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Abstract

Every year, wildfires cause significant losses and destruction around the world. In
order to aid in their management and mitigate their impact, efforts have been directed
towards developing decision support systems that can predict wildfire propagation. In a
real wildfire event, these systems provide the authorities with information about the fire
propagation in the near future, thus allowing them to make better decisions. Wildfire
spread prediction systems are based on fire propagation models, from which the most
used and accepted model is the Rothermel model. However, given the complexity of the
wildfire phenomena and the uncertainty in the definition of some of its input parameter
values, the Rothermel model can produce misleading results of fire propagation.

In this work, three metaheuristic algorithms, genetic algorithm (GA), differential
evolution (DE) and simulated annealing (SA), have been implemented for calibration of
the Rothermel model’s input parameters. First, the one-dimensional Rothermel model was
calibrated using the three metaheuristics on 37 datasets containing data from controlled
experimental fires. The calibration results were compared against the predictions provided
by the non-calibrated Rothermel model and the three metaheuristics were compared in
terms of their calibration and time performances. Moreover, a two-stage methodology
based on the calibration of the fire spread model and the use of the calibrated parameters for
obtaining improved predictions was tested. For this, a two-dimensional fire propagation
model based on the Rothermel model was calibrated using the three metaheuristic
algorithms. Afterward, the calibration results were used for predicting the fire propagation
for a future time instant. Both the calibration and the prediction stages used data from a
real controlled prescribed fire and the methodology was compared against the use of the
fire propagation model without any calibration.

The results of the calibration of both the one-dimensional Rothermel model and
the two-dimensional Rothermel-based fire propagation model showed that differential
evolution is a very suitable algorithm to be used in the wildfire spread prediction area,
which is predominantly dominated by genetic algorithms. Additionally, the fire spread
predictions were significantly improved by the calibration, with reductions in prediction
error of more than 80%, in relation the fire spread predictions performed without any
previous calibration.

The work developed in this thesis confirmed the quality of genetic algorithms as a
calibration algorithm for the Rothermel model and showed the potential of the differ-
ential evolution as a very suitable alternative as a calibration algorithm. Moreover, the
importance of the two-stage methodology was proven and the fire spread predictions
significantly improved.

Keywords: wildfire spread prediction, genetic algorithm, differential evolution, simulated
annealing, model calibration.
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Resumo

Todos os anos, os incêndios rurais causam inúmeras perdas e destruição em todo o
mundo. De forma a auxiliar na sua gestão e a mitigar o seu impacto, têm sido direcionados
recursos para o desenvolvimento de sistemas de apoio à decisão que tenham a capacidade
de prever a propagação dos incêndios. Durante uma ocorrência real, estes sistemas
fornecem informações acerca da propagação do incêndio rural, num horizonte temporal
próximo, permitindo assim que as autoridades responsáveis tomem melhores decisões no
combate. Os sistemas de predição da propagação de incêndios são baseados em modelos de
propagação de fogo, dos quais o mais utilizado e reconhecido é o modelo de Rothermel. No
entanto, dada a complexidade dos incêndios rurais e a incerteza associada com a definição
de alguns dos seus parâmetros de entrada, o modelo de Rothermel pode gerar resultados
de propagação de fogo pouco exatos.

O trabalho desenvolvido consistiu na implementação de três metaheuŕısticas - algoritmo
genético (GA), evolução diferencial (DE) e recozimento simulado (SA) - para efetuar a
calibração de parâmetros de entrada do modelo de Rothermel. Inicialmente, o modelo
de Rothermel foi calibrado pelas três metaheuŕısticas utilizando 37 datasets de fogos
controlados. Os resultados desta calibração foram comparados com as predições resultantes
do modelo de Rothermel não calibrado e os tempos de calibração necessários foram obtidos,
o que permitiu comparar o desempenho das três metaheuŕısticas. Posteriormente, foi
testada uma metodologia baseada na calibração do modelo de propagação de fogo e
consequente utilização dos parâmetros calibrados para obter predições futuras. Foi
utilizado um modelo de propagação a duas dimensões baseado no modelo de Rothermel,
tendo este sido calibrado pelas três metaheuŕısticas. De seguida, os resultados da calibração
foram utilizados para obter predições da propagação do fogo para instantes futuros. As
fases de calibração e predição foram realizadas utilizando dados de um incêndio controlado
e os resultados obtidos foram comparados com as predições provenientes do modelo não
calibrado.

Os resultados das calibrações realizadas demonstraram que a evolução diferencial é um
algoritmo bastante adequado para a área da predição da propagação de incêndios, área
onde predominam os algoritmos genéticos. Adicionalmente, as predições da propagação do
fogo melhoraram significativamente quando precedidas de calibração, tendo-se verificado
reduções no erro de predição de mais de 80% em relação às predições obtidas sem ser
realizada calibração.

O trabalho desenvolvido nesta tese comprovou a competência do algoritmo genético
como algoritmo de calibração do modelo de Rothermel e demonstrou o potencial do
algoritmo evolução diferencial como um algoritmo de calibração alternativo. Além disto, a
importância da metodologia baseada na calibração e predição ficou também patente pelas
melhorias significativas verificadas nas consequentes predições da propagação de fogo.

Palavras-chave: predição de propagação de incêndios, algoritmo genético, evolução
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Chapter 1

Introduction

1.1 Context and Motivation

This thesis was carried out in the scope of a research fellowship in the Institute of
Systems and Robotics (ISR) related to the project “IMFire - Intelligent Management for
Wildfires”. The goal of the “IMFire” project is to develop a web-based platform dedicated
to civil protection for the management of wildfires. The “IMFire” platform covers three
important targets: prevention of wildfire occurrences, planning based on prediction of
wildfire propagation, and the improvement of the effectiveness of firefighting strategies.
The work developed for this thesis fits in the second target, the prediction of wildfire
propagation.

Every year, wildfires provoke significant losses and devastation throughout the world.
According to the latest European Commission’s annual report on wildfires, which is for
the year 2020, fires over 30 ha were observed in 39 countries from Europe, the Middle
East, and North Africa [1, 2, 3]. These wildfires have resulted in a total burnt area of
1, 075, 145 ha for 2020, which is approximately 35% larger than the area registered in 2019.
Furthermore, in a 2022 report published by the United Nations Environment Programme,
it is estimated that the probability of catastrophic wildfire events will increase by a
factor of 1.57, by the end of the century [4]. Furthermore, wildfires affect ecosystems by
destroying natural habitats, resources, and wildlife. They are also responsible for fatalities,
injuries, health problems, and destruction of human infrastructures. Consequently, these
problems result in a huge economic impact [5].

It is therefore crucial to assign resources to wildfire investigation and management.
As stated before, this work will focus on the prediction of wildfire propagation. Wildfire
spread prediction has tremendous importance because it allows authorities to identify the
areas affected by the wildfire in advance, and take appropriate measures based on that
information.

1.2 Problem formulation

Several mathematical models have been developed for understanding fire behavior [6].
Generally, these models consist of sets of equations which result in numerical solutions
of certain variables (e.g., linear velocity of the fire, height of the flame) that provide
insight on the evolution of the fire in space and time. According to [6], the most used and

1



Chapter 1. Introduction 2

accepted model of fire1 spread is the Rothermel model [7], especially in Mediterranean
European countries [8]. Additionally, the Rothermel model is at the core of some of the
most cited fire spread simulators2 such as FARSITE [9], FIRESTATION [10], and fireLib
[11]. It was an early-defined project constraint that the work developed should be focused
only on the Rothermel fire spread model.

The Rothermel model consists of a set of equations which leads to a final equation that
calculates the rate of spread R of a fire front - the rate of spread R is equivalent to the value
of the linear velocity of the fire front. For calculating the rate of spread, the model uses a
set of input parameters related to the fuel, terrain and atmospheric conditions from the
location of the fire. Additionally, fire simulators such as FARSITE [9] and FIRESTATION
[10] implement the Rothermel model in a more advanced and also practical way, by using
a raster approach. Simulators such as these are very important because of their graphical
components, which allow for a visual representation of the fire propagation. However,
despite being the “most widespread and practical mathematical model to date” [6], the
Rothermel model can produce inexact results. According to [12], the three main causes
for divergence between real fire propagation and fire model propagation predictions are
the following: the model’s lack of applicability to the scenario at hand, the model’s
intrinsic lack of prediction quality, and the inaccuracy in the estimation of the input
parameter’s values. Moreover, according to [13], even if a perfect mathematical model for
fire propagation prediction existed, the uncertainties associated with spatial and temporal
variations of fuels, topography and weather conditions - which generate poor estimations
of the input parameter’s values - would result in erroneous fire behavior predictions.

Considering the the above information and the facts described in Section 1.1, it
becomes well established that the inaccuracy associated with the Rothermel model’s
input parameters is an important problem. Moreover, metaheuristic algorithms such as
Genetic Algorithms (GA), Ant Colony Optimization (ACO), Simulated Annealing (SA)
and Particle Swarm Optimization (PSO) have proven their effectiveness for many different
optimization/calibration problems [14, 15, 16, 17]. In this way, to improve the quality of
wildfire spread predictions, methodologies based on metaheuristic algorithms should be
studied [18, 19, 20].

1.3 Objectives and main contributions

The objective of this work is to improve accuracy of the fire propagation prediction by
calibrating the Rothermel model’s input parameters.

The main contributions of this thesis were:

• A literature review of wildfire spread prediction calibration based on genetic al-
gorithms (Chapter 2). The vast majority of the works found for wildfire spread
prediction calibration use genetic algorithms for calibrating the Rothermel model.
Hence, the search process and literature review are focused on GA-based works.

1The term “fire” will be used throughout this thesis in certain parts, as opposed to “wildfire”. “Fire”
generally refers to a planned and controlled combustion, which is used frequently in laboratories or open
fields, for controlled fire experiments. The term “wildfire” refers to an uncontrolled combustion, which is
dangerous and has potential consequences such as the ones described in Section 1.1.

2As stated, a considerable number of fire spread simulators implement the Rothermel model as the
main fire spread model. In this sense, during this thesis, when a reference is made to the Rothermel model
(e.g., the Rothermel model’s input parameters), the cited fire spread simulators should be considered as
well.



3 1.4. Requirements analysis

The review resulted in the article “A Review of Genetic Algorithm Approaches for
Wildfire Spread Prediction Calibration” [21], published in January of 2022.

• Implementation and comparison of three metaheuristic algorithms, genetic algo-
rithms, differential evolution and simulated annealing, for the calibration of the
Rothermel model’s input parameters (Chapter 4). Datasets from real prescribed
fires were used. This work resulted in the accepted conference paper “Wildfire
Spread Prediction Model Calibration Using Metaheuristic Algorithms” [22] on the
48th Annual Conference of the IEEE Industrial Electronics Society (IECON 2022).

• Adaptation of the three developed algorithms (GA, DE, and SA) for input parameter
calibration of a two-dimensional (2D) Rothermel-based fire spread model with
consequent predictions using the calibration results. Data from a prescribed fire was
used.

1.4 Requirements analysis

The functional requirements of the developed algorithms are to obtain calibrated sets
of input parameters of the Rothermel model. Additionally, the algorithms’ code must
allow the users to choose the model’s input parameters to be calibrated and define the
algorithms’ parameters.

The nonfunctional requirements are the following:

• The algorithms have to be implemented using parallel computing, when possible;

• The calibrated model must improve the average prediction error by at least 40%;

• The average model calibration time must be inferior to 30 minutes.

1.5 Structure of the thesis project

This thesis is organized into five more chapters.
Chapter 2 - Wildfire spread prediction and literature review of calibration

of prediction models presents the literature review on wildfire spread prediction and
calibration of prediction models.

Chapter 3 - Overview of the implemented metaheuristic algorithms for
wildfire spread model calibration is dedicated to the description of the notation and
of the three metaheuristic algorithms implemented in this work.

In Chapter 4 - Calibration of the Rothermel model the calibration methodology
and the calibration results of the Rothermel model are shown.

Chapter 5 - Calibration of fire spread prediction model presents the applica-
tion of the metaheuristic algorithms for calibration of a wildfire spread model, and the
calibration and fire prediction results.

In Chapter 6 - Conclusions, the final conclusions are drawn and the future work is
discussed.

Appendix A and Appendix B contain the published journal paper and the accepted
conference paper, respectively, which were concluded during the development of this
thesis.
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Chapter 2

Wildfire spread prediction and
literature review of calibration of
prediction models

This chapter presents the theoretical basis for the work developed and the literature
review. Section 2.1 describes the Rothermel model, which is the fire spread model to be
calibrated. Section 2.2 explains the reasons behind the need for calibration of fire spread
models. Finally, Section 2.3 presents a detailed state-of-the-art review. The literature
review presented in this chapter resulted in the published article [21], which consequently,
makes this chapter considerably coincident with the article’s content.

2.1 The Rothermel model

The Rothermel model, proposed in [7], estimates a Rate Of Spread R of a fire front,
given by

R =
IRξ(1 + ϕw + ϕs)

ρbεQig

, (2.1)

which is measured in units of distance per unit of time ([m/s] or [ft/min]), and it
represents the linear velocity of a fire in the main direction of propagation and in
a given set of conditions. The equations of the associated factors in (2.1) IR(ρp, σ,
δ, w0, ST , h,Mx,Mf , Se), ξ(σ, ρp, w0, δ), ϕw(ρp, w0, δ, σ, U), ϕs(ρp, w0, δ, tanϕ), ρb(w0, δ), ε(σ),
and Qig(Mf ) depend on several input parameters and are given by (2.2) to (2.20).

The input parameters of the Rothermel model (2.1) are identified in Table 2.1 and can
be separated into three categories: fuel properties, topography and wind properties. The
fuel properties are heat content (h), mineral content (ST (total) and Se (effective)), oven-
dry particle density (ρp), oven-dry fuel load (w0), surface-area-to-volume ratio (σ), fuel
bed depth (δ), dead fuel moisture of extinction (Mx) and fuel moisture (Mf ). Topography
is represented by slope steepness (tanϕ), and wind properties correspond to the midflame
wind speed (U). A deeper insight into the Rothermel model can be gained in [7, 23].

5



Chapter 2. Wildfire spread prediction and literature review of calibration of prediction
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IR = Γ′wnhηMηS (2.2)

Γ′ = Γ′
max

(
β

βop

)A

exp

[
A

(
1− β

βop

)]
(2.3)

A = 133σ−0.7913 (2.4)

β =
ρb
ρp

(2.5)

ρb =
w0

δ
(2.6)

Γ′
max =

σ1.5

(495 + 0.0594σ1.5)
(2.7)

βop = 3.348σ−0.8189 (2.8)

wn = w0(1− ST ) (2.9)

ηM = 1− 2.59rM + 5.11(rM)2 − 3.52(rM)3 (2.10)

rM =
Mf

Mx

(max = 1.0) (2.11)

ηS = 0.174S−0.19
e (max = 1.0) (2.12)

ξ =
exp[(0.792 + 0.681σ0.5)(β + 0.1)]

(192 + 0.2595σ)
(2.13)

ϕw = CUB

(
β

βop

)−E

(2.14)

C = 7.47exp(−0.133σ0.55) (2.15)

B = 0.02526σ0.54 (2.16)

E = 0.715exp(−3.59× 10−4σ) (2.17)

ϕS = 5.275β−0.3(tanϕ)2 (2.18)

ε = exp

(−138
σ

)
(2.19)

Qig = 250 + 1116Mf (2.20)

2.2 The need for calibration of fire spread models

Figure 2.1 presents a general illustration for wildfire spread prediction, which consists
in feeding a fire simulator with a set of input parameters that aim to represent the initial
real fire conditions, at t0. The result of the fire simulator, i.e. the simulated wildfire
perimeter, at t1, should match the propagation of the real wildfire, i.e. the real wildfire
perimeter [25]. However, the input parameters are related to the environmental conditions,
e.g. fuel, weather, and terrain characteristics as described in Section 2.1, and obtaining
them becomes a difficult task in order to provide an accurate prediction.

In more detail, some input parameters can be directly measured, such as terrain slope,
which can also be obtained based on previous topographical information. But other
parameters, such as fuel-specific parameters, require detailed knowledge about the local
vegetation, which might not be available. Some input parameters, such as fuel moisture,
are calculated using models based on meteorological data [26], while wind field maps are
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Table 2.1: Identification of the parameters in Equations (2.2) to (2.20) [7, 23].

Parameter Description

IR Reaction intensity (Btu/ft2min)
Γ′ Optimum reaction velocity (min−1)
β Packing ratio
ρb Oven-dry bulk density (lb/ft3)

Γ′
max Maximum reaction velocity (min−1)
βop Optimum packing ratio
wn Net fuel load (lb/ft2)
ηM Moisture damping coefficient
ηS Mineral damping coefficient
ξ Propagating flux ratio
ϕw Wind factor
ϕS Slope factor
ε Effective heating number

Qig Heat of preignition (Btu/lb)

Time

Real fire 

ignition
Real wildfire 

perimeter

Real fire

data

Simulated wildfire 

perimeter

Fire 

simulator

Input parameters

Figure 2.1: Illustration of fire spread prediction using only one set of non-calibrated
input parameters. Adapted from [24].

estimated based on point observations from the available meteorological stations closer to
the fire location. These estimations introduce a great amount of error in the prediction.
In terms of behavior change, characteristics such as the terrain slope and the type of
vegetation in a certain region are constant in time and space, while others, such as wind
speed and direction, have very sudden variations during the wildfire [27]. Therefore,
finding a set of input parameters that produces accurate results solely based on previous
knowledge about the wildfire location and weather conditions is a very difficult task. Due
to the uncertainty and the consequent inaccuracy in wildfire spread simulation, there is a
need to calibrate the input parameters.



Chapter 2. Wildfire spread prediction and literature review of calibration of prediction
models 8

2.3 Wildfire spread prediction calibration literature

overview

The search process for the presented literature review was performed by using the
Science Direct1 and IEEE Xplore2 databases and defining the following search keywords:
(“fire spread” OR “fire prediction” OR “fire rate of spread” OR “Rothermel model”) AND
(“genetic algorithm” OR “evolutionary algorithm” OR “calibration” OR “tuning”). The
years considered for the search were from 2000 until 2021. Additionally, the references of
the selected papers were also analyzed and served as source for finding new papers. The
literature review rationale for article selection was based on the following criteria:

• Acceptance

1. The article uses the Rothermel model or a Rothermel model based simulator
for fire propagation prediction/simulation;

2. The article uses evolutionary algorithms for Rothermel model calibration;

3. The article focuses on improving the prediction results or its execution time.

• Rejection

1. The article’s method for fire propagation prediction is not based on the Rother-
mel model;

2. The article implements calibration techniques other than evolutionary algo-
rithms.

Based on the above search process, 15 papers were obtained.
In the following Sections 2.3.1 and 2.3.2, the main works dealing with wildfire spread

prediction calibration are presented, providing a perspective of the philosophy currently
being pursued in this research field.

2.3.1 Wildfire spread calibration literature using genetic algo-
rithms

Genetic algorithms have been used to optimize fire spread models (particularly the
Rothermel model), i.e., to find the set of input parameters that better adjusts the wildfire
spread model predictions to the real observations.

The authors in [28] introduced a framework, illustrated in Figure 2.2, that consists of
two stages: a calibration stage and a prediction stage. After the ignition, the calibration
stage starts, at t0. Sets of Rothermel’s input parameters are generated and each one is
evaluated, at instant t1, by comparing the respective simulator propagation prediction
with the real observed fire data for that time instant. The optimal set of input parameters
is the one that minimizes the deviation between the predicted and the real fire perimeter.
This process is repeated several times or until a certain solution criterion is reached. In the
prediction stage, assuming that environmental conditions remain constant, the resulting
optimal set of parameters from the calibration stage is used as input for the fire simulator
to predict the fire spread at a following time instant t2. Here, the prediction stage is

1https://www.sciencedirect.com
2https://ieeexplore.ieee.org/Xplore/home.jsp

https://www.sciencedirect.com
https://ieeexplore.ieee.org/Xplore/home.jsp
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Figure 2.2: Two-stage framework for fire spread prediction, adapted from [24].

similar to the classical method/framework (Figure 2.1), except that now a tuned set of
input parameters is used.

During the framework’s calibration stage, the goal is to find an optimal solution for
the input parameters. In a generic way, the optimization problem can be defined as:

x∗ = argmin
x∈S

F (x), (2.21)

where F (x) represents the function to be minimized (by an optimization algorithm, such
as GA), x represents the input parameters vector, S is the respective search space, and
x∗ represents the input parameters that minimize F (x). A usual function to be optimized
in wildfire spread calibration is the difference between the real wildfire rate of spread
(measured from the real-time wildfire data) and the predicted rate of spread (obtained by
the Rothermel model), or the difference between the real and the predicted burned area.
The goal is to find the set of input parameters x of (2.21) that most accurately predicts
the real fire propagation.

The majority of the works from the current state of the art on wildfire spread prediction
calibration are based on the previously presented two-stage framework (Figure 2.2). Early
works, such as [18] and [28], have proposed evolutionary algorithms as techniques that
could be used to find an optimal set of input parameters for a fire simulator. Genetic
algorithms are included in the group of evolutionary algorithms and, according to the
performed search, they are the dominant optimization technique for input parameters
calibration regarding the Rothermel model.

In [28], following the presentation of the two-stage framework, a sensitivity analysis
was carried out in order to evaluate how the individual variation of each Rothermel
input parameter across its range of possible values affects the model output: the bigger
the sensitivity of one parameter, the more it affects the model’s output. Based on the
sensitivity results, an experimental study was conducted to confirm that calibrating
parameters with larger sensitivities and fixing the others reduces the GA’s search space
and accelerates the optimization time. The results showed that, after 1000 generations,
the scenarios in which only 6 input parameters were calibrated achieved an improvement
in the objective function of approximately 33.3% in relation to the scenario in which 10
input parameters were calibrated. This reduction also matches the reduction in GA’s
search space from one scenario to the other.
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In [18], the genetic algorithm’s performance is tested against three other algorithms:
random search, tabu search and simulated annealing. The tests were carried out by
comparing the simulated fire line based on the sets of parameters generated by the
algorithms against a fire line obtained by setting known values for all the inputs and
running the ISStest simulator for 45 minutes. Each algorithm was executed 10 times up
to 1000 iterations. The fire lines were compared using the Hausdorff distance H (2.22),
which measures the degree of mismatch between two sets of points F1 and F2, representing
the fire line simulated based on the optimized parameters and the fire line generated with
known input parameters for comparison. H (2.22) is given by

H(F1, F2) = max(h(F1, F2), h(F2, F1)), (2.22)

where h(F1, F2) and h(F2, F1) represents the Hausdorff distance between two sets of points
F1 and F2 at a specific point in F2 and F1, respectively ([18] contains more details on
this). The results show that simulated annealing, tabu search and genetic algorithms
presented similar results after the 500th generation.

In [25], a Dynamic Data-Driven Genetic Algorithm (DDDGA) was proposed to tune
the fire simulator’s input parameters based on the real fire behavior. The used simulator
was fireLib and, through reverse engineering, it was possible to obtain equations for wind
values (wind speed and direction). These equations are fed with terrain slope with the
position (x, y) of the fire front with the maximum rate of spread. The obtained wind
speed and direction values were used to steer the search for an optimal input parameter
set carried out by the genetic algorithm. Afterward, in [29], the same research group
proposed a new calibration steering method as an improvement to the previous strategy.
Since this was highly dependent on the underlying simulator, the new approach consisted
in generating a database with fire evolution information from both real and simulated
(synthetic) fires. For the calibration stage, a DDDGA was proposed to define the best
wind direction and wind speed values, by searching the database of previous fires that
were similar in terms of rate of spread, slope and fuel model to the real observed fire
spread, and using wind values from those fires to steer the genetic algorithm’s search.

The authors in [24] introduced a system called SAPIFE (Spanish acronym for Adaptive
System for Fire Prediction Based in Statistical-Evolutive Strategies) which is based on
the two-stage fire spread prediction framework with a genetic algorithm implemented
during the calibration stage. However, in SAPIFE, the genetic algorithm is coupled
with another method called Statistical System for Forest Fire Management (S2F 2M).
This new method receives a certain population from the GA and analyzes almost all
possible input parameter combinations from all individuals in the population. From this
analysis, S2F 2M evaluates the probability of each map cell to be burned or not and
generates a probabilistic map. Then, based on these probabilities, the number of possible
scenarios (parameter combinations between different individuals) is reduced, decreasing
the calibration time required.

In [19], the two methods introduced in [25] and [29] were compared. The method
introduced in [25] is named as “analytical method” and, as it was described above, based on
the inversion of a fire simulator. The method introduced in [29] is named “computational
method” and relies on a database with information from past fires. Both of these methods
use ongoing fire propagation data to obtain wind speed and direction values and use it to
steer the genetic algorithm’s search. Two sets of tests were carried out: first, the two-stage
framework was tested against the classical wildfire spread prediction method, which uses
a single set of input parameters introduced in the fire simulator. This test used data from
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past fires and confirmed that the two-stage framework with a genetic algorithm provides
better results than the classical prediction without input parameter calibration. Then,
the second set of tests compared the use of a simple non-guided genetic algorithm against
genetic algorithms with different configurations of the proposed steering strategies. The
guided genetic algorithm with the computational and analytical methods obtained similar
results and improved prediction quality over the non-guided genetic algorithm.

The work developed by [27] is also based on the two-stage prediction framework with
a genetic algorithm and introduces an approach for reducing the prediction errors caused
by the variability of wind parameters (wind speed and direction). During the calibration
stage, wind parameters are not calibrated; instead, real wind measurements from the
fire location are taken in periodic time sub-intervals. These measurements are used as
inputs for the fire simulator in the recurring simulations. Afterward, during the prediction
stage, a numerical weather prediction model [30] is used to periodically estimate the wind
parameters between sub-intervals of the prediction stage. The estimated wind parameters
are introduced in the simulator and are updated at each sub-interval. The prediction
result is obtained using the real wind measurements and the calibrated parameters,
which are moisture contents and vegetation features. The test results showed that, when
the wind conditions are stable, the basic two-stage framework with a genetic algorithm
provides satisfactory results, in comparison with the new method of using measured and
estimated wind values (prediction error of 0.4 vs. 0.29, respectively). However, when the
wind conditions are more dynamic, the results obtained by the introduced method are
significantly better compared to the basic two-stage framework with a genetic algorithm
(prediction error of 0.19 vs. 0.58, respectively).

In [20], a calibration of the fuel models within the Rothermel’s fire spread prediction
model was carried out through the use of genetic algorithms. The GA’s individuals
consisted of the following Rothermel fuel parameters: oven-dry fuel load (w0), surface-
area-to-volume ratio (σ), fuel bed depth (δ), fuel moisture of extinction (Mx), and heat
content (h). Two tests were performed to evaluate the proposed GA method. The first
test consisted of using genetic algorithms for the fuel model calibration method, with the
support of two works [31, 32] (grass and shrub fuels, respectively) that provided datasets
of observed rate of spread R and other input parameters’ data (fuel moisture, wind
speed and slope steepness). The GA was configured for 9999 maximum iterations, 100
individuals, mutation probability and elitism factor equal to 0.1 and 0.05, respectively, and
calibrated the fuel input parameters based on the parameter ranges given by the papers.
Each individual was evaluated using the Root Mean Square Error (RMSE) between the
observed and predicted rate of spread R. The second test consisted of implementing the
GA for calibrating a fuel model for a type of vegetation (Calluna heath). Nine prescribed
fire experiments were carried out in dry Calluna heathland vegetation and R, fire weather
(1h fuels moisture, live woody fuel moisture and wind speed) and terrain data (ignition
line length, fire plot size and slope) were recorded from each experiment. From the nine
fire experiments, 4 were considered for GA calibration and 5 were considered for validation.
The data from the calibration experiments was used to run the GA and calibrate the
fuel parameters, similarly to the first test. Then, predicted rate of spread R values were
calculated using different fuel models: GA calibrated fuel parameters, the Standard Fuel
Model which provided the smaller RMSE when comparing predicted vs. observed R, a
custom fuel model for Calluna vegetation and a “custom fuel model parameterized with
modal values from fuels inventoried in each fire experiment”. An additional prediction of
the rate of spread R was obtained by a Rothermel model reformulation implemented in
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Fuel Characteristics Classification System (FCCS) [33]. For the validation experiments
data, the calibrated GA fuel parameters resulted in the lowest RMSE between predicted
and observed rate of spread R, in comparison to the alternative models.

The study in [34] presents a dynamic data-driven genetic algorithm and introduces
a new approach for predicting fire propagation based on WildFire Analyst (WFA) [35].
The paper describes the two-stage prediction framework with a genetic algorithm, where
the fire propagation is simulated using the FARSITE fire simulator [9], and the fitness
function corresponds to the symmetric difference between predicted and burned areas
obtained by:

Difference =
UnionCells− IntersectionCells

RealCells− Init Cells
, (2.23)

where UnionCells represents the sum of the number of cells that were burned in the
predicted area and the real area, IntersectionCells is the number of cells burned simul-
taneously in the predicted area and the real area, RealCells is the final number of cells
burned in the real area, and InitCells is starting number of cells burned in the real
fire area. The newly introduced approach uses WildFire Analyst (WFA) and seeks the
best R adjustment factors, minimizing the error between simulated fire and the real fire
data. Both the FARSITE fire simulator and Wildfire Analyst use the Rothermel model.
Afterward, the two-stage framework with the genetic algorithm and Wildfire Analyst are
coupled together by overlapping their predicted fire spread maps. In order to test the
two-stage framework and Wildfire Analyst, experiments were carried out with data from
a real fire that occurred in Cardona, Catalonia, Spain in 2005. The results show that
both methods adapt to drastic changes in the fire characteristics.

In [36], the two-stage framework was considered to reduce input parameter uncertainty
and predict fire spread. However, when the wildfire is large, wind cannot be considered
uniform throughout the whole wildfire area. So, this work introduced a wind field model
(WindNinja), being represented by a cell map, to account for this variation. In essence,
during the calibration phase, the obtained meteorological wind parameters are used to
calculate the wind field for each scenario generated by the genetic algorithm. Then, having
each individual’s wind field, the corresponding fire propagation map is calculated and the
error function is evaluated.

Finally, in [37], a statistical study was carried out to characterize the genetic algorithm
in the calibration phase of the two-stage prediction method. The characterization refers
to estimating which GA parameter configuration results in a better calibration within
the imposed time restrictions. A statistical study was conducted based on the results of
a genetic algorithm calibration on a simulated 5-hour fire obtained using FARSITE as
the fire spread simulator. The results from this study were maximum adjustment errors
which have different degrees of guarantee depending on the number of generations that
the GA iterates. These results are important in understanding the compromise between
the algorithm’s execution time (number of generations) and the adjustment error, which
is larger when the algorithm iterates fewer generations.

2.3.2 Wildfire spread calibration implementing parallel comput-
ing

Throughout Subsection 2.3.1, several works regarding fire spread prediction using
genetic algorithms were described. Despite their focus being on improving prediction
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Figure 2.3: Genetic algorithm using the Master/Worker paradigm, adapted from [38].

accuracy, some works have proposed and adapted a Master/Worker paradigm (Figure 2.3)
in order to reduce the calibration and prediction times.

Genetic algorithms, as any evolutionary algorithm, require the execution of a set of
individual simulations through several iterations, which can be very time-consuming, and
given the urgency and need for accuracy associated with wildfire spread prediction in real-
time, it is important to reduce the execution time of the calibration phase while maintaining
appropriate accuracy. One way to achieve this is through the parallel implementation
of the used fire spread simulator. Parallel computing consists in breaking down large
and complex problems into various smaller tasks and executing them simultaneously.
Parallel computing takes advantage of multi-core computer architecture based on having
two or more processing units (cores) in a single chip computer processor. A system with
multi-core processing has the advantage of completing more tasks while consuming less or
the same amount of energy. Given the better performance and efficiency, it is desirable to
use multi-core processing when executing demanding computational tasks.

The authors in [39] presented a technique based on the parallel implementation of
both the GA (used in the two-stage fire prediction framework) and the FARSITE fire
simulator. An analysis of the FARSITE fire simulator was carried out, and one of its
functions, CrossCompare(), was implemented in parallel using OpenMP3. For analysing
the simulator’s performance, a simulated fire was executed using a different number of
cores, i.e. 2, 4, 6, and 12. The serial tasks of FARSITE take roughly the same time for the
different number of cores. However, the parallel tasks are executed much faster with more
cores: from 220 seconds with one core to less than 20 seconds with 12 cores. Afterward,

3https://www.openmp.org/

https://www.openmp.org/
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the two-stage framework with the simulator and the genetic algorithm implemented in
parallel was tested by carrying out three experiments. Experiment A consisted of running
the GA with 25 individuals for 10 generations with 25 cores available (one core for each
individual). Experiment B was executed in the same conditions but with 4 cores available
per individual. Finally, experiment C comprised a GA with 100 individuals and 100 cores
(one core per individual). For each experiment, new reference fires were simulated for 20
seconds in FARSITE, using as base a terrain in Cap de Creus, Catalonia, Spain. For the
first experiments, with fire simulations of 20 seconds, the results showed an improvement in
GA execution time for reaching the same error (15%) when using more cores per individual.
When replicating the experiments with longer fire simulations (120), the results showed
that using more cores per individual still improved execution times for achieving the
same error (approximately 14%). However, for the longer fire simulations, using more
individuals (100) with one core per individual achieved the lowest error (approximately
8%).

Despite the strategy introduced in [39] improving the calibration time, there’s still a
drawback related to GA implementation. During the calibration phase, all of the GA
individuals have to be simulated. The execution time of a fire simulation depends on
the input parameters and, given the random nature of the generation of the population,
some individuals will result in much longer simulation times than others. It would be
possible to reduce the overall calibration time by dedicating more computing resources to
the individuals with larger execution times and fewer resources to individuals that are
executed faster. In order to achieve the said time reduction, it is necessary to predict
each individual’s simulation time to provide more computing resources to those whose
predicted execution time is larger. The prediction must be based only on the individuals’
genes - a set of input parameters. The study in [39] refers to [40], which introduces a
method based on Decision Trees to characterize a fire simulator, allowing to estimate the
execution time of one simulation, given a set of input parameters.

In [41], the method based on Decision Trees referenced in [39] is implemented and
tested: Decision Trees are employed to classify each fire simulation based on a training
dataset composed of several simulations. Each training simulation is classified according
to its execution time so that the Decision Trees can label a new simulation by comparing
its input parameters against those of the training simulations. In this work, four different
execution time ranges are used, labeled as A, B, C, and D, where A represents the shortest
execution time, and D represents the longest execution time. The FARSITE fire simulator
is used and implemented in parallel using OpenMP. The core-allocation policy ensures
that the individuals labeled with a longer execution time classification are simulated using
more computing cores: A - One core, B - Two cores, C - Four cores, and D - Eight cores.
To test this policy, topographic data from Cap de Creus, Spain was used and a fire was
simulated. Then, a GA was executed to find a set of input parameters that would replicate
the fire. It evolved 50 different populations for 10 generations, each with 25 individuals.
The results showed that using the core-allocation policy reduced the execution time in
41%, in relation to not using any policy.

In [42], similarly to what was done in [41], GA individuals are labeled according to
their estimated simulation time through the use of Decision Trees - A, B, C, D and E.
The objective is to implement a core-allocation policy that can devote more cores to
individuals whose execution times are longer. Additionally, in this work, an additional
restraint is imposed: each GA generation has a limited amount of time to be executed
(tavail). So, each individual’s execution time has to be less than it. Classes A, B, C and D
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define the individuals whose normal execution times are not larger than 2.1× tavail. With
a simple core-allocation strategy (A - One core, B - Two cores, C - Four cores, and D
- Eight cores), these individuals can be executed in less than tavail. Individuals labeled
with E are expected not to be executed in time, and therefore three new strategies are
developed to deal with these individuals. The first approach (“Time Aware Classification
with replacement strategy”) replaces E individuals with A individuals, which improves
the execution time but restricts the search space and may diminish the calibration quality.
In the second strategy (“Time Aware Classification without replacement strategy”), E
individuals are executed using eight cores. At the end of the generation, the individuals
still running will be interrupted, and only those that have been executed and evaluated
are considered for the application of genetic operators. Finally, in the third approach
(“Soft Time Aware Classification without replacement strategy”), E individuals are also
executed using eight cores. However, if these individuals are still being executed at the
end of the generation time, they will continue their execution and will not be considered
in the current population. At the end of execution, these individuals will be reconsidered
and used to generate new individuals. This approach allows for variable population size
between generations. The three strategies were compared using data from a real fire
in La Jonquera, Spain, and it was determined that the soft deadline strategy without
replacement produces the best results.

More recently, the study in [38] introduced a new strategy to deal with individuals
with long execution times. The methods already described are based on allocating more
cores to individuals with longer estimated execution times during the calibration stage.
Additionally, to improve this, a time deadline is imposed to guarantee that the simulation
of individuals doesn’t go beyond a preset value. Also, in order to deal with individuals that
are still being executed when the available time runs out, some strategies were introduced
in [42]. An alternative approach is introduced, based on the monitoring of the fire spread
prediction error that, in this particular work, corresponds to the symmetric difference
between the real fire and the simulated fire areas, shown in Eq. (2.23). During the
execution of one individual, if the monitoring agent detects that the difference between the
predicted and the simulated fires is larger than a predefined error threshold, the individual
is interrupted. The fitness function is a weighted version of the symmetric difference,
shown in Eq. (2.24),

Fitness =
PredictionTime

SimulationTime
× SymDifference, (2.24)

where PredictionTime represents the predicted time for the completion of the indi-
vidual’s simulation, SimulationTime is the the time of simulation until the individual
is normal or early terminated, and SymDifference represents the symmetric difference
from (2.23). This fitness function penalizes individuals that have been terminated early
due to a large prediction error: they are not removed from the population, which ensures
diversification, but are ranked worst due to lower fitness. This method was tested using
fire data from a real fire in La Jonquera, Spain and it reduced the overall execution time
in relation to the time aware core allocation technique from [39] by 60%.

2.4 Literature review summary

The review presented above showed that the majority of the works are based on the two-
stage framework formally introduced in [28] combined with the use of genetic algorithms.
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Genetic algorithms show very good suitability for being used as the optimization method
in the referenced framework, not only based on their performance when compared to other
optimization methods [18], but also because they have characteristics suited for being
implemented in parallel. Implementing the two-stage framework with genetic algorithms
and fire simulators in parallel is of great importance allowing the reduction of both
calibration’s and prediction’s execution times [39].

Table 2.2 contains the above-cited works related to the literature review, organized by
characteristics such as the focus of the paper, the source of the data used in experiments and
tests and GA’s parameters (number of individuals per generation, number of generations,
operators probabilities and fitness functions).
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Ref. Focus Source of datasets Individuals Gens. Others
[28] Input parameter calibration. In-

troduction of two-stage frame-
work + input parameter sensitiv-
ity analysis

Simulation (ISStest) 1000 20 Fitness function is the XOR
area (from ISStest) be-
tween real and simulated
burned areas

[18] Input parameter calibration using
GAs, simulated annealing, ran-
dom search and tabu search

Simulation (ISStest) 1000 - Fitness function is the
Hausdorff distance

[25] Input parameter calibration Simulation and 1 pre-
scribed fire (Portugal)

50 5 —

[29] Input parameter calibration.
Two-stage framework with GA
and guided search by past fires
database

Real map 110× 110m2.
fireLib simulation and 1
prescribed fire (Portugal)

Parallel:
512
Dynamic:
50

-
5

—

[24] Input parameter calibration. Sta-
tistical integration to reduce
search space

Real fire (California) 500 5 elitism = 0.04,
crossprob = 0.2,
mutprob = 0.01, Fit-
ness function is symmetric
difference (2.23)

[19] Input parameter calibration.
Two-stage framework with GA
and comparison of the methods
from [25] and [29]

1 simulated fire map using
fireLib and 1 prescribed fire
(Portugal)

Simulated:
50
Real: 500

5
5

Real fire case: 0.2 ≤
mutprob ≤ 0.4, Fitness
function is cell-by-cell com-
parison of real and simu-
lated fire maps

[27] Input parameter calibration con-
sidering the rapid variation of
wind speed and direction

Simulation (FARSITE) 50 10 Tests were performed 15
times

[20] Rothermel fuel models calibration 1st test (GA-opt.): [31]
[32]; 2nd test (Custom fuel
model calibration): [43]
[44]

100 for both Max.
9999

mutprob = 0.1, elitism =
0.05. Fitness function is
RMSE of observed vs. ex-
perimental rate of spread R

[34] Input parameter calibration.
Two-stage framework with GA
and WildFire Analyst

Real fire (Spain) - - The fitness function is the
symmetric difference (2.23)

[36] Input parameter calibration, con-
sidering the spatial variation of
wind in large fires

Real fire (Spain) 6 10 Tests were performed 15
times

[37] Statistical study of genetic algo-
rithms as the optimization algo-
rithm in the two-stage framework

Simulation (FARSITE) 100 5 Tests were performed 50
times. mutprob = 0.1,
elitism = 0.1

[39] Reduction of calibration time by
parallel implementation

Simulation (FARSITE)
based on a real terrain map
(Spain)

25; 25; 100 10 Fitness function is the sym-
metric difference (2.23)

[41] Reduction of calibration time by
parallel implementation

Simulation (FARSITE)
based on a real terrain map
(Spain)

25 10 Tests were performed 50
times. Fitness function
is the symmetric difference
(2.23)

[42] Reduction of calibration time by
parallel implementation

Real fire (Spain) - 10 #elitism = 10,
crossprob = 0.7,
mutprob = 0.3. Tests
were performed 10 times.
Fitness function is the
symmetric difference (2.23)

[38] Reduction of calibration time
by early terminating individuals
based on prediction error in par-
allel implementation

Real fire (Spain) 100 10 crossprob = 0.7,
mutprob = 0.3, Fit-
ness function is a weighted
version of the symmetric
difference (2.24)

Table 2.2: Review of the literature on wildfire spread prediction calibration using
genetic algorithms. Gens. column contains the number of GA’s generations. Others
column contains relevant information such as the GA’s operators probabilities and fitness
functions. - represents no relevant or existing data. elitism represents the percentage of
the population’s individuals selected for the GA’s elitism operation. #elitism represents
the number of individuals selected for the GA’s elitism operation. crossprob is the GA’s
crossover operation probability. mutprob is the GA’s mutation operation probability.
RMSE represents the Root Mean Square Error.
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Chapter 3

Overview of the implemented
metaheuristic algorithms for wildfire
spread model calibration

This chapter is dedicated to the description of the implemented metaheuristic algo-
rithms for calibration of the Rothermel model. The algorithms were implemented in
MATLAB® without resorting to specific toolboxes in order to guarantee the possibility of
easily adapting each algorithm (they were developed from scratch). Section 3.1 presents
the notation of the algorithms described in this chapter, Section 3.2 presents the genetic
algorithm, Section 3.3 describes the differential evolution, and Section 3.4 is dedicated to
simulated annealing. The algorithms here mentioned were also used in the work which
resulted in the accepted conference paper “Wildfire Spread Prediction Model Calibration
Using Metaheuristic Algorithms” [22] on the 48th Annual Conference of the IEEE Indus-
trial Electronics Society (IECON 2022). Therefore, the following description coincides
with some of the article’s content.

3.1 Notation and definitions

It is important to clarify the reader regarding the notation which will be used in
the description of the metaheuristic algorithms. Given that the genetic and the differ-
ential evolution algorithms are population-based, the notation used when referring to a
population, to a candidate solution, and to its characteristics are shared and given as
follows:

• The population is represented by P ;

• The generation/iteration t of the population is represented by Pt

• A given candidate solution (individual) i of the population P is represented by i-th
element of a population P , i.e. Pi;

• the j-th gene/element an individual i of the population P is referenced by Pi,j;

• N refers to the number of solutions (individuals) in the population P , and n is the
number of elements (genes) of one candidate solution (individual).

Simulated annealing, which is not population-based, follows the following notation:

19
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• A solution is represented by S ;

• Indexes i and c refer to the initial (Si) and current (Sc) solutions.

In this document, a given solution is composed of a set of Rothermel’s input parameters
[x1, x2, . . . , xn], where for each input parameter xj (j = 1, . . . , n) the interval of variation
must be defined, i.e. for xj (j = 1, . . . , n) the corresponding interval is [xjmin

, xjmax ].

The algorithms which will be described in the following sections look for an optimal
or near-optimal solution for a given problem. Frequently, this consists of finding the
minima or maxima of a certain function in a determined domain. The description of the
algorithms will be performed in the context of a minimization problem. The considered
fitness/objective function F (·) is to be minimized, which means that solutions with smaller
values of F (·) have more quality, are fitter.

3.2 Genetic algorithms

A genetic algorithm is a population-based stochastic search method introduced by [45]
in 1975 inspired by natural selection and genetics. They are very useful in optimization
problems by searching for the best solution in a specific space of possible problem solutions
- search space [46, 47]. Every possible solution in the search space has an associated fitness
value, which is obtained using a fitness function F (·). GA’s look for the best solution (e.g.,
a minimum or a maximum of a given function), which is the fittest from the search space.

Genetic algorithms work by processing a set of elements of a given search space
[46, 48]. This set is named population, and its elements are called individuals. Individuals,
which represent the candidate solutions for the optimization problem, are also named
chromosomes and are composed of genes. Genes are the primary parts of each solution.
Individuals can have several representations, depending on the problem: they can be
binary sequences of 0’s and 1’s, complex numbers, vectors, among others. The population
is evolved/transformed during several generations in order to obtain a final population
that contains individuals with the best possible quality for the problem at hand.

Algorithm 1 contains a generic scheme for a genetic algorithm, based on the proposed
algorithms from [49, 46]. In the first generation (t = 1), an initial population P1 of N
individuals is randomly generated. Afterward, based on the evaluation by the fitness
function F (·), the selection operator is applied to the current population to obtain a
pair of parent chromosomes. Then, the crossover and mutation operators are applied
to the parent pair to obtain a new pair of offspring. Crossover ensures the formation of
new individuals from parent pairs by combining partial sequences of genes from each of
the parents. Mutation acts on the individuals obtained by the crossover operator and
alters some of their characteristics. This sub-process (selection, crossover and mutation)
is repeated until achieving a new population of N individuals, Pt+1. The elitism operator
is then applied, which consists of choosing at random a small fraction (elitism) of the
new population to be replaced with the same number of the best individuals from the
previous population [49]. The new population is evaluated, and the process is repeated up
to the maximum number of generations (gmax). The resulting final solution is the fittest
individual from the last population, i.e., the chromosome Pgmax,i with the optimal F (·)
value.

In the work developed for this thesis, the specific GA operators used are the following:
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Algorithm 1 Generic structure of a simple genetic algorithm.

Input:
1: Predefined individual structure and fitness function F (·).
2: Intervals of variation of the solutions’ genes: [x1min

, x1max ], [x2min
, x2max ],. . .,

[xnmin
, xnmax ].

3: GA’s parameters: N (number of individuals), gmax (maximum number of generations),
n (number of genes), elitism (fraction of individuals to suffer elitism), selection,
crossover and mutation operators.

Output: Optimal or near-optimal problem solution.
4: t ← 1
5: Randomly generate the initial population Pt.
6: while t ≤ gmax do
7: Evaluate all individuals Pt,i (i = 1, . . . , N) from the population using a predefined

fitness function F (·).
8: repeat
9: Select a pair of parents using Selection operator.
10: Generate a pair of offspring by applying Crossover operator.
11: Obtain the mutated offspring pair by applying Mutation operator.
12: until Obtain new population Pt+1 of N individuals
13: Perform Elitism on Pt+1.
14: t← t+ 1.
15: end while

• Selection operator is the tournament selection [46], which consists of randomly
selecting a certain number of individuals (tournament size toursize) of the current
population, creating a tournament. The winner of the tournament is the individual
with the best fitness and it is selected to be a parent for the next generation. This
process is repeated a second time, and a pair of parent individuals is obtained.

• The crossover operator is the single point crossover technique [46] and it is applied
with a predefined probability of occurrence crossprob. It is executed on the parent
pair, by cutting the two chromosomes at corresponding points (the cutting point
is randomly selected) and exchanging the sections after the cuts. This generates a
new offspring pair.

• The mutation operator is the uniform operator [49]. This operator consists in
altering the value of a random gene in the offspring by a uniform random value
which fits the gene’s respective search space, at a given probability of mutation
mutprob, a parameter defined at the beginning of the GA implementation.

3.3 Differential evolution

Differential evolution was first introduced in 1995 by Rainer Storn and Kenneth Price
[50]. DE is similar to a GA in working by evolving a population of candidate solutions for
a given problem. However, DE’s search mechanism (differential mutation) is not based on
any natural process.
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DE initiates at iteration t = 1 by generating randomly an initial population P1 with
N individuals, each one containing n parameters. After this, the algorithm’s main loop
begins. First, a new mutant population is generated: the j-th element of the individual
Pt,i is obtained using the differential mutation operator [49]:

P ′
t,i,j = Pt,r1,j + f × (Pt,r2,j − Pt,r3,j), (3.1)

if γ < C ∨ j = αi, otherwise P ′
t,i,j = Pt,i,j, where r1, r2, r3 ∈ {1, ..., N} are three random

integers, f is a user-defined scale factor which “controls the rate at which the population
evolves” [51], γ ∈ [0, 1] is a random uniform scalar, and C ∈ [0, 1] is a user-defined number
that controls the fraction of parameter values copied to the new mutant solution. The
differential mutation operator is only applied to a given gene if γ < C, which means
that the chance of applying the operator to more genes increases if C is closer to 1, with
fewer parameter values copied to the new mutant solution. Additionally, αi ∈ {1, ..., n}
is a random uniform integer, which guarantees that at least one solution parameter is
altered in the mutant solution. The algorithm iterates through every parameter of every
individual until it obtains a new population of N individuals.

Afterward, the current and the new populations are compared: if the i-th individual
from the new mutant population, P ′

t,i is less fit than the corresponding individual from the
current population Pt,i, then the new individual is replaced by the current population’s
i individual. Finally, the main loop’s stopping criterion is verified: if the fitness of
the best individual F (Pt+1,b) of the new population does not improve in relation to the
fitness of the best individual of the current population F (Pt,b), then the variable count is
increased by one unity. The main loop stops if count = countmax or when t reaches the
maximum number of iterations. As in the GA, the final solution from the DE is the fittest
individual from the last iteration’s population. Algorithm 2 contains the generic structure
of differential evolution, based on [49].

3.4 Simulated Annealing

Simulated annealing (SA) is a metaheuristic introduced in 1983 by Scott Kirkpatrick
[52] and it is based on annealing, i.e., the process of heating a material and then slowly
cooling it to obtain minimal energy states. As opposed to GA and DE, simulated annealing
is not population-based.

The algorithm initiates by generating an initial solution, Si. Then, Si is evaluated
using the defined fitness function F (Si) and set to the current solution, Sc. Furthermore,
the temperature T is set to an initial value Ti, starting the main loop that lasts until
the temperature reaches a final value Tf . For each value of T , the following process is
repeated trmax times: ns neighboring solutions are generated from the current solution
Sc by randomly selecting one of its elements and replacing its value by a new random
value that fits the respective parameter range. Afterward, the ns neighboring solutions
are evaluated. The best of these new ns solutions is selected and set to Snew. The process
of generating neighboring solutions and selecting the fittest is based on greedy search [53].
If this new solution Snew is fitter than Sc or if a randomly chosen uniform number ϵ[0,1) is
smaller than the probability of acceptance exp((F (Sc)− F (Snew)/T ), then Sc is replaced
by Snew. In this work, the temperature T is updated by being multiplied by the cooling
factor cf : T ← T × cf . When the condition T ≤ Tf is verified, the algorithm is ceased
and the current solution Sc is considered to be the best and final solution. Algorithm 3
shows the generic structure of the simulated annealing algorithm.
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Algorithm 2 Generic structure of the differential evolution algorithm.

Input:
1: Predefined individual structure and fitness function F (·).
2: Intervals of variation of the solutions’ parameters: [x1min

, x1max ], [x2min
, x2max ],. . .,

[xnmin
, xnmax ].

3: DE’s parameters: N (number of individuals), n (number of solution parameters), C
(fraction of parameters affected by the differential mutation), f (scale factor used
in the differential mutation), tmax (maximum number of iterations), and countmax

(maximum number of iterations for non-improvement of the populations’ best fitness).
Output: Optimal or near-optimal problem solution.
4: t← 1, count← 0
5: Randomly generate initial population Pt.
6: while t < tmax and count < countmax do
7: for i = 1, . . . , N do
8: Randomly generate r1, r2, r3 ∈ {1, . . . , N}.
9: Randomly generate αi ∈ {1, . . . , n}.
10: for j = 1, . . . , n do
11: Generate uniform random number γ ∈ [0, 1].
12: if γ < C or j = αi then
13: Obtain new gene in the position j, P ′

t,i,j, through differential mutation (3.1).
14: else
15: P ′

t,i,j = Pt,i,j

16: end if
17: end for
18: end for
19: for i = 1, . . . , N do
20: Using F (·), obtain the fitness values of Pt,i, F (Pt,i), and P ′

t,i, F (P ′
t,i).

21: if F (P ′
t,i) ≤ F (Pt,i) then

22: Pt+1,i ← P ′
t,i

23: else
24: Pt+1,i ← Pt,i

25: end if
26: end for
27: if F (Pt+1,b) ≥ F (Pt,b) then
28: count← count+ 1
29: else
30: count = 0
31: end if
32: t← t+ 1
33: end while
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Algorithm 3 Generic structure of the simulated annealing algorithm.

Input:
1: Predefined individual structure and fitness function F (·).
2: Intervals of variation of the solutions’ parameters: [x1min

, x1max ], [x2min
, x2max ],. . .,

[xnmin
, xnmax ].

3: SA’s parameters: Ti (initial temperature), Tf (final temperature), cf (cooling factor),
trmax (maximum number of tries for constant temperature), ns (number of neighboring
solutions).

Output: Optimal or near-optimal problem solution.
4: Randomly generate initial solution Si.
5: Using F (·), evaluate initial solution Si and set current solution to the initial solution:

Sc ← Si.
6: T ← Ti

7: while T > Tf do
8: for t = 1, . . . , trmax do
9: Generate ns solutions by disturbing the current solution.
10: Using F (·), evaluate the ns neighboring solutions and select the best one, assigning

it as Snew.
11: if [F (Snew) < F (Sc)] or [ϵ[0,1) < exp(F (Sc)−F (Snew)

T
)] then

12: Sc ← Snew

13: end if
14: end for
15: T ← T × cf
16: end while



Chapter 4

Calibration of the Rothermel model

This chapter explores/studies the feasibility of using three metaheuristic algorithms,
genetic algorithm (GA), differential evolution (DE), and simulated annealing (SA), de-
scribed in Chapter 3, for the calibration of the Rothermel model described in Section
2.1. The main contribution of this chapter is to validate two metaheuristic algorithms
(DE and SA) for the calibration of the Rothermel model, in comparison with the al-
ready well-established GA, in the subject of wildfire spread prediction calibration. The
Rothermel model calibration results are presented in Section 4.2 and show the potential
for using differential evolution (DE) as a population-based alternative metaheuristic to
genetic algorithms. This work resulted in the accepted conference paper “Wildfire Spread
Prediction Model Calibration Using Metaheuristic Algorithms” [22] on the 48th Annual
Conference of the IEEE Industrial Electronics Society (IECON 2022).

This chapter is structured the following way: Section 4.1 describes the methodology
used, Section 4.2 presents the obtained results, and in Section 4.3 some conclusions are
drawn.

4.1 Calibration methodology

In this section, the proposed methodology for the calibration of the Rothermel model
is presented, where the input parameters to be calibrated are defined in Section 4.1.1
and the fitness function used to evaluate the solutions generated by the metaheuristic
algorithms (GA, DE, and SA) is defined in Section 4.1.2. Furthermore, the overall
calibration procedure is structured in Section 4.1.3.

4.1.1 Solution structure: input parameters to be calibrated

As explained in Chapter 3, the algorithms implemented in this thesis design candidate
solutions (Pi for GA and DE or Si for SA), which are represented by a vector with four
different elements corresponding to the four input parameters to be calibrated: surface-
area-to-volume ratio (σ), fuel bed depth (δ), fuel moisture (Mf ), and midflame wind speed
(U): Pi ≡ Si ≡ [σi, δi,Mfi , Ui].

The choice for calibrating these four parameters is justified as follows:

1. The first three parameters (σ, δ and Mf ) are related to fuel characteristics, which in
simulations are approximated using fuel models. A fuel model is a categorized set of
values of fuel properties which are used as inputs for fire spread models, corresponding
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Figure 4.1: Representation of a candidate solution, corresponding to four input parame-
ters.

to a well defined fuel type. These inputs can be used for predicting fire behavior
in zones with similar fuel, thus eliminating the necessity for repeatedly measuring
the properties [7]. Fuel models assume constant and uniform fuel characteristics
inside a cell, which is a fair approximation for small cell sizes, a large variety of fuel
models and accurate fitting of the model to the existing fuels. However, available
fuel maps can suffer from low resolution (large cell sizes), low variety of models (the
most commonly used standard NFFL fuel models [54] includes only 13 different fuel
models) and low accuracy, therefore increasing the probability of fuel models failing
to accurately depict the average characteristics of existing fuels.

2. Furthermore, the fire dynamics is known to induce local changes in the fuel char-
acteristics, as well as wind speed and direction, in the close vicinity of the fire
front [55, 56, 57] (fuel moisture drastically decreases while wind speed increases).
To some extent, such changes are intrinsic to the semiempirical Rothermel model.
However local variations in such parameters should be expected, which justifies their
calibration.

3. These four input parameters are the ones that have the most influence on the final
result (fire rate of spread), so their small variations are highly significant [58, 59].

4.1.2 Fitness function

The fitness of a given solution Si generated by the three algorithms is evaluated by
the relative error between a real observed value of rate of spread (Robs) and the rate of
spread from the Rothermel model when fed with the four input parameters values of the
solution (R(σi, δi,Mfi , Ui)). The fitness is given by:

Ri
Error =

|R(σi, δi,Mfi , Ui)−Robs|
Robs

. (4.1)

In this way, the goal of the algorithms is to find the best solutions with the lowest
associated values of RError, i.e., the solutions whose values of R(σi, δi,Mfi , Ui) approach
the real Robs.

4.1.3 Calibration algorithm

Algorithm 4 contains the calibration methodology carried out in this chapter. Each
of three metaheuristic algorithms is executed for minimizing the fitness function Ri

Error

(4.1), for each particular dataset. The inputs required for Algorithm 4 are the intervals of
variation of the Rothermel model’s input parameters to be calibrated, the dataset and
each algorithm’s specific parameters. Each algorithm provides the final calibrated set
of input parameters, i.e., the solution with the best associated fitness (lowest value of
Ri

Error).
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Algorithm 4 Fire spread calibration methodology

Input:
1: Limits of the input parameters to be calibrated: σmin and σmax, δmin and δmax, Mfmin

and Mfmax , Umin and Umax;
2: Experimental dataset, i.e. Rothermel input parameters values and Robs.
3: GA’s parameters: N (number of individuals), gmax (maximum number of genera-

tions), elitism (fraction of individuals to suffer elitism), selection (toursize), crossover
(crossprob) and mutation (mutprob) operators.

4: DE’s parameters: N (number of individuals), C (fraction of parameters affected by
the differential mutation), f (scale factor used in the differential mutation), tmax

(maximum number of iterations), and countmax (maximum number of iterations for
non-improvement of the populations’ best fitness).

5: SA’s parameters: Ti (initial temperature), Tf (final temperature), cf (cooling factor),
trmax (maximum number of tries for constant temperature), and ns (number of
neighboring solutions).

Output: Calibrated Rothermel model.
6: Apply the metaheuristic algorithm (Algorithms 1 or 2 or 3) to minimize the fitness

function Ri
Error (4.1).

4.2 Results

In this section, the results of the proposed methodology presented in Algorithm 4
for the calibration of the input parameters of the Rothermel model are presented and
discussed. Section 4.2.1 describes the datasets used for calibration. Section 4.2.2 presents
and discusses the results of the calibration.

4.2.1 Datasets

The datasets used for the calibration carried out in this were obtained through
experimental prescribed fires in controlled conditions. 37 datasets were used, which were
provided by ADAI. Each dataset contains information from a different controlled fire,
which occurred in the center region of Portugal in the last five years, under various
locations, different fuels, and weather conditions. Each dataset is a vector composed of
values for Rothermel model’s input parameters (2.1) according to the type of fuel burned
(w0, ρp, ST , Mx, Se, h, ϕ), measured values for w0 (w0obs), δ (δobs), Mf (Mfobs), U (Uobs)
and the fire rate of spread Robs.

As previously stated, the only Rothermel input parameters to be calibrated are σ
(surface-area-to-volume ratio), δ (fuel bed depth), Mf (fuel moisture), and U (midflame
wind speed). Despite being given (δobs, Mfobs and Uobs), δ, Mf and U are still calibrated
since they may have an elevated associated error. For δ, the origin of the error is the fact
that for the whole fire field, one average value for the fuel bed depth is assumed, based on
a certain number of measurements. For Mf and U , the origin of the error is, as stated
in Section 4.1.1, the fact that the fire itself induces variations on these parameters, so
they do not remain constant throughout the fire. Therefore, initial values of Mf and U
may not accurately represent the real fire conditions. For each calibrated parameter there
is an interval of variation, from which the parameter can assume any value. For σ and
δ, the intervals are defined based on the Northern Forest Fire Laboratory (NFFL) fuel
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model corresponding to the fuel burned in the prescribed fires [54]. In the case of Mf and
U , since there are approximate measured values for these parameters (Mfobs and Uobs),
their intervals of variation are centered on these measured values. According to the ADAI
experts, the intervals of variation of each parameter to be calibrated are:

• σ ∈ [43, 80] [cm−1];

• δ ∈ [0.25, 1.2] [m];

• Mf ∈ [0.8×Mfobs , 1.2×Mfobs ] [%];

• U ∈ [0.75× Uobs, 1.25× Uobs] [m/s].

4.2.2 Results analysis

Since the proposed calibration methodology (Algorithm 4) is based on three meta-
heuristics algorithms (Algorithms 1, 2, and 3), which are stochastic optimization methods,
the calibration methodology was executed 30 times for each dataset and for each meta-
heuristic algorithm. The parameters of each metaheuristic algorithm were fixed to the
values shown in Table 4.1.

Table 4.1: Parameter settings for the calibration methodology, Algorithm 4, using GA
(Algorithm 1), DE (Algorithm 2), and SA (Algorithm 3).

GA DE SA

N = 300 N = 300 Ti = 1000

gmax = 150 C = 0.5 Tf = 0.001

toursize = 3 f = 0.5 cf = 0.99

crossprob = 0.7 tmax = 500 trmax = 2

mutprob = 0.3 countmax = 20 ns = 20

elitism = 0.05

To evaluate the algorithms performance on each dataset, RFinal
Error (4.2) is defined, which

is the average of the best fitness values over 30 trials:

RFinal
Error =

1

30

30∑

k=1

Rk
Error, (4.2)

where Rk
Error is the fitness of the best solution given by (4.1) and provided by the k -th

trial.
Figure 4.2 contains the average prediction error of the Rothermel model calibrated by

each proposed algorithm for all datasets, RFinal
Error (4.2), and the relative error RNC

Error (4.3)
between the non-calibrated rate of spread RNC and the observed rate of spread Robs:

RNC
Error =

|RNC(σ
′, δobs,Mfobs , Uobs)−Robs|

Robs

, (4.3)

where RNC is calculated using the measured values provided in each dataset for δ, Mf

and U , i.e., δobs, Mfobs and Uobs, respectively. For σ, given that its value isn’t given in the
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(a) Datasets 1 to 18.
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(b) Datasets 19 to 37.

Figure 4.2: Calibration results from Algorithm 4: comparison of the GA-calibrated
(Algorithm 1), DE-calibrated (Algorithm 2), and SA-calibrated (Algorithm 3) models
against the non-calibrated Rothermel model, for every dataset.

dataset, the default value of σ′ = 57 cm−1 was used. This σ value corresponds to NFFL
fuel model no. 6 [54], which is the model that most accurately matches the fuel burned in
the prescribed fires.

In Figure 4.2, in some datasets, only the non-calibrated model error bar is noticeable,
since the proposed algorithms obtained, approximately, null relative error. Also, Figure
4.2 shows the significant difference between the prediction errors of the calibrated and
non-calibrated models. Table 4.2 presents the average of the prediction errors RFinal

Error

(4.2) of all datasets, Rall
Error, the best fitness result from all datasets, and the average of

the non-calibrated model relative errors RNC
Error (4.3) for all datasets, RNCall

Error. Table 4.2
shows that the three metaheuristics algorithms achieved similar calibration performances.
Furthermore, GA and DE had the same best fitness results, despite DE performing slightly
better than GA in Rall

Error. Additionally, for some datasets (1-st, 7-th, 8-th, 14-th, 16-th,
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Table 4.2: Results of the proposed calibration algorithm (Algorithm 4) using: GA
(Algorithm 1), DE (Algorithm 2), and SA (Algorithm 3).

Algorithms Rall
Error Best fitness

First occurrence
RNCall

Error
Iteration Time (s)

GA 0.250 3.23× 10−4 37 3.166

0.951DE 0.244 3.23× 10−4 3 0.037

SA 0.248 6.33× 10−4 25 0.412
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Figure 4.3: Iteration of first occurrence of the best fitness value, for each algorithm and
dataset.

17-th and 20-th), the three algorithms could not obtain a near-zero relative error, despite
obtaining similar results. This may be due to a bad suitability of the considered fuel model
to the real fuel burned in those fire experiments or, simply, the model’s intrinsic incapacity
of accurately replicating the real fire behavior in those specific conditions. Finally, Tables
4.3 and 4.4 contain, for each dataset and algorithm, the mean µ and the standard deviation
σ parameter values from the 30 calibrated solutions, which resulted from the 30 runs of
each algorithm. From these tables, it can been seen that the parameters calibrated on
some datasets are very similar in both algorithms and with a small variation between the
30 trials (ie. low σ), as for example datasets 1, 7 and 8. However, in same dataset, the
calibrated parameters have higher variation, as for example datasets 3, 6, and 11.

As pointed out in Section 2.3.2, another important aspect in wildfire spread prediction
is the calibration time. The calibration of the model should be performed on time to
obtain usable fire spread predictions. To evaluate the time performance of the algorithms,
we consider the time and number of iterations that led to the first occurrence of the best
fitness value provided by the algorithms, as shown in Table 4.2. Figure 4.3 contains the
iterations of the first occurrences of the best fitness values for each algorithm and each
dataset. From Figure 4.3, it can be observed a clear pattern for the differential evolution,
which takes a small number of iterations to obtain a first value of the best fitness. The
number of iterations is more dispersed for the genetic algorithm and simulated annealing.
Additionally, it is important to refer that for three datasets (14-th, 20-th, and 24-th), the
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Table 4.3: Calibration results of σ and δ, for the three metaheuristics and for each
dataset.

D
a
ta
se
t σ [cm−1] δ [m]

GA DE SA GA DE SA

µ± σ µ± σ µ± σ µ± σ µ± σ µ± σ

1 43.104± 0.089 43.000± 4.5× 10−4 43.075± 0.071 0.251± 0.001 0.250± 9.5× 10−7 0.251± 4.9× 10−4

2 51.209± 5.671 52.176± 8.562 49.867± 6.581 0.288± 0.029 0.286± 0.036 0.308± 0.033

3 63.621± 9.819 57.392± 9.852 59.0715± 9.366 0.563± 0.219 0.638± 0.263 0.503± 0.214

4 48.848± 4.370 49.134± 5.649 47.246± 3.834 0.269± 0.016 0.264± 0.015 0.283± 0.019

5 48.803± 3.485 52.025± 5.648 46.718± 3.373 0.272± 0.016 0.263± 0.017 0.290± 0.017

6 61.404± 10.088 55.174± 11.406 60.083± 10.434 0.629± 0.151 0.718± 0.179 0.645± 0.165

7 43.127± 0.135 43.002± 0.004 43.065± 0.057 0.252± 0.002 0.250± 1.6× 10−5 0.251± 5.0× 10−4

8 43.105± 0.101 43.016± 0.022 43.072± 0.064 0.251± 0.002 0.250± 5.7× 10−5 0.250± 3.3× 10−4

9 65.123± 8.072 54.222± 11.779 59.722± 10.660 0.568± 0.122 0.768± 0.241 0.633± 0.187

10 69.118± 6.820 67.114± 8.795 65.080± 9.258 0.930± 0.147 1.025± 0.158 0.959± 0.178

11 66.868± 8.932 51.883± 9.799 58.418± 9.298 0.424± 0.106 0.559± 0.159 0.466± 0.090

12 74.379± 4.006 73.932± 5.520 73.620± 3.821 1.095± 0.082 1.097± 0.099 1.081± 0.077

13 51.644± 5.602 54.926± 7.729 48.919± 5.859 0.285± 0.026 0.177± 0.027 0.311± 0.030

14 43.106± 0.078 43.000± 2.8× 10−4 43.026± 0.021 0.251± 8.2× 10−4 0.250± 3.5× 10−7 0.250± 1.9× 10−4

15 46.398± 2.609 46.950± 3.334 45.370± 1.876 0.264± 0.010 0.259± 0.010 0.267± 0.012

16 43.079± 0.073 43.000± 5.7× 10−4 43.028± 0.019 0.251± 9.8× 10−4 0.250± 1.9× 10−7 0.250± 2.9× 10−4

17 43.078± 0.064 43.000± 0.000 43.058± 0.042 0.251± 0.001 0.250± 0.000 0.250± 2.4× 10−4

18 47.613± 3.384 49.073± 3.587 46.144± 2.877 0.275± 0.015 0.264± 0.016 0.279± 0.018

19 59.239± 10.228 54.359± 11.940 59.144± 10.709 0.413± 0.092 0.465± 0.138 0.424± 0.107

20 43.098± 0.083 43.002± 0.002 43.064± 0.071 0.252± 0.002 0.250± 1.4× 10−5 0.251± 5.4× 10−4

21 45.079± 9.146 58.756± 11.441 59.982± 10.370 0.485± 0.082 0.529± 0.110 0.533± 0.099

22 55.743± 8.926 56.328± 9.314 50.945± 5.146 0.293± 0.037 0.277± 0.034 0.312± 0.037

23 43.095± 0.114 43.048± 0.049 43.075± 0.052 0.252± 0.001 0.250± 1.4× 10−4 0.251± 4.8× 10−4

24 43.111± 0.089 43.000± 4.5× 10−4 43.076± 0.051 0.251± 0.001 0.250± 2.8× 10−6 0.251± 4.9× 10−4

25 61.712± 11.609 54.891± 10.632 61.807± 11.682 0.465± 0.103 0.522± 0.098 0.447± 0.129

26 60.775± 11.371 59.832± 12.971 60.401± 12.278 0.459± 0.122 0.496± 0.155 0.460± 0.126

27 66.964± 7.717 67.612± 7.845 67.126± 8.445 0.949± 0.143 0.975± 0.137 0.998± 0.139

28 61.336± 10.568 53.837± 9.981 60.372± 10.349 0.646± 0.271 0.479± 0.249 0.528± 0.269

29 74.344± 3.618 74.245± 4.515 74.542± 3.097 1.135± 0.054 1.121± 0.060 1.131± 0.042

30 46.085± 2.033 47.590± 3.596 45.131± 1.648 0.268± 0.010 0.260± 0.012 0.274± 0.012

31 66.413± 9.545 68.598± 7.856 68.492± 7.156 0.972± 0.142 0.957± 0.115 0.947± 0.156

32 60.418± 9.640 57.884± 11.419 57.640± 10.538 0.715± 0.154 0.805± 0.230 0.796± 0.194

33 62.620± 9.298 57.425± 10.861 61.399± 9.786 0.786± 0.148 0.852± 0.206 0.827± 0.182

34 51.891± 5.852 53.360± 7.592 52.222± 6.942 0.291± 0.029 0.281± 0.031 0.299± 0.043

35 64.754± 8.346 54.908± 9.464 63.152± 12.705 0.731± 0.170 0.903± 0.177 0.778± 0.234

36 57.360± 7.845 58.176± 10.574 54.724± 10.781 0.305± 0.044 0.325± 0.064 0.344± 0.055

37 45.980± 2.318 46.735± 2.735 44.972± 1.816 0.265± 0.011 0.256± 0.008 0.270± 0.011
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Table 4.4: Comparison of the calibration results ofMf and U , for the three metaheuristics.

D
a
ta
se
t Mf [%] U [m/s]

GA DE SA GA DE SA

µ± σ µ± σ µ± σ µ± σ µ± σ µ± σ

1 15.350± 0.009 15.360± 2.0× 10−4 15.350± 0.009 2.151± 0.032 2.115± 9.5× 10−4 2.148± 0.032

2 13.793± 0.893 13.784± 1.279 14.287± 0.893 2.853± 0.414 2.824± 0.563 2.865± 0.414

3 20.589± 2.277 20.416± 2.318 19.398± 2.277 3.810± 0.462 3.911± 0.632 3.928± 0.462

4 18.820± 0.474 18.670± 0.691 19.006± 0.474 2.670± 0.324 2.615± 0.487 2.636± 0.324

5 10.565± 0.407 10.662± 0.673 10.890± 0.407 5.999± 0.789 5.711± 1.077 6.008± 0.789

6 9.605± 1.208 9.736± 1.271 9.583± 1.208 5.464± 0.663 5.335± 0.913 5.112± 0.663

7 9.592± 0.007 9.599± 0.001 9.592± 0.007 1.594± 0.019 1.577± 0.004 1.597± 0.019

8 9.593± 0.005 9.598± 0.003 9.594± 0.005 1.288± 0.025 1.287± 0.020 1.306± 0.025

9 8.117± 0.976 8.371± 1.017 8.007± 0.976 2.124± 0.245 2.111± 0.372 2.119± 0.245

10 7.719± 0.900 8.039± 1.050 7.412± 0.900 2.443± 0.322 2.399± 0.425 2.449± 0.322

11 8.398± 0.918 8.345± 1.016 8.203± 0.918 2.738± 0.317 2.716± 0.391 2.687± 0.317

12 7.112± 0.375 7.072± 0.425 6.985± 0.375 3.421± 0.429 3.408± 0.645 3.404± 0.429

13 8.710± 0.549 8.837± 0.614 8.994± 0.549 3.127± 0.026 3.017± 0.595 2.944± 0.383

14 8.995± 0.003 9.000± 7.3× 10−5 8.997± 0.003 1.371± 0.062 1.352± 0.003 1.412± 0.062

15 6.938± 0.235 6.857± 0.259 6.902± 0.235 3.296± 0.419 3.149± 0.580 3.341± 0.419

16 6.237± 0.002 6.240± 4.7× 10−5 6.238± 0.002 1.592± 0.111 1.578± 0.004 1.679± 0.111

17 5.996± 0.005 6.000± 0.000 5.995± 0.005 2.486± 0.094 2.475± 4.5× 10−16 2.562± 0.094

18 8.547± 0.391 8.397± 0.330 8.466± 0.391 3.018± 0.315 2.819± 0.488 2.892± 0.315

19 10.832± 1.287 10.854± 1.616 10.981± 1.289 2.051± 0.253 1.837± 0.301 2.064± 0.253

20 10.791± 0.009 10.799± 0.001 10.790± 0.009 6.094± 0.075 6.081± 0.009 6.161± 0.075

21 9.401± 1.110 9.338± 1.165 9.527± 1.110 9.370± 1.452 9.229± 1.652 9.078± 1.452

22 9.663± 0.894 9.332± 1.182 9.677± 0.894 4.281± 0.525 4.264± 0.696 4.466± 0.525

23 11.389± 0.008 11.393± 0.007 11.388± 0.008 4.445± 0.051 4.488± 0.068 4.486± 0.051

24 9.593± 0.010 9.600± 7.2× 10−5 9.591± 0.010 5.944± 0.088 5.926± 0.003 6.016± 0.088

25 10.586± 1.401 10.656± 1.225 10.081± 1.401 2.169± 0.242 2.012± 0.352 2.115± 0.243

26 15.523± 1.896 15.941± 2.113 15.428± 1.896 2.891± 0.420 2.801± 0.524 2.725± 0.420

27 19.274± 1.114 19.520± 0.810 19.543± 1.114 6.700± 0.828 6.447± 1.094 6.556± 0.828

28 22.538± 1.507 20.930± 2.004 21.821± 1.507 6.371± 0.947 6.539± 1.106 6.612± 0.947

29 18.655± 0.397 18.540± 0.441 18.651± 0.397 6.388± 0.748 7.084± 0.970 6.446± 0.748

30 15.201± 0.340 15.099± 0.559 15.319± 0.340 2.527± 0.331 2.551± 0.448 2.654± 0.331

31 12.423± 1.252 12.801± 1.622 12.559± 1.252 2.567± 0.308 2.686± 0.442 2.523± 0.308

32 8.559± 0.890 8.847± 0.957 8.821± 0.890 2.826± 0.381 2.933± 0.491 2.851± 0.381

33 8.139± 0.833 7.867± 0.822 8.243± 0.833 3.343± 0.420 3.231± 0.612 3.172± 0.420

34 7.476± 0.667 7.392± 0.658 7.652± 0.667 1.475± 0.156 1.521± 0.231 1.440± 0.156

35 16.610± 1.876 16.963± 1.712 16.574± 1.876 5.591± 0.717 5.585± 1.036 5.771± 0.717

36 6.191± 0.573 6.495± 0.587 6.571± 0.573 4.592± 0.572 4.706± 0.784 4.630± 0.572

37 12.821± 0.339 12.580± 0.468 12.856± 0.339 1.964± 0.288 1.990± 0.316 1.987± 0.288
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simulated annealing algorithm ran for more than 150 iterations until the first occurrence
of the best fitness value (314, 961 and 432 iterations, respectively). Consequently, these
points are not shown in Figure 4.3 to ensure a more consistent and accurate viewing.
From Table 4.2, we verify that the differential evolution is the fastest algorithm, with an
average duration of 3 iterations and 0.03707 s until the first occurrence of the best final
fitness value, in comparison with 37 iterations (3.166 s) from the GA and 25 iterations
(0.4119 s) from the SA.

4.3 Conclusions

As stated in the beginning of this chapter, the wildfire spread prediction area has been
dominated by the use of genetic algorithms as the main tool for the calibration of the
Rothermel model. However, the results obtained in this chapter show that differential
evolution is also a very suitable algorithm for the calibration of the Rothermel model,
mainly due to its time performance, which is critical in wildfire spread prediction.

Regarding the results: the near-zero relative error obtained in the majority of the
calibrations reveals the quality of the metaheuristic algorithms in finding fit solutions
which allow to obtain accurate rate of spread R values. The results also show that for
relatively stable fire conditions without any extreme behavior, and for well defined or
calibrated input parameters, the Rothermel model can produce very exact predictions.
However, at the same time, the Rothermel model considered in this work was directed
at finding only the rate of spread R. It did not offer any information on the lateral and
backward fire rate of spread, nor any information on the fire shape, which, in a real wildfire
application are entirely necessary. In a tool which considers a more broad and complete
fire behavior, the complexity increases and so, the prediction errors increase as well.



Chapter 4. Calibration of the Rothermel model 34



Chapter 5

Calibration of fire spread prediction
model

In this chapter, the application of the well established two-stage methodology (Figure
2.2) presented in the literature review is performed. For this, the three implemented
algorithms - GA, DE and SA - were adapted for calibrating the input parameters of a
Rothermel-based fire spread platform (FIRESTATION) using data from a prescribed fire
which took place in Castanheira de Pêra, center of Portugal. FIRESTATION is a platform
that can predict real-time wildfire propagation to decision support.

This chapter is organized as follows: Section 5.1 presents the wildfire spread simulator,
Section 5.2 describes the methodology used for the calibration, Section 5.3 presents the
obtained results, and in Section 5.4 some conclusions are drawn.

5.1 Fire spread simulator

The fire spread simulator is the FIRESTATION [10] which was provided by ADAI.
As stated in Section 2.3, this simulator is based on the Rothermel model. Therefore, the
simulator’s input parameters are essentially the same as the ones referred in Section 2.1,
with some adaptations.

The Rothermel model calculates the fire rate of spread R along the main direction of
propagation. However, in a real wildfire situation, it is important to obtain information
about the shape and size of the wildfire. For that reason, in FIRESTATION, the Rothermel
model is coupled with two models [60, 61] which provide the mathematical description of
the fire shape.

Moreover, the growth of the fire area is simulated based on a raster approximation.
The terrain is divided into squared cells over which the fuel characteristics are considered
to be constant. Then, the fire spread is represented by the contagion between burning cells
and non-burning cells (for more details on how the contagion process is performed, see
[10]). Using a raster approach as the basis of the FIRESTATION simulator means that its
input parameters can’t simply be represented by a single value, as in the Rothermel model,
in Chapter 4. Instead, the simulator takes as inputs files which contain the characteristics
of the fire environment. Specifically, the input files are the following:

• Terrain file - ASCII data file consisting of the Digital Elevation Map (DEM) of
the fire location. It follows the Esri ASCII raster format;

35
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Figure 5.1: Illustration of how various layers which describe the location where the fire
occurs and serve as input for the fire spread simulator.

Source: ADAI.

• Fuel distribution file - ASCII data file containing the fuel model code number for
each cell. It follows the Esri ASCII raster format;

• Nuatmos file - file containing various layers with the wind field, generated using
the Nuatmos model [62];

• Ignition file - contains information for the fire simulation initiation: time instant
of initiation and the coordinates of the ignition cells;

• Control file - a text file that specifies the stopping criteria for the fire propagation
simulations;

• Fuel models file - contains the values of fuel parameters for each fuel model.

Figure 5.1 illustrates how the overlapping of the various raster layers occurs in FIRESTA-
TION.

The output of the fire simulator is a file containing a list of all of the simulated burned
cells at the end of the simulation, along with other relevant information such as the time
instant at which each cell burned and the respective rate of spread R value.

5.2 Methodology

In this section, the methodology used for testing the two-stage framework is presented.
The input parameters to be calibrated and the calibration process are defined in Section
5.2.1, the fitness function used to evaluate the solutions in this chapter is defined in Section
5.2.2 and, finally, the used dataset and the overall calibration and prediction algorithm
are presented in Section 5.2.3.
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5.2.1 Solution structure

For this part of the work, a candidate solution generated by one of the three calibration
algorithms is represented by a vector with two parameters: surface-area-to-volume ratio
(σ) and fuel bed depth (δ): Pi ≡ Si ≡ [σi, δi].

As opposed to what was done in Chapter 4, fuel moisture (Mf) and midflame wind
speed (U) are not considered for calibration in this chapter. This is due to two reasons:
first, in Chapter 4, the fuel moisture (Mf) was calibrated due to the existence of a
measured fuel moisture value Mfobs around which an interval of variation was formed,
for each dataset; secondly, using FIRESTATION, the wind input is not represented by a
single parameter U and its respective value. Instead, as was described in Section 5.1, the
wind input corresponds to a three-dimensional wind field which is generated using the
Nuatmos model and wind measurements.

Moreover, since the fire spread simulator used is based on the Rothermel model, the
justifications presented in Section 4.1.1 for choosing the parameters surface-area-to-volume
ratio (σ) and fuel bed depth (δ) to be calibrated remain valid.

5.2.2 Fitness function

Similarly to the majority of the works in the literature review, the fitness of a given
solution Si, generated by the three calibration algorithms is based on the symmetric
difference between the corresponding simulated fire area and the real fire area.

For two sets A and B, the symmetric difference A∆B (5.1) corresponds to the union
of the two sets minus their intersection:

A∆B = (A ∪B)− (A ∩B) (5.1)

Figures 5.2a and 5.2b illustrate the concept of symmetric difference between two sets A
and B:

(a) Two sets A and B. (b) Symmetric difference of A and B.

Figure 5.2: Illustrations of the symmetric difference between two sets A and B.

Since both the fire spread simulations’ results and the real prescribed fire data consist
of sets of the respective burned cells. Therefore, in order to calculate the symmetric
difference between the two sets and evaluate the quality of the a solution Si generated by
the algorithms, the fitness function (5.2) is given by:

RSDi =
∪cellsi − ∩cellsi

Rcells − Icells
(5.2)

Equation (5.2) ends up corresponding to Equation (2.23) which was presented in the
literature review. ∪cellsi corresponds to the number of cells in the union of the two sets
(simulated fire cells corresponding to the solution Si and real fire burned cells) ans ∩cellsi
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corresponds to the number of cells in the intersection of the two sets. In the denominator
of Eq. (5.2), Rcells is the number of burned cells in the real fire and Icells is the number of
ignition cells of the real fire. The purpose of having Rcells − Icells in the denominator is so
that fitness is calculated in relation to the number of the real fire burned cells, similarly
to relative error (4.1) used as fitness function in the previous chapter, described in Section
4.1.2 (this is also the reason of having RSDi as the function’s variable, it corresponds to
Relative Symmetric Difference, thus considering the presence of the denominator).

Similarly to what was described in Section 4.1.2, the goal of the algorithms in this
chapter is also to find the best solutions with the lowest associated values of RSDi, i.e.,
solutions whose associated simulated fire map shape is as close as possible to the real fire
shape, so that the symmetric difference between the two is smallest possible.

5.2.3 Calibration and prediction methodology

As described in this chapter’s introduction, the goal here is to put into application
the two-stage fire spread prediction methodology (Figure 2.2) presented in Section 2.3.1,
which uses algorithms for calibrating the wildfire spread model parameters, and compare
its prediction against the real wildfire.

In order to do this, we use the data from a prescribed fire that took place in Castanheira
de Pêra, in the center of Portugal, in 2022. The data, which was kindly provided by ADAI,
was obtained through an experimental prescribed fire which took place in Castanheira de
Pêra, in the center of Portugal, in 2022. Figure 5.3a shows a perspective on the fire field
location and Figure 5.3b was obtained during the fire and shows the fire progression.

(a) Perspective of the fire field location on
Google Earth. (b) On-going prescribed fire.

Figure 5.3: Images regarding the prescribed fire used as test case for this work.

Source: ADAI.

The data consists of a set of four fire spread maps, each one corresponding to a different
time instant: 4 min, 8 min and 12 min after the beginning of the fire. Moreover, it contains
the fuel distribution file and with the digital elevation map (DEM) of the fire ground, the
wind fields corresponding to the wind conditions registered at the same four time instants
from the fire spread maps. The wind fields required for input of the fire spread simulator
were obtained using the Nuatmos model and based of the wind measurements which were
taken during the fire. As stated in Section 5.2.1, the input parameters to be calibrated
are σ (surface-area-to-volume ratio) and δ (fuel bed depth). The rest of the fuel input
parameters are set to the default values according to the respective fuel model. According
to ADAI, the field where the prescribed fire occurred consists essentially of shrubs which
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are best described by the NFFL fuel model no. 5 [54]. According to the ADAI experts,
for this model, the intervals of variation of σ and δ are:

• σ ∈ [56.100, 79.500] [cm−1];

• δ ∈ [0.305, 0.915] [m].

As explained in Section 2.3.1, the two-stage methodology is divided into two parts:
the calibration stage and the prediction stage. In the calibration stage the fire spread
simulator’s input parameters are calibrated using observed fire data from instant t1. After
this, and based on the assumption that the values of the input parameters values remain
constant between t1 and t2, the calibrated parameters are used for obtaining fire spread
predictions for the time step t2. Considering the available real fire data, there are two
possible scenarios for testing the two-stage methodology:

1. Scenario 1: use the data from instant t1 = 4min for calibration and then obtain
fire spread predictions for t2 = 8min;

2. Scenario 2: use the data from instant t1 = 4min for calibration and then obtain
fire spread predictions for t2 = 12min;

3. Scenario 3: use the data from instant t1 = 8min for calibration and obtain a fire
spread prediction for t2 = 12min.

The fire spread prediction simulations for t2 = 8min and t2 = 12min are obtained,
not only using the calibrated values for σ and δ but also using the real fire data available
from the respective calibration instant. For example, in the prediction for t2 = 8min
using calibrated parameters from t1 = 4min, the simulation initiates using the wind
field corresponding to the instant t = 4min and the ignition area is set to the real fire
burned area from that time instant as well. This is performed in a similar way for the
remaining predictions and the justification is the fact that, in a real wildfire situation,
having obtained the real wildfire data from an intermediate time instant for calibration,
that data is available to be used as input for next instant’s respective prediction. This
not only uses more accurate and updated input data but also significantly reduces the
required prediction time because the simulation does not have to initiate from the first
fire instant (t = 0). obtained employing the two-stage methodology are compared with
the respective predictions obtained from the simulator without using any calibrated input
parameters’ values.

Algorithm 5 summarizes the two-stage methodology for wildfire spread prediction, for
the specific real dataset described above.

5.3 Results

In this section, the results of the proposed methodology presented in Section 5.2.3 for
the calibration of the fire simulator’s input parameters and prediction of the fire spread
are presented and discussed.

The stochastic nature the three metaheuristic algorithms was considered and each one
was executed 5 times. Due to the computational time they were not executed 30 times, as
performed in Chapter 4. The parameters of each metaheuristic algorithm were fixed to
the values shown in Table 5.1.
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Algorithm 5 Fire spread calibration methodology.

Input:
1: Limits of the input parameters to be calibrated: σmin and σmax, δmin and δmax; and

the desired scenario.
2: Experimental dataset, i.e., ignition cells for t = 0min, burned cells maps for t = 4min,

t = 8min and t = 12min.
3: GA’s parameters: N (number of individuals), gmax (maximum number of genera-

tions), elitism (fraction of individuals to suffer elitism), selection (toursize), crossover
(crossprob) and mutation (mutprob) operators and parameters.

4: DE’s parameters: N (number of individuals), C (fraction of parameters affected by
the differential mutation), f (scale factor used in the differential mutation), tmax

(maximum number of iterations), and countmax (maximum number of iterations for
non-improvement of the populations’ best fitness).

5: SA’s parameters: Ti (initial temperature), Tf (final temperature), cf (cooling factor),
trmax (maximum number of tries for constant temperature), and ns (number of
neighboring solutions).

Output: Calibrated input parameters.
6: Apply the metaheuristic algorithm (Algorithms 1 or 2 or 3) to minimize the fitness

function RSDi (5.2) using the observed fire propagation from t0 = 0min to t1 in two
situations: t1 = 4min or t1 = 8min.

7: Perform predictions using the respective calibrated input parameters for t2 = 8min
(Scenario 1) and t2 = 12min (Scenarios 2 and 3).

Table 5.1: Parameter settings for the calibration methodology, Algorithm 5, using GA
(Algorithm 1), DE (Algorithm 2), and SA (Algorithm 3).

GA DE SA

N = 25 N = 25 Ti = 1000

gmax = 150 C = 0.5 Tf = 0.001

toursize = 3 f = 0.5 cf = 0.99

crossprob = 0.7 tmax = 500 trmax = 2

mutprob = 0.3 countmax = 20 ns = 20

elitism = 0.05

The calibration and prediction results from the methodology presented in Section 5.2.3
are presented in Tables 5.2 and 5.3. Table 5.2 contains the results based on the calibration
performed using the real fire area from t1 = 4min (Scenarios 1 and 2) and Table 5.3
shows the results when using the real fire area from t1 = 8min for calibration (Scenario
3). In both tables, RSD∗ (5.3) is the best final fitness achieved by each algorithm from
the 5 trials and RSD (5.4) is the mean of the final fitness values from the 5 trials, for
each algorithm.

RSD∗ = min{RSD1, RSD2, . . . , RSD5} (5.3)

RSD =
1

5

5∑

k=1

RSDk, (5.4)
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where RSDk is the fitness of the best solution given by (5.2), resulting from the algorithm’s
k -th trial. Moreover, σ∗ and δ∗ correspond to the best solution obtained by each algorithm,
which corresponds to the best fitness RSD∗. σ and δ are the mean values of σ and δ from
the final best individuals from each of the 5 trials, for each algorithm, and σσ and σδ are
the standard deviations of the 5 calibrated solutions which resulted from the 5 runs of
each algorithm. Finally, RSDC is the prediction error of the best solution [σ∗, δ∗], i.e.,
the symmetric difference as presented in (5.2), between the simulated fire area resulting
from [σ∗, δ∗] and the respective real fire area.

Table 5.2: Calibration and prediction results from the three algorithms when performing
calibration using fire data of t1 = 4min and prediction for t2 = 8min and t2 = 12min.
Values for σ∗ and σ are in cm−1 and for δ∗ and δ are in m.

A
lg
o
ri
th

m Calibration results
t1 = 4min.

Prediction
results

Fitness
Best

solution
Mean

solution
Std.

deviations
t2 = 8 t2 = 12

RSD∗ RSD σ∗ δ∗ σ δ σσ σδ RSDC

GA 0.520 0.528 57.617 0.384 57.092 0.399 0.819 0.009 0.330 0.485

DE 0.520 0.522 57.404 0.385 57.038 0.392 0.740 0.012 0.334 0.499

SA 0.531 0.535 56.555 0.405 57.876 0.408 2.657 0.029 0.360 0.534

Table 5.3: Calibration and prediction results from the three algorithms when performing
calibration using fire data of t1 = 8min and prediction for t2 = 12min. Values for σ∗
and σ are in cm−1 and for δ∗ and δ are in m.

A
lg
o
ri
th

m Calibration results
t1 = 8

Prediction
results

Fitness
Best

solution
Mean

solution
Std.

deviations
t2 = 12

RSD∗ RSD σ∗ δ∗ σ δ σσ σδ RSDC

GA 0.440 0.442 56.159 0.339 56.268 0.362 0.154 0.033 0.982

DE 0.440 0.441 56.150 0.340 56.183 0.350 0.133 0.020 0.985

SA 0.440 0.447 56.282 0.387 56.584 0.373 0.539 0.018 1.193

Table 5.4 contains the results of the fire spread prediction using the non-calibrated,
default values for σ and δ inputs, σ′ and δ′. Their values, according to the NFFL fuel
model no. 5 [54], are σ′ = 66.000 cm−1 and δ′ = 0.610m. RSDNC corresponds to the
symmetric difference between the real fire area and the non-calibrated simulated fire area
(it can be interpreted as the fitness of the non-calibrated solution [σ′, δ′] = [66.000, 0.610]).

In order to complement the results analysis, Figures 5.4, 5.5 and 5.6 compare the
non-calibrated simulated fire areas with the algorithms’ best solutions’ ([σ∗, δ∗]) resulting
simulated fire areas. Figures 5.4 and 5.5 concern the fire spread predictions for t2 = 8min.
and t2 = 12min. using the real fire area of t1 = 4min. for calibration, and Figure 5.6
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Table 5.4: Fire spread prediction results using the default (non-calibrated) values of σ
and δ (σ′ and δ′).

Simulation time RSDNC

8min 1.639

12min 2.931

concerns the fire spread predictions for t2 = 12min. using the real fire area of t1 = 8min.
for calibration.

First of all, comparing the results from Tables 5.2 and 5.3 with the results in Table
5.4 it is possible to verify that the implementation of a calibration stage for tuning the
simulator’s input parameters dramatically improved the fire spread predictions for the
time instants that followed. This result was expected, and it can also be verified in Figures
5.4, 5.5 and 5.6, where the simulated fire areas resulting from calibrated values for inputs
σ and δ are much similar to the respective real fire areas than the simulations resulting
from the non-calibrated input values for σ and δ (σ′ and δ′, respectively).

Considering the fire spread predictions for t = 8min (Scenario 1): while using the
non-calibrated input parameters resulted in an elevated RSDNC value of 1.639 (Figure
5.4a shows an over-prediction of the burned area), the use of calibrated input parameters
resulted in much lower values of RSDC . In fact, the minimum reduction of the prediction
error occurred for the simulated annealing (SA) algorithm, which obtained a RSDC value
of 0.360, which consists of a reduction in the prediction error of 78% (GA and DE were
slightly better, obtaining reductions of 79.9% and 79.6%). Regarding the fire spread
predictions for t = 12min, two different tests were performed, as already explained:
calibration using the real fire data from t = 4min (Scenario 2) and using the data from
t = 8min (Scenario 3). The fire spread prediction without calibration also resulted in an
elevated prediction error, ie. RSDNC = 2.391. On Scenario 2, the largest value of RSDC

was obtained again from the simulated annealing calibration (0.534, with a reduction in
the prediction error of 81.79%) against 0.485 from the genetic algorithm (reduction of
83.45%) and 0.499 from the differential evolution (reduction of 82.99%). On Scenario
3, the prediction errors RSDC were not as better as in the previous situation, but still,
some considerable reductions from the non-calibrated prediction errors were obtained:
0.982 (reduction of 66.48%) for the GA, 0.985 (reduction of 66.39%) for the DE and 1.193
(reduction of 59.31%) for the SA.

Comparing the three metaheuristics calibration results, it is possible to verify that the
differential evolution (DE) algorithm had a slightly better performance than the other two
algorithms. RSD∗ value for DE is the same as for the GA for the calibration performed
with data from t = 4min and is the same as the other two algorithms for the calibration
performed with data from t = 8min. However, DE obtained better RSD values than the
other algorithms for both calibrations, which means that over the 5 trials performed for
each calibration, the final solutions obtained by the differential evolution (DE) algorithm
were consistently very fit. The consistency and reproducibility of the differential evolution
algorithm is also shown by the resulting standard deviations of σ and δ, σσ and σδ, which
are the lowest (except for σδ in Table 5.2). The low σσ and σδ values indicate that in the
5 trials the DE produced 5 final solutions whose parameters’ values had low dispersion
around the respective average values σ and δ.

Regarding the overall two-stage methodology, as stated before, the results show that
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(a) Non-calibrated prediction. (b) GA calibration.

(c) DE calibration. (d) SA calibration.

Figure 5.4: Scenario 1: fire spread predictions for t2 = 8min, with calibration performed
using the real fire area from t1 = 4min.
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(a) Non-calibrated prediction. (b) GA calibration.

(c) DE calibration. (d) SA calibration.

Figure 5.5: Scenario 2: fire spread predictions for t2 = 12min, with calibration performed
using the real fire area from t1 = 4min.
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(a) Non-calibrated prediction. (b) GA calibration.

(c) DE calibration. (d) SA calibration.

Figure 5.6: Scenario 3: fire spread predictions for t2 = 12min, with calibration performed
using the real fire area from t1 = 8min.
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having an intermediate stage for calibrating the simulator using the obtained real fire data
results in much better fire spread predictions. This result proves the importance of the
two-stage methodology described in Section 2 and is inline with the results found in the
literature review. When analyzing more carefully the prediction results for t2 = 12min, it
is possible to verify that executing calibration with the data from t1 = 4min resulted in
better predictions (lower values of RSDC) than for the calibrations performed with the
data from t1 = 8min. A possible explanation for this may be the error propagation inside
FIRESTATION: the small errors present in the 4min simulations become successfully
larger for the 8min and 12min simulations. However, the prediction results RSDC were,
for every situation, better than the corresponding predictions results without calibration
RSDNC .

5.4 Conclusions

Similarly to Chapter 4, the results from this chapter demonstrate the quality of the
differential evolution algorithm as a calibration algorithm for fire spread models, which is
an area where genetic algorithm are the predominant calibration technique. Moreover,
the importance of calibrating the FIRESTATION’s input parameters became clear, as
was already suggested in the literature review. Consequently, the advantage of using
the two-stage methodology in real wildfire applications was shown by the results of this
chapter. Additionally, it is important to comment on Figures 5.4, 5.5 and 5.6. These
figures have the objective of showing the difference between the real (in red) and simulated
(in grey) fire propagations. However, they do not accurately depict the terrain in which
the controlled fire occurred, specifically, the slope of the terrain and the geographical
orientation. The images were obtained by scattering the burned cells from the real fire
and the simulation. The two scattered sets were then overlapped.
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Conclusions

6.1 Conclusions

The initial main objective of the work presented in this document was to improve
the accuracy of fire propagation prediction by calibrating the Rothermel model’s input
parameters. The three implemented metaheuristic algorithms produced quality input
parameter calibrations which resulted in accurate fire propagation predictions, in relation
to the non-calibrated model, as demonstrated in Chapter 5. Additionally, the three
algorithms were implemented in a practical way, as proposed in the requirements definition
for they allow the user to easily change the calibrated Rothermel input parameters and
the algorithms intrinsic parameters, and perform adaptations to their operating structure.

In Section 1.4, the project requirements were defined. It is then important to analyze
the results of the work developed and understand if they comply with the requirements.
Regarding the first non-functional requirement defined in Section 1.4: the developed
algorithms were implemented in parallel, as far as possible. The genetic algorithm
and differential evolution are population-based algorithms, so they are suited to this
in the sense that the individuals in a population are independent from each other so
they can be evaluated separately, as suggested in Section 2.3.2 of the literature review.
Simulated annealing was implemented using greedy search which, as described in Section
3.4, generates a small population of new solutions in each iteration. Similarly to the
other two algorithms, this small population was also evaluated and managed in parallel
given that the solutions are also independent from each other. The next non-functional
requirement was that the average prediction error of the calibrated model should have
an improvement of at least 40% in relation to the error from the non-calibrated model.
Since calibrated fire propagation predictions were only performed in Chapter 5 and as
described in Section 5.3, it is possible to verify that the all predictions using calibrated
parameters resulted in error reductions larger than 40%. In fact, the smallest error
reductions, from the non calibrated model to the calibrated model were 66.48% for the
GA, 66.39% for the DE and 59.31% for the SA, all in Scenario 3. These results confirm
that the work developed complies with the second non-functional requirement. Finally,
the third non-functional requirement was that the average model calibration time should
be inferior to 30 minutes. For this analysis, only the work from Chapter 5 should be
considered because the FIRESTATION fire simulator provides more complete information
about the fire propagation and is closer to being used in a real fire event. For that matter,
the calibrations performed in Chapter 5 were significantly longer than 30 minutes, which
means that the third requirement was not fulfilled. Similarly to the previous requirement,

47
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the 30 min calibration requirement was defined based on what would be acceptable in a
real wildfire situation. The long calibration times are an important issue to be addressed
because the real world functionality of the two-stage methodology for wildfire spread
prediction requires reasonable calibration times (in which the model simulations’ times
are included) and also requires the real-time acquisition of the real wildfire data. For this
matter, not only the algorithms should be improved (and their parallel implementation)
but mainly the propagation model should be improved, given that the fire propagation
simulations consume the biggest part of time during the calibration stage of the two-stage
methodology. In fact, as part of the “IMFire” project, the model is being redesigned
to be faster. An increase in the number of available computing cores is also necessary,
specially considering that the final goal of the “IMFire” project is to produce a decision
support system in which there’s urgency in obtaining wildfire spread predictions, in a real
situations.

Relatively to the objectives and requirements defined for this work, the outcome can
be considered as positive. The main objective was accomplished, i.e., the development
and application of the metaheuristic algorithms for calibration of the fire spread model.
In addition, the validation of the the two-stage methodology using real fire data and
a Rothermel-based fire spread model (Chapter 5) and the parallel implementation of
the metaheuristic algorithms had the goal of integrating the most important knowledge
obtained from the literature review in the “IMFire” project.

6.2 Future work

One of the aspects which should be improved is the parallel implementation of the
algorithms. Given that the three algorithms were implemented using MATLAB®, there
was never the possibility of using tools such as OpenMP, which was referenced in the
literature review and is platform dedicated to parallel programming. So, when integrating
the algorithms in a more complete wildfire propagation prediction system, the possibility
of improving the developed algorithms and using faster and more robust techniques should
be considered.

Additionally, with the aim of improving the results obtained in Chapter 5, more
parameters should be considered for calibration. It is known that wind has a heavy
influence on fire propagation and it is also a significant source of prediction error due to
the possibility of sudden changes in its behavior. Some works in the literature review
proposed methodologies in which the wind parameters were calibrated.

The two-stage methodology was tested in Chapter 5 using data from a past controlled
fire. A possible and interesting next step for testing the two-stage methodology would
be to execute it during a real controlled fire, in real time. As suggested in the previous
section, an increase in computing power is probably required in order to obtain solid
results, as well as the possibility of obtaining, processing and feeding the real fire data to
the model and to the algorithms during the fire itself, dynamically.
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control system for industrial processes. In Proc. 16th IEEE International Conference
on Emerging Technologies and Factory Automation, pages 1–8. IEEE, September
2011.
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[21] Jorge Pereira, Jérôme Mendes, Jorge S. S. Júnior, Carlos Viegas, and João Ruivo
Paulo. A Review of Genetic Algorithm Approaches for Wildfire Spread Prediction
Calibration. Mathematics, 10(3), 2022.
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netic algorithm for forest fire propagation prediction: exploiting multi-core platforms.
Concurrency and Computation: Practice and Experience, 29(9):1–18, January 2016.

[43] Davide Ascoli, Michele Lonati, Raffaella Marzano, Giovanni Bovio, Andrea Cavallero,
and Giampiero Lombardi. Prescribed burning and browsing to control tree encroach-
ment in southern european heathlands. Forest Ecology and Management, 289:69–77,
September 2013.

[44] Giorgio Vacchiano, Renzo Motta, Giovanni Bovio, and Davide Ascoli. Calibrating
and testing the forest vegetation simulator to simulate tree encroachment and control
measures for heathland restoration in southern europe. Forest Science, 60:241–252,
April 2014.

[45] John Henry Holland. Adaptation in Natural and Artificial Systems. University of
Michigan Press, 1975.

[46] S.N. Sivanandam and S. N. Deepa. Introduction to Genetic Algorithms. Springer-
Verlag Berlin Heidelberg, 2008.
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Abstract: Wildfires are complex natural events that cause significant environmental and property
damage, as well as human losses, every year throughout the world. In order to aid in their man-
agement and mitigate their impact, efforts have been directed towards developing decision support
systems that can predict wildfire propagation. Most of the available tools for wildfire spread pre-
diction are based on the Rothermel model that, apart from being relatively complex and computing
demanding, depends on several input parameters concerning the local fuels, wind or topography,
which are difficult to obtain with a minimum resolution and degree of accuracy. These factors are
leading causes for the deviations between the predicted fire propagation and the real fire propagation.
In this sense, this paper conducts a literature review on optimization methodologies for wildfire
spread prediction based on the use of evolutionary algorithms for input parameter set calibration. In
the present literature review, it was observed that the current literature on wildfire spread prediction
calibration is mostly focused on methodologies based on genetic algorithms (GAs). Inline with this
trend, this paper presents an application of genetic algorithms for the calibration of a set of the
Rothermel model’s input parameters, namely: surface-area-to-volume ratio, fuel bed depth, fuel
moisture, and midflame wind speed. The GA was validated on 37 real datasets obtained through
experimental prescribed fires in controlled conditions.

Keywords: wildfire; wildfire spread prediction; calibration; genetic algorithm; evolutionary algorithms

1. Introduction

Wildfires are one of nature’s most dangerous hazards and, in the last few years,
their impact has been increasing significantly, as reported by the European Commission’s
20th issue of the annual wildfire report [1–3]. This report, from 2019, shows a total burned
area of 789,730 (ha) registered for 40 countries from Europe, the Middle East, and North
Africa. This number is nearly four times larger than the records for the previous year (2018).
Wildfires can impact ecosystems by destroying natural habitats, resources, and wildlife.
Furthermore, they cause significant damage to society, being responsible for numerous
fatalities, accidents, injuries, health problems, and the destruction of human infrastructures.
These damages bear a significant economic impact, not only due to the fire damage but
also the large investments in prevention, preparedness, fire suppression and recovery
efforts [4]. It is essential to direct efforts towards understanding the behavior of wildfires
and improving their management. In this sense, knowledge of how wildfires propagate
is critical, allowing the prediction of where the fire will be and taking the appropriate
measures to mitigate its impact.

Theoretical, empirical and semiempirical models have been developed to predict
the wildfire behavior [5]. The semiempirical Rothermel model [6] is the most widely
used model for wildfire spread prediction [5], particularly in Mediterranean European
countries [7], being the core of some of the most cited fire simulators such as FARSITE [8]
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and FIRESTATION [9]. The Rothermel model uses several input parameters related to the
available forest fuels, such as trees, grass or bushes (surface-area-to-volume ratio, height
and moisture content), the terrain configuration (slope), and atmospheric conditions (wind
speed and direction).

The quality of the fire spread prediction depends on the quality of the propagation
model, and on the accuracy of the input parameters [10]. The present work focuses on
the latter cause of uncertainty in wildfire spread predictions. As a matter of fact, while
some variables remain constant throughout the whole fire event or can be obtained with a
high degree of accuracy (e.g., terrain slope), other variables may change due to fire and
cannot be obtained with enough temporal or spatial resolution (e.g., fuel characteristics and
wind speed/direction). This uncertainty in the input parameters results in considerable
deviations between the predicted and the real fire spread. In order to improve the fire
spread simulations/predictions, it is essential to deal with this uncertainty in the Rothermel
model input parameters. In an effort to find the accurate input parameters values for the
wildfire prediction, some methodologies based on Evolutionary Algorithms (EAs) have
been proposed to calibrate the Rothermel model [11]. EAs, such as genetic algorithms (GA),
ant colony optimization (ACO), and particle swarm optimization (PSO), have proven their
effectiveness for optimization/calibration problems [12–14].

In this paper, we present a review of genetic algorithm approaches for wildfire spread
prediction calibration. The main contributions of the paper are:

• A literature review focused on wildfire spread prediction calibration using GAs is per-
formed. The GA was chosen as a technique for the calibration due to its predominance
in research works that used EAs to calibrate the wildfire spread prediction model;

• Based on the presented literature review, in a didactic way, wildfire spread calibration
using genetic algorithm is described, in which a specific GA framework for Rothermel
model calibration is presented. Moreover, the parameters to be calibrated are dis-
cussed, namely the surface-area-to-volume ratio (σ), fuel bed depth (δ), fuel moisture
(M f ), and midflame wind speed (U);

• The actual feasibility of using GAs for the calibration of the Rothermel model for
wildfire spread prediction is explored/studied on 37 real datasets.

The results show a significant error reduction in the wildfire spread prediction,
i.e., from 95% to 10%.

This paper is organized as follows. Section 2 contains a description of the Rothermel
model, as well as an insight into the current state of the art regarding methods of wildfire
spread prediction using genetic algorithms. In Section 3, GAs are revised, and the method
used in this paper to calibrate the Rothermel model is presented. In Section 4, the results
of the proposed calibration are presented and analyzed. Finally, Section 5 presents the
final conclusions.

2. Literature Review of Wildfire Spread Prediction Calibration

Genetic algorithms are the most adopted technique for calibration of the Rothermel
model’s input parameters. Due to the importance of this subject for wildfire spread
prediction, and due to the number of latest developments in this particular field, a literature
review of the most relevant work in this area is fundamental.

The search process for the presented literature review was performed by using the Sci-
ence Direct and IEEE Xplore databases and defining the following search keywords: (“fire
spread” OR “fire prediction” OR “fire rate of spread” OR “Rothermel model”) AND (“ge-
netic algorithm” OR “evolutionary algorithm” OR “calibration” OR “tuning”). The years
considered for the search were from 2000 until 2021. Additionally, the references of the
selected papers were also analyzed and served as a source for finding new papers. The
literature review rationale for article selection was based on the following criteria:

• Acceptance

1. The article uses the Rothermel model or a Rothermel model-based simulator for
fire propagation prediction/simulation;
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2. The article uses evolutionary algorithms for Rothermel model calibration;
3. The article focuses on improving the prediction results or its execution time.

• Rejection

1. The article’s method for fire propagation prediction is not based on the
Rothermel model;

2. The article implements calibration techniques other than evolutionary algorithms.

Based on this process, 15 papers were obtained.

2.1. Rothermel Model

The Rothermel model, proposed in [6], estimates a Rate Of Spread R of a fire front,
given by

R =
IRξ(1 + φw + φs)

ρbεQig
, (1)

which is measured in units of distance per unit of time ([m/s] or [ft/min]), and it represents
the linear velocity of a fire, in a given direction and set of conditions. The equations of the
associated factors in (1) IR(ρp, σ, δ, w0, ST , h, Mx, M f , Se), ξ(σ, ρp, w0, δ), φw(ρp, w0, δ, σ, U),
φs(ρp, w0, δ, tanφ), ρb(w0, δ), ε(σ), and Qig(M f ) depend on several input parameters and
are given by:

IR = Γ′wnhηMηS (2)

Γ′ = Γ′max

(
β

βop

)A
exp

[
A
(

1−− β

βop

)]
(3)

A = 133σ−0.7913 (4)

β =
ρb
ρp

(5)

ρb =
w0

δ
(6)

Γ′max =
σ1.5

(495 + 0.0594σ1.5)
(7)

βop = 3.348σ−0.8189 (8)

wn = w0(1− ST) (9)

ηM = 1−−2.59rM + 5.11(rM)2 −−3.52(rM)3 (10)

rM =
M f

Mx
(max = 1.0) (11)

ηS = 0.174S−0.19
e (max = 1.0) (12)

ξ =
exp[(0.792 + 0.681σ0.5)(β + 0.1)]

(192 + 0.2595σ)
(13)

φw = CUB
(

β

βop

)−E
(14)

C = 7.47exp(−0.133σ0.55) (15)

B = 0.02526σ0.54 (16)

E = 0.715exp(−3.59× 10−4σ) (17)

φS = 5.275β−0.3(tanφ)2 (18)

ε = exp
(−138

σ

)
(19)

Qig = 250 + 1116M f (20)

where the description of the respective parameters is presented in Table 1.
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Table 1. Identification of the parameters in Equations (2)–(20) [6,15].

Parameter Description

IR Reaction intensity (Btu/ft2min)
Γ′ Optimum reaction velocity (min−1)
β Packing ratio
ρb Oven-dry bulk density (lb/ft3)

Γ′max Maximum reaction velocity (min−1)
βop Optimum packing ratio
wn Net fuel load (lb/ft2)
ηM Moisture damping coefficient
ηS Mineral damping coefficient
ξ Propagating flux ratio

φw Wind factor
φS Slope factor
ε Effective heating number

Qig Heat of preignition (Btu/lb)

The input parameters of the Rothermel model (1) can be separated into three categories:
fuel properties, topography and wind properties. The fuel properties are heat content (h),
mineral content (ST (total) and Se (effective)), oven-dry particle density (ρp), oven-dry
fuel load (w0), surface-area-to-volume ratio (σ), fuel bed depth (δ), dead fuel moisture of
extinction (Mx) and fuel moisture (M f ). Topography is represented by slope steepness
(tanφ), and wind properties correspond to the midflame wind speed (U). A deeper insight
into the Rothermel model can be seen in [6,15].

2.2. The Need for a Fire Spread Model Calibration

Figure 1 presents a general illustration for wildfire spread prediction, which consists in
feeding a fire simulator with a set of input parameters that aim to represent the initial real
fire conditions, at t0. The result of the fire simulator, i.e., the simulated wildfire perimeter,
at t1, should match the propagation of the real wildfire, i.e., the real wildfire perimeter [16].
However, the input parameters are related to the environmental conditions, e.g., fuel,
weather, and terrain characteristics as described in Section 2.1, and obtaining them becomes
a difficult task in order to provide an accurate prediction.

Time

Real fire 

ignition
Real wildfire 

perimeter

Real fire

data

Simulated wildfire 

perimeter

Fire 

simulator

Input parameters

Figure 1. Illustration of fire spread prediction using only one set of non-calibrated input parameters.
Adapted from [17].

In more detail, some input parameters can be directly measured, such as terrain slope,
which can also be obtained based on previous topographical information. However, other
parameters, such as fuel-specific parameters, require detailed knowledge about the local
vegetation, which might not be available. Some input parameters, such as fuel moisture,
are calculated using models based on meteorological data [18], while wind field maps are
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estimated based on point observations from the available meteorological stations closer
to the fire location. These estimations introduce a great amount of error in the prediction.
In terms of behavior change, characteristics such as the terrain slope and the type of
vegetation in a certain region are constant in time and space, while others, such as wind
speed and direction, have very sudden variations during the wildfire [10]. Therefore,
finding a set of input parameters that produces accurate results solely based on previous
knowledge about the wildfire location and weather conditions is a challenging task. Due
to the uncertainty and the consequent inaccuracy in wildfire spread simulation, there is a
need to calibrate the input parameters.

2.3. Wildfire Spread Calibration Literature Overview

The Rothermel model is the most used and recognized fire spread prediction model,
serving as the base for several fire simulators (FARSITE [8] and FIRESTATION [9]). Research
works that deal with Rothermel model calibration and wildfire spread prediction mostly
use genetic algorithms. Initially, works such as [19,20] have proved the performance of
genetic algorithms by comparing them against other optimization techniques and with
implementation in a parallel two-stage prediction framework. More recently, other works
such as [17,21] aim to improve the calibration by merging the algorithms with other tools
that complement their performance, such as the Statistical System for Forest Fire Man-
agement (S2F2M) and WildFire Analyst (WFA) (a component of the Tecnosylva Incident
Management software suite designed to directly support multi-agency wild-fire incident
management). Given that the quality of genetic algorithms was proven early, works evolved
into directing efforts to improve their performance.

One of the areas explored to improve the performance of genetic algorithms is parallel
computing. Several works used parallel implementations of genetic algorithms to reduce
calibration time. In general, these strategies consisted of implementing a simulator’s
intrinsic functions in parallel and allocating more processing cores to individuals (elements
of a population that represent one possible solution for the problem) with longer predicted
execution times.

In the following sections, the main works dealing with this topic are provided, provid-
ing a perspective of the philosophy currently being pursued in this research field.

2.4. Wildfire Spread Calibration Literature Using Genetic Algorithms

Genetic algorithms have been used to find the set of input parameters that better
adjusts the wildfire spread model predictions to the real observations. In other words,
optimizing the model using a framework for wildfire spread prediction tuning.

The authors in [20] introduced a framework, illustrated in Figure 2, that consists of
two stages: a calibration stage and a prediction stage. After the ignition, the calibration
stage starts, at t0. Sets of Rothermel’s input parameters are generated (using an optimization
approach). Each set of input parameters is evaluated, at instant of time t1, by comparing
the simulator prediction with the real observed fire data for that time instance. The optimal
set of input parameters is the one that minimizes the deviation between the predicted and
the real fire perimeter. This process is repeated several times or until a certain solution
criterion is reached. In the prediction stage, assuming that environmental conditions remain
constant, the resulting optimal set of parameters from the calibration stage is used as input
for the fire simulator to predict the fire spread at every instant of time ti (i ∈ N). Here,
the prediction stage is similar to the classical method/framework (Figure 1), except that
now a tuned set of input parameters is used.
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Figure 2. Two-stage method for fire spread prediction, adapted from [17].

During the calibration stage, the goal is to find an optimal solution for the input
parameters. In a generic way, the optimization problem can be defined as:

x∗ = arg min
x∈S

F(x), (21)

where F(x) represents the function to be minimized (by an optimization algorithm, such
as GA), x represents the input parameters vector, S is the respective search space, and x∗

represents the input parameters that minimize F(x). A usual function to be optimized
in wildfire spread calibration is the difference between the real wildfire rate of spread
(measured from the real-time wildfire data) and the predicted rate of spread (obtained by
the Rothermel model), or the difference between the real and the predicted burned area.
The goal is to find the set of input parameters x of (21) that most accurately predicts the
real fire propagation.

The majority of the works from the current state of the art on wildfire spread prediction
are based on the previously presented Two-Stage framework (Figure 2). Early works, such
as [19,20], have proposed evolutionary algorithms as techniques that could be used to find
an optimal set of input parameters for a fire simulator. Genetic algorithms are included in
the group of evolutionary algorithms and they are the dominant optimization technique
for input parameter calibration.

In [20], following the presentation of the two-stage framework, a sensitivity analysis
was carried out in order to evaluate how the individual variation of each Rothermel input
parameter across its range of possible values affects the model output: the bigger the
sensitivity of one parameter, the more it affects the model’s output. Based on the sensitivity
results, an experimental study was conducted to confirm that calibrating parameters with
larger sensitivities and fixing the others reduces the GA’s search space and accelerates the
optimization time. The results showed that, after 1000 generations, the scenarios in which
only 6 input parameters were calibrated achieved an improvement in the objective function
(XOR area between the real and simulated burned areas) of approximately 33.3% (one third)
in relation to the scenario in which 10 input parameters were calibrated. This reduction
also matches the reduction in GA’s search space from one scenario to the other.

In [19], the genetic algorithm’s performance is tested against three other algorithms:
Random Search, Tabu Search and Simulated Annealing. The tests were carried out by com-
paring the simulated fire line based on the sets of parameters generated by the algorithms
against a fire line obtained by setting known values for all the inputs and running the ISStest
simulator for 45 min. Each algorithm was executed 10 times up to 1000 iterations. The fire
lines were compared using the Hausdorff distance H (22), which measures the degree of
mismatch between two sets of points F1 and F2, representing the fire line simulated based
on the optimized parameters and the fire line generated with known input parameters for
comparison. H (22) is given by

H(F1, F2) = max(h(F1, F2), h(F2, F1)), (22)
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where h(F1, F2) and h(F2, F1) represents the Hausdorff distance between two sets of points
F1 and F2 at a specific point in F2 and F1, respectively (see [19] for more details). The results
show that simulated annealing, tabu search and genetic algorithms presented similar results
after the 500th generation.

In [16], a dynamic data-driven genetic algorithm was proposed to tune the fire sim-
ulator’s input parameters based on the real fire behavior. The simulator used was fireLib
and, through reverse engineering, it was possible to obtain equations for wind values
(wind speed and direction). These equations are fed with terrain slope with the position
(x, y) of the fire front with the maximum rate of spread. The obtained wind speed and
direction values were used to steer the search for an optimal input parameter set carried
out by the genetic algorithm. Afterwards, in [22], the same research group proposed a new
calibration steering method as an improvement to the previous strategy. Since this was
highly dependent on the underlying simulator, the new approach consisted of generating
a database with fire evolution information from both real and simulated (synthetic) fires.
For the calibration stage, a dynamic data-driven genetic algorithm (DDDGA) was proposed
to define the best wind direction and wind speed values, by searching the database of
previous fires that were similar in terms of rate of spread, slope and fuel model to the
real observed fire spread, and using wind values from those fires to steer the genetic
algorithm’s search.

The authors in [17] introduced a system called SAPIFE (Spanish acronym for Adap-
tive System for Fire Prediction Based in Statistical-Evolutive Strategies) which is based on the
two-stage fire spread prediction framework with a genetic algorithm implemented during
the calibration stage. However, in SAPIFE, the genetic algorithm is coupled with another
method called the Statistical System for Forest Fire Management (S2F2M) [23]. This new
method receives a certain population from the GA and analyzes almost all possible in-
put parameter combinations from all individuals in the population. From this analysis,
S2F2M evaluates the probability of each map cell to be burned or not and generates a
probabilistic map. Then, based on these probabilities, the number of possible scenarios (pa-
rameter combinations between different individuals) is reduced, decreasing the calibration
time required.

In [24], the two methods introduced in [16,22] were compared. The method introduced
in [16] is named as the “analytical method” and, as was described above, is based on the
inversion of a fire simulator. The method introduced in [22] is named as the “computational
method” and relies on a database with information from past fires. Both of these methods
use ongoing fire propagation data to obtain wind speed and direction values and use them
to steer the genetic algorithm’s search. Two sets of tests were carried out: first, the two-stage
framework was tested against the classical wildfire spread prediction method, which uses a
single set of input parameters introduced in the fire simulator. This test used data from past
fires and confirmed that the two-stage framework with a genetic algorithm provides better
results than the classical prediction without input parameter calibration. Then, the second
set of tests compared the use of a simple non-guided genetic algorithm against genetic
algorithms with different configurations of the proposed steering strategies. The guided
genetic algorithm with the computational and analytical methods obtained similar results
and improved prediction quality over the non-guided genetic algorithm.

The work developed by [10] is also based on the two-stage prediction framework with
a genetic algorithm and introduces an approach for reducing the prediction errors caused
by the variability of wind parameters (wind speed and direction). During the calibration
stage, wind parameters are not calibrated; instead, real wind measurements from the fire
location are taken in periodic sub-intervals. These measurements are used as inputs for
the fire simulator in the recurring simulations. Afterwards, during the prediction stage,
a numerical weather prediction (NWP) model [25] is used to periodically estimate the wind
parameters between sub-intervals of the prediction stage. The estimated wind parameters
are introduced in the simulator and are updated at each sub-interval. The prediction result
is obtained using the real wind measurements and the calibrated parameters, which are
moisture contents and vegetation features. The test results showed that, when the wind
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conditions are stable, the basic two-stage framework with a genetic algorithm provides
satisfactory results, in comparison with the new method of using measured and estimated
wind values (prediction error of 0.4 vs. 0.29, respectively). However, when the wind condi-
tions are more dynamic, the results obtained by the introduced method are significantly
better compared to the basic two-stage framework with a genetic algorithm (prediction
error of 0.19 vs. 0.58 m, respectively).

In [26], a calibration of the fuel models within the Rothermel’s fire spread prediction
model was carried out through the use of genetic algorithms. The GA’s individuals
consisted of the following Rothermel fuel parameters: oven-dry fuel load (w0), surface-area-
to-volume ratio (σ), fuel bed depth (δ), fuel moisture of extinction (Mx), and heat content
(h). Two tests were performed to evaluate the proposed GA method. The first test consisted
of using GAs for the fuel model calibration method, with the support of two works [27,28]
(grass and shrub fuels, respectively) that provided datasets of observed rate of spread R
and other input parameters’ data (fuel moisture, wind speed and slope steepness). The GA
was performed with 9999 maximum iterations, 100 individuals, mutation probability and
elitism factor equal to 0.1 and 0.05, respectively, and the fuel input parameters calibrated
based on the parameter ranges given by the papers. Each individual was evaluated using
the Root Mean Square Error (RMSE) between the observed and predicted rate of spread
R. The second test consisted of implementing the GA for calibrating a fuel model for
a type of vegetation (Calluna heath). Nine prescribed fire experiments were carried out
in dry Calluna heathland vegetation and R, fire weather (1 h fuels moisture, live woody
fuel moisture and wind speed) and terrain data (ignition line length, fire plot size and
slope) were recorded from each experiment. From the nine fire experiments, four were
considered for GA calibration and five were considered for validation. The calibration
experiments data were used to run the GA and calibrate the fuel parameters, similarly
to the first test. Then, predicted rate of spread R values were calculated using different
fuel models: GA calibrated fuel parameters, the Standard Fuel Model which provided
the smaller RMSE when comparing predicted vs. observed R, a custom fuel model for
Calluna vegetation and a “custom fuel model parameterized with modal values from fuels
inventoried in each fire experiment”. An additional prediction of the rate of spread R was
obtained by a Rothermel model reformulation implemented in the Fuel Characteristics
Classification System (FCCS) [29]. For the validation experiments data, the calibrated
GA fuel parameters resulted in the lowest RMSE between predicted and observed rate of
spread R, in comparison to the alternative models.

The study in [21] presents a dynamic data-driven genetic algorithm and introduces a
new approach for predicting fire propagation based on Wildfire Analyst (WFA) [30]. The
paper describes the two-stage prediction framework with a genetic algorithm, where the
fire propagation is simulated using the FARSITE fire simulator [8], and the fitness function
corresponds to the symmetric difference between predicted and burned areas obtained by:

Difference =
UnionCells−−IntersectionCells

RealCells−−Init Cells
, (23)

where UnionCells represents the sum of the number of cells that were burned in the pre-
dicted area and the real area, IntersectionCells is the number of cells burned simultaneously
in the predicted area and the real area, RealCells is the final number of cells burned in the
real area, and InitCells is the starting number of cells burned in the real fire area. The newly
introduced approach uses WildFire Analyst (WFA) and seeks the best R (Rate of Spread)
adjustment factors, minimizing the error between simulated fire and the real fire data. Both
the FARSITE fire simulator and Wildfire Analyst use the Rothermel model. Afterwards,
the two-stage framework with the genetic algorithm and Wildfire Analyst are coupled
together by overlapping their predicted fire spread maps. In order to test the two-stage
framework and Wildfire Analyst, experiments were carried out with data from a real fire
that occurred in Cardona, Catalonia, Spain in 2005. The results show that both methods
adapt to drastic changes in the fire characteristics.
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In [31], the two-stage framework was considered to reduce input parameter uncer-
tainty and predict fire spread. However, when the wildfire is large, wind cannot be
considered uniform throughout the whole wildfire area. So, this work introduced a wind
field model (WindNinja), being represented by a cell map, to account for this variation.
In essence, during the calibration phase, the obtained meteorological wind parameters are
used to calculate the wind field for each scenario generated by the genetic algorithm. Then,
having each individual’s wind field, the corresponding fire propagation map is calculated
and the error function is evaluated.

Finally, in [32], a statistical study was carried out to characterize the genetic algorithm
in the calibration phase of the two-stage prediction method. The characterization refers
to estimating which GA parameter configuration results in a better calibration within the
imposed time restrictions. A statistical study was conducted based on the results of a
genetic algorithm calibration on a simulated five-hour fire obtained using FARSITE as
the fire spread simulator. The results from this study were maximum adjustment errors
which have different degrees of guarantee depending on the number of generations that
the GA iterates. These results are important in understanding the compromise between
the algorithm’s execution time (number of generations) and the adjustment error, which is
larger when the algorithm iterates fewer generations.

2.5. Calibration through Parallel Computing

Throughout Section 2.4, several works regarding fire spread prediction using genetic
algorithms were described. Despite their focus being on improving prediction accuracy,
some works have proposed/adapted a Master/Worker paradigm (Figure 3) in order to
reduce the calibration and prediction times.

Master

Generated

population

Genetic

algorithm

...

Fire

Simulator

Worker 1

Error

calculation

Fire

Simulator

Worker 2

Error

calculation

Fire

Simulator

Worker N

Error

calculation

Figure 3. Genetic algorithm using the Master/Worker paradigm, adapted from [33].

GAs, as with any evolutionary algorithm, require the execution of a set of individual
simulations through several iterations, which can be very time-consuming, and given the
urgency and need for accuracy associated with wildfire spread prediction in real-time,
it is important to reduce the execution time of the calibration phase while maintaining
appropriate accuracy. One way to achieve this is through the parallel implementation of
the fire spread simulator used for the GA individuals’ simulation.

The authors in [34] presented a technique based on the parallelization of both the GA
(used in the two-stage fire prediction framework) and the FARSITE fire simulator. For the
first experiments, with fire simulations of 20 s, the results showed an improvement in GA
execution time for reaching the same error (15%) when using more cores per individual.
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When replicating the experiments with longer fire simulations (120), the results showed that
using more cores per individual still improved execution times for achieving the same error
(approximately 14%). However, for the longer fire simulations, using more individuals
(100) with one core per individual achieved the lowest error (approximately 8%).

Despite the strategy introduced in [34] improving the calibration time, there is still
a drawback related to GA implementation. During the calibration phase, all of the GA
individuals have to be simulated. The execution time of a fire simulation depends on
the input parameters and, given the random nature of the generation of the population,
some individuals will result in much longer simulation times than others. It would be
possible to reduce the overall calibration time by dedicating more computing resources
to the individuals with larger execution times and fewer resources to individuals that
are executed faster. In order to achieve the said time reduction, it is necessary to predict
each individual’s simulation time to provide more computing resources to those whose
predicted execution time is larger. The prediction must be based only on the individuals’
genes—a set of input parameters. The study in [34] refers to [35], which introduces a
method based on Decision Trees to characterize a fire simulator, allowing estimation of the
execution time of one simulation, given a set of input parameters.

In [36], the method referenced in [34] is implemented and tested: Decision Trees are
employed to classify each fire simulation according to its execution time so that the Decision
Trees can label a new simulation. The core-allocation policy ensures that the individuals
labeled with a longer execution time classification are simulated using more computing
cores. The results showed that using the core-allocation policy reduced the execution time
by 41%, in relation to not using any policy. In [37], similarly to what was done in [36],
GA individuals are labeled according to their estimated simulation time through the use
of Decision Trees—A, B, C, D and E. Additionally, in this work, an additional restraint is
imposed: each GA generation has a limited amount of time to be executed.

More recently, the study in [33] introduced a new strategy to deal with individuals with
long execution times. An alternative approach is introduced, based on the monitoring of
the fire spread prediction error that, in this particular work, corresponds to the symmetric
difference between the real fire and the simulated fire areas, shown in Equation (23).
During the execution of one individual, if the monitoring agent detects that the difference
between the predicted and the simulated fires is larger than a predefined error threshold,
the individual is interrupted. The fitness function is a weighted version of the symmetric
difference, shown in Equation (24),

Fitness =
PredictionTime
SimulationTime

× SymDifference, (24)

where PredictionTime represents the predicted time for the completion of the individual’s
simulation, SimulationTime is the the time of simulation until the individual is terminated
normally or early, and SymDifference represents the symmetric difference from (23). This
fitness function penalizes individuals that have been terminated early due to a large
prediction error: they are not removed from the population, which ensures diversification,
but are ranked worst due to lower fitness. This method was tested using fire data from a
real fire in La Jonquera, Spain and it reduced the overall execution time in relation to the
Time Aware Core allocation technique from [34] by 60%.

2.6. Literature Review Summary

The review presented above showed that the majority of the works are based on the
two-stage framework formally introduced in [20] in conjunction with the use of genetic
algorithms. Genetic algorithms show very good suitability for use as the optimization
method in the referenced framework, not only based on their performance when compared
to other optimization methods [19], but also because they have characteristics suited for
being implemented in parallel. Implementing the two-stage framework with genetic
algorithms and fire simulators in parallel is of great importance allowing the reduction of
both calibration and prediction execution times [34].
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Table 2 contains the above-cited works related to the literature review, organized by
characteristics such as the focus of the paper, the source of the data used in experiments and
tests and GA’s parameters (number of individuals per generation, number of generations,
operators probabilities and fitness functions).

Table 2. Review of the literature on wildfire spread prediction calibration using genetic algorithms.
The Gens. column contains the number of GA’s generations. The Others column contains relevant
information such as the GA’s operators probabilities and fitness functions. — represents no relevant
or existing data. elitism represents the percentage of the population’s individuals selected for
the GA’s elitism operation. #elitism represents the number of individuals selected for the GA’s
elitism operation. crossprob is the GA’s crossover operation probability. mutprob is the GA’s mutation
operation probability. RMSE represents the Root Mean Square Error.

Ref. Focus Source of Datasets Individuals Gens. Others

[20]

Input parameter calibration.
Introduction of two-stage
framework + input parame-
ter sensitivity analysis

Simulation (ISStest) 1000 20

Fitness function is the
XOR area (from ISStest)
between real and simulated
burned areas

[19]

Input parameter calibration
using GAs, simulated an-
nealing, random search and
tabu search

Simulation (ISStest) 1000 - Fitness function is the
Hausdorff distance

[16] Input parameter calibration Simulation and 1 pre-
scribed fire (Portugal) 50 5 —

[22]

Input parameter calibration.
Two-stage framework with
GA and guided search by
past fires database

Real map 110 × 110 m2.
fireLib simulation and 1
prescribed fire (Portugal)

Parallel:
512
Dynamic:
50

-
5 —

[17]
Input parameter calibration.
Statistical integration to re-
duce search space

Real fire (California) 500 5

elitism = 0.04, crossprob = 0.2,
mutprob = 0.01, Fitness
function is symmetric
difference (23)

[24]

Input parameter calibration.
Two-stage framework with
GA and comparison of the
methods from [16,22]

1 simulated fire map using
fireLib and 1 prescribed
fire (Portugal)

Simulated:
50
Real: 500

5
5

Real fire case:
0.2 ≤ mutprob ≤ 0.4, Fit-
ness function is cell-by-cell
comparison of real and
simulated fire maps

[10]

Input parameter calibra-
tion considering the rapid
variation of wind speed
and direction

Simulation (FARSITE) 50 10 Tests were performed
15 times

[26] Rothermel fuel
models calibration

1st test (GA-opt.): [27,28];
2nd test (Custom fuel
model calibration): [38,39]

100 for both Max.
9999

mutprob = 0.1, elitism =
0.05. Fitness function is
RMSE of observed vs. ex-
perimental rate of spread R

[21]
Input parameter calibration.
Two-stage framework with
GA and WildFire Analyst

Real fire (Spain) - - Fitness function is the sym-
metric difference (23)

[31]
Input parameter calibration,
considering the spatial varia-
tion of wind in large fires

Real fire (Spain) 6 10 Tests were performed
15 times
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Table 2. Cont.

Ref. Focus Source of Datasets Individuals Gens. Others

[32]

Statistical study of genetic al-
gorithms as the optimization
algorithm in the two-stage
framework

Simulation (FARSITE) 100 5 Tests were performed 50 times.
mutprob = 0.1, elitism = 0.1

[34] Reduction of calibration time
by parallel implementation

Simulation (FARSITE)
based on a real terrain
map (Spain)

25; 25; 100 10 Fitness function is the sym-
metric difference (23)

[36] Reduction of calibration time
by parallel implementation

Simulation (FARSITE)
based on a real terrain
map (Spain)

25 10
Tests were performed 50 times.
Fitness function is the sym-
metric difference (23)

[37] Reduction of calibration time
by parallel implementation Real fire (Spain) – 10

#elitism = 10, crossprob = 0.7,
mutprob = 0.3. Tests were
performed 10 times. Fitness
function is the symmetric
difference (23)

[33]

Reduction of calibration time
by early terminating individ-
uals based on prediction error
in parallel implementation

Real fire (Spain) 100 10

crossprob = 0.7, mutprob = 0.3,
Fitness function is a weighted
version of the symmetric dif-
ference (24)

3. Wildfire Spread Calibration Using Genetic Algorithm

From the literature review we verified that, in some articles, there is a lack of details
on how the genetic algorithm is implemented for the particular case of wildfire spread
prediction calibration, which affects potential attempts for replicability. In this way, based
on the presented literature review (Section 2), this section, in a didactic way, presents the
use of a genetic algorithm for wildfire spread prediction calibration, where Section 3.1
summarily describes the genetic algorithm, and Section 3.2 presents the application of a
genetic algorithm for wildfire spread prediction calibration.

3.1. Genetic Algorithms Overview

Genetic algorithms have proved to be useful in solving a variety of search and opti-
mization problems [40]. In a general way, GAs are stochastic search methods introduced
by [41] in 1975 inspired by natural selection and genetics. GAs work by processing a set
of elements of a given search space, i.e., a large domain with several possible problem
solutions. This set is named the population, and its elements are called individuals. Individ-
uals, which represent the candidate solutions for the optimization problem, are also named
chromosomes and are composed of genes. Genes are the primary parts of each solution.
Individuals can have several representations depending on the problem: they can be binary
sequences of zeros and ones, complex numbers, vectors, among others. The population is
evolved/transformed during several generations in order to obtain a final population that
contains individuals with the best possible quality for the problem at hand.

A GA generic structure is shown in Algorithm 1. After the encoding of the chromo-
somes (individuals), usually, a random initialization of the population is performed. Then,
all of the individuals are evaluated according to a defined fitness function which measures
the ability of a solution (individual) to optimize the fitness function that is specific to the
problem being solved. Based on the fitness values of each individual, the selection process
occurs where new individuals are chosen to be parents. The Crossover and Mutation
reproduction operators and the Replacement operator are applied to the parents in order to
breed the offspring and build the next generation. The above GA’s operators are repeated
until a certain criterion is achieved.
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Algorithm 1 General genetic algorithm steps.

1: g← 1.
2: Generate initial population P(g).
3: repeat
4: Evaluate the population P(g) using the defined Fitness Function.
5: Select pair of parents for P(g + 1) from P(g) by the defined Selection operator.
6: Generate new population P(g + 1) by applying the genetic operators (Crossover,

Mutation, and Replacement) to P(g).
7: g← g + 1.
8: until Stopping criteria is reached.
9: Output: Final Population.

3.2. Calibration Methodology Using Genetic Algorithms

In order to calibrate the Rothermel model (1), the genetic algorithm starts by randomly
generating an initial population of N individuals. Each individual is composed of genes,
which in this paper consist of Rothermel input parameters to be calibrated. In this paper,
four input parameters were selected to be calibrated: σ (surface-area-to-volume ratio),
δ (fuel bed depth), M f (fuel moisture) and U (midflame wind speed). Three main reasons
motivated this parameter choice:

(1) the fact that the first three parameters are related to fuel characteristics, which in
simulations are approximated using fuel models. Fuel models assume constant and
uniform fuel characteristics inside a cell, which is a fair approximation for small cell
sizes, a large variety of fuel models and accurate fitting of the model to the existing
fuels. However, available fuel maps can suffer from low resolution (large cell sizes),
low variety of models (the most commonly used standard NFFL fuel models [42]
includes only 13 different fuel models) and low accuracy, therefore increasing the
probability of fuel models failing to accurately depict the average characteristics of
existing fuels.

(2) Furthermore, the fire dynamics are known to induce local changes in the fuel character-
istics, as well as wind speed and direction, in the close vicinity of the fire front [43–45]
(fuel moisture drastically decreases while wind speed increases). To some extent,
such changes are intrinsic to the semi-empirical Rothermel model. However, local
variations in such parameters should be expected.

(3) These four input parameters are the ones that have the most influence on the final
result (fire spread rate), so their small variations are highly significant [15,46].

For the parameters concerning the fuels, a specific search space was defined as the
boundaries of the fuel class, assuming that fuel classes are well identified. For instance,
grass-dominated fuels can be short grass (NFFL model 1), grass understory (NFFL model 2)
or tall grass (NFFL model 3), each with their own parameters. The boundaries of the
parameters for the grass-dominated fuel class were defined as the search space, in case
the cell fuel is any of these three models. Concerning the midflame wind speed, we
considered the search space to be within the interval ±25% of the dataset value, which
is an average of the wind speed recordings during the fire drill, obtained with a weather
station installed on-site.

In this way, an individual n (n = 1, . . . , N) is represented by the chromosome presented
in Figure 4, where σn, δn, Mn

f , Un are the input parameters σ, δ, M f , U present on individual
n, respectively.

Figure 4. Illustration of a chromosome.
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To evaluate each n individual, the fitness function

Rn
Error =

|R(σn, δn, Mn
f , Un)− Robs|

Robs
(25)

was defined. The fitness function (25) consists on the relative error between Rn(σn, δn, Mn
f , Un),

the rate of spread given by the Rothermel model (1) using the input parameters given
by the individual n, and a real observed rate of spread value Robs. The goal of GA is to
minimize the fitness function.

The GA operators were chosen as follows.

• The selection operator is the tournament selection [47], which consists of randomly
selecting a certain number of individuals of the current population, creating a tourna-
ment. The winner of the tournament is the individual with the best fitness and it is
selected to be a parent for the next generation. This process is repeated a second time,
and a pair of parent individuals is obtained.

• The crossover operator is the single point crossover technique [47]. It is executed
on the parent pair by cutting the two chromosomes at corresponding points and
exchanging the sections after the cuts. This generates a new offspring pair.

• The mutation operator is the uniform operator [48]. This operator consists of altering
the value of a random gene in the offspring by a uniform random value which fits the
gene’s respective search space, at a given probability of mutation mutprob, a parameter
defined at the beginning of the GA implementation.

• The elitism is applied to the whole new population, i.e., a small percentage of the best
individuals (elitism) of the previous generation replaces random individuals in the
new population [48].

The new population is evaluated at each generation g (g = 1, . . . , gmax) and the whole
cycle is repeated until the maximum number of generations gmax is reached. After the
algorithm finishes, the final solution is the individual with the best fitness from the final
population. This individual is the one that, when used as input for the Rothermel model (1),
results in the closest rate of spread value to the real measured value provided from the
experimental data. The used algorithm is represented in Algorithm 2.

Algorithm 2 Genetic algorithm for wildfire spread calibration.

Input:
1: Range (minimum and maximum values), of the input parameters to be calibrated: σmin

and σmax, δmin and δmax, M fmin
and M fmax , Umin and Umax;

2: GA’s parameters: N, gmax, tourlength, crossprob, mutprob, and elitism
3: Experimental dataset, includes the predefined Rothermel input parameters values and

Robs.
Output: Calibrated Rothermel model.

4: g← 1
5: Generate initial population P(g).
6: while g ≤ gmax do
7: For all individuals n (n = 1, . . . , N), evaluate the population P(g) using Rn

Error (25).
8: repeat
9: Select pair of parents for P(g + 1) from P(g) using Tournament Selection operator.

10: Generate pair of offspring by applying Crossover operator (single point crossover).
11: Obtain mutated offspring pair by applying Mutation operator (uniform mutation).
12: until New population P(g + 1) of N individuals is obtained
13: Perform Elitism on P(g + 1).
14: g← g + 1.
15: end while

69



Mathematics 2022, 10, 300 15 of 19

4. Results

This section presents the validation and results of the calibration of the Rothermel
model (1) using the Algorithm 2 on real datasets obtained through experimental prescribed
fires in controlled conditions.

The datasets used for the calibration carried out in this work were obtained through
experimental prescribed fires in controlled conditions—each dataset corresponds to a
different controlled fire. There were 37 valid datasets, each one being a vector composed
of the constant values for the fixed input parameters (w0, ρp, ST , M f , Mx, Se, h, U, φ) (1),
observed delta (δobs) and observed oven-dry fuel load (w0obs ), and the measured values
for the experimental rate of spread Robs. According to Algorithm 2, four input parameters
are calibrated: σ (surface-area-to-volume ratio), δ (fuel bed depth), M f (fuel moisture),
and U (midflame wind speed). The remaining input parameters of Rothermel model (1)
have fixed values which are the ones provided by the datasets. Despite M f (fuel moisture)
and U (midflame wind speed) being parameters that are calibrated in this paper, they
are provided on the dataset, M′f and U′, respectively, based on the initial experimental
conditions. However, these parameters can vary significantly during the fire itself, making
it difficult for a single constant value to represent the real conditions. For each input
parameter to be calibrated, there is a specific search space, i.e., a range of values that its
respective gene could assume, according to the experts:

• σn ∈ [43, 80] [cm−1];
• δ ∈ [0.25, 1.2] [m];
• M f ∈ [0.8×M′f , 1.2×M′f ] [%];

• U ∈ [0.75×U′, 1.25×U′] [m/s].

The Algorithm 2 was configured in the following way: population size N = 200
which were evolved for gmax = 100 generations; tournament selection length tourlength = 3;
crossover probability crossprob = 0.7, mutation probability mutprob = 0.3; and elitism factor
elitism = 0.05. The genetic algorithm was executed 30 times for each dataset and the final
fitness RFinal

Error for each dataset consisted of the average final error of the 30 GA runs:

RFinal
Error =

1
30

30

∑
i=1

Ri
Error, (26)

where Ri
Error is given by (25).

Figure 5 shows the evolution of the 30 run average of the best fitness values, through-
out the 100 generations, for each of the 37 datasets.

In order to compare the calibration method (Algorithm 2) to the prediction without
calibration, a rate of spread Rini was obtained for each dataset by running the Rothermel
model (1) without calibration, i.e., the input parameters provided by the dataset were used,
except for σ, whose value was not provided in the data set. The default value used was
σ′ = 57 cm−1, which is the default value for NFFL fuel model no. 6 [42]. For the prediction
without calibration, the relative error associated with the rate of spread Rini for each dataset
was obtained through:

Rini
Error =

|Rini(σ
′, δobs, M′f , U′)− Robs|

Robs
. (27)

Figure 6 shows two relative error values for each dataset, where RFinal
Error represents the

final fitness given by (26), and Rini
Error (27) represents the relative error between Robs and

the rate of spread value obtained without GA calibration Rini, given by Equation (27). For
29 of the 37 datasets, the best rate of spread value Rbest obtained through GA calibration
resulted in a null error. This means that, if a fire was to occur in the same conditions,
the final individuals could serve as input for the Rothermel model and generate very good
predictions. The mean prediction error from all of the datasets without GA calibration
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is 0.9510 (95%). With GA calibration, the mean error is 0.0603 (6.03%). This shows the
importance of input parameters calibration, as seen in the literature.

0 20 40 60 80 100
Generations, g

0.0

0.5

1.0
R

Fi
na

l
Er
ro
r

(a)

2 4 6 8 10 12 14 16 18 20
Generations, g

0.0

0.5

1.0

R
Fi
na

l
Er
ro
r

(b)

Figure 5. Evolution of the 30-run average of the best fitness values for every calibrated dataset.
(a) Evolution of the 30-run average of the best fitness values for 100 generations. (b) Evolution of the
30-run average of the best fitness values for 20 generations.
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Figure 6. Relative error between the predicted and observed rate of spread R for non calibrated vs.
calibrated input parameters.

5. Conclusions

Due to the physical complexity of wildfires, their prediction models require the def-
inition of several input parameters. However, some of them are very difficult to obtain
accurately or, due to their nature, present significant variations over a short period of
time, due to weather or fire-driven dynamics (e.g., fuel and wind properties). Therefore,
the use of optimization methodologies—specifically, genetic algorithms—to calibrate the
model and to overcome input parameter uncertainty has shown to be a valid strategy to
obtain accurate prediction results. This strategy will pave the way to improved fire spread
simulators, capable of adapting to the particular and constantly evolving conditions of
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each location, producing vital data for the decision makers and potentially mitigating the
impact of wildfires.

In this work, a literature review of research works on fire spread prediction using
genetic algorithms was presented, showing that genetic algorithms are the most well-
accepted methodology for this application, being well-suited techniques for Rothermel
model calibration. More recently, some works focused on coupling genetic algorithms with
other methods to improve the prediction quality. However, due to the nature of genetic
algorithms and the complexity of the model, the calibration process can be very computa-
tionally demanding. Therefore, other works also explore the possibility of reducing genetic
algorithms’ execution time by using parallel computing and core-allocation techniques.

Furthermore, in this work, a calibration of the Rothermel model using a genetic
algorithm implementation was carried out on real datasets. The calibration was performed
on four input parameters: σ (surface-area-to-volume ratio), δ (fuel bed depth), M f (fuel
moisture) and U (midflame wind speed). The results of the fire spread prediction using
the calibrated model were compared to the fire spread prediction without calibration.
The results showed that calibration improves prediction quality by 93.66%.

As future work, based on the literature review, we intend to extend the prediction
to the domain of a two-dimensional grid in order to improve the model’s applicability to
real fire situations, where cells represent a squared area of the terrain through which fire
propagates. This will result in the prediction of real fire behavior in the form of a map of
burned cells over time. Furthermore, the parallel implementation of a genetic algorithm for
the calibration of the two-dimensional Rothermel model based on the two-stage framework
should be considered, which is validated by the review performed in this paper. Lastly, the
framework should be tested and applied on data obtained through prescribed fires.
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Abstract—Every year, wildfires cause significant losses and
destruction around the globe. In order to attempt to reduce
their damages, resources have been put into developing fire
propagation prediction systems. In a real wildfire event, these
systems provide the authorities with information about the fire
propagation in the near future, thus allowing them to make better
decisions. Wildfire spread prediction systems are based on fire
propagation models, from which the most used and accepted
model is the Rothermel model. However, given the complexity of
the wildfire phenomena and the uncertainty of some of its input
parameter values, the Rothermel model can produce misleading
results of fire propagation. This paper uses 3 metaheuristic
algorithms, genetic algorithm (GA), differential evolution (DE)
and simulated annealing (SA), for calibration of input parameters
from the Rothermel model. These algorithms were validated
using 37 datasets containing data from controlled experimental
fires. Results have shown that these algorithms provide a precise
wildfire spread prediction accounting for the uncertainties in the
model’s selected parameters.

Keywords—wildfire spread prediction; model calibration; ge-
netic algorithm; differential evolution; simulated annealing.

I. INTRODUCTION

Wildfires are well-known phenomena with great environ-
mental, economic, and societal impacts. Some of their conse-
quences include the destruction of ecosystems and wildlife,
loss of human lives, degradation of air and water quality,
and the destruction of human property. According to the 2020
European Commission’s annual report on wildfires, fires over
30 [ha] were observed in 39 countries throughout Europe,
Middle East, and North Africa, adding up to a total burnt
area of 1, 075, 145 [ha] [1]. This area is approximately 35%
larger than the records from 2019. Furthermore, a 2022 report
published by the United Nations Environment Programme
estimates that, by the end of the century, the likelihood of
catastrophic wildfire events will increase by a factor of up to
1.57 [2]. These reports reveal the urgent need for allocating
resources to wildfire research. There is the need for more
intelligent wildfire management systems, part of which must
be devoted to wildfire spread prediction, allowing to identify
the areas that will be affected in advance [3].

This work was carried out under the project IMFire - Intelligent Manage-
ment of Wildfires, ref. PCIF/SSI/0151/2018, fully funded by national funds
through the Ministry of Science, Technology and Higher Education, Portugal.

Models developed to predict fire spread can be classified
into three categories according to their nature [4]: (i) theoreti-
cal, derived from the laws of fluid mechanics and heat transfer;
(ii) semiempirical, developed initially from theoretical princi-
ples and completed with experimental data; and (iii) empirical,
developed based on experimental or historical fire data. The
most used model for fire spread prediction is the Rothermel
model [4], [5], a semiempirical model that serves as the
foundation of some fire simulators [6]. Despite being widely
used and effectively implemented in most fire simulators,
the Rothermel model can produce inaccurate and unreliable
results [7]. According to [8], there are three main sources of
discrepancy between fire model spread predictions and real fire
propagation: the model’s lack of applicability to the scenario at
hand, the model’s intrinsic lack of prediction quality, and the
inaccuracy in the estimation of the input parameters’ values.
Regardless of the fire spread model adopted, to obtain reliable
predictions, one should ensure the accuracy and validity of the
input parameters. This statement is particularly critical if such
predictions are used by authorities in real-time during a fire
occurrence to aid in their decision-making process, potentially
leading to catastrophic consequences. Due to this fact, several
authors stated that fire spread predictions based solely on
estimations for all input parameters of the Rothermel model
should not be taken confidently [7], [9], [10]. Some Rothermel
model’s input parameters can be easily and accurately obtained
through measurement or based on existing records, such as
the terrain slope. On the other hand, some parameters (e.g.,
fuel type, characteristics and distribution, wind speed, and
direction) cannot be obtained with sufficient resolution or
accuracy due to the scale of the domain and the available
information sources [6].

Strategies based on Evolutionary Algorithms (EAs) have
been proposed in the literature to deal with the uncertainty
in the input parameter values and obtain accurate fire spread
predictions [6], [7], [10], [11]. In [12], genetic algorithms
(GAs) are referred to as one of the most used methods in
wildfire science, with the main focus on the optimization of
input parameters from fire simulators. In [11], a two-stage
framework was introduced, which became a cornerstone for
wildfire spread prediction calibration. This framework estab-
lishes two stages: (i) calibration of the fire propagation model
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using wildfire data; and (ii) prediction of wildfire propagation
using the model with the calibrated input parameters. This
framework is mentioned in a large number of works in this
field, using GAs as the calibration method. Some examples
are [9], [13], [14]. The authors in [9] incorporate a numerical
weather prediction model with the GA for dealing with the
uncertainty in the model’s wind parameters. In [13], the two-
stage framework with the GA and Wildfire Analyst is used
for model calibration. In [14], parallel implemented versions of
the GA and the FARSITE fire simulator are used for improving
the calibration and prediction times.

This paper explores/studies the feasibility of using three
metaheuristic algorithms, genetic algorithm (GA), differential
evolution (DE), and simulated annealing (SA), for the cal-
ibration of the Rothermel model. The calibrated parameters
are surface-area-to-volume ratio, fuel bed depth, fuel moisture,
and midflame wind speed. The main contribution of this paper
is to validate two metaheuristic algorithms (DE, SA) for the
calibration of the Rothermel model, in comparison with the
already well-established genetic algorithms, in the subject of
wildfire spread prediction calibration. The results show the
potential for using differential evolution (DE) as a population-
based alternative metaheuristic to genetic algorithms.

This paper proceeds in the following structure. Section II
briefly describes the Rothermel model to be calibrated. Section
III presents the proposed methodologies based on GA, DE and
SA algorithms for the Rothermel model calibration. In Section
IV, the datasets and the calibration results are described and
analyzed. Concluding remarks are given in Section V.

II. WILDFIRE SPREAD PREDICTION: ROTHERMEL MODEL

This section presents the fire spread model to be calibrated,
the Rothermel model [5]. The Rothermel model consists of
a set of equations that lead to a final equation (1), which
determines the fire Rate of Spread R:

R =
IRξ(1 + ϕw + ϕs)

ρbεQig
, (1)

which represents the linear velocity of propagation ([m/s])
of a fire front, in a particular direction. The terms
of (1), IR(ρp, σ, δ, w0, ST , h,Mx,Mf , Se), ξ(σ, ρp, w0, δ),
ϕw(ρp, w0, δ, σ, U), ϕs(ρp, w0, δ, tanϕ), ρb(w0, δ), ε(σ), and
Qig(Mf ), depend on several input parameters represented in
Table I. For more information on the Rothermel model, the
reader is invited to read [5], [6].

III. WILDFIRE SPREAD CALIBRATION

In this section, the proposed methodology for the calibration
of the Rothermel model is presented. In Section III-A, the
fitness function used to evaluate the solutions generated by
the metaheuristic algorithms is described. Following Sections
III-B, III-C and III-D present, respectively, the genetic algo-
rithm, differential evolution algorithm and simulated annealing
algorithm used for Rothermel model calibration.

The calibration performed in this work follows the two-
stage framework [11]. Figure 1 shows the framework for the

TABLE I: Rothermel model’s input parameters [5].

Category Parameter name Units

Fuel properties

Heat content (h) [kJ/kg]
Total mineral content (ST ) -

Effective mineral content (Se) -
Oven-dry particle density (ρp) [kg/m3]

Oven-dry fuel load (w0) [kg/m2]
Surface-area-to-volume ratio (SAV, σ) [cm−1]

Fuel bed depth (δ) [m]
Dead fuel moisture of extinction (Mx) [%]

Fuel moisture (Mf ) [%]
Topography Slope steepness (tanϕ) -

Wind properties Midflame wind speed (U ) [m/s]

Time

Rothermel

model

Real fire 

ignition

Real fire

Rate of Spread

Real fire

 data

Algorithm

 for parameter

calibration

Rothermel calculated

Rate of Spread

Feedback

Best set of

 input

parameters
Rothermel

model

Real fire

Rate of Spread

Rothermel calculated

Rate of Spread

Fig. 1: Framework for the Rothermel model calibration.

calibration of the Rothermel model’s input parameters. Using
the real fire data Robs obtained in t1, the algorithm calibrates
the four input parameters σ, δ, Mf and U . Next, assuming
that the fire conditions don’t suffer meaningful variations from
the moment that the model calibration ends until t2, the set
of calibrated parameters is used as input for the Rothermel
model to predict the real fire rate of spread in t2.

A. Fitness Function

For the fire spread calibration problem described in this
work, a candidate solution is represented by a set of four
different parameters corresponding to the four input param-
eters to be calibrated: surface-area-to-volume ratio (σ), fuel
bed depth (δ), fuel moisture (Mf ), and midflame wind speed
(U ). In other words, the i-th solution (Si) is represented
by [σi, δi,M i

f , U
i]. The choice for calibrating these four

parameters is justified as follows [6]: fuel parameters values (σ
and δ) are commonly based on standard fuel models, which are
not accurate in depicting the characteristics of the real fuel;
additionally, the fire itself induces local changes in the fire
environment near the fire front (i.e., as fuel moisture decreases,
the wind speed tends to increase), meaning that the field-
average wind speed value U and the fuel moisture Mf should
be calibrated.

In this work, the quality of the solutions generated is
evaluated by the relative error between a real observed value of
rate of spread Robs and the rate of spread from the Rothermel
model when fed with the four input parameters values of the
solution:

Ri
Error(Si) =

|R(σi, δi,M i
f , U

i)−Robs|
Robs

. (2)
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B. Calibration using Genetic Algorithms

Genetic algorithms (GAs) are population-based methods
that apply the principles of natural evolution to optimization
problems [15]. In GA terminology, a potential solution is
named individual or chromosome, and the set of potential
solutions is named population.

The proposed methodology based on GA for wildfire spread
calibration is represented in Algorithm 1 and is based on
the GA calibration performed in [6]. In the first generation
(g = 1), an initial population P (g) of N individuals is
randomly generated. Afterward, based on the evaluation by
the fitness function (2), the selection operator is applied to the
current population to obtain a pair of parent chromosomes.
The selection operator used is the Roulette Wheel Selection,
where individuals are selected from a population according
to a probability that is proportional to the individual’s fitness
[15], [16]. Then, the crossover and mutation operators are
applied to the parent pair to obtain a new pair of offspring. The
crossover operator, with a probability of occurrence crossprob,
acts by separating the parent chromosomes at a corresponding
crossover point (single-point crossover operator) [15]. Then,
the genes after the crossover point are exchanged between
chromosomes, generating two new individuals. Mutation oc-
curs for an individual according to a probability mutprob and
consists of altering the value of one of the individual’s genes. If
the mutation operation is accepted for a given individual, one
of its genes is randomly selected to change its corresponding
value within a search space, performing uniform mutation
[17]. This sub-process (selection, crossover and mutation) is
repeated until achieving a new population of N individuals,
P (g+1). The elitism operator is then applied, which consists
of choosing at random a small fraction (elitism) of the
new population to be replaced with the same number of the
best individuals from the previous population [17]. The new
population is evaluated, and the process is repeated up to the
maximum number of generations (gmax). The resulting final
solution is the fittest individual from the last population, i.e.,
the chromosome with the lowest RError value.

C. Calibration using Differential Evolution

Differential evolution (DE) was first introduced in 1995 by
Rainer Storn and Kenneth Price [18]. DE is similar to a GA in
working by evolving a population of candidate solutions for a
given problem. However, DE’s search mechanism (differential
mutation) is not based on any natural process.

DE initiates at iteration t = 1 by generating randomly an
initial population with N individuals, each one containing
n parameters (for this problem, n = 4). After this, the
algorithm’s main loop begins. First, a new mutant population is
generated: j-th gene of the individual in the new population’s
position i is obtained using the differential mutation operator:

P ′(t, i, j) = P (t, r1, j) + F (P (t, r2, j)− P (t, r3, j)), (3)

if γ < C ∨ j = αi, otherwise P ′(t, i, j) = P (t, i, j), where
r1, r2, r3 ∈ {1, ..., N} are random integers, F is a user-
defined scale factor which “controls the rate at which the

Algorithm 1 Wildfire spread calibration based on GA.

Input:
1: Limits of the input parameters to be calibrated: σmin

and σmax, δmin and δmax, Mfmin
and Mfmax

, Umin

and Umax; Experimental dataset, i.e. Rothermel input
parameters values and Robs.

2: GA’s parameters: N , gmax, crossprob, mutprob, and
elitism;

Output: Calibrated Rothermel model.
3: g ← 1
4: Randomly generate the initial population P (g).
5: while g ≤ gmax do
6: Evaluate all individuals using Rn

Error (2).
7: repeat
8: Select a pair of parents using Roulette Wheel Selec-

tion operator.
9: Generate a pair of offspring by applying Crossover

operator (single-point crossover).
10: Obtain the mutated offspring pair by applying Muta-

tion operator (uniform mutation).
11: until Obtain new population P (g+1) of N individuals
12: Perform Elitism on P (g + 1).
13: g ← g + 1.
14: end while

population evolves” [19], γ ∈ [0, 1] is a random uniform
scalar, and C ∈ [0, 1] is a user-defined number that controls
the fraction of parameter values copied to the new mutant
solution. The differential mutation operator is applied to a
given gene if γ < C, which means that the chance of applying
the operator to more genes increases if C is closer to 1, with
fewer parameter values copied to the new mutant solution.
αi ∈ {1, ..., n} is a random uniform integer to guarantee that
at least one solution parameter is altered in the mutant solution.

Afterward, the current and the new populations are com-
pared: if the i-th individual from the new mutant population
P ′(t, i) is less fit than the corresponding individual from
the current population P (t, i), then the new individual is
replaced by the current population’s i individual. Finally, the
main loop’s stopping criterion is verified: if there isn’t an
improvement in the best fitness from the current population,
Rb

Error(P (t, b)), to the new population Rb
Error(P (t + 1, b)),

then the variable count is increased by one unity. The main
loop stops if count = countmax or t reaches the maximum
number of iterations. As in the GA, the final solution from the
DE is the fittest individual from the last iteration’s population.
Algorithm 2 describes the proposed methodology for wildfire
spread calibration based on DE.

D. Calibration using Simulated Annealing

Simulated annealing (SA) is a metaheuristic introduced in
1983 by Scott Kirkpatrick [20] and it is based on annealing,
i.e., the process of heating a material and then slowly cooling
it to obtain minimal energy states. As opposed to GA and DE,
simulated annealing is not population-based.
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Algorithm 2 Wildfire spread calibration based on DE.

Input:
1: Limits of the input parameters to be calibrated: σmin

and σmax, δmin and δmax, Mfmin
and Mfmax

, Umin

and Umax; Experimental dataset, i.e. Rothermel input
parameters values and Robs.

2: DE’s parameters: N , n, C, F , tmax, and countmax.
Output: Calibrated Rothermel model.

3: t← 1, count← 0
4: Randomly generate initial population P (t).
5: while t < tmax and count < countmax do
6: for i = 1, . . . , N do
7: Randomly generate r1, r2, r3 ∈ {1, . . . , N}.
8: Randomly generate αi ∈ {1, . . . , n}.
9: for j = 1, . . . , n do

10: Generate uniform random number γ ∈ [0, 1].
11: if γ < C or j = αi then
12: Obtain new gene in the position j, P ′(t, i, j),

through differential mutation (3).
13: else
14: P ′(t, i, j) = P (t, i, j)
15: end if
16: end for
17: end for
18: for i = 1, . . . , N do
19: Using (2) obtain the fitness values of P (t, i),

Ri
Error(P (t, i)), and P ′(t, i), Ri

Error(P
′(t, i)).

20: if Ri
Error(P

′(t, i)) ≤ Ri
Error(P (t, i)) then

21: P (t+ 1, i)← P ′(t, i)
22: else
23: P (t+ 1, i)← P (t, i)
24: end if
25: end for
26: if Rb

Error(P (t+ 1, b)) ≥ Rb
Error(P (t, b)) then

27: count← count+ 1
28: else
29: count = 0
30: end if
31: t← t+ 1
32: end while

The algorithm initiates by generating an initial solution, Si.
Then, Si is evaluated using the defined fitness function (2)
RError(Si) and set to the current solution, Sc. Furthermore,
the temperature T is set to an initial value Ti, starting the
main loop that lasts until the temperature reaches a final
value Tf . For each value of T , the following process is
repeated tmax times: ns neighboring solutions are generated
from the current solution Sc by randomly selecting one of
its elements and replacing its value by a new random value
that fits the respective parameter range. Afterward, the ns

neighboring solutions are evaluated. The best of these new
ns solutions (with the lowest RError) is selected and set to
Snew. The process of generating neighboring solutions and

Algorithm 3 Wildfire spread calibration based on SA.

Input:
1: Limits of the input parameters to be calibrated: σmin

and σmax, δmin and δmax, Mfmin
and Mfmax

, Umin

and Umax; Experimental dataset, i.e. Rothermel input
parameters values and Robs.

2: SA’s parameters: Ti, Tf , cf , tmax, and ns.
Output: Calibrated Rothermel model.

3: Randomly generate initial solution Si.
4: Using (2), evaluate initial solution RError(Si) and set

current solution to the initial solution: Sc ← Si.
5: T ← Ti.
6: while T > Tf do
7: for t = 1, . . . , tmax do
8: Generate ns solutions by disturbing the current solu-

tion.
9: Using (2), evaluate the ns neighboring solutions and

select the one best one, assigning it as Snew.
10: if [RError(Snew) < RError(Sc)] or [ϵ[0,1) <

exp(RError(Sc)−RError(Snew)
T )] then

11: Sc ← Snew

12: end if
13: end for
14: T ← T × cf .
15: end while

selecting the fittest is based on greedy search [21]. If this new
solution Snew is fitter than Sc or if a randomly chosen uniform
number ϵ[0,1) is smaller than the probability of acceptance
exp((RError(Sc)−RError(Snew)/T ), then Sc is replaced by
Snew. In this paper, the temperature T is updated by being
multiplied by the cooling factor cf : T ← T × cf . When the
condition T ≤ Tf is verified, the algorithm is ceased and
the current solution Sc is considered to be the best and final
solution. Algorithm 3 describes the proposed methodology for
wildfire spread calibration based on SA.

IV. RESULTS

In this section, the results of the proposed methodologies
in Algorithms 1–3 for the calibration of the input parameters
of the Rothermel model are presented and discussed. Section
IV-A describes the datasets used for calibration. Section IV-B
presents and discusses the results of the calibration.

A. Datasets

For this work, 37 datasets were used. Each dataset contains
information from a different prescribed fire, which occurred
in the center region of Portugal in the last five years, under
various locations, different fuels, and weather conditions.
Each dataset contains values for the Rothermel model’s input
parameters (1) according to the type of fuel burned, observed
conditions (w0, ρp, ST , Mf , Mx, Se, h, U , ϕ), measured
values for w0 (w0obs ), δ (δobs), and fire rate of spread Robs.

As previously stated, the only Rothermel input parameters
to be calibrated are σ (surface-area-to-volume ratio), δ (fuel
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TABLE II: Parameter settings for GA, DE, and SA algorithms.

GA DE SA
N = 300 N = 300 Ti = 1000
gmax = 150 n = 4 Tf = 0.001
crossprob = 0.7 C = 0.5 cf = 0.99
mutprob = 0.3 F = 0.5 tmax = 2
elitism = 0.05 tmax = 500 ns = 20

countmax = 20

bed depth), Mf (fuel moisture), and U (midflame wind speed).
The Mf and U values from each dataset, obtained from initial
fire conditions, are defined as M ′

f and U ′. Despite being
given, M ′

f and U ′ are still calibrated since they may have
an elevated associated error. According to the experts [6],
the intervals of variation of each parameter to be calibrated
are: σ ∈ [43, 80] [cm−1]; δ ∈ [0.25, 1.2] [m]; Mf ∈ [0.8 ×
M ′

f , 1.2×M ′
f ] [%]; and U ∈ [0.75× U ′, 1.25× U ′] [m/s].

B. Results Analysis

Since Algorithms 1–3 are stochastic optimization methods,
they were executed 30 times for each dataset. Furthermore,
the machine used for this work consisted of an AMD Ryzen
7 3700X 8-Core Processor, 3.59 GHz, with 32.0 GB RAM,
running Windows 10 Pro version. The parameters of each
algorithm were fixed by trial and error according to the values
shown in Table II. To evaluate the algorithms on each dataset,
it is defined RFinal

Error (4), which is the average of the best fitness
values over 30 trials:

RFinal
Error =

1

30

30∑

t=1

Rt
Error, (4)

where Rt
Error is the fitness of the best solution given by (2)

and provided by the t-th trial of the algorithm.
Figure 2 contains the prediction error (4) of the Rothermel

model calibrated by each proposed algorithm for all datasets,
and the relative error RNC

Error (5) between the non-calibrated
rate of spread RNC and the observed rate of spread Robs:

RNC
Error =

|RNC(σ
′, δobs,M ′

f , U
′)−Robs|

Robs
, (5)

where RNC is calculated using the observed values provided
in each dataset for σ, δ, Mf and U , i.e., σ′, δobs, M ′

f and U ′.
In Figure 2, in some datasets, only the non-calibrated

model error bar is noticeable, since the proposed algorithms
obtained, approximately, null relative error. Also, Figure 2
shows the significant difference between the prediction errors
of the calibrated and non-calibrated models. Table III presents
the average of RFinal

Error (4) of all datasets, Rall
Error, and the

best fitness result from all datasets. Table III shows that the
three algorithms achieved similar calibration performances.
Furthermore, GA and DE had the same best fitness results,
despite DE performing slightly better than GA in Rall

Error.
Additionally, for some datasets (1-st, 7-th, 8-th, 14-th, 16-th,
17-th and 20-th), the three algorithms could not obtain a near-
zero relative error, despite obtaining similar results. This may
be due to the fact that only four input parameters are being
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Fig. 2: Comparison of the calibration results for the three
algorithms with the non-calibrated Rothermel model.

TABLE III: Calibration results of the proposed algorithms
(average of all datasets).

Algorithms Rall
Error

Best fitness
First occurrence
Iteration Time (s)

GA 0.250 3.23× 10−4 37 3.166

DE 0.244 3.23× 10−4 3 0.037

SA 0.248 6.33× 10−4 25 0.412

calibrated, a bad suitability of the considered fuel model to
the real fuel burned in those fire experiments or, simply, the
model’s intrinsic incapacity of accurately replicating the real
fire behavior in those specific conditions.

Another important aspect in wildfire spread prediction is
the calibration time [6]. The calibration of the model should
be performed on time to obtain usable fire spread predic-
tions. To evaluate the time performance of the algorithms,
we consider the time and number of iterations that led to
the first occurrence of the best fitness value provided by
the algorithms, as shown in Table III. Figure 3 contains the
iterations of the first occurrences of the best fitness values for
each algorithm and each dataset. From Figure 3, it can be
observed a clear pattern for the differential evolution, which
takes a small number of iterations to obtain a first value of the
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Fig. 3: Iteration of first occurrence of the best fitness value,
for each algorithm and dataset.

best fitness. The number of iterations is more dispersed for the
genetic algorithm and simulated annealing. Additionally, it is
important to refer that for three datasets (14-th, 20-th, and 24-
th), the simulated annealing algorithm ran for more than 150
iterations until the first occurrence of the best fitness value
(314, 961 and 432 iterations, respectively). Consequently,
these points are not shown in Figure 3 to ensure a more
consistent and accurate viewing. From Table III, we verify
that the differential evolution is the fastest algorithm, with an
average duration of 3 iterations until the first occurrence of
the best final fitness value, in comparison with 37 iterations
from the GA and 25 iterations from the SA. Regarding the
effective computation time required for the study, the average
run times (t̄) of each algorithm iteration were the following:
t̄GA = 4.75 s, t̄DE = 0.491 s and t̄SA = 82.7 s. The overall
study time was approximately 97627.61 s.

By summarizing the results of this work, we conclude that
the three algorithms (based on GA, DE, and SA) had similar
behavior in terms of calibration quality, despite the DE being
better in terms of time performance.

V. CONCLUSIONS

As stated in Section I, the wildfire spread prediction area has
been dominated by the use of genetic algorithms as the main
tool for the calibration of the Rothermel model. However, the
results obtained in this work show that differential evolution
is also a very suitable algorithm for the calibration of the
Rothermel model, mainly due to its time performance, which
is critical in wildfire spread prediction.

As described in [6], the use of evolutionary algorithms as
calibration tools of fire simulators may result in a large number
of simulations, which can be time-consuming. Thus, several
works perform parallel implementations of genetic algorithms
and fire simulators in order to reduce computational times and
obtain faster fire spread predictions [14]. Since DE can be used
as a calibration algorithm for the Rothermel model, it should
also be considered for parallel implementation in future works.
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