body. In fact, HPE from videos has several applications,

such as sign language recognition, augmented reality, motion tracking for videogames and

human fall detection [42] [39] [55] [24] [51].

In order to evaluate the exercise sequences and provide the respective feedback, it is

necessary to compare the patient’s performance executing an exercise with the performance

of an expert in the field [33].

Therefore, it is necessary to combine HPE, repetition counting and movement assessment

fields to assist people in physical therapy exercise [60].

2.1 Human Pose Estimation and Dataset Selection

Human Pose Estimation - MediaPipe BlazePose

HPE consists of a computer vision technique capable of detecting and locating the key

points of the human body from images or RGB frames. This technique is highly used due

to its simplicity and stability and has several applications, such as body posture analysis,

identification and evaluation of fitness and yoga exercises, gesture recognition and character

animation [60] [7].

Several methods can be used for pose detection, such as OpenPose [26], PoseNet [11],

Dense Pose [21], BlazePose [7] ... The chosen one was MediaPipe BlazePose. This method is

a ML solution, more specifically a lightweight Convolutional neural network (CNN) architec-

ture, that provides high-fidelity human pose tracking, capable of inferring 33 3D landmarks

(as in Figure 2.2) from RGB images. Each landmark includes the x, y and z coordinates

and visibility. Unlike models that are based on the standard COCO topology [1] [34] (with

only 17 key points, as shown in Figure 2.1), BlazePose accurately locates more key points,

making it more convenient for fitness and exercise applications. For that reason, the use of

MediaPipe BlazePose stands out for being fast and computationally efficient, which allows

its use in real-time and on low edge devices, such as mobile or laptop, and supports Android

and iOS platforms [7] [47].
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Figure 2.1: COCO Landmarks [34].

Figure 2.2: MediaPipe Landmarks [2].

Another advantage of using BlazePose is the possibility of obtaining 3D coordinates,

this means depth information, using only a Two-Dimensional (2D) camera. Each landmark

represents the locations of the body joints of the person in the image, composed of 3D

coordinates with the origin at the center of the hips [2].

It is worth noting that pose detection with BlazePose only allows the detection of one

person in an image, which means that if there is more than one person in the image, the

model will assign key points to the person detected with the highest confidence [7].

7



Dataset Selection

The segmentation and evaluation methods used in this dissertation require a set of videos

that include annotated repetitions of rehabilitation exercises. Since, to our knowledge and

research, there are no datasets with these characteristics, some datasets of fitness and Cross-

Fit videos were analyzed, and the most appropriate one, described below, was used in this

work.

Ferreira et al., 2021 [16]: A dataset that contains Crossfit videos of 130 subjects perform-

ing 5 exercises, and for each exercise there are more than 500 well-performed repetitions. To

capture the samples, 4 depth cameras were used, with a resolution of 30 frames per second.

All videos were manually annotated in the temporal and categorical domains by an expert

physiologist, with each video frame showing the respective pose and, if it is the case, associ-

ated errors. The acquisition conditions are diversified, varying, namely, lighting, background

disorder, subjects’ clothing and changes in the speed of repeated actions.

2.2 Exercise Repetition Counting and Segmentation

In many cases, human activities involve repetitive actions and the performance of rehabilita-

tion exercises is one of them. This means that counting and segmenting temporal repetitions

is a crucial step in understanding and analyzing human movements and aims to count the

number of repetitive actions in a video [41] [13] [28] [48] [61] [49].

The analysis and segmentation of action repetitions thus offers several possible appli-

cations, such as pedestrian detection [46], gesture-based computer interaction, computer

gaming [58], cardiac and respiratory signal recovery [30], 3D reconstruction [31] [59] and

camera calibration [22].

In the context of this work, it is essential to identify the temporal limits of each repetition

of an exercise to assess the quality of movement when performing therapeutic exercises for

each session [58]. The segmentation of a video in repetition intervals has been increasingly

studied, and there are already some methods proposed in the literature for this purpose.

Segmentation of Class Agnostic Repetitive Actions

For the segmentation of class agnostic repetitive actions, the most used approach is generally

divided into two phases: periodicity detection (determining if a frame is part of a repeating

action) and repetition counting (predicting the count number of actions in a video) [14] [17].
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The robust estimation of periodicity in temporal series is an alternative that allows to

delimit the repetition [5]. The detection of periodicity in video sequences can be performed

by examining the correlations of spatio-temporal features, creating a Temporal Self-similarity

Matrix (TSM) to denote the similarity between frames [25] [14] [60].

TSM is a representation used for recognition and analysis of human action [14]. This

matrix is efficient as it incorporates the combination of features with enough descriptive

information to characterize the movement [27].

Identifying the periodicity in a video sequence using deep learning models allows counting

the repetitions of the action using period duration predictions [17]. This process also allows

locating and segmenting each repeating sequence.

The advantage of this approach is that it is suitable for segmenting any type of video

(regardless of the particular exercise). The main disadvantage is that it can hardly be

adapted to real-time, since it is computationally intensive and in most cases requires the

whole video to properly analyze and segment the repetitions.

Segmentation of Specific Physical Exercises

In addition to the methods described above, there are other approaches to perform the

segmentation of each video repetition that use skeleton features and don’t use any prediction

of the periodicity.

A simple alternative to count and segment exercises, even though prone to errors, can be

to apply heuristics to the skeleton data. By using this method, it is avoided to create a deep

learning model and a dataset, it is only necessary to analyse the coordinates or calculate the

angles for the segments that connect the landmarks of interest in the exercise and define the

respective conditions [2].

Some methods examine the coordinates of the joints [36] and other approaches measure

the angles of the active joints for repetition counting [37] [57]. Figure 2.3 shows in a simplified

way some characteristic angles of the squat exercise that needs to be monitored so that it is

possible to identify and segment each repetition [62]. The angles indicated in Figure 2.3 can

be easily calculated from 2D pose landmarks.
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Figure 2.3: Representation of the Squat exercise angle parameters. Terminal states: A - Key

Pose Up; B - Key Pose Down. Angles: 1 - Trunk; 2 - Hip; 3 - Knee; 4 - Ankle. [62]

The terminal states (key poses Up and Down) of Figure 2.3 represent the most important

poses that the subject must perform during a repetition of the squat exercise. [16]

To recognize the characteristic poses of each exercise, KNN can be used as a classifier

because it is simple and easy to use and implement. This algorithm determines the class of

the object based on the closest samples from the training set [2] [3] [8]. This algorithm was

chosen since it is easy to add new data to the algorithm and it can be adapted to real-time

counting. This method is not as powerful as a deep learning model for classification, but it

works very well if we are working with a limited number of poses.

2.3 Performance Evaluation of Human Motion

Human motion consists of a combination of translation and rotating movements of each

joint in the body. Thus, when comparing human motion between two individuals, it is

possible to obtain the similarity of movement, which can be used to analyze and evaluate

the performance of a subject to perform a certain task [43]. The most challenging part is

comparing two movements with different speeds and variations [29].

Many real-world applications, such as speech recognition and activity recognition, involve

the collection of data over time, constituting a Time-Series [19] [40]. Thus, human motion
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analysis can be viewed as a time series problem, since both involve an ordered series of

observables. Time series analysis examines how the data are structurally dependent [50].

According to Li et al. [32], many consider RNN to be one the most effective technique for

time series prediction. In particular, LSTMs are often used in this regard because they are

able to capture long- and short-term temporal dependencies [9].

Sliding the time window is generally used to acquire time series prediction features.

However, the LSTM capacity to focus on subwindow features across multiple time steps

is limited. To overcome this issue, Li et al. [32] and Coskun et al. [12] proposed an

architecture of deep learning based on attentive LSTM for time series prediction and human

motion analysis, respectively. The attention mechanism allows it to create an embedding

that selectively focuses on the semantically descriptive parts of the input sequence.
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3 Proposed Method

This dissertation proposes a solution that monitors and provides feedback to the user’s

performance in real time. It relies on the visual perception of the user’s body based on the

motion of skeleton joints, without using any markers. It has the ability to analyze the user’s

performance recurring to deep learning techniques.

3.1 Approach Formulation

The steps for implementation are as follows:

1. Dataset Selection and Pre-processing;

2. 3D Human Pose Estimation with BlazePose;

3. Exercise Repetition Segmentation and Counting with KNN;

4. Performance Assessment using Attentive BiLSTM;

5. Validation and Testing of Implemented Algorithms;

6. Providing Feedback.

3.2 System Overview

The proposed automated system for exercise assessment is represented in Figure 3.1 and

takes as input a video of a subject performing physical exercises, converts them to skeleton

landmarks, evaluates them and outputs feedback. To achieve this, two main stages were

performed as follows:

The objective of the first stage is to segment and count the repetitions. Initially, we input

the frames It from an exercise video sequence, where It is the image input of the I th frame

with t = 1, 2, ..., N , and use MediaPipe BlazePose for 3D human pose estimation. We obtain
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a set of skeleton joints (P = P1, P2, ..., PN), each one with 33 landmarks. After that, we

fed the keypoints P to KNN model that compares the recurrent pose with a set of samples

of the target pose and segment and count the repetitions.

The second stage is responsible to evaluate the subject’s performance. First of all, we

need to pre-process each repetition of the skeleton joints P . Using Z-score, we did an outlier

removal according to the distribution of the length of the repetitions. Then, we add zero

padding in order to ensure each repetition has the same length and normalized the data.

We need to split the data into training (75%), validation (15%) and testing (15%). After

that the data X = (x1, x2, ..., xn) are fed into an Attentive BiLSTM. Batch normalization

is added between layers to avoid overfitting and to speed up model convergence, the binary

cross entropy is used as the loss function and the AdaGrad algorithm is used as the optimizer.

The output of this model will tell us if the exercise is well-performed or not, specifying the

error, and according to that we give feedback to the user.

More details about the system operation and the parameters chosen will be given in

chapter 4.

Figure 3.1: Overview of the proposed system architecture.

3.3 Dataset

The selection of informative samples is an important factor for the success and the training

speed of the network in deep learning [38]. Thus, the selected dataset was part of Ferreira

et al. [16], including 47 participants, performing five exercises (Squats, Burpees, Push-

Ups, Sit-Ups and Jumping Jacks). This dataset includes correctly and incorrectly executed

movements. A frontal camera perspective is used, with the shooting angle chosen so that

most of the joints of the whole body are visible, making the performance of the pose estimator
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more reliable. The exercise area only covers one scenario, which means that the acquisition

conditions are similar, such as lighting, background, and clutter. It is noteworthy that these

factors are not significant for the results as long as they do not affect skeleton detection.

Since the selected dataset only presents one camera perspective, it is necessary to ensure

that the subject is under the same perspective so that the system works properly, as shown

in Figure 3.2.

Figure 3.2: An illustrative example of an image from the dataset for the expected point of

view of the subject who will use the system [16].

All videos have a label in the temporal and categorical domains by an expert physiologist,

which means that it is possible to have a ground truth in the segmentation of repetitions.

In addition, it also presents ground truth to evaluate user performance as it presents a set

of categorical errors associated with a frame range.

Table 3.1 shows the distribution of participants for each exercise, with the squat exercise

having the highest number of participants.
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Exercise Participants Number

Squats 45

Jumping Jacks 42

Burpees 37

Push-Ups 32

Sit-Ups 26

Table 3.1: Subjects number per exercise.

3.4 Human Pose Estimation - MediaPipe BlazePose

The developed models for the segmentation and evaluation of the exercises present skeleton

keypoints as input instead of RGB video frames. Therefore, for the human pose estimation

from CrossFit videos, BlazePose was implemented through MediaPipe Pose framework since

it is fast, light, accurate, simple to implement and achieves performance in real-time. Given

a video or a sequence of images of a selected exercise, for each video frame the BlazePose

system generates 3D coordinates of 33 joints of the human body, as shown before in Figure

2.2.

HPE using MediaPipe BlazePose includes a two-step detector-tracker. With the detector,

it initially locates the subject’s Region Of Interest (ROI) in the frame, while the tracker

predicts the subject’s pose landmarks. Since the input data are video sequences, the detector

is invoked only on the first frame or when the tracker can no longer identify the pose in the

frame. This process is fast and efficient since the detection is computationally expensive

but compensated by the speed of tracking. Therefore, this model is specifically designed for

real-time pose estimation [2].

3.5 Exercise Repetition Segmentation and Counting

3.5.1 KNN algorithm

KNN is a simple, non-parametric supervised learning algorithm that is primarily used for

classification and regression. This algorithm assumes that similar samples are close to each

other and therefore belong to the same class [15] [44].

To implement a classifier according to this algorithm we need a sample dataset with
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respective labels and K value. The classification process starts by computing the distance

between the current data to be tested and the training sample data. Then it is necessary to

select the K nearest samples in the training dataset. To achieve this, the distance between

the data input and the sample data is computed. The K samples that present the smallest

distance value are the selected neighbors. In this way, to determine the class of the current

data to be tested, it is verified which is the majority class in the K nearest samples [15] [44].

This entire classifier procedure is outlined in Figure 3.3.

Figure 3.3: Workflow of KNN algorithm. Adapted from [15].

There are several techniques for calculating the distance between samples, however the

most commonly used is the Euclidean distance, which represents the shortest distance be-

tween two points, according to Equation (3.1).

d (x, y) =

√√√√ n∑
i=1

(xi − yi)
2 (3.1)

3.6 Performance Evaluation

3.6.1 RNN, LSTM and BiLSTM

RNN

Recurrent Neural Networks (RNN) is a neural network that allows information to remain

throughout the network. This happens because this network presents recurrent connections

that create a memory or state to the network so that it learns and takes advantage of

the ordering of observations in the input sequences. Thus, RNN are applied to lists and

sequential data, including time series [10].

The basic principle in RNN is that the input data and some information from the previous

step are used to calculate the output and to select the information for the next step. This

means that RNN allows us to relate recent information from previous steps to the current

task. However, the range of contextual information that standard RNN can access is quite

limited, and sometimes more context is needed where the relevant information is at a more
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distant point. In fact, RNN has a problem in updating weights, which influences a given

input in the hidden layer and, therefore, in the output of the network, which can lead to

decays or blows up exponentially (vanishing and exploding gradients). Therefore, LSTMs

are used to combat this drawback, as their architecture is specifically designed to avoid

long-term dependencies [10] [20].

LSTM

Long Short-Term Memory (LSTM) is a highly used RNN with better performance than the

standard version and has many applications, such as speech recognition, language modeling

and translation [10].

An LSTM layer consists of a set of recurrently connected blocks, called the memory cells

that include weights and gates [10] [20] [52].

A generic structure of a LSTM is presented in Figure 3.4 [52].

Figure 3.4: Generic architecture of the LSTM memory cell. Adapted from [52].

As can be seen from Figure 3.4, the cell state is an essential component of LSTM because

it runs the entire chain, can have information removed or added, carefully regulated by gates.

Gates consist of weighted functions that further control the information flow in the memory

cell. An LSTM has three gates [10] [52] [53]:

• Forget Gate: decides how much information the current memory cell will receive and

discard from the cell state;
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• Update Input Gate: decides how much information from the input to update in the

memory cell;

• Output Gate: decides what information to output based on the memory cell.

According to Figure 3.4 and considering X = (x1, x2, x3, ..., xn) the input sequence of

length n, the behavior of all gates is described by Equations (3.2) to (3.7).

fk = σ(Wfx [xk],Wfh [hk−1], bf ) (3.2)

ik = σ(Wix [xk],Wih [hk−1], bi) (3.3)

C̃k = tanh(Wcx [xk],Wch [hk−1], bc) (3.4)

Ck = fk ∗ Ck−1 + ik ∗ C̃k (3.5)

ok = σ(Wox [xk],Woh [hk−1], bo) (3.6)

hk = tanh(Ck) ∗ ok (3.7)

where k is the current iteration, hk−1 is the previous hidden state and hk is the current

hidden state. The indices i, f , o and c are related to the input, forget and output gates and

the memory, respectively, Wfx , Wfh , Wix , Wih , Wcx , Wch , Wox and Woh are weight matrices,

bf , bi, bc and bo are the bias values and fk, ik, ok are the forget, update input and output

gates. C̃k is a vector of the candidate values that will be added into the memory cell and Ck

is the current vector of the memory cell [52] [53].

BiLSTM

Bidirectional Long Short-Term Memory (BiLSTM) aims to extract as much useful informa-

tion as is available from the input sequence by traversing the input time steps in both the

forward and backward directions. Therefore, Figure 3.5 shows that BiLSTM adds one more

LSTM layer, so that now there are two layers side by side, giving the original input sequence

as input to the first layer and reverses the direction of information flow to the second layer

[10].
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Figure 3.5: BiLSTM. Adapted from [12].

3.6.2 Self-attention Mechanism

As mentioned before, the human pose can be represented by skeleton landmarks. However,

human motion sequences include several poses that do not contribute to describing and

evaluating human motion [12] [35].

Therefore, the Self-attention mechanism [35] [12] [18] can be used to address this issue

because it relates different positions of a sequence to compute a representation of it. Specifi-

cally, the proposed self-attention mechanism allows it to extract the most informative aspects

of the human motion.

The objective is to assign a score to each pose in a movement sequence to know which

poses are more informative [35] [18].

This mechanism takes the LSTM hidden states S as input and outputs a vector of weights

A (annotation matrix), according to Equation (3.8).

A = −log(Ws2tanh(Ws1S
T )) (3.8)

where S = s1, s2, ..., sn are the hidden states with size n-by-2u, u is the hidden unit

number for each LSTM, Ws1 is the weight matrix with shape d-by-2u, d is a hyperparameter

that determines the weight matrices size, Ws2 is a vector of parameters with size r-by-d and

r is the time steps to pay attention to from the sequence.

After that, we compute the sum up the LSTM hidden states S according to the weight

provided by A to get a matrix representation M of the input sequence, with size r-by-2u:

M = AS (3.9)
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4 Implementation

This chapter describes all details of the implementation of the developed system, including

KNN algorithm for exercise repetition segmentation and counting and Attentive BiLSTM

for posture and performance evaluation.

4.1 Exercise Repetition Segmentation and Counting

Each video sequence has a set of repetitions, so we use a KNN algorithm to segment them

to be able to assess the subject’s posture and performance.

4.1.1 KNN algorithm

The KNN algorithm is used to create a functional pose classifier and recognize the poses to

subsequently segment the repetitions. This algorithm is effective as it determines the object

class based on the closest samples from the training set. In this method, the input is a set

of skeleton landmarks estimated with MediaPipe.

The Key Poses of the exercises are defined according to Table 4.1 and one of them

is selected to be the target pose, the pose that defines the limits of the repetition. The

outputs of this first step consist of a vector indicating the frames that limit each repetition,

a graph that demonstrates the confidence per frame and a video with the skeleton joints and

connections and repetitions count.

To count and segment the repetitions, the algorithm monitors the confidence of a target

pose class. Confidence corresponds to the number of samples from the target pose, from the

K nearest samples.
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To implement the KNN classifier, the following steps had to be performed.

1. Select Key Pose images samples and estimate their pose:

Image samples of each exercise were selected corresponding to the poses defined accord-

ing to Table 4.1. It is important to sample different subjects and exercise variations.

Later, the performance of the method using images of only one subject (instructor) is

compared with the use of images of several subjects. For each sample, pose detection

is performed with MediaPipe BlazePose and saved in a CSV file.

2. Perform the classification:

In the first place, the euclidean distance is used as a distance metric to sort the samples.

After that, we find the K pose samples with the lowest distance. The classification of

the pose then determines how many neighbors of each key pose are present in these

samples. That allows computing the confidence, which corresponds to the number of

neighbors of the target pose.

3. Repetition segmentation and counting:

To illustrate the behavior of the algorithm, consider the Squat exercise (Figure 2.3),

with the Key poses Up and Down, with Up being the target pose, with two threshold

values (HighThreshold and LowThreshold).

To count a new repetition, the subject must go through both Key Poses (Up and

Down). Considering these two thresholds (HighThreshold and LowThreshold), it is

determined that the subject must pass through the two key positions to complete an

exercise cycle. It is necessary to go below the LowThreshold value to reach the Down

pose and then exceed the HighThreshold value to reach the Up pose.The repetition

counter increases and the limit of the exercise is saved when the confidence immediately

exceeds the HighThreshold.
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Exercise Key Poses

Squats 1: Standing upright position; 2: Squat position: bent knees and hips

aligned below them.

Burpees 1: Standing upright position; 2: Squat with hands at the floor; 3: Push-

up position: down; 4: Stand and jump with hands above the head

Push-Ups 1: Plank position (full elbow extension); 2: Down position: chest touch-

ing the floor with bent elbows.

Sit-Ups 1: Sitting position with feet soles together; 2: Lay down with the hands

touching the floor above the head.

Jumping

Jacks

1: Standing upright position; 2: Feet apart (shoulder width) and hands

touch above the head.

Table 4.1: Key Poses per exercise [16].

Equation (4.1) shows how accuracy was calculated to evaluate the performance of the

repeat segmentation algorithm.

Acc =
TP

TP + FP + FN

(4.1)

Where TP are true positives, which includes the limits predicted that correspond to a

real limit, FP are false positives, which includes the limits predicted that do not correspond

to a real limit or a limit repeated and FN are false negatives, which includes the real limits

that were not predicted.

It is worth noting that when one pose is not detected, we simply move on to the next. For

a real-world application, a variable would be needed to control the number of consecutive

frames in which the pose was not detected so that a warning message would appear for the

subject.
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4.2 Performance Evaluation with Attentive LSTM

To evaluate the users’ posture and performance, it is necessary to pre-process each repetition.

4.2.1 Dataset Pre-processing and Distribution

Repetitions per Exercise

The input of the Attentive BiLSTM, in the case of binary classification, includes the skele-

ton landmarks of each repetition, with the respective binary target (0 for a well-performed

repetition and 1 for an ill-performed repetition). The number of repetitions per exercise

is shown in Table 4.2, with the Jumping Jacks exercise having the most samples and the

Burpees exercise having the fewest samples. Figure 4.1 shows the percentage of repetitions

of each exercise, divided by well and ill-performed.

Exercise Repetitions number

Jumping Jacks 1180

Squats 897

Push-Ups 516

Sit-Ups 337

Burpees 293

Table 4.2: Repetitions per exercise.

Figure 4.1: Pie chart that shows in the outer circle the percentage of repetitions per exercise

and in the inner circle shows the ill-performed (red) and well-performed (green).
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For multi-class classification, the most common errors made by participants performing

CrossFit exercises are defined in Table 4.3, according to an expert physiologist [16].

Exercise Errors List

Squats 1. Excessive feet rotation; 2. Incomplete hip flexion; 3. Knee ab-

duction; 4. Incomplete hip extension; 5. Excessively flexed trunk.

Burpees 1. Jumping with uncoordinated feet; 2. Chest not touching the

floor; 3. Not jumping at all; 4. Jumping without hip extension; 5.

Hands below head.

Push-Ups 1. Chest not touching the floor; 2. No plank position; 3. Resting

with chest touching the floor; 4. Touching with knees at the floor;

5. Elbows not fully extended

Sit-Ups 1. Not laying down completely; 2. Hands not touching ground

above head; 3. Not touching tiptoe or ground; 4. Closing lower

limbs.

Jumping Jacks 1. Movements with different rhythms; 2. Not fully closing the

legs or not touching the hands; 3. Asynchronous motion: limbs

movement in opposite directions. 4. Knee abduction.

Table 4.3: Proposed exercises and corresponding most common errors [16].

Pre-Processing

The input data were pre-processed to improve the training and efficiency of the deep learning

model and to certify that all repetitions have the same size.

The length distribution of each repetition of Jumping Jacks of the original dataset is

shown in Figure 4.2. Through this figure is visible the big difference between the longest

repetition (110 frames) and the shortest one (11 frames).
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Figure 4.2: Length distribution of each repetition of Jumping Jacks of the original dataset.

Assuming that extremely short or long sequences are low-quality samples, we did an

outlier removal using Z-score, with Z = 2.5. This means that the repetitions that are more

than two and a half standard deviations from the mean are discarded which results in the

distribution shown in Figure 4.3.

Figure 4.3: Distribution of lengths per repetition of Jumping Jacks after outlier removal

with Z-Score.

After that, zero padding was used to certify that each repetition has the same length

(length of the longest repetition) and then the values were normalized in range of 0 and 1.

Train, Validation and Test Split

To avoid the model overfitting and to accurately evaluate the model, it is essential to split

the data into training, validation, and testing samples. So, the partition of the dataset has

been 70%, 15%, 15% for the training, validation and testing, respectively.

4.2.2 BiLSTM with Self-Attentive Mechanism

In the second stage of the pipeline, the pre-processed repetitions were fed into the BiLSTM.

The attentive BiLSTM method, developed with the TensorFlow framework, is derived from
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the implementation of Coskun et al. [12] and was implemented by another member of the

team.

So, given n time steps of a motion sequence X=x1, x2, ..., xn, the output S = (s1, s2, ...,

sn) of the BiLSTM is computed. The BiLSTM is followed by the Batch Normalization (BN)

and the dropout. The output of this layer is forwarded to the attention layer, which is

followed by the structure: Fully Connected Layer (FC)(320,), dropout, BN, FC(320), BN,

FC(final_embedding_size), BN, l2 Norm, FC(1), where FC(m) is a fully connected layer

with m hidden units. We use leaky ReLU as activation function for every FC.

About the self-attention mechanism, Ws1 and Ws2 are the weights with shapes d-by-

2u and r-by-d, respectively, where u is the hidden unit number for each LSTM, d is a

hyperparameter that determines the weight matrices size and r is the time steps to pay

attention to from the sequence. These weights are initialized with the Glorot Uniform

distribution.

The loss function used was the cross entropy loss which is the most commonly used for

classification problems. The default dropout value (p=0.5) was used to avoid overfitting

[6]. BN is added between layers also to prevent overfitting and to speed up the model

convergence [23]. The optimizer used was AdaGrad with the default initial learning rate

equal to 0.001. The activation function used was the Sigmoid for binary classification and

Softmax for multiclass classification.

Best Combination of Hyper-Parameters

In order to determining the best combination of hyperparameters that maximizes the

model performance, the following hyperparameters were used and tested:

For hidden_units we tested with 32, 64 and 128, for r we tested with 3, 5 and 10 (can’t

be much higher than this, because some repetitions length are really small), d was tested

for 5, 10 and 15, final_embedding_size was tested with 16, 32, 64, 128, epochs was tested

with 300, 500, 700 and 1000, batch_size for 32 and 64, and optimizer for SGD (LR = 0.01),

Adam (LR = 0.001), AdaGrad (LR = 0.001), AdaGrad (LR = 0.002) and RMSProp (LR =

0.001), where LR is learning rate.

Evaluation metrics:

Accuracy, cross entropy loss and F1-score were the evaluation metrics used. The most

relevant for this case is the F1-score because the main goal is the recovery and improvement

of patients’ health and false positives make this task harder.
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5 Results and Discussion

To evaluate the proposed solution, a set of experiments were performed. The present chapter

is dedicated to the evaluation of these experiments and the discussion of the results.

5.1 Human Pose Estimation

MediaPipe with BlazePose was used to perform the human pose estimation, obtaining 3D

landmarks, as we can see in Figure 5.1. This estimation was crucial to acquire the best

representation of the exercises in order to segment and evaluate them properly.

(a) (b) (c)

(d) (e) (f)

Figure 5.1: Landmarks estimated with MediaPipe for Squats and Sit-Ups. (a) anb (d) are

3D landmarks normalized by frame width and height. (b), (c), (e) and (f) are 3D landmarks

with pose center as point between hips.
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From Figure 5.1 we can see that this method is effective, but like other estimators of

human posture, it has a drawback in that it sometimes does not predict all landmarks

because some parts are occluded, which means that we "lose" some information. Through

the mean visibility of landmarks per exercise sequence, these occlusions were verified mostly

on Burpees and Push-Ups as we can see from Table 5.1.

Exercise Visibility (%)

Jumping Jacks 98.69

Squats 96.90

Sit-Ups 91.32

Burpees 82.51

Push-Ups 80.92

Table 5.1: Visibility per exercise performed by subject 2.

It is worth noting that by using skeletal data instead of image sequences, we had a great

benefit in terms of data compression, obtaining a skeletal dataset of 242 MB instead of 31.5

GB RGB corresponding to the original image sequences.

5.2 Exercise Repetition Segmentation and Counting

For segmentation, the KNN algorithm was used, testing different values of K, HighThreshold

and LowThreshold, being aware that the K value cannot exceed the number of samples of

each key pose for each exercise.

This method was tested initially with samples of key poses of only one subject in order

to find out if it is a feasible method with data from only one certified trainee and then

with a set of images of more subjects. To evaluate the results, we save a video showing the

repetitions number and the skeleton joints and connections, plot the confidence per frame

and calculate the accuracy according to Equation (4.1). A repetition is considered correct if

the value predicted is in a given time window of 15 past frames.
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Figure 5.2: Plot of the confidence per frame of subject 45 performing Squats. Blue line -

Confidence; Green line - High Threshold (= 24); Red Line - Low Threshold (= 6).

Figure 5.3: Frame of the output video showing the skeleton joints and connections and the

repetitions number of subject 45 performing Squats.

For the Sit-Ups the KNN classifier was tested with a set of 5 subjects individually (because

it has the least participants number), whereas for the other exercises, a set of 10 subjects was

used. The results for the Squats can be found in Table 5.2, where it can be seen that using

samples from different subjects, the results can vary between them by about 5 percentage

points (pp).
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S1 S2 S3 S4 S5 S6 S7 S8 S9 S10

Accuracy 74.02 70.90 74.54 73.84 75.43 75.55 73.59 72.59 72.76 73.00

Table 5.2: Segmentation accuracy for Squats using samples of 10 subjects individually, with

K = 20 and Thresholds of 19 and 13.

As previously mentioned, for the five exercises, the use of samples from different subjects

was tested individually and the best results are recorded in Tables 5.3 to 5.7. After an

empirical study, it was found that the K and Threshold values selected, among the others

that were tested, proved to have the best results.

• For Squats, the best values were obtained using samples from subject 6, K = 25 and

Thresholds 24 and 10, with a mean accuracy of 84.99%.

• For Burpees, the best values were obtained using samples from subject 2, K = 25 and

Thresholds 24 and 6, with a mean accuracy of 82.61%. (key poses 1 and 3)

• For Push-Ups, the best values were obtained using samples from subject 5, K = 25

and Thresholds 24 and 6, with a mean accuracy of 80.61%.

• For Sit-Ups, the best values were obtained using samples from subject 1, K = 25 and

Thresholds 24 and 15, with a mean accuracy of 86.74%.

• For Jumping Jacks, the best values were obtained using samples from subject 4, K =

25 and Thresholds 24 and 6, with a mean accuracy of 93.97%.

Burpees and Push-Ups are the exercises with more occlusions and have the lower mean

accuracy, while Jumping Jacks have the highest mean accuracy and higher landmarks visi-

bility.

For the five exercises, we also tested the use of samples from different subjects and the

best results are recorded in Tables 5.8 to 5.12, using K = 25 and Thresholds 24 and 6.

• For Squats, the best values were obtained using samples from subjects 3, 4 and 6 with

a mean accuracy of 81.89%.

• For Burpees, the best values were obtained using samples from subjects 2, 12 and 14

with a mean accuracy of 84.19% (key poses 1 and 3).
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• For Push-Ups, the best values were obtained using samples from subjects 5, 6 and 10

with a mean accuracy of 79.29%.

• For Sit-Ups, the best values were obtained using samples from subjects 1 and 5 with

a mean accuracy of 87.34%.

• For Jumping Jacks, the best values were obtained using samples from subjects 2, 4

and 5 with a mean accuracy of 93.67%.

Tables 5.3 through 5.12 highlight critical results that will be discussed individually. It

is possible to denote that for both cases where samples from only one subject and different

subjects are used, the lower results are from the same subjects.

The algorithm had difficulty predicting the repetitions for subject 17 for Push-Ups and

subject 27 for Sit-Ups due to the defined LowThreshold and HighThreshold, respectively.

This can be seen in Figures 5.4 and 5.5, where the trouble areas are circled in orange.

Figure 5.4: Plot of the confidence per frame of subject 17 performing Push-Ups. Blue line -

Confidence; Green line - HighThreshold; Red Line - LowThreshold

Figure 5.5: Plot of the confidence per frame of subject 27 performing Sit-Ups. Blue line -

Confidence; Green line - HighThreshold; Red Line - LowThreshold

For the remaining cases, i.e., subject 27 for Squats, subjects 11 and 18 for Burpees and
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subject 28 for Push-Ups, it was determined from the predicted limits and the output video

that the counts are performed too early, i.e., the upper limit is reached earlier than expected.

It is also verified that the use of samples from different subjects did not significantly

improve the results, so it is preferable to use samples from only one subject to perform the

segmentation.

The use of more key poses was investigated to find out if it would influence the results.

After comparing the use of two and four key poses for Burpees, with K = 25 and Thresholds

24 and 10, we obtained 79.46% and 74.48%, respectively, concluding that the addition of

intermediate key poses is not justified.

Since the examples used for training and evaluation of the KNN algorithm were all from

the same perspective, we performed an additional experiment using an ordinary RGB camera

with a perspective variation of about 45º to test the effectiveness of the algorithm in counting.

It was found that the algorithm correctly counts Jumping Jacks in this perspective.
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5.3 Performance Evaluation

The performance evaluation of the quality of the exercises performed by the user was tested

as a binary and multiclass classification problem with skeletal joints obtained with Medi-

aPipe using repetition segmentation with Ground Truth and with KNN. For all models,

we use learning curves to monitor learning performance. For the following results, the best

hyperparameters are selected to maximize the model’s performance.

Binary Classification - Segmentation with ground truth

Considering both training time and the F1-Score, the model with best results was imple-

mented with epochs = 500, hidden_units = 128, r = 5, d = 10, final_embedding_size =

64, batch_size = 32 and optimizer = AdaGrad and initial_learning_rate = 0.001. In the

test, we obtained a cross entropy of 0.1425, binary accuracy of 0.9521 and F1-Score of 0.9418.

The training and validation learning curves are represented in Figure 5.6. The training took

about 48 minutes.

Figure 5.6: Training and Validation curve of Loss, Accuracy and F1-score for binary classi-

fication with segmentation with ground truth.

Using the same parameters, but without the self-attention mechanism, we reached a cross

entropy of 0.1897, binary accuracy of 0.9177 and F1-Score of 0.8933. The training took about

1h15 and the training and validation learning curves are represented in Figure 5.7. Thus,

the attention mechanism improves the results slightly and helps to reduce the training time.
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Figure 5.7: Training and Validation curve of Loss, Accuracy and F1-score for binary classi-

fication with segmentation with ground truth. without attention mechanism.

The previous results show that adding the self-attention mechanism reduces the training

time and improves the performance of the model.

Binary Classification - Segmentation with KNN

For binary classification, with repetitions segmented with KNN, we use epochs = 700,

hidden_units = 64, r = 5, d = 10, final_embedding_size = 64, batch_size = 32 and

optimizer = AdaGrad and initial_learning_rate = 0.001. In the test, we obtained a

cross entropy of 0.1795, binary accuracy of 0.9347 and F1-Score of 0.9043. The training and

validation learning curves are represented in Figure 5.8. The training took about 1h10.

Figure 5.8: Training and Validation curve of Loss, Accuracy and F1-score for binary classi-

fication with Segmentation with KNN.

As expected, the results with repetitions segmented with KNN are slightly lower than
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those from segmentation using ground truth.

Binary Classification - Training with Segmentation with ground truth and Test-

ing with Segmentation with KNN

In order to simulate a real-world behavior, we train the model with segmentation with ground

truth and test with segmentation with KNN. We use epochs = 600, hidden_units = 128,

r = 5, d = 10, final_embedding_size = 64, batch_size = 32 and optimizer = AdaGrad

and initial_learning_rate = 0.001. In the test, we achieved a cross-entropy loss of 0.8907,

accuracy of 0.7309 and F1-Score of 0.6629. The training and validation learning curves are

represented in Figure 5.10.

Figure 5.9: Training curve of Loss, Accuracy and F1-score for binary classification, trained

with ground truth segmentation and tested with KNN segmentation.

Comparing the F1-Score obtained (0.6629) with the best F1-Score (0.9418) we can see a

variation of 25 percentage points.

Multi-class Classification

For multi-class classification, with repetitions segmented with ground truth, we use epochs =

1000, hidden_units = 64, r = 5, d = 10, final_embedding_size = 64, batch_size = 32

and optimizer = AdaGrad and initial_learning_rate = 0.001. The training took about

31 minutes. In the test, we achieved a cross-entropy loss of 0.3293 and accuracy of 0.8951.

The training and validation learning curves are represented in Figure 5.10.
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Figure 5.10: Training and Validation curves of Loss and Accuracy for multi-class classifica-

tion.

The results with multi-class classification are slightly lower than in binary classification

because in this case, it’s more notorious the unbalanced data. This model is enabled to

predict only one error per exercise.

Overall, the plots obtained (Figure 5.6 to 5.10) show models well-fitted because the

training and validation optimization learning curves (loss curves) decrease and performance

learning curves (accuracy and F1-Score curves) increase to a point of stability.
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6 Conclusions and Future Perspectives

In this chapter, some conclusions are drawn about the work done, the merits of the proposed

methods are pointed out, and future research directions are suggested.

6.1 Work Accomplished and Conclusions

The aim of this dissertation was to develop a system capable of evaluating and providing

feedback to the user when performing certain exercises, in order to motivate the user and

achieve a fast and effective recovery. This system can bring benefits at environmental and

economic sustainability levels if applied to rehabilitation patients, reducing the trips to

rehabilitation clinics and health costs.

The proposed system estimates the pose of the user with MediaPipe, segment and count

the repetitions with KNN, evaluate each repetition with Attentive BiLSTM allowing to

understand if the user is performing the exercises properly.

Using MediaPipe to estimate human pose allows for a more practical, affordable, and

simple system, as it only requires the use of an ordinary RGB camera, rather than more

complex and intrusive setups, such as using markers over some key joints on the user’s body.

About the KNN algorithm, it has advantages since it evaluates each frame immediately

and it is easy to implement. The addition of new data is a simple task and the only param-

eters necessary to monitor are K and Thresholds.

For the evaluation of each repetition, we use an Attentive BiLSTM algorithm capable

of binary and multi-class classification. This algorithm, trained within a short time period,

was efficient in performance evaluation.
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6.2 Future Work

After the conclusion of this dissertation, some future work is identified, highlighting some

improvements:

1. Create a wider dataset with more perspectives and exercise variations and apply other

kinds of exercises to the system (specifically rehabilitation exercises), including both

repetition exercises and isometric exercises, and according to each exercise count or

measure the time of each repetition;

2. The approach developed assumes that the exercise performed by the user is the one

indicated by the system. However, it would also be safer to create a detection process

to confirm that the user is performing the indicated exercise prior to segmentation and

evaluation;

3. Since the attention mechanism of the BiLSTM can extract key poses for performance

assessment, it can potentially be used for repetition segmentation.
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