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Resumo

A marcha humana tem sido estudada por anos, devido às várias aplicações possíveis,

como prevenção de diferentes patologias, análise de rendimento em atletas, entre outros.

Recentemente, aplicações para usar a marcha como identificação de um indivíduo têm sido

estudadas.

Das várias formas de caracterizar a marcha, vamos usar as forças de reação do solo.

As forças de reação do solo são compostas em três forças, vertical, médio-lateral e anterior-

posterior. Foi usada uma grande base de dados, GaitRec, que contém bastante informação

descritiva e usa estas forças para caracterizar a marcha.

O objetivo passa por dar uma referência de como a marcha de um indivíduo específico deve

ser para se considerar saudável. A identificação do indivíduo vai passar pelas variáveis: género,

velocidade da marcha, idade, índice de massa corporal. Sendo dada uma referência para cada

lado, esquerdo e direito. Outro objetivo é dar um diagnóstico através de índices de marcha

humana.

Para implementar estas referências saudáveis de marcha, algoritmos de aprendizagem

computacional foram usados, como linear regression, extreme machine learning, ridge extreme

machine learning, convolutional neural networks e multiple output support vector machine.

Aqui são apresentados dois critérios visando selecionar o melhor algoritmo. Os dois critérios

são: capacidade de se comportar igual à verdadeira resposta e o menor valor de distância entre

a resposta verdadeira e a resposta criada pelos algoritmos de aprendizagem computacional.

Para métrica de distância será usada a dynamic time warping.

O algoritmo extreme machine learning provou ter o melhor resultado. Dois índices de marcha

humana, índice de simetria e erro global, provam que, juntos, conseguem diagnosticar 100% de

forma correta.

Para apresentar resultados, duas aplicações foram elaboradas para poder apresentar re-

sultados de forma mais simples e estão disponíveis em https://github.com/adenrteixeira/Gait-

Analysis-App.

Palavras-chave: Aprendizagem computacional; Marcha humana; Forças de reação de solo

(FRS); GaitRec; Indexes de marcha;

I



II



Abstract

The human gait has been analyzed for centuries since it helps to prevent and diagnose

different pathologies. Lately was also studied the possibility to be used in identification of a

person due to the uniqueness of one’s gait.

There are many ways to characterize the human gait, but the late trend and becoming

standard are the ground reactions forces. They are composed by three forces, vertical, medio-

lateral and anterior-posterior. This what we will use to study the human gait. It’s going to be

used a dataset, GaitRec, that is a large, fully annotated dataset that uses ground reaction forces

to represent gait data.

The objective passes through giving a specific individual their healthy gait reference (we will

give two references because we have two limbs, left and right), based on body characterization

such as age, gait speed, sex, body mass index. This way we can specifically give a healthy

reference instead of a general approach of what it should be looking like. Also, we will be giving

a diagnosis through human gait indexes.

To implement this healthy gait references, machine learning algorithms were used, like,

convolutional neural networks, extreme machine learning, ridge extreme machine learning, linear

regression and multiple output support vector machine.

Here were presented two criteria in order to select the best algorithm. Capability of following

the true response and the least distance between the true response and the created one.

Dynamic time warping was used as a metric to give the distance value.

The best algorithm proves to be extreme machine learning. Two human gait indexes,

symmetric index and global error, prove, that together, are enough to have 100% accurate

classification.

To present results, two apps were built and are available at https://github.com/adenrteixeira/Gait-

Analysis-App.

Keywords: Machine learning; Human Gait; Ground reaction forces (GRF); GaitRec; Gait

Indexes;
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Automatic diagnosis of gait pathologies using GaitRec dataset

Chapter 1

Introduction

For years, human gait has been study. It has been a field of interest due to the fact that it

can prevent and diagnose pathologies. There is a necessity of creating a targeted healthy gait

reference for a specific person, and we will be taking this path (Matsushita et al., 2021a; Horsak

et al., 2020).

With machine learning algorithms, like linear regression, extreme machine learning and

many more, by using a training dataset, we can train the algorithms to learn the information

on that data and then on a test dataset show how it performs. Based on defined criteria and

milestones, if it shows a good performance, we have then, a fully capable algorithm, that, by using

information that describes that person, creates the targeted healthy gait reference. Machine

learning algorithms are only going to be used only for the purpose of creating targeted healthy

gait references.

Sobral et al., 2018, takes a similar path and also creates healthy gait references. Yet, the

data captured and used are small in quantity. With the recent development of the GaitRec

dataset (Horsak et al., 2020), exists now the possibility to use a large amount and verified data

by physiatrists.

Also, by applying human gait indexes, we will give a diagnosis. Human gait indexes are

a measurement of the difference between the person’s gait and a reference for that person

(Schutte et al., 2000; Sobral et al., 2018; Schwartz et al., 2008).

1.1 Objectives

The apps created are available at https://github.com/adenrteixeira/Gait-Analysis-App.

• Build, with the help of machine learning algorithms, healthy gait references for a targeted

person, using three features, age, body mass index and gait speed.
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Chapter 1. Introduction

• Give a diagnosis by applying human gait indexes that classifies the gait as healthy or

pathological.

• Create two apps. One specifically to see the healthy gait reference with a studied algorithm

and another for the gait analysis with human gait indexes.

1.2 Dissertation outline

The dissertation outline will pass through essentially 5 chapters.

Chapter 2, Background information, describes and presents all the information necessary to

be possible to understand the results here presented.

Chapter 3, Materials and methods, particularize the procedures and shows studies about the

tools that are going to be used.

Chapter 4, Results and discussion, shows all the results from studies done and described in

chapter 3.

Chapter 5, Conclusion. After reading the chapter 4, conclusion resumes it all to submit the

final conclusion about the objective.
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Automatic diagnosis of gait pathologies using GaitRec dataset

Chapter 2

Background information

Because we need background information to understand the objectives defined, here is

presented, the information necessary to understand them. First, human gait is analyzed. An

explanation about what it is, how to measure and what to use to measure. In order to have

results, data is necessary. Here we explain details and what the dataset GaitRec is. Machine

learning algorithms are going to be used to produce the healthy gait references, so an explanation

about the algorithms used is provided. Human gait indexes will be used to give a diagnosis,

understanding what they do is shown here. Dynamic time warping concept, and its application,

is explained.

2.1 Human gait

2.1.1 What is human gait

Human gait is the manner of walking or moving on foot. Research on gait analysis began in

the 19th century, and for many years it was developed a lot of quantitative measurements for

the human gait. Gait is affected by many factors like age, sex, weight, height, organ systems,

possible injuries, and others (Matsushita et al., 2021a).

The figure 2.1 shows what a full cycle of gait is and that is divided in many parts. We

have a full gait cycle by starting with the striking of either foot with the ground and ends with

the successive strike of the same foot (Matsushita et al., 2021a). These parts are simple to

understand and intuitive if we look at the figure 2.1.

3



Chapter 2. Background information

Figure 2.1: Full Gait cycle of a human. Adaptation from: (Nordin et al., 2018).

Figure 2.2: Division of the gait cycle. An advanced classification of human gait cycle. Divides it

in periods, tasks, and phases. Adaptation from: (Kharb et al., 2011).

A very similar classification and division of the gait is used in (Kharb et al., 2011), displayed

in figure 2.2, yet, it furthers divides it and presents some different names for each part of the

gait cycle.

Using machine learning to understand patterns on human gait can help clinicians to get a

better understanding of it and give quicker results. Also, can give future insights (Alaqtash et al.,

2011) and preventive diagnoses (Matsushita et al., 2021a).

One of the many applications of the studies about gait is sports. It can be used to prevent and

detect fatigue, faulty performance and detect early imbalances that might cause an injury. Another
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application can be in security. A person’s gait is always different and a genuine characterization

of the unit, therefore, can serve for identification (Matsushita et al., 2021a).

2.1.2 Human gait measurements and characterization

There are many variables to quantify the human gait. We are follow the taxonomy of

the (Matsushita et al., 2021a) to have an organization and understanding. Spatio-temporal

parameters are related to time and distance in a gait cycle, examples are: steps, stride length,

walking speed, events, like foot strike and toe-off, etc. Then we have kinematic parameters.

They measure the entire body mass, angular rotation of the joints (ankle, hip, many more), etc.

The physiological parameters are indicators of energy expenditure, like, energy cost, heart rate,

energy consumption, etc. Then we have the anthropometric parameters, which is information

directly taken from the patient profile like, age, gender, weight, height, body mass index, etc.

The last one is kinetic parameters which refers to ground reaction forces (GRF), foot plantar

center of pressure (COP), joint torque, etc.

The quantitative measurements that will be used to describe the gait are the ground reaction

forces (due to the fact that we will be using GaitRec dataset, and GaitRec uses this variable

to quantify the gait). Ground reaction forces are the force of equal magnitude applied in the

opposite direction from the ground up to the foot. There are 3 GRF, vertical (V), anterior-posterior

(AP) and medio-lateral (ML). Figure 2.3 has a representation of the direction and orientation of

the 3 GRF. This kinetic parameters, GRF, are becoming a standard tool for clinicians to measure,

describe and analyze human locomotion (Horsak et al., 2020).

Figure 2.3: Representation of the ground reaction forces. Fz is the vertical GRF; Fx is the

medio-lateral GRF; Fy is the anterior-posterior GRF. Source: (Liang et al., 2015).
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2.1.3 Sensores

In pursuance of getting information that can characterize the human gait, it is imperative to

capture information from this reality into digital information. Sensors, by definition, are capable

of it. The following figure 2.4, gives a possible taxonomy for sensors that are used for gait study.

Figure 2.4: Gait acquisition modalities for clinical gait analysis. A possible taxonomy to describe

gait acquisition modalities for clinical gait analysis. Adaptation from: (Matsushita et al., 2021a).

The nonwearable sensors are very typical in controlled facilities, but some can be used

installed at unprofessional facilities. One example is the radar which is non-invasive, non-contact,

and insensitive to lights, and can, for example, help to inform if a fall has happened in an elderly

house. This kind of sensors can be considered as powerful since there are no power constrains

and low physical limitations, but can be very expensive to install.

The wearable sensors on the other hand are preferred for gait analysis. They are simpler

and can be used in daily life. This can be considered the opposite of the nonwearable sensors

in terms of advantages and disadvantages. One does not have portability, the other has. One

has no power constrains, the other has. Likewise, one can be inexpensive, but nonwearable are

quite expensive.

The hybrid category is the use of various sensors to get more information about gait, possible

taking both kinetic and kinematic information. It doesn’t necessary means that are a mix of

nonwearable sensors and wearable (Matsushita et al., 2021a).
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Because we are using the GaitRec dataset, it is important to explain the type of sensor they

adopt. GaitRec uses nonwearable sensors in order to measure the GRF, to measure the impact

force. Usually, they are called floor/pressures platforms sensors. They measure the static and

dynamic pressure or force under the foot and are placed along the floor (Matsushita et al., 2021a;

Horsak et al., 2020).

2.2 GaitRec

For the sake of building results and studying, data is necessary. This is where GaitRec

comes in. GaitRec is a large scale dataset built by a research group that the main objective

is to fulfill the need of large datasets for state-of-the-art machine learning algorithms. Another

necessity that was denoted is the fact that the availability of a completely annotated large-scale

datasets is very scarce. This is where the GaitRec excels, it is a large scale dataset, completely

annotated and classified by certified physiatrists, ensuring the quality of the results (Horsak et al.,

2020).

GaitRec has 211 healthy units and, 2084 non-healthy units. It has 104 healthy males and

107 healthy females; 1636 unhealthy males and 448 unhealthy females. In terms of balanced

dataset, the healthy sub-dataset is quite balanced, but for the pathologic that doesn’t happen.

There are much more pathological males than females. For our case of studying this is good

since we only need the healthy dataset to implement the algorithms. This is because we want to

give a healthy gait reference for a specific unit (non-healthy or healthy) based on their personal

information, so the algorithms can only learn the healthy cases. The unhealthy units will be used

to take results, and the unbalanced fact is not relevant to the veracity of the results.

Healthy units had the possibility to do the sessions barefoot and with their regular shoes. But

the pathological units only did with their shoes, and if they were using orthopedic insoles it was

referenced. Each session, each measurement, had at least 10 trials.

The only true classification given is for the first session of that person. This first session is

classified as initial measurement. Then, in the case of the unhealthy persons, we also have

control measurement and initial measurement after readmission. One relates to the sessions

that the person did while on rehabilitation to resolve the pathology, and the other to the case if the

person comes back for any reason, respectively. We only have a physiatrist classification on the

first measurement. So trying to give a classification on the last session of the person, assuming

it is healed, could fall on potential error. The person could have given up on treatment, actually

healed, or not at all and needs to come back to rehabilitation again and be on the session type

initial measurement after readmission. This is important because giving a diagnosis is possible,
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but having the opportunity to contrast between our classification and the true classification on

the last sessions will not be possible. We can only assume that evolution towards a healthy

state can be seen in most cases.

Healthy units did the sessions with at maximum 3 gait speeds. 1-slow (mean 0.98 m/s, 0.14

for standard deviation); 2-self-selected (mean 1.27 m/s, 0.13 for standard deviation); 3-fast

(mean 1.55 m/s, 0.15 for standard deviation); Unhealthy units, understandably, only at speed 2.

Figure 2.5: GaitRec taxonomy. Taxonomy used for classifying the patients. Adaptation from:

(Horsak et al., 2020).

The last thing that needs to be examined is the classification taxonomy the authors of the

GaitRec use. And by analyzing the figure 2.5 it is easy to understand it. Patients can be

classified as: Healthy Controls (HC) or Gait Disorders (GD). For the patients that have gait

disorders, they can be further classified as, Hip (H), Knee (K), Ankle (A), and Calcaneus (C). So,

for the unhealthy patients, we have 4 major problems and their names comes from the location

it happened, hip, ankle, knee, and calcaneus. Further classification is given within the 4 major

problems (Horsak et al., 2020), but they are irrelevant to our objective.

2.3 Machine learning

2.3.1 Linear regression

Linear regression is a supervised learning algorithm that tries to find a representative curve,

or in higher dimensions, a hyperplane, to a set of input/output data. This will give the opportunity

to build a model who has the capacity, by the information summarized, to give an output that

follows the same information. To find the parameters of the hyperplane that best represents the
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dataset used, we need a cost function to measure how well the model is representing. Least

squares is the one used in this work and is one of the many popular choices (Watt et al., 2016).

2.3.2 Extreme machine learning

Extreme machine learning (ELM) is a single-hidden layer feed forward network, and its

weights and bias are randomly assigned. The creators of ELM prove that if the activation

functions are infinitely differentiable, the weights and bias can be randomly assigned. The output

weights then are determined by a simple inverse operation of the hidden layer output matrix

(when calculating computationally, pseudo-inverse is used) (Huang et al., 2006; Cao et al.,

2016).

The algorithm itself, it’s simple to understand. The only hyperparameter that needs to be

defined is the number of the neurons on the hidden layer (Ñ ).

Defining a set of training samples {(xj , tj)}Nj=1 with the size of the training vectors (N ), (m)

for the number of outputs and (n) the number of features, the single-hidden layer feed foward

network is expressed as:

Ñ∑
i=1

βigi(xj) =
Ñ∑
i=1

βigi(wixj + bi) = oj , j = 1, ..., N (1)

Where g(·), in equation (1), is the activation function, xj = [xj1, xj2, ..., xjn]
T the input,

tj = [tj1, tj2, ..., tjm]T the desired output, wi = [wi1, wi2, ..., win]
T the connecting weights of the

ith hidden neuron to input neurons and bi the bias of the ith hidden node, βi = [βi1, βi2, ..., βim]T

is the connecting weights of the ith hidden neuron to the output neurons and oj is the network

output with respect to input xj , where i = 1, ..., Ñ . Then, the weights (wi) and bias (bi) are

randomly generated. The objective is, minimize the following error min
β

||Hβ − T||, the difference

between oj and tj where H, called the hidden layer output matrix, defined in equation (2).

H(w1, ...wÑ , b1, ...bÑ , x1, ...xÑ ) =


g(w1 ∗ x1 + b1) · · · g(wÑ ∗ x1 + bÑ )

...
. . .

...

g(w1 ∗ xN + b1) · · · g(wÑ ∗ xN + bÑ )

 (2)

β is calculated with β = H†T ( † is the pseudo-inverse operation) since, min
β

||Hβ − T||, is a

least square problem (Huang et al., 2006; Cao et al., 2016).
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2.3.3 Ridge extreme machine learning

This algorithm is equal to ELM, but the fact that the numerical instability of the pseudo-inverse

exists, a version of the ridge regression is used to optimize min
β

||Hβ − T||. To do this another

hyperparameter, λ, is inserted on the equation min
β

||Hβ − T||+ 1
λ ||β|| (Cao et al., 2016).

2.3.4 Support vector machine

Support vector machine, SVM, uses kernels functions in order to separate the classes within

a margin and give a classification for non-linear cases (when it’s not possible to separate the

data with a simple line). The problem in hands (create the targeted healthy gait reference)

have 101 outputs (full gait cycle by GaitRec), so, SVM for regression problems (SVR), with

multiple output variables it’s going to be called multiple output support vector regression (MSVR)

and instead of giving a categorical output like SVM, gives a numerical output (Marsland, 2014;

Sanchez-Fernandez et al., 2004; Watt et al., 2016). The following explanation is about SVR and

not MSVR, but it can be deducted to the MSVR case.

If we consider the training set as {(xi, ti)}Ni=1, where j = i = 1, ..., N , xi ∈ Rn, ti ∈ R1, SVR

solves the following problem (with, N the size of the training vectors, n the number of features,

xi being the input vector and ti being the desired output):

min
w,b,ζ,ζ∗

1

2
wTw+ C

N∑
i=1

(ζi + ζ∗i ) (3)

Equation (3) is subject to these conditions:

ti −wTφ(xi)− b ≤ ε+ ζi

wTφ(xi) + b− ti ≤ ε+ ζ∗

ζi, ζ
∗
i ≥ 0

With these settings, we are penalizing samples whose prediction is at least ε away from

their true target. Depending on whether their predictions lie above or below the ε tube, they are

penalized by ζi or ζ
∗
i . Where C is a regularization parameter.

min
α,α∗

1

2
(α−α∗)TQ(α−α∗) + ε

N∑
i=1

(αi + α∗
i ) +

N∑
i=1

ti(αi − α∗
i ) (4)

Equation (4) is subject to these conditions:

eT (α−α∗) = 0

0 ≤ αi, α
∗
i ≤ C
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Where Qij ≡ K(xi, xj) = φ(xi)
Tφ(xj). Q is an N by N matrix and because of equivalance

is equal to K which is the kernel. φ(·) is a function that maps the training vectors into a higher

dimensional space. αi, α
∗
i are called the dual coefficients.

Then we can predict with equation (5) (Pedregosa et al., 2011; C.-C. Chang et al., 2011):

N∑
i=1

(−αi + α∗
i )K(xi,x) + b (5)

2.3.5 Convolutional neural network

Convolutional neural networks (CNN) are one of the most famous neural networks algorithms

that exist. It is known for its good results for a wide range of problems. It is possible to work with

them in many dimensions, for example, images can be considered an 2-D grid, and time-series

as 1-D.

In order to be considered as a convolutional neural network, it needs to have at least

one convolutional layer. Convolutional, pooling (max pooling for example) and normalization

operations are very used and typical. In the interest of constructing an architecture, a model, we

have to use many layers with these operations to have a model that is capable of giving a good

result. Activation functions are also super important because they are functions who change the

values of the features maps (sigmoid, ReLu, tahn are a few of many).

Why use convolutional layers? Because they help learning from sparse interactions, parame-

ter sharing and equivalent representations. For the convolutional layers, the following taxonomy

needs to be taken in account. Kernel, filters, input, and feature map. Kernel is a matrix of weights

that is used for the convolutional operation with the input. Filters represent the channels of the

convolutional layer, the depth of it. And the results of the operations is called the feature maps

(Goodfellow et al., 2016).

A general convolutional neural network has also dense layers, which is a layer that is deeply

connected with its previous layer, so, the neurons of the layer are connected to every neuron of

its preceding layer. Figure 2.6 has an example of what a CNN architecture can look like. We

see convolution layers, pooling layers, and at the end, deeply connected layers.

Figure 2.6: CNN model. A typical CNN architecture. Source: (Géron, 2019).
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2.4 Human gait indexes

There is some investigation around indexes that can provide a diagnosis based on parameters

that are directly connected to the person’s Gait.

2.4.1 Gillette gait index (GGI)

Gillette Gait Index (GGI) is widespread in terms of usage and popularity. Although with the

advantage of resuming all the gait analysis in to one index, it has some major disadvantages, lack

of normal score distribution, and arbitrary and incomplete nature of the 16 constituent variables

(although not restricted to 16, on their investigation they used 16), not easy to interpret, etc

(McMulkin et al., 2015).

GGI is calculated by setting the values of the variables used and the mean of them. Then,

in favor of getting more information we have to uncorrelate these two results, the variables

values and the mean value of all the variables. To do so, they apply numerous technics from

multivariate statics to accomplish this. Then, the Euclidean distance between the variables and

mean, now uncorrelated, is calculated and summed to give a final index value (Schutte et al.,

2000).

2.4.2 Gait deviation index (GDI)

Gait Deviation Index (GDI) solved many problems that the GGI had. It includes data from the

entire gait cycle, it’s easy to interpret, has an inherent filter and is normally distributed, allowing

parametric statistical testing. But although building a better response than GGI it comes with a

cost that can be considered as a major disadvantage. It has the need for a large sample size,

and this limits the application to other studies (McMulkin et al., 2015).

GDI is a little more complex than GGI. First, it passes through preprocessing the data and

then subjecting it to principal component analysis. After, select the data that can represent the

information about the used data and represent it linearly to create a reduced order approximation.

Then, a distance metric is defined to measure the proximity between the selected data and the

reduced order approximation (Schwartz et al., 2008).

2.4.3 Gait profile score (GPS)

Another alternative to GGI and GDI is gait profile Score. It’s based on the GDI, but aimed for

easier calculations and with the objective of resolving some problems the other two had. One

major advantage is that it can adapt to new models without the need for large control database
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like GDI needed. One disadvantage the GPS has is the lack of normal distribution (McMulkin

et al., 2015).

GPS uses all kinematic data, instead of the approach of the GDI that only uses the kinematics

that represents the data. Using the root-mean-square (RMS) between the mean and the all

kinematic itself, proves that, if using all the kinematics, no principal component analysis is

necessary. This way, GPS avoids intense calculations (Baker et al., 2009).

One thing that is important to talk about is the gait variable score (GVS). GVS is calculated

just like GPS, but is called GVS when we are analyzing one gait variable (Baker et al., 2009).

2.4.4 Symmetric index (SI)

The symmetric index analyzes the behavior of both limbs, left and right, and identify if they

both behave identically. The symmetric index is built by analyzing the same person’s gait, for

left (on the y-axis) and right side (on the x-axis), and trying to find a curve that fits them. With

the curve defined, we can find ψ, that is the angle between the x-axis and the curve.

There are many articles that assumed that gait was perfectly symmetrical with a view to

simplification. Although, sometimes, pure symmetry is found (like analyzing the foot-floor contact),

gait asymmetry is present and considered normal on healthy units. This difference relates to the

contribution of each limb to propulsion and control tasks by preferring one side to do one task,

and the other limb to do the other task. Other reasons might exist, but need more studies to

actually be plausible to be considered (Sadeghi et al., 2000).

So, to have perfect symmetric index, we would need that ψ was equal to 45◦. To calculate

the symmetric index, it will be followed the following equation (6) (Sobral et al., 2018).

SI =
ψ − 45◦

45◦
∗ 100 (6)

2.4.5 Gait error (GE)

Gait error was also analyzed. It takes sixteen variables based on the gait parameter, vertical

ground reaction force. Only the vertical GRF is going to be applied because it’s the one used on

(Sobral et al., 2018).

Gait error, equation (7), is calculated using the difference between the variables from the

patient’s and the respective reference variables (Sobral et al., 2018).

GE =

√√√√ 1

U

U∑
i=U

(
xi − xiref
xiref

)2 (7)
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Where xi represents each variables calculated using the patient’s profile and xiref represents

each variables using the respective reference profile. U is the number of parameters used.

The table 2.1 has all sixteen variables that were used by (Sobral et al., 2018).

Table 2.1: List of the variables analyzed to construct the GE and its description

Variable Brief Description

F1 First peak force

F2 Minimum force

F3 Second peak force

T1 Time of the first peak

T2 Time of the Minimum force

T3 Time of the second peak force

Tst Stance phase duration

Tisng Beginning of the single stance phase

Tesng End of the single stance phase

Tsgst Single stance phase duration

LR Load rate

ULR Unload rate

Aspec Area of the spectral density

Aderiv Area of the VGRF derivative vs the VGRF

GVS Gait Variable Score

DTW Dynamic Time Warping

These variables are a compilation that tries to give as much information as possible in favor

of creating an index that is capable of give a diagnosis (Sobral et al., 2018).

GVS and DTW are already a comparison between the true response and reference. So when

producing the reference value for the GE, a comparison between the created reference and the

literature reference is employed (“Appendix A: Kinematic, Kinetic, and Energy Data”, 2009).

2.5 Dynamic time warping (DTW)

To compare two time series, sometimes it is advantageous to understand their trajectory.

Gait can be very influenced by changes on gait speed (Matsushita et al., 2021a) or even the

randomness variable on how a person may walk on a measurement. This can introduce some

error that is not derivative from possible pathologies, but from the randomness and typical
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variations of the way a person walks, specially time related. A person might have the same

gait between measurements but changes the gait speed or the time it starts, or gets into a

phase of the gait cycle a little earlier or later. Because of this, using time warping, comparison

of trajectories, or comparison of sequences, is necessary and is done by time-sampling. The

objective is, by selecting some points and comparing the two sequences, to find the minimum

distance between them. This way we are analyzing the pattern of the sequences.

The analysis of the gait patterns is vital for the objective, time warping is a very special tool to

achieve that (Kruskall et al., 2022) taking out the time dependency of the Gait. A representation

of what DTW does is presented in figure 2.7. DTW is applied in this work as a metric to give a

value of distance between two gait curves.

Figure 2.7: DTW representation. Representation of two continuous sequences and the minimum

distance found for some points of the sequence. Source: (Kruskall et al., 2022).
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Chapter 3

Materials and methods

In this chapter, a description of what was defined to get results, the methods, is presented.

The tools used are here discriminated. Besides that, a deep study of the subdataset from the

GaitRec used to train the machine learning algorithms, is also shown.

3.1 GaitRec

The GaitRec dataset (Horsak et al., 2020), is shared in 2 different formats, RAW and PRO.

For this work, it was used the PRO one. This decision was based on the fact that it has much

more processing, which is necessary in order to avoid noise that could destroy the learning of

the algorithms implemented. The RAW dataset was also pre-processed, although not as much

as PRO. Figure 3.1 describes the processing made in both formats, RAW and PRO suffered.

16



Automatic diagnosis of gait pathologies using GaitRec dataset

Figure 3.1: GaitRec processing. List of processing done that were done to the GaitRec dataset

in RAW and PRO formart

3.1.1 A deep study of healthy units in GaitRec dataset

In the direction of building the response to the first objective here defined (creating a targeted

healthy gait reference), we need to build a subset of the dataset GaitRec. Since the objective is

to build algorithms that are capable of giving a healthy gait reference, we need to choose only

healthy units.

GaitRec, although severely well analyzed and with correct medical diagnoses, has some

data missing. For healthy units, it has every information about the patient. Though, sometimes

people didn’t always walk all the three gait speeds or didn’t walk barefoot.

The structure in GaitRec dataset for healthy units should be exactly like the structure described

in the figure 3.2. Because we have three gait speeds, must exist 3 sessions for each healthy

unit. For each session, it was done 10 trials. Also, we have a repetition of these 3 sessions, but

this time, people walked barefoot, instead of the previous one, where they used their regular

shoes. So in total, it is expected 6 sessions for all healthy units. But there is a range of values

that go from 1 to 6 and not always 6. Sometimes, and this is something that was expressed in

their article (Horsak et al., 2020), they didn’t save all the 10 trials.
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Figure 3.2: Healthy GaitRec structure diagram. Diagram that represents how the data structure

should be looking, with sessions and trials, in the healthy units of GaitRec.

3.1.2 Walking shoes

The sessions realized by healthy units were done with regular shoes and some barefoot. In

order to understand how much different the response would be we built the mean of all the trials

of walking barefoot, and the mean of all the trials of walking with regular shoes. This was done

to all the 3 forces, for male and female. Then we calculated the difference between the both

means and present it on graphics in the figures 3.3, 3.4 and 3.5.

(a) Female case. (b) Male case.

Figure 3.3: Mean value of the difference between vertical GRF with shoes and without, for left

and right foot.
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(a) Female case. (b) Male case.

Figure 3.4: Mean value of the difference between medio-lateral GRF with shoes and without,

for left and right foot.

(a) Female case.
(b) Male case.

Figure 3.5: Mean value of the difference between anterior-posterior GRF with shoes and without,

for left and right foot.

In the figures 3.3, 3.4 and 3.5, the line that has the blue triangles represents the difference

between the means. We have two lines for the difference, left and right limbs, but distinguishing

these two blue lines is unnecessary in this case because of their similarity. The line that has red

squares represent the left side (with and without shoes) and the green hexagons represent the

right side (with and without shoes).

Analyzing the vertical GRF, both for man and female, the maximum value of the difference

doesn’t get close to the value 0.2 (MBW). Seeing the maximum value of the mean of walking
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with regular shoes and walking barefoot, around 1.2 (MBW), 0.3 (MBW) can represent a close

value to the quarter of the mean values. This way, because it doesn’t get close to the 0.3 (MBW),

staying around 0.2 (MBW), the value of the difference it’s not high.

Now, analyzing the medio-lateral GRF, the maximum value of the difference is around 0.02

(MBW), and in the male case we have even higher values. Seeing that 0.02 (MBW) represents

a close value of the half of the maximum value of the means (around 0.04 (MBW)), we can say

that we have an error close to 50 %.

At last, the anterior-posterior GRF, it’s really similar to the vertical GRF, and the values don’t

even get close to the quarter of the maximum value of the means, each in this case is around

0.2 (MBW). So the difference here is also not high.

In general, for both left and right side, exists its differences but an insignificant and expected

difference. Asymmetry is the natural human response, even for healthy people, but symmetry is

and was assumed in many studies because of simplification (Sadeghi et al., 2000).

So we can conclude, by analyzing the graphics, that between male and female, we have much

difference on medio-lateral GRF. Between forces, although for the vertical and anterior-posterior

the differences don’t show to be high enough, on medio-lateral, ther is a huge difference. And

because there is a propagation of difference on all the difference curves, and by this we mean

that the difference mean values don’t are close to zero for long periods of time of the gait cycle,

we conclude that there is difference on walking barefoot and with regular shoes.

3.1.3 Person distributions

So, although the conclusion that walking barefoot and with regular shoes has its differences,

we still included all trials and sessions, because this data still is correct. We are considering it

as a different person, that has the same age and body mass index for each different trial and

session.

To fully analyze the created dataset of only healthy units, it is present here the distribution

of the 3 features that we choose and influence the gait. Age, body mass index and gait speed.

Sex and foot also influence, but, in the methods’ section will be better explained the strategy

that was deployed to deal with these features.
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Figure 3.6: Histogram of the age of healthy people.

Figure 3.7: Histogram of the body mass index (BMI) of healthy people.
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Figure 3.8: Histogram of the gait speed of healthy people.

Analyzing the figure 3.6, the age histogram of healthy people, we can see that we have a

wide range of values. Between males and females, the distribution is not that different. But we

can see that males have a wider range of values. For females, we have values that go from

15-97 and for males 17-78. We can see higher number of persons in the interval 20-30 years old

and around 40-50 years old. But in general, the data is well distributed between all age values,

both for male and female.

In the body mass index histogram graph, figure 3.7, we can see that we have a huge

concentration in values around 20-25 for females and 23-27 for males. We can consider that

this kind of distribution is well similar to a Gaussian one and this behavior is not new and already

expected (Nuttall, 2015).

When we analyze the gait speed, figure 3.8, we can see what already was commented.

Some people did not walk all 3 gait speeds.

3.2 Development

In order to development the tests, that will be described in future sections, to gain some

results, it was used the following tools. Matlab was only used for the objective of constructing

the healthy gait references. Python, on the other hand, was used for all the objectives denoted.
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Programming languages

• Python (Van Rossum et al., 2009).

– TensorFlow (Martı́n Abadi et al., 2015), Sklearn (Pedregosa et al., 2011), PyQt5,

Pandas (team, 2020; McKinney, 2010), NumPy (Harris et al., 2020), Seaborn

(Waskom, 2021) and Matplotlib (Hunter, 2007) were used and were vital to develop

the tests. They are commonly used in problems related to machine learning.

– DTW (dynamic time warping) package (Giorgino, 2009) was also used to implement

the metric.

• Matlab (MATLAB, 2021).

– Deep Learning Toolbox (MATLAB, 2021), Signal Processing Toolbox (MATLAB,

2021), ELM Toolbox (Zhang, 2022), were used to create and run the ELM and RELM

algorithm with the proper changes to adapt to the objective.

3.2.1 Optuna

Optuna (Akiba et al., 2019), offers a define-by-run API, an efficient implementation for

searching and pruning strategies and an easy-to-setup environment. Searching and pruning

hyperparameters are required to construct a machine learning algorithm. From many frameworks

available, optuna was used because it is recent and easy-to-setup.

Optuna is a tool that was used to improve the speed of implementation and the quality of

the tests, because the growth of the complexity of the models implies more time to implement

the tests. Because of its importance to the tests, a section was given to it, in the interest of

understanding its application. The only algorithms that were not studied with optuna were LR,

ELM and RELM because they only have one simple hyperparameter or none (LR case).

Basically, this framework along with the other tools creates the possibility to study the

hyperparameters of each algorithm in order to find the best case scenario based on the training

dataset. So the objective of using optuna is allowing automatization of tests.

Analyzing the results in optuna’s article (Akiba et al., 2019) we can see that optuna choices

for algorithms and strategies produce better results than random search.

23



Chapter 3. Materials and methods

3.3 A comment on unhealthy people

Unhealthy people weren’t deeply studied because it is not necessary that kind of analysis

in order to use them. It was presented some understanding in previous sections, but they are

important to just present results.

Unhealthy people only did self-selected gait speed. Their first session has the session type

as initial measurement and it’s classified as a gait disorder, or to simplify, pathological. The

last session, has the session type as control measurement or even initial measurement after

readmission (Horsak et al., 2020).

3.4 Developed methods

Reading the objective, creating the healthy gait references and then building the diagnosis,

creates a necessity of dividing the problem in two different methods. The creation of two apps,

also part of the objective, does not need a method. In this section, we will explain the developed

methods.

3.4.1 Work on frequency domain

Because of previous works with GRF (Wu et al., 2014; Stergiou et al., 2002; Giakas et al.,

1997) worked or studied the possibility of working in the frequency domain, an analysis was

planned to see if it is worth it.

So, by using fast fourier transform (Cooley et al., 1965), we are trying to describe the curves

with minimum coefficients possible, to have a similarity down to 95 %, obtaining this milestone

using the metric DTW. If we use all the coefficients we will have the perfect curve, the best case

scenario. If we use none, we have our worst case scenario. This way its possible to normalize

and obtain an interval to show the results varying from 0 to 100 %.

Five males and five females will be randomly selected and will be the base to study how

many coefficients will be necessary. Since the maximum coefficients is 101, values down to 65

will not be considered worthy of the additional complexity.

3.4.2 Implementing the healthy gait references

Because sex, age, gait speed, height, weight, and foot changes the gait itself (Matsushita

et al., 2021b), 4 cases for each algorithm were created. Male left (Ml), Male right (Mr), Female
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right (Fr), Female left (Fl). Body mass index, age, and gait speed will be the features that will be

used on the algorithms. Body mass index is the person’s weight divided by the square of height.

The following figure 3.9 explains what the problem is. We are going to use three features,

age, body max index and gait speed. The values of these three features will represent a session,

they are the input, and with the measured gait cycle (called real gait cycle in the figure 3.9), the

desired output, that have 101 points, train the algorithm in order to find the best representative

weights and bias so the algorithm is capable of generalizing and create an output of 101 gait

cycle points for an input given.

Figure 3.9: Machine learning diagram for the objective. Diagram that describes the structure of

the problem, implementing the healthy gait references.
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The method created for the objective, implementing the healthy gait references, follows the

coming steps:

• Preprocessing the dataset: Although the authors of the dataset already did vast steps

of preprocessing, its necessary to select what is in favor of the objective. In this case,

selecting all the healthy units. Then split the dataset to train and test. We chose 80 % for

training and 20 % for test.

• Implement algorithms: Based on previous works, Multiple output support vector regres-

sion and extreme learning machine were studied (Vieira et al., 2018; Figueiredo et al.,

2018; Y. Chang et al., 2021). Linear regression (Stansfield et al., 2006) and Convolution

neural network were also studied. In addiction a variation of the extreme machine learning

was used, RELM.

• Analyze the results:

– First Criteria: Capability of following the true response of a healthy person. A visual

comparision between the true response and the result of the created healthy gait

reference with the algorithms.

– Second Criteria: With help of the metric dynamic time warping (Kruskall et al., 2022),

and with the implementation of dynamic time warping (Giorgino, 2009), give a value

that is a distance. Less distance to the real case, better result it is. If they are not

good enough, changes in the algorithms needs to be done.

• Create and present the graphics of the three GRF: This is a self-explanatory step, when

exhausting tests and satisfaction with results happens, presenting the results is a natural

step.

3.4.3 Giving a diagnosis

To complete the second part of the objective, this is, building a diagnosis, we need to define

some variables that give a measurement that can be understood has a classification. In this

case of study, it will be used human gait indexes.

• Calculate the variables: Since they were already described on chapter background infor-

mation, table 2.1, this step will be only to calculate the set of variables. But a compromise

was done. Simplification. Not all the parameters described in the second chapter are going

to be analyzed. This is due to the simplification cause, where we are using the ones that

empirically we find relevant and verify if they are enough for building a diagnosis.
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– Forces: F1, F2 and F3;

– Rates: Load rate and Unload rate;

– Area: Spectral density and Derivate of the vertical ground reaction force (VGRF) in

representation of the VGRF;

– GVS;

– DTW;

• Intervals for classification:

First, calculate the GE and SI indexes.

Then, apply the global error and symmetry index to all healthy units. After build an interval

to say, if the result of any session is between this defined interval, consider it healthy or if

it doesn’t, not healthy.

This interval will be created by using the mean and standard deviation of the values obtained

from the healthy units. So in order to be classified as healthy, both the values of the GE

and SI have to be in the intervals of the healthy units.

Every single value will be normalized between, 0, as the minimum and, maximum being

the mean of that corresponding value. For example: The value of GE of an unhealthy male

for the left side will be normalized, with maximum being the mean of the GE for the healthy

male’s left side.

• Get results and present them: Presenting the results in favor of getting some conclusions.
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Chapter 4

Results and discussion

4.1 Work on the frequency domain

Some works (Wu et al., 2014; Stergiou et al., 2002; Giakas et al., 1997) are working in the

frequency domain instead of working on the time domain, or at least studying the possibility of it.

Like it was described in the materials and methods chapter, we tried to represent the curves of

the ground reaction forces with at least 95 % of similarity with minimum coefficients possible.

The similarity is analyzed with the DTW.

This was not possible because the results we got were not in favor (table 4.1) since the

maximum number of coefficients is 101 and the results are really close to this number.

Table 4.1: Results of the quantity of coefficients necessary for each GRF to have at least 95 %

similarity.

Vertical GRF Medio-lateral GRF Anterior-Posterior GRF

Male left 100 101 101

Male right 100 101 101

Female left 99 101 101

Female right 99 101 101

Clearly, these results don’t accomplished the defined rule that was decided in the previous

chapter, that the number of coefficients needs to be from 0 to 65 in order to justify the additional

complexity. Obviously, the possible advantage of reducing the time by working with smaller

representations is not possible in this case.
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4.2 The healthy gait references

After the implementation of the algorithms using the materials described, we constructed the

code necessary to apply the tool Optuna, so we could automatize the tests in the pursuance of

finding the best case scenario for each algorithm.

Since we have 5 algorithms, LR (linear regression), ELM (extreme machine learning), RELM

(ridge extreme learning machine), MSVR (multiple output support vector regression) and CNN

(convolution neural network); 4 cases, Mr, Ml, Fr, Fl; And three GRF, V, ML, AP. We have 60

objects to analyze. Towards simplification, only the best combination of hyperparameters will be

here described.

4.2.1 Linear regression

Linear regression is a simple algorithm in comparison with others that we use here. It doesn’t

have any hyperparameters to be here listed for any of the 12 cases (Mr, Ml, Fr, Fl and the 3

GRF).

4.2.2 Extreme machine learning

In order to compile ELM, we have only to define 1 hyperparameter. The size of the hidden

layer (Ñ ). To study this hyperparameter, empiric numeric values were used. Bigger values than

500 did not show improvement on the algorithm. So for each 4 cases and 3 GRF (12 cases in

total), we studied the interval of 1 to 500, and selected the best instance. The selection is shown

on table 4.2.

Table 4.2: The best value of the hyperparameter, hidden layer (Ñ ), from the ELM algorithm for

each 12 cases.

GRF V ML AP

ML MR FL FR ML MR FL FR ML MR FL FR

Ñ 254 113 137 49 283 156 34 38 93 37 119 150

4.2.3 Ridge extreme machine learning

To compile RELM, we have to define 2 hyperparameters. The size of the hidden layer Ñ and

the lambda (λ). To have the best hidden layer size was applied the same process of the ELM

algorithm. To the lambda hyperparameter a suggested interval, based on the implementation on
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MATLAB (Zhang, 2022) by the author of the algorithm RELM and ELM was used. Table 4.3

shows what values were selected.

Table 4.3: The best value of the hyperparameters, hidden layer (Ñ ) and lambda (λ), from the

RELM algorithm for each 12 cases.

GRF V ML AP

ML MR FL FR ML MR FL FR ML MR FL FR

Ñ 406 25 288 288 131 108 34 38 350 376 405 152

λ 2e−3 3e−4 4e−2 2e−3 2e−3 2e−2 3e−4 8e−4 2e−3 6e−3 1e−2 4e−3

4.2.4 Multiple output support vector regression

This algorithm has a few hyperparameters, and to come with the best combination, optuna

was used. The regularization parameter (C), the kernel function (K) and epsilon (ε) were the

ones focused. The best values for each hyperparameter studied are presented in the table 4.4.

Table 4.4: The best value of the hyperparameters, regularization parameter (C), kernel function

(K) and epsilon (ε), from the MSVR algorithm for each 12 cases. lin stands for linear, sig stands

for sigmoid and rbf stands for radial based function.

GRF V ML AP

ML MR FL FR ML MR FL FR ML MR FL FR

C 1925 154 2000 6 20 9712 5621 8995 1241 50 317 180

ε 4e−4 0.74 0.05 0.06 0.0 0.0 6e−3 0.0 0.0 3e−4 0.0 0.0

K sig rbf sig rbf lin lin rbf lin lin sig lin lin

4.2.5 Convolution neural network

On CNN, several architectures were tested. It was founded that the simplest architecture

possible is the best case scenario. This is, a dense layer and a convolutional layer (figure 4.1).

The hyperparameters studied were, filters, activation function and learning rate and the best

values are shown in table 4.5. Batch size was set to 12 and the epochs were set as 200. This

algorithm was also implemented with optuna for the tests. Kernel size was set to 3 and stride

was set to 1.
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Figure 4.1: Architecture used for the CNN.

Table 4.5: The best value of the hyperparameters, filters, activation function and learning rate,

from the CNN algorithm for each 12 cases. R stands for ReLu, Lin for linear, F stands for filter,

ActF - activation function and LRat - learning rate.

GRF V ML AP

ML MR FL FR ML MR FL FR ML MR FL FR

F 16 16 8 16 4 16 4 8 8 8 8 16

ActF R R Lin Lin R Lin R Lin R R R Lin

LRat 0.07 0.03 0.09 0.06 0.02 0.03 0.09 0.07 0.07 0.01 0.009 0.09
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4.3 Criteria of decision for the best machine learning algorithm

4.3.1 The first criteria - Capability of following the true response of a healthy

person

The first criteria that is going to be applied is the capability to follow the true response of that

specific person based on visual prove. The following figures, 4.2, 4.3, 4.4, 4.5, 4.6, 4.7, 4.8, 4.9,

4.10, 4.11, 4.12 and 4.13 represent the 4 cases, and are 4 different healthy units, one for each

case (4 cases and 3 GRF). Red is LR; Yellow is MSVR; ELM is green; Blue is RELM; Pink is

CNN; And black is the true response. To distinguish the 3 ground reaction forces, markers with

different forms were used. White triangles for AP; Green hexagons for ML; And black pentagons

for V.

Figure 4.2: Results for creating the healthy gait reference for the case male right, vertical GRF,

from all 5 algorithms.
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Figure 4.3: Results for creating the healthy gait reference for the case male right, medio-lateral

GRF, from all 5 algorithms.

Figure 4.4: Results for creating the healthy gait reference for the case male right, anterior-

posterior GRF, from all 5 algorithms.
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Figure 4.5: Results for creating the healthy gait reference for the case male left, vertical GRF,

from all 5 algorithms.

Figure 4.6: Results for creating the healthy gait reference for the case male left, medio-lateral

GRF, from all 5 algorithms.
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Figure 4.7: Results for creating the healthy gait reference for the case male left, anterior-posterior

GRF, from all 5 algorithms.

Figure 4.8: Results for creating the healthy gait reference for the case female right, vertical

GRF, from all 5 algorithms.
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Figure 4.9: Results for creating the healthy gait reference for the case female right, medio-lateral

GRF, from all 5 algorithms.

Figure 4.10: Results for creating the healthy gait reference for the case female right, anterior-

posterior GRF, from all 5 algorithms.
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Figure 4.11: Results for creating the healthy gait reference for the case female left, vertical

GRF, from all 5 algorithms.

Figure 4.12: Results for creating the healthy gait reference for the case female left, medio-lateral

GRF, from all 5 algorithms.
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Figure 4.13: Results for creating the healthy gait reference for the case female left, anterior-

posterior GRF, from all 5 algorithms.

ELM, RELM and LR were capable of following the true response of the healthy person in

consideration for all the three GRF. On the other hand, it’s clear to see that MSVR has the worst

response in this criteria for all three GRF. We can see spikes along the gait cycle on MSVR, in

the figure 4.3, 4.6, 4.7, 4.9, 4.10, 4.12 and 4.13, which in the true response, spikes, don’t exist.

CNN also doesn’t behave correctly. Spikes, in CNN response, are present on the figures 4.3,

4.8, 4.9, 4.10 and 4.11. In general, CNN and MSVR, fail to learn the true/desired response.

Since we can observe that we have other algorithms that have better response than CNN

and MSVR for all 3 GRF and these two, CNN and MSVR, fail at the mission to be similar to the

real response these two will be off consideration.
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4.3.2 The second criteria - The least distance between the true response and the

created one

The second criteria passes by examining the values of the metric DTW for all 5 algorithms,

4 cases and 3 GRF, between the true response and the created healthy gait reference for all

healthy units. The following tables, table 4.6, 4.7, 4.8 and 4.9, present the mean of the DTW on

all healthy units and the training time of the algorithms.

Table 4.6: Results of the second criteria for the case Mr.

GRF V ML AP

Distance

(DTW)

Training

Time (s)

Distance

(DTW)

Training

Time (s)

Distance

(DTW)

Training

Time (s)

LR 2.998 0.039 0.663 0.005 0.976 0.006

ELM 2.437 0.003 0.579 0.005 0.802 0.001

RELM 2.567 0.026 0.581 0.037 0.786 0.160

MSVR 4.765 0.066 1.623 6.122 1.320 14.888

CNN 4.432 28.287 1.209 26.918 1.245 27.740

Table 4.7: Results of the second criteria for the case Ml.

GRF V ML AP

Distance

(DTW)

Training

Time (s)

Distance

(DTW)

Training

Time (s)

Distance

(DTW)

Training

Time (s)

LR 2.884 0.144 0.646 0.026 0.957 0.012

ELM 2.368 0.013 0.539 0.011 0.824 0.002

RELM 2.220 0.255 0.536 0.042 0.797 0.126

MSVR 4.475 16.222 1.810 5.815 2.589 6.431

CNN 4.341 34.826 0.758 26.044 1.286 26.467

After we have excluded the MSVR and CNN, we have left LR, ELM and RELM. Looking at

the values from the tables for all 4 cases (table 4.6, 4.7, 4.8 and 4.9) we conclude that ELM

and RELM are the best ones and don’t really get distance from each other in terms of the DTW

value. Linear regression presents a very good response, staying really close to the values of

ELM and RELM in general. But we see a significant unit difference in all 4 cases. So because

of this reason, ELM and RELM are considered better than LR, taking out of consideration the

algorithm LR.
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Table 4.8: Results of the second criteria for the case Fr.

GRF V ML AP

Distance

(DTW)

Training

Time (s)

Distance

(DTW)

Training

Time (s)

Distance

(DTW)

Training

Time (s)

LR 3.536 0.030 0.677 0.011 1.113 0.007

ELM 2.490 0.001 0.783 0.001 0.919 0.004

RELM 2.308 0.127 0.725 0.022 1.102 0.058

MSVR 3.152 14.069 3.152 14.069 2.723 7.104

CNN 4.288 27.782 1.081 26.567 1.295 26.284

Table 4.9: Results of the second criteria for the case Fl.

GRF V ML AP

Distance

(DTW)

Training

Time (s)

Distance

(DTW)

Training

Time (s)

Distance

(DTW)

Training

Time (s)

LR 3.633 0.019 0.650 0.011 1.119 0.004

ELM 2.565 0.004 0.709 0.001 0.973 0.012

RELM 2.403 0.121 0.709 0.029 0.957 0.212

MSVR 4.563 8.810 6.018 770.758 3.007 6.857

CNN 3.250 27.531 0.813 26.049 1.081 25.636

The only major difference between ELM and RELM is the training time. RELM takes more

time to training, even though the difference only occurs from millisecond (ELM) to hundredth of

a second (RELM). So these two criteria will not be enough to decide each one to choose.

One thing that is evident is that simplicity is the key here. Simpler algorithms do better results.

Although ELM and RELM are more close to the complex side of the spectrum, there is a huge

difference between CNN, MSVR and ELM and RELM in terms of complexity.

4.4 ELM vs RELM

ELM was chosen to be the algorithm that will create the healthy gait references. RELM has

more complexity inherent to it. Although the time that both took to train are minimal, ELM has

even smaller times. This is obviously due to RELM having more complexity to overcome the

numerical instability of the pseudo-inverse, like it was already commented. But the difference on

performance in terms of both criteria, here implemented, are almost null. So, avoiding complexity
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is a plus in this case, since in this case complexity didn’t show better performance.

4.5 The diagnosis

In favor of giving a diagnosis, human gait indexes were used, naming, Symmetric Index and

Global Error. Also, using DTW as tool for classification was analyzed. Besides, analysis of the

distribution of each index was also made, so decisions could have a starter ground.

Also on DTW and GE, results using the mean reference, besides machine learning reference,

will be presented. The mean reference is the mean of all healthy unit for each 4 cases.

4.5.1 Symmetric index

The symmetric index is built by analyzing one person’s gait, for left and right side, and trying

to find a curve that fits them. On x-axis, we chose the right side and on the y-axis we chose the

left so it’s normal to have negative symmetric index values. In this case, it will mean that in that

session, the dominant side (higher in terms of force) is the left side. Otherwise, if the value is

positive, the right side is the dominant. There is no information on the dataset that informs if the

person is left or right dominant, so no further conclusions can be taken. The only one is that on

a specific session, the person was dominant in one side.

A healthy person will not have a perfect symmetric index, which in this case would necessarily

mean that the person has a perfect 45◦ angle for the created curve. Studies already show that

perfect symmetry does not exist (Sadeghi et al., 2000).

(a) Subject ID:19 and trial: 7. The result

angle is: 43.5◦.

(b) Subject ID:176 and trial: 1. The result angle

is: 47.18◦.

Figure 4.14: Symmetric index for a random healthy male (a) and for a random healthy female

(b).
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Examining the results for those two healthy units (figure 4.14), it is reinforced that not all

healthy units will have 45◦ angle. It is expect a range of values for the healthy units. This way,

we can construct the interval for the symmetric index that classifies a person as a healthy unit.

Like it was said in the materials and methods chapter, it will be used the mean and the standard

deviation to create this interval.

(a) Symmetric index distribution for males with

negative values.

(b) Symmetric index distribution for males

with positive values.

(c) Symmetric index distribution for females with

negative values.

(d) Symmetric index distribution for fe-

males with positive values.

Figure 4.15: Symmetric index distribution for all healthy males (negative or positive SI) and all

healthy females (negative or positive SI).

There was a necessity to separate the negative and positive values of SI. This is due to the

fact that it is common sense that exists healthy units that are more dominant on the left or on

the right. So the mean of the positives will be different from the mean of the negatives, both for
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male and female.

These distributions (figure 4.15) will be considered similar to the Gaussian distribution, so

the intervals that will be created will be with the mean and two times the standard deviation in

favor of getting at least 95 % of all the cases.

4.5.2 Dynamic time warping

Although DTW is a variable for the global error and not an index itself, research on how it

would behave on classifying was done.

Again, the distributions (figure 4.16) are a close response to a Gaussian one. So to define

the interval for the DTW, the mean and two times the standard deviation was used.

(a) DTW distribution for males, left side. (b) DTW distribution for males, right side.

(c) DTW distribution for females, left side. (d)DTWdistribution for females, right side.

Figure 4.16: DTW distribution for healthy all males and females, left and right.
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(a) DTW result of a random unhealthy male. (b) DTW result of a random unhealthy female.

Figure 4.17: DTW results for random unhealthy male and female. Here, (ML) means machine

learning. The DTW and SI values are normalized. Including the boxes.

(a) DTW result of a random unhealthy male. (b) DTW result of a random unhealthy female.

Figure 4.18: DTW results for random unhealthy male and female. Here, (M) means mean. The

DTW and SI values are normalized. Including the boxes.

The application of the intervals is to create limits boxes on the figures 4.17 and 4.18. This

way we can graphically see where the values are. And if it is inside those limit boxes, we can

consider them as healthy. Because DTW is not going to be a tool to classification and only

an interest to see how it would act, no further information about how it did to other patients is

going to be presented. Yet, it was capable of performing correct diagnosis on this two random

unhealthy male and female.
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4.5.3 Global error

The distribution of the GE for healthy units (figure 4.19), also can be considered as a

Gaussian distribution. Therefore, the intervals will be constructed the same way as the SI and

DTW.

(a) GE distribution for males, left side. (b) GE distribution for males, right side.

(c) GE distribution for females, left side. (d) GE distribution for females, right side.

Figure 4.19: GE distribution for healthy males and females, left and right.
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(a) GE result of a random unhealthy male. (b) GE result of a random unhealthy female.

Figure 4.20: GE results for random unhealthy male and female. Here, (ML) means machine

learning. The GE and SI values are normalized. Including the boxes.

(a) GE result of a random unhealthy male. (b) GE result of a random unhealthy female.

Figure 4.21: GE results for random unhealthy male and female. Here, (M) means mean. The

GE and SI values are normalized. Including the boxes.

It’s implicit that GE was capable of classifying this two random unhealthy male and female

well based on the figures 4.20 and 4.21. It is important to clarify thatm T1, T2 and T3 value

always changes, because every single human gait is different, and sometimes, the behavior

of the minimum, T2, is different from what is expected (Lafuente et al., 1998; Mezghani et al.,

2007). So what was done is use the mean of the T1, T2 and T3, for each 4 cases Ml, Mr, Fl, Fr.

This way it takes out the dependency of the form/pattern of the vertical ground reaction force.

And even though we do not use the value of T1, T2 and T3, they are necessary to give the value

of F1, F2 and F3.

Considering only the first measurement to be sure that the classification as unhealthy is
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accurate, applying GE to all unhealthy patients it was built the table 4.10.

Table 4.10: Results of the accuracy by classify unhealthy units as unhealthy. ML means the

reference is built from machine learning and M means the reference is built from mean.

GE(ML) and SI GE(ML) GE(M) and SI GE(M)

Correctly classified Males 100 % 85.8 % 100 % 82.8 %

Correctly classified Females 100 % 62.1 % 100 % 63.9 %

The results demonstrated in the table 4.10, proves that the use of both indexes, SI and GE,

has 100 % accuracy. We can classify all unhealthy units as unhealthy. So using both determines

a necessity. The GE itself has an accuracy bigger than 80 % for males, but for females, has

only an accuracy bigger than 60 %.

4.6 Why the mean and standard deviation for the intervals?

Although referenced by the authors of the dataset GaitRec (Horsak et al., 2020) that, the

dataset was passed through an algorithm to take out the outliers, we still found some responses

that could be considered as an outlier. This is influencing on the machine learning response and

when analyzing the mean and the maximums and the minimums of and index for the healthy

dataset we can see a huge variance (DTW although not an index was also presented here).

Table 4.11: SI results for the healthy subdataset. Max is the maximum value found. Min is

the maximum value found. PM is the positive SI case mean. Pstd positive SI case standard

deviation. NM is the negative SI case mean. Nstd negative SI case standard deviation.

SI Max Min PM PStd NM NStd

Male -19.4 9.4 1.6 1.3 -2.8 2.1

Female -16.3 7.3 1.7 1.4 -2.5 2.1

The results show a high value for the standard deviation (tables 4.11, 4.12 and 4.13). This

means that we have some outliers that passed. So it only made sense to create the intervals

based on the mean and with two times the standard deviation, so we can consider at least 95 %

of the healthy units.

The figure 4.22, shows the worst cases for the DTW values (the maximum for the 4 cases

Mr, Ml, Fr and Fl).
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Table 4.12: DTW results for the healthy subdataset. Max is the maximum distance found. Min

is the maximum distance found. Std means standard deviation.

Left Right

DTW Max Min Mean Std Max Min Mean Std

Male 10.4 0.8 2.1 1.0 8.8 0.7 2.5 1.5

Female 8.0 0.7 2.5 1.2 9.6 0.6 2.6 1.4

Table 4.13: GE results for the healthy subdataset. Max is the maximum value found. Min is the

maximum value found. Std means standard deviation.

Left Right

GE Max Min Mean Std Max Min Mean Std

Male 1.2 0.04 0.2 0.08 0.6 0.05 0.2 0.08

Female 1.1 0.06 0.2 0.1 1.0 0.04 0.2 0.1

(a)Worst case scenario for male left based on

DTW value.

(b)Worst case scenario for male right based on

DTW value.

(c) Worst case scenario for female left based

on DTW value.

(d) Worst case scenario for female right based

on DTW value.

Figure 4.22: Worst case scenarios, based on DTW for all 4 cases. In blue, we have the true

response and in red we have the machine learning reference.
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4.7 APP

Two applications were built. One for showing all algorithms and their results for a random

new person, called Reference Graphs app. And another that shows all unhealthy persons, their

evolution, the created healthy gait reference with machine learning, the indexes, and the DTW

metric, called Gait Analysis app. Both apps were built in python and the tools used are already

described at the materials and methods chapter.

4.7.1 Reference graphs

This app was built, so every algorithm studied could be presented to a random person. The

figure 4.23 shows the created app. It has fields that need to be filled and selected in order to

fulfill the features that are being studied, age, gait speed, body max index, female or male and

left or right side. Then, when selected the algorithm that the user wants to see to produce the

healthy gait reference and pressed the button generate, the graphic for all three forces is shown.

Figure 4.23: First app, the Reference Graphs app. Created to show the healthy gait references

by all studied algorithms.

4.7.2 Gait analysis

Gait Analysis (figure 4.24), was created to demonstrate all the results and studies done here

in one place. On this app, we see the healthy gait references created for a specific person to
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all three forces. The evolution of the features, age, body max index (gait speed, because the

subjects are unhealthy patients, is always 2). Left and right side and the metric DTW. Also, a

global analysis is shown with the human gait indexes values and graphics (figure 4.25).

Figure 4.24: Second app, the Gait Analysis app. Here we can see that the subject 213 was

selected, and we are watching the results for the left side.

Figure 4.25: Second app, the Gait Analysis app. Here we can see that the subject 213 was

selected, and we are watching the results for the global analysis.
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Chapter 5

Conclusion

The study performed about the possibility of working on the frequency domain did not favor

it. Working on the frequency domain could help get results faster since the size of the problem

could be smaller (instead of 101 points, a smaller quantity of coefficients was plausible), but it

didn’t produce a smaller size.

ELM proves to be the best algorithm tested, like it was also shown on (Vieira et al., 2018),

even tough we have a better dataset, GaitRec. We also have seen that simplicity proves to be

better, and ELM and RELM although in the boarder line of complexity still runs far away from

the level of complexity inherent to CNN, for example. The two criteria here used and described

should have been enough to decide what the best algorithm was, yet, because ELM and RELM

are really similar, there was a necessity to another criteria in order to take the conclusion that

ELM is the best. The criteria used was complexity (winning the less complex algorithm).

The necessity of using both human gait indexes, like we used, proves it self by the fact that

it had 100 % of accuracy when using both. GE by himself does not have a good results for

females, staying around 60 %, and, for males has values higher than 80 %, both for machine

learning reference and mean reference. Because of this, GE might benefit all 16 variables for

possible higher results. Because we need both the GE and SI to have 100 %, finding a way to

combine both of these indexes into one is a possible path to be considered as future work.

The mean reference, used on human gait indexes, it’s not a targeted reference, and the

machine learning algorithms do that. This is a major voting cause that proves that machine

learning is still the best case for this problem. Taking out the outliers discovered with the DTW

could improve the response of the machine learning.

In culmination, it was possible to build healthy gait references to a target unit with machine

learning and give a diagnosis with two indexes, GE and SI.
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