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Featured Application: The findings of this work can help doctors decide when it is appropriate
to remove the external fixator.

Abstract: The monitoring of fracture or osteotomy healing is vital for orthopedists to help advise, if
necessary, secondary treatments for improving healing outcomes and minimizing patient suffering. It
has been decades since osteotomy stiffness has been identified as one main parameter to quantify and
qualify the outcome of a regenerated callus. Still, radiographic imaging remains the current standard
diagnostic technique of orthopedists. Hence, with recent technological advancements, engineers
need to use the new branches of knowledge and improve or innovate diagnostic technologies. An
electromechanical system was developed to help diagnose changes in osteotomy stiffness treated
with the external fixator LRS Orthofix®. The concept was evaluated experimentally and numerically
during fracture healing simulation using two different models: a simplified model of a human tibia,
consisting of a nylon bar with a diameter of 30 mm, and a synthetic tibia with the anatomical model
from fourth-generation Sawbones®. Moreover, Sawbones® blocks with different densities simulated
the mechanical characteristics of the regenerated bone in many stages of bone callus growth. The
experimental measurements using the developed diagnostic were compared to the numerically
simulated results. For this external fixator, it was possible to show that the displacement in osteotomy
was always lower than the displacement prescribed in the elongator. Nevertheless, a relationship
was established between the energy consumption by the electromechanical system used to perform
callus stimulus and the degree of osteotomy consolidation. Hence, this technology may lead to
methodologies of mechanical stimulation for regenerating bone, which will play a relevant role for
bedridden individuals with mobility limitations.

Keywords: external fixation; micromovements; bone callus; electromechanical system; bone
consolidation

1. Introduction

External fixators are a surgical method of bone immobilization commonly applied
to allow a fracture to heal appropriately, providing stability to long bones and soft tissue
after a severe fracture. However, they can also be used to protect soft tissues after a
burn or severe injury and as a procedure to correct bone misalignment and restore limb
length, for example, in the case of dwarfism. The main advantage of external fixation is
related to the quickness and facility of its application. Still, because it involves a surgical
procedure, it needs to be performed by an orthopedic surgeon. When an external fixation
system is applied, the risk of infection at the fracture site is minimal. However, there
is some hypothesis that disease may occur at the connection between the rods and the
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skin [1]. External fixation systems establish a link in the fragmented bone, allowing load
transfer between the parts and promoting interfragmentary movements for bone healing [2].
The interfragmentary movement is the relative movement between the bone fragments,
which can appear during a patient’s weight-bearing activities. These micromovements
in the fracture site are crucial to promoting bone callus growth and the control of bone
regeneration [3]. Hence, the controlled physical activity of the patient might represent a
mechanical stimulation that contributes to bone healing. Nevertheless, it is also worth
stating that excessive mobility would disturb bone consolidation and perturb the healing
process, leading to infections and bone misalignments [4–6]. Hence, these interfragmentary
movements are crucial for the complex process of consolidating fracture [7].

Nevertheless, mechanical stimulation by patients’ weight-bearing activities is only
possible in people who can walk. In the case of bedridden patients or of those with
reduced mobility, the bone union is more complicated and may even be inhibited by
other health problems in the patients that might cause improper or impaired bone healing,
leading to a significant increase in treatment time. Hence, all biomechanical devices
that can introduce controlled micromovements at the fracture site, contributing to the
rehabilitation of patients and reducing the recovery time, are an alternative to help those
patients. According to Barcik and Epari [8], the mechanical manipulation of the local
fracture environment can significantly decrease fracture patients’ healing time, suggesting
that additional experiments should be conducted to determine the best parameters. For
instance, it is necessary to know when the interfragmentary motion needs to be stopped
to allow for consolidation and establish the best stimulation/rest ratio. As radiographic
evaluation shows some limitations, several authors are trying to develop methods of healing
assessment that can give information about the progression of the mechanical properties of
the fracture repair tissue. For example, using implants with sensing capabilities [9,10] or
instrumented implants can improve the clinical outcome of total hip replacements [11,12].
These innovative implants can be implementable, provide therapeutic benefits, and have
diagnostic capabilities.

Surgical procedures involving bone regeneration and the identification of bone consol-
idation will help define the exact moment to remove the fixation system. Right now, this
identification is assured by equipment having radiation emissions, such as densitometry
or tomography. Hence, the development of tools allowing an early identification of the
consolidation phase has applicability interest in the scope of patient recovery, particularly
for bedridden situations. This study intends to contribute to the introduction of micro-
movements and the earlier identification of the healing phase of the regenerated bone
through an electromechanical system. The presented electromechanical system may also
play an essential role in bone stretching, as it can replace the manual introduction made
by the patient, automating this process. The prototype was developed in the Orthofix®

monoplane external fixation system, but the concept can extend to another external fixation
type where linear movement might occur.

2. Materials and Methods
2.1. Experimental Models

This study considered a tibial osteotomy model in the central area of the diaphysis,
stabilized using a unilateral external fixator LRS (Limb Reconstruction System), from
Orthofix® (Munich, Germany), supplied by Orthofix GmbH, Munich, Germany, used in
a wide variety of situations. Two experimental models were implemented, one using a
synthetic tibia, and another using a single rod representing a simplified tibia geometry [3].
The models did not include soft tissue. Figure 1 illustrates the experimental model set with
simplified and anatomical features.
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Figure 1. Anatomical model/tibial simplified—external fixation.

The anatomical model used a fourth-generation Sawbones® tibia, whose geometry
has the CAD reference #3401. The model considered the mechanical characteristics of
the cortical and trabecular bone as isotropic with the properties given in Table 1. The
osteotomy fixation included the LRS unilateral external fixator application and the attached
electromechanical system. Schanz pins of 6 mm in diameter and 150 mm in length allowed
connecting the fixator to the bone. Schanz pins are produced in AISI 316L steel, and their
mechanical properties are shown in Table 1.

Table 1. Mechanical properties of cortical and trabecular bone. Mechanical properties of the exter-
nal fixator.

Designation Density [kg/m3] Young Modulus [GPa] Coefficient of Poisson

Trabecular Bone, [13] 300 0.7 0.20
Cortical Bone, [13] 1800 17.0 0.30

External fixator Orthofix® LRS
(AISI 7075 T6), [14]

2810 72.0 0.33

Schanz pin (AISI 316L), [14] 8027 200.0 0.27

As shown in Figure 1, the osteotomy was perpendicular to the mechanical axis of
the bone, and the two opposite faces were at a distance of 10 mm. The axis of the fixator
was 70 mm away from the mechanical axis of the tibia [15,16]. The closest distance from
the Schanz pin to the osteotomy was 28 mm. All values were defined according to the
indication of the medical team that supported the work.

The electromechanical system presented in Figure 1 includes a motor and an electronic
control unit, both placed in a box and coupled to the end of the mobile clamp of the fastener.
The worm screw of the elongator is connected to the motor shaft and assures the axial
movement of the worm screw. The principal components of the electromechanical system
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are presented in Figure 2. The system consists of a micromotor with the reference A-max
16, Maxon® (Sachseln, Suíça), Precious Metal Brushes CLL, 2 Watt, with a 16 mm diameter,
which guarantees the axial displacement induction if the mobile clamp is loose, but also
the blocking of the movement if required. The micromotor is controlled through a control
unit developed on the Arduíno® programming platform.
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Figure 2. Connection of the electromechanical system into the external fixator Orthofix®.

The electromechanical system was powered with a battery and electronically activated
using an Encoder MR Type M, 32 CPT, 2/3 Channel for positional control. The hardware
systems of the Arduino® board used a DRV8801 plate from Texas Instruments® (Dallas,
TX, USA), allowing the bidirectional control of a bridged DC micromotor. The board
could supply a direct current up to 1 A, tolerating peak currents that might, for a few
seconds, reach values of 2.8 A. Two conductors were needed to power the micromotor
to the DRV8801 board, which would receive a voltage of 12 V between the “VMM” e the
“GND”. The passage of electric current between the board and the micromotor was assured
through the “motor+” e “motor−“ pins.

Additionally, an encoder coupled to the micromotor obtained results in the elonga-
tor’s instant closing or opening position. The developed software integrates an interface
implemented through the Azande® program allowing the user to define some parameters,
such as motor speed and position. This program enables the selection of movement type,
choosing the linear velocity of the movement, the displacement distance, and the number
of repetitions to be performed.

Because the micromotor needed a power supply to ensure the mechanical stimulus,
there was also a mechanical resistance, and the motor current consumption was related to
the mechanical resistance. Although the resistance depends on several factors, such as the
sliding friction among several surfaces, the resistance opposition in the osteotomy mainly
contributes to the system’s mechanical resistance. Hence, it is crucial to find a relationship
between the rigidity of the osteotomy and the energy to supply to the motor that guarantees
the necessary mechanical stimulus. Moreover, after calibration, the electromechanical
system creates displacement relationships between the fixator clamp and the osteotomy.

A support platform built-in Aluminum profile of Minitec® (30 × 30) was developed
for the two models, allowing the positional adjustment of the components. This structure
intended to replicate, in a simplified way, the positioning of the lower limb in the horizontal
position, like in a bedridden patient. It included a fixed support, representing the position
of knee connection, and a free axial support, which mimicked the relationship with the
foot and guided the axial movement introduced in the assembly, as shown in Figure 3. The
osteotomy’s displacement was characterized using a Mitutoyo® analogue comparator, with
a measurement accuracy of 1 µm and located on one of the faces of Sawbones® block.
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This study used the Sawbones® blocks (Sawbones®, Malmö, Sweden, 2019) with
different densities to simulate different osteotomy rigidities. According to the trademark,
these materials allow for a good simulation of the mechanical characteristics of the re-
generated bone in the many stages of bone callus growth [17], reproducing the variation
in bone callus stiffness. The mechanical properties and the designation of the several
materials are in Table 2. This material is applied in osteotomy to carry out advancement
tests. These tests are intended to evaluate the resistance capacity of the material when
subjected to compression.

Table 2. Mechanical properties of the materials used in the osteotomy [18].

Solid Foam 10 PCF 15 PCF 20 PCF 30 PCF 40 PCF 50 PCF

Density
[g/cm3] 0.16 0.24 0.32 0.48 0.64 0.80

Tensile Strength
[MPa] 2.1 3.7 5.6 12.0 19.0 27.0

Young Modulus (traction)
[GPa] 0.086 0.173 0.284 0.592 1.0 1.469

Compressive Strength
[MPa] 2.2 4.9 8.4 18.0 31.0 48.0

Young Modulus (Comp.)
[GPa] 0.058 0.123 0.210 0.445 0.759 1.148

Coefficient of Poisson 0.3 0.3 0.3 0.3 0.3 0.3

The Sawbones® materials have rigidities (stiffness expressed in Young’s compression
Modulus) between those of fibrous tissue, immature bone, and mature bone. Table 3
compares the Sawbones stiffness values at different densities with bone characteristics
in the various phases. Several authors [19,20] used these regenerated bone properties to
represent bone regeneration in mathematical models, whereas other researchers created
numerical models based on the same information [21–23].

The primary purpose of this experimental setup was to study the relationship between
rigidity and micromovements on the osteotomy for the loading conditions defined at the
micromotor. Moreover, it was also essential to evaluate the micromotor energy consumption
(CEMotor) in forward and backward movements to determine its relationship with the
material’s stiffness at the osteotomy. Hence, three different displacements were imposed
in the osteotomy, corresponding to 1, 1.5, and 2 mm, and, to guarantee repeatability and
reproducibility, five tests for each displacement were performed. Several authors argue that
the recovery time can be reduced if osteotomy stimulation is promoted with displacements
of 1 mm/day [13,24–29].
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Table 3. Stiffness of the material used to represent osteotomy/regenerative bone [18,20].

Stiffness [MPa]

Fibrous Tissue 0.2

Sawbones® 10 58

→Stimulation

Sawbones® 15 123
Sawbones® 20 210
Sawbones® 30 445
Sawbones® 40 759

Immature Bone 1000
Sawbones® 50 1148
Mature Bone 6000
Cortical Bone 20,000

The experimental results are presented using the following notation:

{PA6 ; AN} Si vj dk (1)

where PA6 represents the simplified model’s results, and AN those of the anatomical model.
The index i represents the type of Sawbones® material, i.e., 10, 20, 30, 40, and 50, the index j
identifies the speed imposed on the micromotor (2 mm/min), and the index k is related to
the level of displacement set, i.e., 1 mm, 1.5 mm, and 2 mm.

2.2. Numerical Models

The geometrical models were created based on the experimental simplified and
anatomical models. Each one of the two model files was imported into the ADINA System
for linear and nonlinear finite element analysis (ADINA AUI version 9.3.1, ADINA R&D
Inc., Water-town, NY, USA). Figure 4 illustrates the external fixation models that replicate
the experimental conditions. Since these models were based on the stimulation concept
performed on patients with reduced mobility, the boundary conditions mimicked these
physical limitations. Hence, the main movement restrictions were in the knee area, while
the support in the foot was less restrictive, and the displacement loading condition was
assured at the mobile clamp. Figure 4 also shows the numerical boundary conditions. The
three translational degrees of freedom in the tibia condyles regions and the displacements
in the XX and ZZ axis in the foot area were restricted, allowing only axial movement.

The contact among surfaces ensured the material continuity between the faces of
the bone and the faces of the osteotomy material, between the pin surfaces and the inner
surfaces of the hole bone. Even knowing that the fixation of the clamp to the rail was
assured through a screw, the bonded contact allowed simplifying the numerical model.
Material continuity guaranteed the connection between the pins and the clamps. The
relative movement among the faces involved on the remaining contacts was included.
Figure 5 shows the several contact surfaces of the numerical models.

A mesh sensitivity study was assured, assuming that grid displacement independence
was achieved for variations in the order of 5%. Assignment of the mesh density to the
several bodies of each model was supported by equally spaced subdivisions of the bodies,
using the desired edge length dimensions between 1 mm e 3 mm. In some cases, the
subdivision of specific faces was recalculated with smaller sizes to assure a more refined
mesh in areas requiring higher precision of the results. The Delaunay free-form meshing
algorithm guaranteed discretization of the domains, generating an eight-node hexahedral
element. Additional displacement degrees of freedom were allowed by selecting the
incompatible modes option. The total number of nodes and elements of each model are
detailed in Table 4.
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Table 4. Description of the total number of elements and nodes per model.

Simplified Anatomic

Elements 272075 373624
Nodes

This study assumed isotropic linear elastic properties for all components, and their
mechanical properties were those previously presented in Table 1. The loading, representing
the electromechanical stimulus, was included by prescribing a 2 mm displacement at the
holes of the free clamp, where the elongator was connected, as indicated in Figure 4.
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3. Results
3.1. Experimental Results

Figure 6 compares the results for the several types of Sawbones® (10, 15, 20, 30, 40, 50)
blocks using the notation presented in Equation (1). The sawbones stiffness for the different
blocks is shown in the graphic with the orange line; Figure 6a presents the results related to
the simplified models, whereas Figure 6b presents those related to the anatomical model.
The two sets of results showed that, as the stiffness of the osteotomy material increased, the
displacement at the osteotomy decreased; hence, both lines show negative slopes.
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Figure 6. Displacement at the osteotomy in the two experimental models: (a) the simplified model;
(b) the anatomic model.

Figure 6 shows that if the osteotomy material with the lower stiffness was under an
imposed displacement of 2 mm through the worm screw, it received only 18% of the 2 mm.
This percentage of displacement was calculated by comparing the displacement measured
in osteotomy with the displacement imposed in the micromotor. Figure 7a compares the
osteotomy displacement for the Sawbones® 20 material when three different values of
prescribed displacement were defined at the worm screw of both fixator models. The
behavior of both models was quite similar, and the differences were mainly related to the
geometrical dimensions of the two models. Moreover, these results confirmed that, as
the osteotomy’s stiffness increased, the discharge of the force between the bone and the
fixator was different, as described by several works [30–32]. Table 5 contains the values of
Figure 7a and the prescribed displacement ratio measured at the osteotomy.

The tests carried out on the simplified and anatomical models allowed recording the
energy consumption of the micromotor (CEMotor) in the variations of displacement versus
stiffness at the osteotomy. Figure 7b shows the values of the CEMotor variable for the
simplified and anatomy models to assure a prescribed displacement of 2 mm at the worm
screw and using a 2 mm/min velocity.

Figure 7b allows the quantification of the CEMotor variable for several osteotomy
stiffnesses. In the initial phase of healing, particularly, there was a higher increase in the
stiffness and, simultaneously, in the value of the CEMotor variable. After this initial phase,
the CEMotor variable showed a stabilization with slight variations.
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Figure 7. (a) Displacement at the osteotomy in the two experimental models using the Sawbones®

20 material at the osteotomy; (b) variation of CEMotor variable with the stiffness of the material at
the osteotomy.

Table 5. Ratio of the prescribed displacements at the osteotomy for the Sawbones® 20 material.

Prescribed [mm]
PA6 Model AN Model

Osteotomy [mm] Ratio [%] Osteotomy [mm] Ratio [%]

2 0.33 17% 0.37 19%
1.5 0.19 13% 0.21 14%
1 0.1 10% 0.16 16%

3.2. Numerical Results

The simulations of the two models completed all time steps. The displacements over
each axes directions and its magnitude were analyzed. The first analysis was based on the
displacement distribution in the osteotomy when 2 mm of prescribed displacement were
defined at the worm screw. Since the y-axis is parallel to the solicitation direction and the
fixator axes, the average y displacements at the osteotomy face firstly loaded are presented
in Table 6. The average values were evaluated considering all nodes of the osteotomy face
of both models. In addition, the maximum displacement value on the same face is also
presented. It is possible to observe that as the stiffness of the osteotomy material increased,
the displacement decreased, with both models showing similar behavior.

Table 6. Average and maximum Y-displacement in the face of the osteotomy firstly loaded.

Osteotomy
Material

PA6 Model [mm] AN Model [mm]

Average Maximum Average Maximum

S10 0.35 0.49 0.55 0.59
S15 0.30 0.43 0.48 0.52
S20 0.29 0.38 0.42 0.46
S30 0.20 0.29 0.30 0.34
S40 0.12 0.18 0.14 0.17
S50 0.11 0.16 0.11 0.14

For both models, Figures 8 and 9 show the distribution of y-displacement at the
interface wherein the contact appeared firstly. The distribution pattern varied with the
material’s stiffness. The homogeneity of the displacements increased as the osteotomy
stiffness increased, suggesting that stimulation would be more challenging to implement
as bone regeneration occurred. The image on the right-hand side of both figures shows the
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view in the XZ plane, wherein it is possible to identify the Schanz pins, the cross section
of the external fixator, and the two osteotomy geometries. In Figure 8, the osteotomy
is represented by a block of Sawbones® material, while in Figure 9, it is defined by the
anatomic tibia geometry. The maximum displacement magnitude value appeared in the
same region for all the materials applied at the osteotomy. It was in the lateral zone closest
to the fixator, as shown in Figure 10.
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Figure 8. Distribution of Y displacement in the osteotomy surface of the PA6 model for a prescribed
displacement of 2 mm and the following Sawbones® materials: (a) S10; (b) S15; (c) S20; (d) S30;
(e) S40; (f) S50.
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Figure 10. Localization of the maximum displacement magnitude value at the osteotomy on both
models: (a) PA6; (b) AN.

The numerical simulation allowed understanding the biomechanical behavior of the as-
sembly and, mainly, the mechanical behavior of the movable clamp. Hence, Figures 11 and 12
show the distribution of contact forces between the mobile clamp’s surface and the external
fixator’s rail, indicating that they did not have a uniform distribution along the axis. This
fact confirmed that transversal movements occurred in assembly, as suggested by some
authors [16,20,33].
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The maximum values of the contact forces in all situations presented in
Figures 11 and 12 are compiled in Table 7. In the PA6 model, the maximum value of
contact forces between the movable clamp and the fixator rail for the Sawbones® 10 ma-
terial was 0.671 N. Still, when the Sawbones® 40 material represented the osteotomy, the
contact force increased to 0.961 N. The increase in the contact strength was proportional to
the growth of stiffness, around 41%. In the anatomical model, the contact forces showed a
similar distribution. However, when the stiffness of the osteotomy changed from the least
to the most rigid material, the maximum value of contact force increased by about 78%.

Table 7. Maximum contact forces at the contact interface between the mobile clamp and the rail of
the external fixator.

Osteotomy
Material

Maximum Contact Force [N]

PA6 Model AN Model

S10 0.671 0.388
S15 0.735 0.437
S20 0.798 0.482
S30 0.886 0.570
S40 0.961 0.684
S50 0.945 0.691

The pattern distribution of contact forces presented in Figures 11 and 12 is typical
of a relative movement mainly in the loading direction (axial direction) and tends to
move through the directions orthogonal to the loading, leading flexion, and torsion ef-
fects. Although these effects could be observed in both models, they were smaller in the
anatomical model.
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The maximum von Mises stresses occurred on the pins of the mobile clamp, and
their distribution was very similar for all osteotomy materials. Figure 13 shows the stress
distribution observed when using the Sawbones® 20 material in the osteotomy.
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It should be noted that, although the maximum effective stress had different values in
the models, it always occurred in the pin closest to the osteotomy and the mobile clamp, as
suggested by other authors [14].

4. Discussion

The main purpose of this study was to contribute to the development of a technology
able to promote callus stimulus and simultaneously predict bone fracture healing outcomes.
The prototype was developed in the Orthofix® monoplane external fixation system, but the
concept can be extended to another external fixation type where linear movement might
occur. This technology is based on callus stiffness measurements that effectively diagnose
and predict fracture healing outcomes [9,34–37]. Previous researchers have performed
this attempt using strain gages on orthopedic plates [9,38,39], instrumented external fix-
ators [34,40,41], and plates instrumented with telemetric sensors [37,42]; however, these
techniques are, respectively, limited by the potential development of infection, limited
hardware application, and impossibility to be used to promote direct callus stimulus.

This study demonstrated the possibility of establishing a relationship between energy
consumption, CEMotor, by the electromechanical system used to perform callus stimulus,
and the degree of osteotomy consolidation; this conclusion supports the idea of using
the CEMotor variable to assess the state of callus growth. The electromechanical system
can monitor the healing of regenerated bone or implement callus stimulation strategies
of prescribing displacements to estimate callus consolidation and predict the removal of
the external fixation system without additional diagnostic tests. Several studies that help
support these conclusions have shown that the percentual mechanical load transferred
to the osteotomy changes during the healing process [16,38,43] and that during acute
healing (<30 days), the osteotomies progress to the proper union will exhibit a progressive
improvement of mechanical strength. In contrast, this progression of increased osteotomy
stiffness is arrested and/or delayed in those trending towards nonunion [36]. Moreover, in
the biomechanical quantification of callus stiffness using indirect measurements, the load is
shared between the fixation device and the bone [41]. Hence, if the fixator stiffness remains
constant, the biomechanical quality of the callus formation is responsible for the measured
data variation. The results of Figure 7b show that the stiffness of osteotomy was the main
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reason for the CEMotor variable variation, which was high in the initial phase of “healing”
and stabilized afterward.

Another point worth considering is related to callus stimulus. According to indications
of the medical team, the introduction of loads with a view to micromovements can be
performed between fibrous tissue and bone with immature stiffness [19,20,22]. Several
researchers [24,44,45] suggest that bone callus stimulation of 1 mm (1000 µm) per day is
beneficial to accelerate the healing process. The results of Table 4 show that the variation of
the prescribed displacement at the elongator screw did not change the ratio of displacements
for the same type of osteotomy material. Nevertheless, the osteotomy displacement was
greater for Sawbones® materials with less rigidity. Still, when using materials with higher
stiffness, the displacement in osteotomy was relatively reduced, which means that as the
bone callus consolidated, the prescription of a constant 1 mm (1000 µm) displacement led
to an increasingly small displacement of the osteotomy material.

Moreover, in Figure 6 is possible to identify the differences among the prescribed
displacements and the displacements measured at the osteotomy, which can be used to
estimate the percental load transferred to the callus [13]. The results showed that, because
of the fastener distance, the friction, and the increase of the components in the assembly, it
was impossible to reach the imposed displacement’s totality at the osteotomy. Furthermore,
the results of Figure 6b indicate that in realistic situations, the prescription of stimulus
displacements in the order of 1 mm (1000 µm) or 1.5 mm (1500 µm) can be interesting in
the healing phase. Still, a higher stimulus displacement should be prescribed for bones
with highly immature/mature stiffness. On the other hand, because the absolute value
of the slope of the trendline related to the results of the prescribed displacement of 2 mm
was higher than that of the 1.5 mm displacement, the anatomical model appeared to be
more sensitive to variations of the osteotomy stiffness for higher prescribed values than for
smaller ones. The results in Figure 6a show that the simplified model had a stiffer behavior
than the anatomical model, especially for lower osteotomy stiffness values and smaller
prescribed displacements. Nevertheless, the results of both models seemed to get closer
for osteotomy stiffness values higher than 0.445 GPa and prescribed displacements in the
order of 2 mm.

The predicted osteotomy displacements presented in Table 6 corroborated the ex-
perimental behavior, i.e., osteotomy displacements were more significant for Sawbones
materials with less rigidity. The comparison between the experimental and the numerical
results is presented in Table 8, wherein the results of Table 6 are also used to evaluate the
relative error column.

Table 8. Comparison of experimental and numerical results of the osteotomy displacement.

Osteotomy
Material

PA6 Model [mm] AN Model [mm]

Experimental Error [%]
|(Exp-Num)/Exp| Experimental Error [%]

|(Exp-Num)/Exp|

S10 0.36 3 0.49 13
S15 0.34 12 0.44 10
S20 0.33 13 0.37 12
S30 0.23 11 0.26 18
S40 0.12 3 0.12 17
S50 0.11 0.0 0.10 12

These results showed a good agreement, mainly in the simplified model (PA6), with
a relative error lower than 13%; in the anatomical model, the relative error was higher,
though it never reached 20%. Figures 8 and 9 show that the distribution pattern of the
displacements at the osteotomy varied with the material’s stiffness and the distribution
patterns of the two models were quite similar. Nevertheless, the anatomical models
showed higher osteotomy compression values than the simplified tibia model, which can
be corroborated by the differences of contact forces between the movable clamp and the
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fixator rail in the two models, as presented in Table 7. The maximum von Mises stresses
occurred on the pins of the mobile clamp, and their distribution was very similar for all
osteotomy materials.

One of the limitations of this work is related to the lack of in vivo validation of the
developed technology. In fact, despite the excellent quality of these results, the use of this
technology for bone elongation and transport, wherein it is possible to evaluate all variables
discretely, will help to understand the effect not only of several anatomic parameters on the
CEMotor variable but also of other noncontrollable factors such as the variability of bone
microstructure and mechanobiology among patients. Nevertheless, because this technology
is mainly to monitor the CEMotor variable during the healing process in each patient and
not among patients, it would be expected that these noncontrollable factors remain almost
constant during the healing phase and that the biomechanical quality of the callus formation
would be responsible for the measured data variation. Another limitation is related to
some numerical modeling simplifications, such as the assumption of isotropic material
instead of using bone orthotropic or transversely isotropic material [23]. Nevertheless, this
assumption will mainly affect the level and distribution of strain and stress through the
bone and, in a smaller scale, the global displacement and stiffness behavior.

According to the information from the medical team, after performing osteotomy
(surgical) and, roughly, after 10 days from surgery, the patient should start daily stretching
of approximately 1 mm (1000 µm)/day. Thus, the patient must daily introduce a rotation
movement in the elongator using a suitable wrench to promote the movement of the mobile
clamp. Typically, this practice is performed in discrete steps four times a day (0.25 mm
each) by the patient. In this way, implementing the electromechanical system in a more
compact version can automate this procedure, guaranteeing a daily stretching in multiple
discrete steps of smaller amplitude, which can be programmed and performed daily.

5. Conclusions

From this study, it is possible to build up the following consideration: to assure a
proper mechanical stimulation of the osteotomy callus is important to account for the
mechanical behavior of the external fixator used to do the stimulation procedure. One
way of assuring this knowledge is to build experimental or numerical models that capture
all mechanical components’ main issues. In the case of the external fixator (Orthofix®

LRS, Munich, Germany) used in this study, it was possible to show that the displacement
in the osteotomy was always lower than the displacement prescribed in the elongator.
However, it was possible to estimate a relationship that allows prescribed displacement
adjustments to verify the intended displacement at the osteotomy. Moreover, the results
of the electromechanical system developed may lead to methodologies of mechanical
stimulation for regenerating bone, which will play a relevant role in the context of bedridden
individuals with mobility limitations. Furthermore, a methodology based on this type
of electromechanical system is expected to lead to a quick recovery, as it will allow more
uniform healing.
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