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Abstract: Based on evolutionary considerations, it was hypothesized that humans have 
been shaped to easily spot snakes in visually cluttered scenes that might otherwise hide 
camouflaged snakes. This hypothesis was tested in a visual search experiment in which I 
assessed automatic attention capture to evolutionarily-relevant distractor stimuli (snakes), 
in comparison with another animal which is also feared but where this fear has a disputed 
evolutionary origin (spiders), and neutral stimuli (mushrooms). Sixty participants were 
engaged in a task that involved the detection of a target (a bird) among pictures of fruits. 
Unexpectedly, on some trials, a snake, a spider, or a mushroom replaced one of the fruits. 
The question of interest was whether the distracting stimuli slowed the reaction times for 
finding the target (the bird) to different degrees. Perceptual load of the task was 
manipulated by increments in the set size (6 or 12 items) on different trials. The findings 
showed that snake stimuli were processed preferentially, particularly under conditions 
where attentional resources were depleted, which reinforced the role of this evolutionarily-
relevant stimulus in accessing the visual system (Isbell, 2009).  
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Introduction 

Fear is a functional emotion that is activated in response to threat and serves to 
motivate the organism to cope with potentially deadly outcomes, promoting escape or 
avoidance (see Öhman and Mineka, 2001). Ancient sensory mechanisms, with an origin in 
organisms with primitive brains, evolved for rapid detection of what could turn out to be 
life-threatening events (e.g., encountering predators) (for a review, see Öhman, 2008). Such 
mechanisms developed in brains with restricted capacity for advanced cognitive elaboration 
in order to promote early defense recruitment and, therefore, provide an obvious survival 
benefit. 
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Previous studies appear to support the claim that fear stimuli are given special 
priority by the attention system both in children (e.g., LoBue and DeLoache, 2008), adult 
humans (Öhman, Flykt, and Esteves, 2001), and in lab-reared, snake-naïve monkeys 
(Shibasaki and Kawai, 2009). Danger or threat is a central parameter in these studies, and 
snakes and spiders constitute such stimuli, being among the most feared stimuli by humans 
according to epidemiological data (e.g., Agras, Sylvester, and Oliveau, 1969), and 
frequently represented in clinical animal phobias (APA, 2000). As the first modern 
predators of crown-group placental mammals (Isbell, 2006), snakes are regarded as the 
founding category of predatory fears. However, this does not seem to apply to spiders, for 
which the evolutionary argument is weaker. Emphasizing an important difference between 
snakes and spiders is encouraged by recent developments in evolutionary theory giving 
snakes an important role in the evolution of predatory fear in primates (Isbell, 2006). 
According to Snake Detection Theory (SDT) (Isbell, 2009), the necessity to detect 
potentially deadly snakes in visually demanding perceptual situations, in which they are 
camouflaged in foliage or vegetation, had a strong influence on the evolution of the 
outstanding visual abilities of the higher primates. Such an astute ability for visual 
detection, however, is less likely for spiders, which have provided considerably less of a 
predatory threat than snakes. Furthermore, few spiders produce venoms that are seriously 
damaging to primates, and they are dangerous primarily when they are on the body, when 
touch is a more important detection modality than vision. These considerations suggest that 
snakes and spiders share important features (e.g., both are animals capable of rapid 
unpredictable movements, and are both often feared by humans), yet appear to differ in the 
likelihood of an evolutionary association with predation on primates. Thus, a demonstration 
of more efficient detection of snakes than of spiders in visual scenes would involve a 
specificity that invites an evolutionary interpretation (see Isbell, 2009). 

However, previous studies have typically collapsed snakes and spiders into one fear 
category (“fear-relevant stimulus”) (e.g., Öhman et al., 2001). To my knowledge, only a 
few studies have investigated differences between the attentional processing of snakes and 
spiders (Lipp and Waters, 2007; Soares, Esteves, Lundqvist, and Öhman, 2009). However, 
in these studies, the main goal was to investigate the effects of prior fear (snake and spider 
fear) in the attentional processing of the feared stimulus (e.g., snakes, for snake fearful 
individuals), compared to the fear-relevant but non-feared stimulus (e.g., spiders, for snake 
fearful participants) and the control stimuli. In the present study, the goal was to examine 
specific factors derived from the SDT (Isbell, 2009), which provides a theoretical rationale 
for expecting a stronger attentional effect produced by snakes than by spiders.  

Even fewer studies have investigated whether the processing advantage for fear 
stimuli with a high ecological relevance (snakes) is dependent on perceptual load. Although 
a previous study from our lab has examined this factor (Soares et al., 2009), in that study 
we were interested in top-down controlled searches given our interest in specific fears. 
However, detecting cryptic snakes when attention is focused on information unrelated to 
snakes (e.g., foraging for food), and in a highly perceptually complex environment, is vital 
to ensure rapid and effective defensive responses. In threatening situations in which rapid 
recruitment of defensive mechanisms is required, it would not be appropriate to pursue a 
deep cognitive analysis prior to the activation of defenses. Evidence to date strongly 
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supports the notion that emotional stimuli are quickly detected by a subcortical circuit that 
is centered in the amygdala (LeDoux, 1996; Öhman, 2005). However, controversy 
surrounds the automaticity of the response to emotional stimuli and the role of attention in 
such processing, with some authors suggesting that privileged responses to emotional 
stimuli are independent of attention (see Dolan and Vuilleumier, 2003, for a review), while 
others provide evidence showing that this processing advantage to emotional stimuli 
dissipates with increased attention (reviewed by Pessoa and Ungerleider, 2004).  

The aim of the present study was to experimentally test the evolutionary 
considerations regarding the role of snakes in visual attention in conditions where 
perceptual resources are depleted. Following the modified visual search task introduced by 
Miltner, Krieschel, Hecht, Trippe, and Weiss (2004), I asked participants to detect a neutral 
target stimulus (a picture of a bird) presented among a background of neutral stimuli 
(pictures of fruits). On some critical trials, one of the background fruit pictures was 
replaced with either a snake, a spider, or a mushroom. The perceptual load was 
manipulated by varying the set size of the visual display: small (6 items) and large (12 
items) displays (cf. Lavie and Cox, 1997). I hypothesized an attentional priority to snakes, 
compared to the other fear-related stimuli (i.e., spiders), particularly in cluttered 
environments (e.g., among many distractor stimuli).  

Materials and Methods 

Participants 
The participants included 60 women who were enrolled in several classes of 

graduate course programs at the University of Aveiro, Portugal. Their ages ranged from 18 
to 38 years (M = 23.63, SD = 6.05). The recruitment strategy was to include participants 
with matched levels of fear of snakes and spiders and, in addition, participants with low to 
medium levels of both fears. This strategy resulted in roughly equivalent mean scores on 
the SNAQ (M = 13.18, SD = 2.60) and the SPQ (M = 11.35, SD = 3.04) questionnaires 
(Klorman, Weerts, Hastings, Melamed, and Lang, 1974). 
 
Equipment and Materials 

 The task was programmed using the software Macromedia Directory MX and was 
performed on a CRT 21-in. (53.34 cm) monitor, with a resolution of 1600 x 1200 pixels, 
and with a visible area of 19.7’’ (50.04 cm). Reaction time (RT) data were collected by key 
presses via a standard computer keyboard, by using a key labeled “Target Absent” to be 
pressed when the participants did not perceive the target in the display, and a key labeled 
“Target Present” when the participants perceived the target in the display.  

The pictures included in the task comprised 18 exemplars of each stimulus category 
(birds, fruits, spiders, snakes, and mushrooms) displaying the objects in their ecological 
environment in the centre of the picture. These were the same pictures as used by Soares et 
al. (2009), with bird pictures taken from the internet. Although it is not possible to 
completely control for all possible low-level visual confounds, the use of complex pictures 
represents a main advantage in this type of study as it confers more ecological validity. 
Moreover, extensive spatial frequency analyses were run to compare the different stimulus 
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categories, with no significant effects being obtained.  
 
Procedure 
 Psychometric instruments. Fear of snakes and spiders was assessed by 30 and 31 
true or false statements included in the SNAQ and SPQ, respectively. Each questionnaire 
was translated into Portuguese from those developed by Klorman et al. (1974), by using the 
forward and backward translation procedures. Tests with 633 undergraduate students 
showed that our Portuguese versions of both the SNAQ (Cronbach’s α = .91) and SPQ 
(Cronbach’s α = .92) are reliable (unpublished data).   
 Visual display. The visual displays included either 6 or 12 pictures, arranged along 
an imaginary circle around the fixation mark. Pictures were arranged in this way to control 
for the distance that the eyes had to move in the different set size conditions. The radius of 
the circle was the same for the two conditions, thus holding the demands of the main task 
constant across the different set sizes. The size of the whole display on the screen was 26.0 
x 25.0 cm, and the size of each picture on the screen was 3.5 x 2.3 cm. The distance from 
the fixation point to the center of each one of the pictures was 11.5 cm. Participants were 
seated at a distance of 1 m from the computer screen.  

Each visual display was announced by the appearance of a fixation mark (1 x 1 cm), 
presented at the center of the computer screen for 1000 ms. This was followed by the 
presentation of a visual display until the participant’s response. Further, a 2000 ms inter-
trial interval occurred before the reappearance of the fixation mark and the consequent 
initiation of a new trial.  
 Experimental conditions. Stimulus displays were constructed using five different 
categories of color pictures of snakes, spiders, mushrooms, fruits, and birds. The visual 
displays included pictures of fruits (background), and, amongst the background stimuli of 
half the images, a neutral target picture (a bird). Participants were presented with 192 trials, 
comprising 96 target present and 96 target absent trials, randomly assigned to each 
participant. In 36 target present and 36 target absent trials, an additional distractor picture 
(snake, spider, mushroom) was added, with equal probability of appearance for each of 
these distractor categories. In the remaining 60 of the target present and target absent trials, 
no distractor stimulus was presented. Both target and distractor positions were 
counterbalanced across trials with equal probability of appearing at one of six possible 
positions. Therefore, I included two within-participants factors, the type of distractor 
(snake, spider, mushroom, no distractor), and the set size of the displays (6 or 12 items). 
 Instructions. Informed consent was obtained before testing. Participants were then 
asked to find a position in which they could comfortably reach the two keys (labeled 
“Target Present” and “Target Absent”) with their right and left index fingers. Written 
instructions for the visual search task were self-paced and emphasized that the participant’s 
task was to determine, as quickly and accurately as possible, whether a target stimulus 
(bird) was present or absent among distractors (fruits). Participants were also informed that, 
in some trials, an additional discrepant picture (i.e., a distractor), of a snake, spider or 
mushroom, would be presented among the background stimuli (fruits). The instructions 
emphasized that although distractors could appear independently of the presence or absence 
of the target picture, the task was to decide upon the presence or absence of the target 
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picture (bird). 
Participants were taken through a series of 15 practice trials, which included 9 

displays with, and 6 displays without, a target stimulus. The configurations of the displays 
used in the practice trials were not included in the main task. 

Design and statistical analysis. Only correct answers were included in the RT 
analysis, and outliers which were more than 3 standard deviations (SD) from the mean 
were replaced by the individual’s mean ± 3 SD. Reaction time data were log-transformed in 
order to meet the requirements of normally distributed data, although values were back-
transformed to RTs (in ms) in the text and in the figures to facilitate interpretation of the 
data. I adopted the .05 significance level throughout all analyses. 

The designs were two factorial incorporating two within-participants (2 x 4) factors, 
the type of distractor (snake, spider, mushroom, no distractor) and the set size (6, 12). 
Analyses of Variance (ANOVAs) were run separately for correct RTs and for response 
accuracy and, within each set of data (RTs and accuracy), I ran independent analyses for 
trials with and without a target picture. 

Results 

Target-Present Trials 
Reaction time data. The analysis showed that, overall, the presence of a distractor 

picture in the display (irrespective of the category) resulted in longer RTs and, therefore, in 
a larger interference with the main task, compared with the absence of a distractor stimulus 
(F (3,174) = 13.41, p < .0001, ηp

2 = .19). However, this effect was not dependent on the 
evolutionary relevance of the distractor stimulus, since the results showed that the presence 
of a snake distractor (M = 1167 ms) did not seem to significantly slow performance more 
than distractor pictures of spiders (M = 1152 ms) and mushrooms (M = 1135 ms). 
Importantly though, and as predicted, the results showed that for the larger displays (12 
pictures) there were longer RTs for snakes (M = 1309 ms) compared with spider distractors 
(M = 1226 ms; p < .05), as evidenced by the interaction between set size and type of 
distractor (F (3, 174) = 4.98, p < .01, ηp

2 = .08). The difference between spider and 
mushroom distractors (M = 1238 ms) did not reach statistical significance. For the smaller 
displays, however, post hoc Tukey tests did not reveal significant differences between 
displays with snake (M = 1041 ms), spider (M = 1083 ms), or mushroom distractors (M = 
1041 ms). However, spider distractors significantly differed from displays with no 
distractor stimuli (p < .0001), with the snake and mushroom conditions not reaching 
statistical significance (p < .06; see Figure 1).  
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Figure 1. Mean Reaction Times (RTs) in milliseconds (ms) to locate the presence or 
absence of a discrepant target (bird) in different distractor conditions (snake, spider, 
mushroom, and no distractor) 

 
Note: The upper panel refers to the target-present conditions, as a function of the set size (6, 12). The lower 
panel represents the same variables but in the target-absent conditions. *** indicates p < 0.001, * indicates    
p < 0.05. 
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The results also showed that the overall reaction times were longer for the larger set 
size (with 12 pictures), compared with the smaller set size (with 6 pictures) (1236 ms vs. 
1036 ms, respectively; F (1, 58) = 186.78, p < .0001, ηp

2 = .76).  
Accuracy data. The response accuracy data showed lower accuracy for displays 

with fear pictures independently of their evolutionary relevance (M = 92%, M = 94%, for 
snakes and spiders, respectively), compared with displays with a neutral distractor (M = 
95%) and displays without a distractor picture (M = 96%) (F (3, 174) = 3.42, p < .05, ηp

2 = 
.06), although a post hoc test Tukey did not reveal significant differences between these 
conditions. 
 
Target-Absent Trials 

Reaction time data. The results from the target-absent trials replicated the previous 
findings, showing a larger interference of distractors with the central search task, compared 
to trials that did not include such stimuli (F (3, 174) = 12.12, p < .0001, ηp

2 = .17; p < .05, 
according to Tukey test). Also corroborating the results from the target-present analysis, 
post hoc Tukey tests did not reveal significant differences in interference latencies between 
fear-relevant distractor pictures (snakes and spiders) and neutral ones (mushrooms). 
However, and also consistent with the previous results and our expectations, the 
interference from the different distractors varied as function of the set size, with snakes 
producing a larger interference (longer RTs) in the larger displays (M = 2178 ms) 
compared with displays with no distractor picture (M = 2064 ms; Tukey HSDs, p < .05). In 
the smaller displays, on the other hand, the interference effects, as revealed by longer RTs, 
showed that mushroom distractors (M = 1591 ms) produced the larger interference with the 
decision that no target picture was present in the display, compared to snake (M = 1512 ms; 
Tukey HSDs, p < .05), spider (M = 1513 ms; Tukey HSDs, p <. 05), and no distractor 
conditions (M = 1451 ms; Tukey HSDs, p < .0001) (F (3, 174) = 4.48, p < .01, ηp

2 = .07; 
see Figure 1). 

The results from the target-absent analysis also showed a main effect of the set size, 
with overall longer RTs for the larger displays (2131 ms vs. 1516 ms, respectively; F (1, 
58) = 1066.20, p < .0001, ηp

2 = .95).  
Accuracy data. The response accuracy data showed lower accuracy for displays 

with a spider distractor (M = 98%), compared to displays with a snake (M = 99%) or a 
mushroom distractor (M = 99%), and displays without a distractor picture (M = 99%) (F (3, 
174) = 2.95, p < .05, ηp

2 = .05; with a post hoc Tukey test not revealing any significant 
differences).  

Discussion 

I investigated if the presence of unexpected snake stimuli, in comparison with 
spider and mushroom distractor stimuli, interfered with a primary visual search task that 
involved the detection of a neutral target (bird) presented among a background of neutral 
pictures (fruits), and whether perceptual load modulated this interference. In general, the 
results showed overall interference effects (larger RTs and lower accuracy) by the 
distractor conditions under both perceptual load manipulations (small vs. large displays), 
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compared to the baseline (i.e., displays without a distractor picture). Importantly, however, 
this effect was modulated by the perceptual load involved in the main search task and by 
the type of trials (target-present or target-absent trials). In the higher perceptual load 
conditions (larger set size) of the target-present trials, the presence of a snake distractor 
interfered with the main search task to a greater extent than did spider distractors and, to 
some extent, than mushroom distractors (p < .07). In the high-load condition of the target-
absent analysis, this effect was also found but it was diluted, since snake distractors were 
related to greater interference effects, compared to the no-distractor condition, but did not 
differ from the spider and mushroom distractor conditions. In the low-load conditions 
(smaller set size), on the other hand, the somewhat privileged attentional capture by snake 
distractors was eliminated and results were shown to be quite inconsistent. In target-present 
trials, spider distractors produced the larger interference effects, compared with no-
distractor displays, whereas in target-absent trials mushrooms produced the larger 
interference effects. Thus, part of the interaction between the type of distractor and 
perceptual load could be attributed to the more efficient detection of spiders and 
mushrooms in the low-load conditions of the target-present and target-present trials, 
respectively. Because of their more invariant shapes, spiders and mushrooms may in fact be 
more easily recognized under low-load conditions. Snakes, on the other hand, can be more 
or less straightly elongated, sinusoidally shaped, or coiled, which might delay confident 
recognition yet be sufficient as tags to capture attention when presented under high load 
conditions.  
 The ability to remain focused on a current task is relevant for appropriate cognitive 
functioning and, therefore, it is important to focus attention on critical elements of the 
environment while ignoring distracting information (e.g., Wolfe, 1998). Although previous 
studies on the role of perceptual load on the processing of distractor stimuli have suggested 
that the level of load in the processing of relevant stimuli critically determines interference 
from distractors (see Lavie, 1995, for a review), my findings showed that, overall, 
distractor stimuli always interfered with the search, independently of the level of load 
involved in the task. Importantly, there was an evident specificity in the type of distractor 
stimuli interfering with the task under the higher load conditions, with this effect being 
attributed to the most evolutionarily-relevant stimulus, snakes (in comparison with the 
other fear stimulus, spiders, and the neutral stimulus, mushrooms). This distracting effect of 
snakes under the high perceptual load condition seems to contradict the expected effects of 
perceptual load on distractor processing (cf. Lavie, 2005). Under conditions of high 
perceptual load such as those involved in the current task (large displays – 12 items), even 
though perceptual capacities were presumably exhausted, the processing of distractors was 
not inhibited for snakes, in contrast with interference from spiders and mushrooms that 
seemed to be dampened. Thus, spiders, compared to snakes, appear to be more dependent 
on attention, with the effects of interference with the main task being eliminated to a 
greater extent when these stimuli were deprived of attentional resources (i.e., in the higher-
load conditions).  
 Based on the findings showing that the dependency of the load in distractor 
processing varies with the type of information to be processed, I suggest that distractor 
stimuli holding an evolutionary relevance (snakes) are processed regardless of the 
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perceptual load involved in the relevant task, whereas distractor fear stimuli lacking such 
importance (spiders) are only processed when the perceptual resources are not exhausted. 
Therefore, snake attentional capture, unlike spider capture, seems to be immune to 
conditions known to impede detection performance in visual search settings, such as 
elevated perceptual load (Lavie, 1995, 2005), assessed by using many background 
distractors (Duncan and Humphreys, 1989; Wolfe, 1998). In line with these findings are 
previous studies showing that snake stimuli require few attentional resources in order to be 
fully processed, with evidence suggesting that snakes are more resistant to extinction than 
neutral conditioned stimuli (Öhman and Soares, 1993), even when the snake stimuli are 
blocked from conscious perception (Öhman and Soares, 1994). However, these previous 
studies have lumped snakes and spiders together under the “fear-relevant” category, with 
possible dissociations between the two stimuli remaining unseen.  

In summary, my results showed that the preferential detection of fear stimuli 
(snakes and spiders) under top-down controlled attention (Soares et al., 2009) is also 
observed in a stimulus-driven bottom-up mode. Thus, snakes and spiders seemed to capture 
attention not only when actively sought for, but also more automatically when occurring 
outside the spotlight of attention (bottom-up attention control). Although fear stimuli 
entering an attentional spotlight searching for something else can become immediate 
targets of defensive maneuvers, a snake in the path of an unsuspecting foot, for example, 
provides a more acute danger, and its quick, automatic detection would carry considerable 
adaptive value. More importantly, the findings also grant novel indications that detection of 
snakes appears somewhat less dependent on the perceptual load; snakes are specifically 
tuned to capture attention. My set of results suggests that it seems particularly important to 
detect snakes when the scene is perceptually complex and allows good camouflage for 
lurking snakes. These findings also extend previous results (Soares et al., 2009) suggesting 
that, even when the task places higher perceptual demands, snake distractor stimuli seem to 
be processed to a greater extent than the control conditions. In turn, this suggests that snake 
processing is fairly automatic, in the sense that it does not depend on general capacity 
limits. Snakes are undoubtedly more deadly threats than spiders and, consistent with an 
evolutionary origin, snakes remain a significant survival threat, with venomous snakes 
accounting for up to 94,000 human deaths worldwide per year (Kasturiratne et al., 2008). 
Furthermore, snakes remain the most frequent source of intense fear reported by humans 
(Agras et al., 1969), and fear of snakes is regularly observed among the old world primates 
(e.g., King, 1997; Mineka, Keir, and Price, 1980). Thus, fast and accurate detection of 
snakes amid a complex environment is clearly advantageous in terms of survival. This 
strongly reinforces the role of this evolutionarily-relevant stimulus in accessing the visual 
system, which is then consistent with the Snake Detection Theory proposed by Lynne Isbell 
(2006, 2009). The present study provides new insight into the study of fear and attention 
and suggests that snake stimuli may represent a valuable tool for studying such 
relationships. 
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