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Abstract. Positron annihilation lifetime spectroscopy was used to study the effect of water 
uptake on the free volume of a commercial epoxy exposed to atmospheres with relative 
humidity ranging from 30.5% to 95.8%. The absorption process was also analyzed by 
gravimetric measurements. When exposed to humidity the mean hole volume remains constant 
and the number of holes not occupied by water molecules decrease with increasing of both the 
exposure time and the relative humidity as indicated by the constancy of τ3 and the decrease of 
I3. 

1. Introduction 

Epoxy systems are polymers heavily cross-linked in which the cross-linking is derived from reactions 
of the epoxy group and thus it is a rigid and strong material. They have in general excellent adhesion 
to many surfaces, superior thermal resistance, a relative low dielectric constant, and ease of processing 
[1]. Owing to their superior mechanical and dielectric properties, coupled with excellent thermal 
stability and great chemical resistance, epoxy systems has been widely used in many applications as 
aircraft components, insulating layers and encapsulants in microelectronics industry, aerospace 
structural composites and many more [1, 2]. A major drawback of some epoxy systems, like the one 
used in this work, is their hygroscopic nature which results in the absorption of few percent moisture 
by weight under ordinary environmental conditions. The absorbed water plasticize the epoxy system, 
induces differential swelling stresses and generally degrades the physical properties of the epoxy. 
Some of the effects are a decrease of the glass-transition temperature (Tg), i.e. a decreased thermal 
stability [3]; a decrease in yield strength, a change of the yield/deformation mechanisms, or both [4]; 
the creation of micro-cracks or crazes [3, 5]; and chain scission through hydrolysis reactions [5]. Due 
to these factors it is important to control or inhibit moisture absorption to prevent these undesirable 
effects. Several studies have been undertaken to investigate the process of moisture absorption in 
epoxies, but the exact mechanisms that govern humidity-induced water uptake and diffusion of water 
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molecules within the material are still unclear. It is generally believed that moisture absorption is 
closely related to the free volume properties of the epoxy [2]. Positron Annihilation Lifetime 
Spectroscopy (PALS) is a well-established and very sensitive technique for probing sub-nanometer-
sized local free volumes between molecular chains in polymeric structures. In the present work, we 
use PALS to investigate the effect of water absorption process on the free volume in one commercial 
epoxy submitted different relative humidity environments. 

2. Experimental 

The samples used in this study were made from one commercial epoxy resin known as SR1500 and 
one hardener known as SD2505 both produced by Sicomin Composites Company (France). The 
formulation bases of the epoxy resin SR1500 are bisphenol A and bisphenol F and this epoxy resin has 
been modified to be crystallization free and have low toxicity. The epoxy resin when mixed with the 
hardener, upon polymerization, forms the epoxy. The samples used were prepared from one 
continuous layer of approximately 2 mm of thickness.  
The drying of the epoxy samples was performed by placing the samples in a sealed housing containing 
silica gel at 50ºC for several months (typically for 2 months). 
The different relative humidity (RH) atmospheres were controlled between 0% and 95.8% and the 
temperature was constant at 50ºC except during the positron measurements. To maintain a precisely 
controlled RH atmosphere over long periods of time, saturated salt solutions were used. The 
atmosphere above these solutions had RH of 30.5% (MgCl2/H2O), 74.4% (NaCl/H2O) and 95.8% 
(K2SO4/H2O), respectively. 
To determine the humidity-induced mass uptake in the epoxy samples submitted to different RH 
environments a precision balance (Perkin-Elmer microbalance, accuracy 0.01 mg) setup was used. 
The positron lifetime measurements were carried out at room temperature (24 ºC) using a conventional 
fast-fast coincidence PALS setup (featuring Pilot-U scintillators and XP2020 photomultipliers) with a 
time resolution of 260 ps (FWHM). For each experiment, the positron 22Na source (ca. ~30µCi, closed 
between Kapton foils) was sandwiched by two identical samples. The lifetime spectra had a total 
number of ca. 2x106 integral counts and were evaluated using the LT (version 9) code [6]. 

3. Results and discussion  
It is generally accepted that the behavior of water absorption in the epoxy is well described by Fick’s 
second law [7], 
                   (1)

                                    
where M is the water absorption at time t, Mmax is the equilibrium water absorption, L the sample 
thickness and D is the diffusion coefficient. For values of M/Mmax lower than 0.5, equation 1 takes the 
simplest form, 
               (2) 
 
The gravimetric results obtained for the relative mass uptake of the samples as a function of the square 
root of the exposure time for the 3 different RH environments, 30.5%, 74.4% and 95.8%, respectively, 
are shown in figure 1. The material shows increasing mass uptake from RH=30.5% to 95.8%. Higher 
RH environment values (74.4 and 95.8%) correspond to higher values of the equilibrium water 
absorption, achieving ca. 1.5% and 3% of relative mass percentage. For the samples submitted to 
higher RH environments, the water uptake is linearly proportional to �� at the initial stage; for the 
lowest RH value it is difficult to see clearly this proportionality due to the small amount of uptaken 
water (less than 0.5%) for the 30.5% RH ambient. It can be also observed that the beginning of the 
equilibrium water absorption is achieved at approximately the same humidity exposure time (��~20 
h1/2) and this is an indication that the diffusion coefficient, D, is the same for all samples. 
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Figure 1. Relative mass uptake as a function of the square 
root of expos
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relative variation of the uptake water mass seems to exist and this behavior maybe suggest that the 
water absorption is determined mainly by the free volume fraction of the material, but we have only 3 
different RH atmospheres and more data are needed to confirm this sentence.  
The constant value of τ3 is 1.76±0.02 ns and, according to equation 3, corresponds to “spherical” holes 
with an average radius of 2.63±0.02 Å, which is comparable to the kinetic diameter of a water 
molecule, 3 Å. The constancy in τ3 and the behaviour of I3 with the RH atmosphere reveal that each 
occupied hole accommodates only one water molecule and in the occupied hole there is no more Ps 
formation. 
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Figure 2. o-Ps lifetime and intensity, τ3 and I3, as a 
function of the square root of exposure time of initially dry 
samples in different humidity atmospheres. 

4. Conclusion  
The positron annihilation lifetime technique has been applied to study water absorption in a 
commercial epoxy exposed to atmospheres of controlled relative humidity. The epoxy shows 
increasing mass uptake from 30.5% to 95.8%, with a maximum mass uptake of approximately 3% at 
RH of 95.8%. PAL measurements indicate a decrease in intensity I3, which is strongly dependent on 
the atmosphere exposure time and on the relative humidity. The value of τ3 is constant and 
independent of RH and the exposure time revealing that in the hole occupied with water there is no Ps 
formation. 
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