
Received June 12, 2016, accepted July 12, 2016, date of publication July 27, 2016, date of current version November 8, 2016.

Digital Object Identifier 10.1109/ACCESS.2016.2594265

A Survey on Programmable LDPC Decoders
JOAO ANDRADE1, (Student Member, IEEE), GABRIEL FALCAO1, (Senior Member, IEEE),
VITOR SILVA1, AND LEONEL SOUSA2, (Senior Member, IEEE)
1Department of Electrical and Computer Engineering, Instituto de Telecomunicações, University of Coimbra, Pólo II, 3030-290 Coimbra, Portugal
2Instituto de Engenharia de Sistemas e Computadores–Investigação e Desenvolvimento, Instituto Superior Técnico, Universidade de Lisboa, 1000-029 Lisboa,
Portugal

Corresponding author: G. Falcao (gff@co.it.pt)

This work was supported in part by the National Funds through Fundação para a Ciência e a Tecnologia (FCT), via the doctoral scholarship
under Grant SFRH/BD/78238/2011, in part by the Instituto de Telecomunicações under Grant UID/EEA/50008/2013, and in part by
INESC-ID under Grant UID/CEC/50021/2013.

ABSTRACT Low-density parity-check (LDPC) block codes are popular forward error correction schemes
due to their capacity-approaching characteristics. However, the realization of LDPC decoders that meet
both low latency and high throughput is not a trivial challenge. Usually, this has been solved with the
ASIC and FPGA technology that enables meeting the decoder design constraints. But the rise of parallel
architectures, such as graphics processing units, and the scaling of CPU streaming extensions has shown
that multicore and many-core technology can provide a flexible alternative to the development of dedicated
LDPC decoders for the compute-intensive prototyping phase of the design of new codes. Under this light, this
paper surveys the most relevant publications made in the past decade to programmable LDPC decoders. It
looks at the advantages and disadvantages of parallel architectures and data-parallel programming models,
and assesses how the design space exploration is pursued regarding key characteristics of the underlying
code and decoding algorithm features. This paper concludes with a set of open problems in the field of
communication systems on parallel programmable and reconfigurable architectures.

INDEX TERMS LDPC codes, LDPC decoders, parallel computing, CPU, GPU, reconfigurable computing,
high-level synthesis.

I. INTRODUCTION
Known for more than fifty years [1], only recently low-
density parity-check (LDPC) codes have been exploited under
real-life error-correcting code (ECC) scenarios. They were
left unused for more than thirty years, mainly due to the
lack of computational power that was required to prac-
tically demonstrate their capacity-approaching characteris-
tics [2]. Since the 1990s, they have become one of the most
widely adopted coding schemes, along with Turbo codes,
for operation in forward error correcting (FEC) systems in
multiple communication standards: IEEE 802.3an, 802.11n,
802.15, 802.16, ETSI 2nd Gen. DVB, 3GPP LTE (4G) and
ITU-T G.9960 and G.709 to name a few.

The vast majority of LDPC decoders found in the
literature target dedicated very large scale integra-
tion (VLSI) decoders [3], either using application-specific
integrated circuit (ASIC) technology or designing for
reconfigurable computing devices (field-programmable gate
arrays (FPGAs)) [4], [5]. The development of dedicated
decoders for targeting an ASIC at certain technology node or

an (FPGA) device incurs in high non-recurring engineering
(NRE) costs and is usually an error-prone and protracted
endeavor performed at the register-transfer level (RTL). In its
turn, this entails that simulation and prototyping of the imple-
mented solution be executed and verified over an alternative
computing platform. Often, the simulation platform is not an
obvious choice, since it performs only a simulation role in
the whole development project. However, with the computing
paradigm shift towards multi-core technology, and generally
speaking, with the necessity to exploit parallelism in the com-
putation to make the most out of the computational resources
at hand, most processors include wide registers for vectorized
operations, through streaming instructions, multithreading
capabilities, and in the graphics processing unit (GPU) case,
a massively multithreading environment with the vast major-
ity of logic devoted to arithmetic units that is capable of
executing at the TFLOPs range [6].

In the meantime, the ability to use GPUs as general-
purpose processors has lead to an active field of
research [7]–[35], [35]–[75], designated as general-purpose

6704
2169-3536 
 2016 IEEE. Translations and content mining are permitted for academic research only.

Personal use is also permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

VOLUME 4, 2016



J. Andrade et al.: Survey on Programmable LDPC Decoders

GPU (GPGPU) [76]–[78], which has seen several works
concerning the use of GPU devices programmed to operate
as LDPC decoders. While we can only assume that cen-
tral processing units (CPUs) are the first choice for code
study and bit error rate (BER) performance analysis through
Monte Carlo simulation, the majority of LDPC decoders
found in the literature are not based on CPU architectures.
With the odd exception, CPUs are mostly the underlying
platform conveying proof of LDPC theory and concepts,
but the decoder implementation is not the study focus,
notwithstanding the fact that the advent of cross-platform
parallel programming models and the growth in the register
width of single instruction multiple data (SIMD)-vector
units, has given CPUs a high level of computational
power [75].

Several references found in the literature deal with LDPC
decoders based on streaming architectures, namely, GPUs
and other accelerators such as ARM mobile system on a
chip (SoCs) [79], Intel single-chip cloud computer (SCC),
the Cell B.E. [35] or experimental stream processors—the
latter examples are less prevalent than GPU-based LDPC
decoders. One of the reasons for GPUs popularity is the
compromise between effort put into the development of a
parallel algorithm that conveniently exploits the GPU sin-
gle instruction, multiple thread (SIMT)-architecture, and the
corresponding attained performance. First, the development
time between testing and prototyping, and the final optimized
decoder ready for deployment is not as high and does not
incur in too high NRE costs, as hardware dedicated solu-
tions do. Secondly, this flexibility usually means diminished
returns in the performance of the decoding solution, due
to the fixed instruction set, memory hierarchy and under-
lying architecture that are not custom-tailored to the devel-
oped decoder. Furthermore, the introduction of data paral-
lel programming models such as Compute Unified Device
Architecture (CUDA) [6] and open computing language
(OpenCL) [80], together with the unification of the graphics
pipeline into a single programmable processor, meant that
high-level productivity scientific languages such as C/C++,
Fortran, Python and Ruby could be utilized, instead of pro-
tracted graphics languages. The drawback is that only with
sufficient knowledge of the underlying GPU architecture will
the developed LDPC decoders perform with high decoding
throughputs.

But while GPUs, due to their raw computational power
(peaking in the TFLOPs range) and performance-to-watt-
ratios orders of magnitude above CPUs, began to dip
into the high-performance computing (HPC) market [81],
and to some extent on the datacenter market too, field-
programmable gate arrays (FPGAs) were evolving too.
Starting from a primitive ‘‘glue logic’’ status [82], they
have given rise to the very active field of reconfigurable
computing [83]–[86]. They bring more throughput per silicon
area [85] and less energy is consumed in the process than
using conventional processors [84]. Furthermore, due to the
chip area of FPGAs, they usually accompany Moore’s law

technology nodes, while improvements on dedicated solu-
tions, more often than not, fail to upgrade to faster, more
efficient and smaller nodes in the same time-frame. Thus,
the utilization of FPGAs as custom accelerators, usually des-
ignated as reconfigurable computing, addresses some of the
issues surrounding the development of ASIC technology, but
also set opened a whole new level of challenges purported
by the availability of gate-level optimizations. Of particular
interest to the work developed in this field, is the use of
high-level synthesis (HLS)models, which extend C/C++ and
other programming languages [87]–[89], in a somewhat simi-
lar way that compute unified device architecture (CUDA) and
OpenCL did for GPUs, thereby avoiding the specific knowl-
edge for developing VHDL and Verilog RTL-descriptions to
generate circuits.

II. THE PROBLEM
ECC in FEC systems were deprived of the capacity-
approaching capabilities of LDPC codes for over thirty
years before sufficient computational power was avail-
able to enable their utilization. However, typical design
approaches involve using VLSI technology, such as
ASIC and FPGA development, which, thus far, require
RTL-based development to reach within high decoding
throughputs and low latencies.

A. MOTIVATION
The continuing trend in semiconductor manufacturing, dic-
tated by Moore’s Law, has placed tremendous challenges
to processor manufacturers as the end of Dennard’s scal-
ing [90] meant performance scaling could no longer be
guaranteed with increasing of the clock frequency of opera-
tion. Hence, as technology progressed into the multicore and
manycore realm, with massively multithreading processing
enabling computational powers in the range of the GFLOPs
and TFLOPs, LDPC decoders have been shown to achieve
dozens to hundreds of Mbit/s. However, due to the fixed
instruction set of the underlying CPU and GPU architec-
tures, the considerations taken by the LDPC designers can
be substantially different in nature than those considered
when developing custom-made hardware for LDPC decoders.
In particular, designers are faced with the hard challenge
of mapping the LDPC decoding algorithms onto a limited
set of arithmetic operations, offered by a fixed instruction
set architecture (ISA), also constrained by the nature of
the memory hierarchy of the processor and the computing
system as a whole. Moreover, native support for certain
type of arithmetic types may not be supported, as well as
thoughtful considerations are due to how data is moved in
the system as a whole, since distributed to shared memory
addressing regions may exist, lying on- or off-chip. Only the
correct manipulation and definition of suitable arithmetic-to-
memory ratios and patterns allows for themaximization of the
delivered bandwidth—in other words, the resources offered
by the programmable processors should be explored wisely
so as to fully exploit their computational capabilities.

VOLUME 4, 2016 6705



J. Andrade et al.: Survey on Programmable LDPC Decoders

B. NOTATION
The notation utilized throughout the paper is listed below, and
is employed to systematize the description of the decoding
solutions presented in the surveyed works in the following
Sections of this paper. The basic understanding of the decod-
ing problem can be perceived from the illustration of a binary
LDPC code in matrix and graph representation in Fig. 1.

FIGURE 1. Parity-check matrix and Tanner graph example for the binary
case. The parity-check matrix H defines the LDPC code and is the
adjacency matrix to the associated bipartite graph designated as Tanner
graph. The majority of the decoding algorithms are message-passing: an
a-priori likelihood is given to each VN; VNs send qnm messages to their
adjacent CNs; CN update rmn messages and send them back to their
adjacent VNs; in their turn VNs produce new estimates on the qnm
messages and also a new a-posteriori estimage on the VN state Qn.

• H is the parity-check matrix of the LDPC code;
• check node (CN) corresponds to a type of node in the
Tanner graph and to a parity-check equation;

• variable node (VN) corresponds to the other type of
node in the Tanner graph and to a symbol in the code-
word;

• an edge exists in the Tanner graph connecting
CNm to VNn whenever there is a non-null element hmn
in the parity-check matrix H;

• pn a-priori likelihood estimate for VNn;
• qnm message sent from VNn to CNm;
• rmn message sent from CNm to VNn;
• Qn a-posteriori likelihood estimate for VNn.

C. EVALUATION
The characteristics and complexity of the LDPC decoding
algorithms are surveyed for codes defined over binary and
non-binary fields. The O(·) numerical complexity presented
does not capture the totality of transposing the LDPC decod-
ing algorithm into an efficient LDPC decoder operating on
either programmable or reconfigurable architectures. We can
enumerate a list of themost important challenges to overcome
in the design of efficient and high-performance LDPC decod-
ing solutions as follows.
i) the need to transform node connections imposed by

the Tanner graph into a suitable memory layout and
efficient addressing problem, considering that in most
cases, irregular access patterns will be imposed by the
Tanner graph structure;

ii) the weighing of suitable ratios of arithmetic-to-
memory-instructions which maximize the efficiency

of the LDPC decoding for the underlying computer
architectures;

iii) the selected scheduling variants of the algorithm—
two-phased message passing (TPMP) or Turbo decod-
ing message passing (TDMP)—influence on the afore-
mentioned items;

iv) parallelism has to be explored at different levels of
complexity depending on the architecture being pro-
grammed;

v) the complex exploitation of the memory hierarchy of
multi-core systems, or the complex problem of defin-
ing a suitable memory hierarchy for reconfigurable
LDPC decoders.

D. FIGURES OF MERIT
The different solutions must be evaluated according to certain
key figures of merit. Due to limited information that can be
collected from the surveying of the literature, namely lack of
profiling results, we limit our assessment mostly to decod-
ing throughput and latency at a fixed number of decoding
iterations—usually under the canonical level of 10, when
applying the TPMP and 5 when applying TDMP decoding
schedules. Another metric which aims at normalizing the
results across LDPC decoders programmed in different GPU
architectures is the throughput of decoding normalized per
core per frequency (TDNC).

III. DECODING ON PROGRAMMABLE ARCHITECTURES
In this Section, the survey is focused on programmable archi-
tectures for LDPC decoder solutions. The most prevalent
LDPC decoders found are GPU-based, then CPU-based, and
finally, those based on streaming accelerators. We focus on
key characteristics of the LDPC decoders, namely 1) task-
and data-parallelism, 2) data representation, 3) LDPC code
type and dimensions, 4) the indexing method of the messages
circulating in the Tanner graph; and figures of merit of the
LDPC decoder performance with respect to computational
power, i.e., 5) decoding latency, 6) decoding throughput.
Finally, the programmable platform is also identified. The
following subsections are devoted to discussing the method-
ologies developed for defining efficient programmable LDPC
decoders in light of their characteristics and design space
constraints.
In addition, the reader is referred to Table 1 in Appendix A,

which contains a tabulation of the surveyed LDPC decoders,
and that can be found as a supplementary file to this
manuscript.

A. PROGRAMMABLE LDPC DECODER MAPPING
Due to the programmable nature of the underlying computer
architectures, a prototype isomorphic architecture [91] that is
a direct mapping of the Tanner graph to CN units, VN units
and the Tanner graph interconnection network is not truly
possible [92]. Instead a programming description is required
considering that the fixed underlying architecture and instruc-
tion set will demand the sharing of computational resources.

6706 VOLUME 4, 2016



J. Andrade et al.: Survey on Programmable LDPC Decoders

Only clever usage of the instruction set functionality and
exploitation of the different regions within the memory hier-
archy is guaranteed to optimize the LDPC decoders for per-
formance and efficiency of computation [34]. While the term
occupancy usually refers to GPU computing, the concept
also extends to CPU architectures. Considering the limited
but fixed number of logic arithmetic and memory resources
available in programmable architectures, only if occupancy of
the resources is high, will the performance of LDPC decoders
peak. However, occupancy is a double-edged sword in the
sense that it does not take into account over-utilization of
resources leading to bottlenecks or deadlocks, that neverthe-
less keep occupancy high. Moreover, it is difficult to assess
how efficiently a hardware resource is being utilized, based
solely on the information provided by what authors have
made available in their LDPC decoders on programmable
architectures’ publications. Thus, we are left with figures
of merit contextualized for the LDPC decoding problem,
throughput and latency.

B. TANNER GRAPH INDEXING SCHEMES
The LDPC decoder structure plays an important role on how
efficiently the Tanner graph connections between nodes can
be mapped. While regular codes might seem at first simpler
than irregular ones, in practice they are not. Since themajority
of LDPC codes also keeps simplicity of encoding and sim-
plicity of Tanner graph indexing in mind, standardized codes
make use of systematic coding schemes, exploring repeat-
accumulate (RA) parity sub-matrices, mainly for encoding
purposes, and structured irregularity in the remaining por-
tion of the parity-check matrix concerning the connectivity
of information nodes (INs) [93]. As discussed in the lit-
erature [1], each edge defines two messages, traversing in
opposite directions, as seen in Fig. 1. When mapping the
Tanner graph connections to a programmable processor, we
must take into account that the messages have to be laid out in
memory and, thus, their location index must be known with
respect to both the CN and VN that define the edge. The
memory index is usually not the same for messages traversing
the same edge in different directions.

Since the LDPC code parity-check matrix is also the adja-
cency matrix of the Tanner graph, any given LDPC code
can be stored through matrix storage methods. Due to its
sparsity, sparse matrix storage methods have lower memory
footprints and can be employed for any type of code, and
in fact they are. Regular codes, typically those constructed
through progressive edge growth (PG) methods and made
available in the Encyclopedia of Sparse Graph Codes [94]
(Mackay codes), are stored most of the times in compressed
row storage (CRS)- and compressed column storage (CCS)-
like formats. This method of indexing the Tanner graph is
shown in Fig. 2. It is readily seen that out of the four memory
accesses to qnm and rmn messages, two can effectively be con-
tiguous, a featuremost of the surveyed decoders implement—
this exposes high bandwidth due to coalesced data accesses
on GPUs and high cache hit rates on CPUs. The scenario

FIGURE 2. Tanner graph indexing based on sparse matrix storage.

FIGURE 3. LDPC-IRA Tanner graph indexing based on sparse matrix
storage.

depicted in Fig. 2 defines reading accesses to be contigu-
ous and writing accesses as non-contiguous [32]. Thus CNs
require indexes relative to their adjacent VNs, and read a
memory location offset from a lookup-table (LUT) (CNidx),
and VNs, likewise, read a memory offset from the other
LUT (VNidx). Essentially, VNidx corresponds to themessages
positions in memory for a reshaped column-wise parity-
check matrix, and the CNidx to its row-wise reshaped. As a
consequence, the number of elements required to store the
connections of a binary LDPC code Tanner graph is

TGsparse = 2×
M∑
m=0

N∑
n=0

hm,n. (1)

This indexing method can also be employed for
standardized codes [51], though the memory footprint of
the Tanner graph mapping can be reduced by orders of
magnitude [40], [95]. In the particular case of LDPC irreg-
ular Repeat-Accumulate (LDPC-IRA) codes, such as those
employed in the 2nd generation DVB (DVB 2) standards,
shown in Fig. 3, the LDPC code Tanner graph is systemati-
cally constructed in a way that permits indexing using a barrel
shifter approach [95]. For instance, the number of elements
required to index the DVB 2 Tanner graph codes is

TGDVB 2 = 2× dc×rf , rf � N , (2)

with rf a code construction regularity parameter [95], [96].
This allows an on-the-fly computation of the memory loca-
tions to where each message reads and writes. In particular,
qnm messages will read and write to a contiguously increasing
base offset, but writes will be shifted, and rmn messages are
read from an indexed base offset and written shifted while
maintaining the offset. Hence, an address and a shift LUT,
with a much lower size than the CCS and CRS sparse matrix
storage (2) can be employed.

Likewise, quasi-cyclic LDPC (QC-LDPC) codes can also
be indexed by small-sized lookup tables (LUTs), as shown

VOLUME 4, 2016 6707



J. Andrade et al.: Survey on Programmable LDPC Decoders

FIGURE 4. QC-LDPC Tanner graph indexing based on sparse matrix
storage.

in Fig. 4, by performing an on-the-fly computation of the
memory location to where a message is sent after compu-
tation. This method in particular [40], defines contiguous
reading of messages and indexed writing to memory, with a
footprint that is independent of the LDPC code dimensions.
In a way, the code protograph is sparsely indexed using the
first method, though extra computation of indexes is required.
The memory footprint of this method is

TGQC = 2×3×

(
M∑
m=0

N∑
n=0

fm,n 6= ∞

)
+Mf+Nf ,

0 ≤ m < Mf , 0 ≤ n < Nf , (3)

with Mf and Nf being the dimensions of the protograph
matrix that generates the QC-LDPC code. The great advan-
tage to this indexing scheme is that, regardless of the final
codeword length which depends on the expansion factor zf ,
the indexing LUTs size remain the same [40].

The memory footprint is not the most pressing issue in
programmable architectures, as the memory addressing space
size of modern CPU and GPU systems can be larger than
the Tanner graph indexing memory footprint (1) (2) (3).
However, the indexing method becomes a source for mem-
ory contention if for every computed message a memory
index location requires loading, reducing the overall band-
width to memory—it contributes to poorer cache hit ratios
on CPUs [75] and adds further pressure to GPU memory
engines [30]. The best performing LDPC decoders are those
exploring structure sparse storage that exploit the Tanner
graph structure, as opposed to a generic sparse matrix stor-
age method. For instance, LDPC decoders implementing the
former methodology achieve much higher throughputs than
those exploring the latter [30].

Several parameters, other than the Tanner graph index-
ing, influence the decoding throughput attained, however, a
clear trend is observed in this case. For all thread-parallelism
techniques employed, only the thread-per-codeword (TpC)
strategy overcomes the overhead in the Tanner graph indexing
scheme [50], since the imposed overhead is negligible with
regards to the amount of data moved in the GPU architecture.
The remaining decoders see throughputs of a few to a dozen
Mbit/s. Only structured indexing schemes consistently see
decoding throughputs in the hundreds of Mbit/s.

C. PROGRAMMING MODELS
A prevalence of C/C++-based families can be observed
throughout the surveyed LDPC decoders, adding to the

popularity language under an HPC challenge such as the one
concerning the development of LDPC decoders churning out
very high decoding throughputs.

In particular, parallelism in CPU-based decoders has
been exploited using the open multi-processing (OPenMP)
programming model in a number of decoders [15], [16],
[47], [54], [55]. Therein, the strategy to extract paral-
lelism is based on the automatic parallelization of com-
putation loops wherein the CN and the VN processing
are defined. This is achieved with appropriate OPenMP
directives. A minority of LDPC decoders replace the func-
tionality provided by the acOPenMP loop parallelization
directives with explicit thread-partitioning using POSIX
threads [37]. Despite the usage of a lower-level appli-
cation programming interface (API) to perform multi-
threading, the opportunity to improve on the decod-
ing throughput is not fully captured by this approach.
However, POSIX threads are the basis of the Cell
B.E. software development kit (SDK), which is a C-extended
programming model [8], [35]. Other authors choose to put
upon the OpenCL cross-platform capabilities to use on CPU
technology [33], [34], [36] making minor adjustments from
the GPU-optimized decoder onto a computing substrate
with lower parallel capabilities. Similar to the aforemen-
tioned OPenMP and POSIX threads strategies, the delivered
throughput is limited by a number of factors, the most impor-
tant of which is the OpenCL compiler ability to pack data
elements within wide registers over which single instruction,
multiple data (SIMD) computation is performed [34].
Under this light, explicit utilization of SIMD instruc-

tions is pursued on both x86 and ARM processors. The
first have since evolved from their assembly-accessible 128-
bit MMX registers [25], [32], [61] to the richer exten-
sions provided by streaming SIMD extensions (SSE) and
advanced vector extensions (AVX) at 128-, 256- and 512-
bit register widths, though LDPC decoders in the literature
exploit only 256-bit AVX registers [75]. As the instruction-
set functionality of the SIMD extensions became richer,
so did the abstraction concerning its use. While MMX
required explicit assembly coding, streaming simd exten-
sion (SSE) and AVX support high-level C/C++ intrinsics.
On the ARM processors, the NEON extensions provide
64- and 128-bit registers, exploited through a set of C/C++
intrinsics [37]. SIMD computation also faces another chal-
lenge. The indexing of the Tanner graph connections renders
data element packing and unpacking unavoidable [75]. This
means that underMMX register, a non-negligible overhead of
datamanagement housekeeping tasks offsets the performance
gains enjoyed from SIMD computation. On the other hand,
only the increased functionality and width of the SIMD units
can guarantee higher performances, on a par with GPUs, due
to the increase levels of data-parallelism purported by the data
packing for SIMD execution [75].

On the GPU LDPC decoders side, apart from the sem-
inal approaches utilizing streaming models [97] based on
graphics programming languages [23]–[25] and early stream-

6708 VOLUME 4, 2016



J. Andrade et al.: Survey on Programmable LDPC Decoders

ing computing models [97], the majority of LDPC decoders
makes use of CUDA and a minority of OpenCL. While in
certain aspects both programming models are alike, with
many language traits and constructs referring to the same
hardware features of the GPU processor, only with differ-
ent designations and handles [80], [98], CUDA popularity
overwhelms that of OpenCL. On Nvidia platforms the reason
is clear, as OpenCL is mapped on top of CUDA, with the
performance of the former only reaching that of the latter
at best [99]. Also, despite the similar ways to explore arith-
metic instructions, data types and memory addressing spaces
of both models, OpenCL is a cross-platform programming
model, rendering superfluous management instructions and
verbose coding requirements not really necessarywhen cross-
platform is not truly intended. Nevertheless, the surveyed
decoders see no clear performance gap between the use of
CUDA or OpenCL LDPC. CUDA-based LDPC decoders
range from the inception of CUDA in 2007 to the latest stable
version. However, majority of the LDPC decoders based on
it explore only a limited subset of its features. In particular,
more advanced features such as kernel self-calling and recon-
figuring the GPU execution grid without the host CPU inter-
vention (dynamic parallelism) [98] and advanced memory
synchronization and fencing operations available to thewhole
thread execution grid are not explored in the surveyed works,
though they address limitations identified in some of the
works [17]–[19], [59], [74]. With this regard, the OpenCL
specification suffers from a lower evolution pace, with fea-
tures sensitive to GPU programming having to be ratified for
inclusion in a cross-platform model also supporting CPUs
and FPGAs. Thus, OpenCL-based decoders are somewhat
more limited to some features that CUDA addresses [33],
[37], [49], [64]. Notwithstanding, as such features are not
explored, there is no evident loss in choosing one instead of
the other.

With more or less control of the underlying hardware, all
of utilized programming models allow the development of
parallel LDPC decoding algorithms. Parallelism is naturally
exposed in these [100], [101], but other parallel features
pertain only to a certain algorithm expression, in its turn
tightly coupled to an underlying architecture. This concerns
parallelism at the task-level and at the data-level that are
discussed next.

D. THREAD-LEVEL PARALLELISM
Several parallelism strategies have been proposed on multi-
core CPU and many-core GPU architectures that divide
LDPC decoding tasks between concurrent execution threads.
These strategies entail constraints to other important design
features of the LDPC decoders, especially with regards to
data-parallelism and also to the decoding schedule of nodes,
which are on the following Subsection.

1) TAXONOMY
Due to the rich set of parameters explored by researchers
in the development of programmable LDPC decoders, an

appropriate taxonomy for LDPC decoding on programmable
architectures will be introduced herein. First regarding
parallelism, whereupon the nodes functionality is translated
onto task- and data-parallelism at certain granularity levels
among physical or logical cores or between execution threads.
To keep a low simplicity of taxonomy, we define it in terms of
thread-parallelism, which is also in accord with the majority
of the surveyed programmable LDPC decoders that take in
thread-based programs, a convenient feature as it will not
require a set of terms for multi-core architectures and another
for many-core ones.

2) PpE DECODING
pixel-per-edge (PpE) is the oldest parallelism strategy dating
from the time where GPGPUwas at its inception, with graph-
ics languages being the only way available to perform non-
graphical computation on GPU processors. Back then, data
elements had to bemapped onto ‘‘graphical data elements’’ in
order to be processed by the pixel shaders, thereof stemming
the designation of this thread-parallelism strategy.

While results seemed highly promising at a time when the
only prospective way to achieve high-throughput would be
to develop a dedicated hardware accelerator, they were still
lacking the performance seen for the LDPC decoders under
CUDA and OpenCL, once the graphics pipeline had been
unified onto a single processor [6]. Approaches such as those
proposed by Falcao et al. allowed decoding throughputs of
dozens to hundreds ofMbit/s [23]–[25], combining a graphics
language approach with Caravela streams [97], as illustrated
in Fig. 5.

FIGURE 5. Pixel-per-Edge LDPC decoder thread-parallelism.

3) TpE DECODING
thread-per-edge (TpE) corresponds to the strategy with the
finest granularity, which brings upon the LDPC decoder
designer a granularity tradeoff. For the one, if consecutive
threads deal with the update ofmessages belonging to consec-
utive nodes in the Tanner graph, then there is a high exposure
of both spatial and temporal data locality, as Fig. 6 illustrates.
For the other, most GPU-based LDPC decoders that exploit
this granularity have been developed for pre-Fermi or Fermi
architectures that do not have a caching mechanism available
to threads for computation [6]—it exists only for off-chip

VOLUME 4, 2016 6709



J. Andrade et al.: Survey on Programmable LDPC Decoders

FIGURE 6. Thread-per-Edge LDPC decoder thread-parallelism approach.

memory transaction. For instance, locality is automatically
explored by the x86 cache system in heavily SIMD-based
LDPC decoders [75], leading to over 90% cache hit rates
that maximize the LDPC decoder bandwidth. Alas, this is
not the case in the many-core-based decoders utilizing this
strategy. Under the methodology proposed by Chang et al.
throughputs peak lower than ∼2 Mbit/s for moderate length
codes (816, 4000 and 8000 bits) [17]–[19]. This approach,
requires the spawning of the highest number of threads, com-
pared to the remaining approaches. For a regular LDPC code,
the VN processing sees N×dv threads spawned, and
likewise the CN processing spawns M×dc threads, imply-
ing the thread-parallelism granularity level putting the most
pressure through the generation of thousands of threads,
even though computation within each thread is not as heavy
as coarser thread-parallelism strategies, which are discussed
next.

4) TpN DECODING
thread-per-node (TPN) is the most prevalent strategy, with
a thread being spawned per node in the LDPC code
Tanner graph.While this strategy quickly depletes the number
of concurrent threads that can be active simultaneously on
many-core GPUs for moderate to long block lengths, this
pressure is not as high as in the TpE strategy case for short to
moderate codes. One of the reason behind this strategy being
by far themost popular strategy is related to its elegance. Each
node in the Tanner graph can be assigned to an execution
thread in the absence of a de facto isomorphic transforma-
tion [3] into a functional unit (FU).
The first LDPC decoder observed to utilize this thread-

granularity (see Fig. 7) was proposed by Falcao et al. for

FIGURE 7. Thread-per-Node LDPC decoder thread-parallelism approach.

short to moderate length Mackay codes [94] (rate 1/2 1024,
4000 and 4896 bits) reaching up to ∼1.63 Mbit/s. The
decoder forcibly defined a 2-D texture mapping of the log-
likelihood ratios (LLRs)messages that contributes to the poor
performance yielded [31]. Under a more general-purpose
computing memory mapping, the authors were able to elevate
the decoding throughputs to∼87Mbit/s for the normal frame
DVB-S2 codes [30], and to ∼40 Mbit/s for rate 1/2 Mackay
codes (1024 to 20000 bits) [32]. The difference in the attained
performance shows how data-parallelism design decisions
and Tanner graph indexing methods are pivotal to elevating
the decoding throughputs attained by GPU-based LDPC
decoders. This is also verified by the work by Grönroos et al.,
elevating their initial decoding throughput assessment
(<1.80 Mbit/s) [38] to higher levels for higher data-
parallelism levels (157∼192 Mbit/s). The limits to the scal-
ability of this approach were tested by Zaldivar et al. for a
TpN-variant executed by a 3-dimensional thread grid [51],
for various dc and dv configurations. Chiu et al. report
high latency times 0.2∼1.8 s for a short length (672 bits)
802.15.3c code [62]. Wang et al. propose a TpN decoder
for 802.11n and 802.16e codes reaching 40∼52 Mbit/s [65].
However, other TpN approaches achieve only limited decod-
ing throughputs [41], [54], [55], without a clear pattern to
what lead to such low levels of throughput performance—
especially in light of the employed highly efficient
Tanner graph indexing methods for cyclic and quasi-cyclic
codes [39], [40].

While LDPC codes working as the ECC basis of FEC
in communication systems imply an application agnostic
operation, i.e., all bits being equally protected, they also
perform well under more applied applications such as video
coding [59]. On their application to video coding benchmarks
(Hall Monitor, Foreman, Coastguard and Soccer), excellent
frame reconstruction is obtained, though for offline coding,
i.e. it is not applied to real-time decoding [52], [53], [59].
Other applications of LDPC decoding worth mentioning is
their use for quantum-key distribution (QKD) reconcilia-
tion [102]. Mink et al. were able to reach high decoding
throughputs, though for this purpose a lower number of iter-
ations is required [74].

Finally, non-binary LDPC decoders that implement this
strategy have also been proposed [13], [64]. Beerman et al.
define a 3-dimensional grid of computation to prop-
erly exploit parallelism exposed at the binary extension
field (GF(2m) dimension and by the scheduling of oper-
ations within the processing of the Tanner graph nodes.
Under the proposed strategy, equivalent decoding through-
put (∼2 Mbit/s) is obtained for GF(2m) spanning the binary
field (GF(2)) to GF(28).

5) BpC DECODING
block-per-codeword (BpC) is a strategy available to GPU
execution as it is based on the concept of a thread block [6],
a CUDA concept that finds its equivalent as workgroup

6710 VOLUME 4, 2016



J. Andrade et al.: Survey on Programmable LDPC Decoders

FIGURE 8. Block-per-Codeword LDPC decoder thread-parallelism.

in OpenCL [80]. The rationale stems from the execution grid
composed of threads and divided onto blocks that permit a
suitable exploitation of the memory hierarchy in many-core
GPU architectures, as depicted in Fig. 8. Threads within the
same block are allowed synchronization and fencing mecha-
nisms for tighter cooperative computation as they can access
the shared memory space, an addressing block physically
unavailable to inter-block communication. A strategy based
on this granularity fails short of utilizing all the GPU stream
multiprocessors (SMs), as the number of blocks required is
independent of the code length. Hence, this strategy is usu-
ally accompanied by data-parallelism levels that spawn more
blocks to decode more codewords in parallel1 throughout the
remaining SMs of the architecture [7], [42], [69]. Notwith-
standing, there is a constraint on how many threads can com-
pose a block, that is influenced not only by the capabilities
of the underlying hardware—high-end GPUs can execute
blocks with a higher thread count than low-end ones—but
also by how the developed decoding algorithm consumes reg-
isters and shared memory [6]. For QC-LDPC codes, it might
make sense to define zf threads per block as it matches the
protograph expansion factor. However, this might be too low
of a value, leading to poor resource utilization, or too high,
preventing this strategy to be accommodated onto lower-end
GPUs [69]. Equivalent tradeoffs can be seen for LDPC irreg-
ular repeat-accumulate (LDPC-IRA), random LDPC codes
and non-binary regular ones [103]. This thread-granularity
level is also the de facto strategy able to efficiently imple-
ment turbo decoding message passing (TDMP) and TPMP
decoding schedules, as opposed to the remaining strategies
which are usually limited to the TPMP, as explained next.

First proposed by Abburi [7], this strategy has been
applied to worldwide interoperability for microwave access
(WiMAX) (IEEE 802.16e) codes, and also to Wi-Fi (Wi-Fi)
codes (IEEE 802.11n) [69], for moderate to high decod-
ing throughputs achieved (24.50∼160 Mbit/s), at relatively
low latencies under 12 ms. This method has also been
explored for the quick evaluation of a QC-LDPC construction
method [42].

1Note that we adopt the designation codeword in a broader sense. Code-
word can be the set of codewords that can fit onto the same data type, thus,
it can be a single element or several ones packed into a vector data type [34].

6) BpN DECODING
block-per-node (BpN) is, in a sense, a particular case of
the BpC approach. Non-binary LDPC codes define another
dimension exposing parallelism, the GF(2m) dimension. This
strategy is adopted for the particular case of non-binary LDPC
decoding, but instead of defining a block of threads depend-
ing on the LDPC Tanner graph regular features, it depends
on the binary extension field (GF(2m)) dimension [57]. This
approach is tested for a GF(28) code, yielding throughputs
in the Mbit/s range (<6) under different levels of data-
parallelism for a pure sequential decoding schedule. Wang
et al. also use this approach for a non-binary LDPC decoder
for both OpenCL-based execution on CPU andGPU architec-
tures. Though their approach has considerably low latencies
(<5 ms) it achieves only 1.26 Mbit/s at best for GF(2m)
dimensions of 22, 23 and 24.

7) TpC DECODING
TpC is in all similar to the former approach, except that
in the LDPC program description there is not the concept
of a thread executing a codeword. For instance core-per-
codeword (CpC) in an x86 CPU implies that one thread, cor-
responding to a logical core will execute the LDPC decoder
in some of the physical cores. However, the program can
be explicitly defined in terms of an executing thread, which
decodes a codeword (see Fig. 9), hence, the distinction
between two approaches would otherwise be blurred. Also,
typically multi-threading is explored to elevate the paral-
lelism levels and improve the decoding throughput perfor-
mances by exploiting a higher occupancy of the hardware.
Namely, Abburi et al. propose a Cell-based LDPC decoder
where a thread per synergistic processing element (SPE)
is assigned with the execution of the longest length rate
1/2 802.16e codewords, peaking at 270 Mbit/s [8].

FIGURE 9. Thread-per-Codeword LDPC decoder thread-parallelism
approach.

Furthermore, other authors propose this approach for the
many-core GPU architecture [46] and compare the perfor-
mance of their approach to their previously presented LDPC
decoder [70], reducing by one order of magnitude the time
required to perform BER Monte Carlo simulation for a
Mackay code [94]. Also, Lin et al. were able to achieve
decoding throughputs in the range 212∼550 Mbit/s, though
for high latencies (53∼421 ms) using short to long length
codes (204∼20000 bits) [50]. Finally, Wang et al., in order

VOLUME 4, 2016 6711



J. Andrade et al.: Survey on Programmable LDPC Decoders

to assess the performance of the construction of QC-LDPC
convolutional code developed a TpC decoder peaking at
15 Mbit/s (using 768 to 1536 rate 1/2 and 2/3 codes) [71].

8) CpC DECODING
CpC is a thread-parallelism granularity that has no equiva-
lent method in GPU computing, it is only available to CPU
architectures. Herein, we consider the logical core defini-
tion of ‘‘hyperthreaded’’ processors, which defines a core
as equivalent to an execution thread. Thus, a logical core
will be responsible for executing a codeword or batch of
codewords. However, the scenario under consideration is
somewhat vaster here, as several approaches can be taken to
implement this task-parallelism strategy.

For the upcoming exascale computing platforms [104],
Diavastos et al. studied the scalability of LDPC decoders
under 1) distributed and 2) shared memory cooperative
execution model, and 3) shared memory non-cooperative
model [22]. Regarding scalability, 1) saw a reduction of
the throughput to less than 1% of the single core baseline
reference when all cores were committed to the computa-
tion, mainly due to high communication overheads caused
by absence of caching mechanisms, 2) reported a sub-linear
scalability of up to 11× when 48 cores were committed to
the computation, while 3), presented a 41× speedup when
compared to the baseline [22]. Other approaches with regards
to distributed computing involve the use of streaming accel-
erators applied to Mackay codes [94] and achieve mod-
erate throughputs (<79 Mbit/s) for low latencies between
0.69∼1.53 ms [28], [32]. 802.16e standard codes can be
decoded at throughputs of 72∼80 Mbit/s under this method-
ology on the Cell B.E. processor [35]. Furthermore, this
approach is also explored on a mobile SOC platform (a Quad
ARM system on a chip (SOC) Exynos 4412), whereupon
short and normal frame DVB-T2 codes have been tested,
reaching high latencies peaking in the 500∼2592 ms range
at throughputs of ∼3 Mbit/s [36].
While some of the aforementioned LDPC decoders do

not make use of vector processing [22], SIMD processing
is a widely employed technique to improve high perfor-
mance and efficiency in CPU architectures. Namely, the
LDPC decoders based on the Cell B.E. make use of extensive
SIMD-instructions by increasing the data parallelism within
each core [28], [32]. The work proposed by Falcao et al. for
their x86-based decoder is a particular type of CpC strategy.
The OPenMP model was used to parallelize the computation
inside the CN and the VN processing that were encapsulated
by loops. Therefore, their true approach was Processor-per-
Codeword, which in a sense is a special case of the CpC strat-
egy [32]. Also, Intel CPU-based LDPC decoders are able to
explore SSE and AVX SIMD-extensions to improve the data
throughput while keeping latency at low levels. Le Gal et al.
proposed a CpC approach where several multiple codewords
are decoded simultaneously by all logical cores in the proces-
sor, using the 128- SSE and the 256-bit AVX registers of the
CPU to set the decoding throughput within 250∼560 Mbit/s,

for CMMB, 802.11n, 802.16e and digital video broadcast-
ing - satellite 2 (DVB-S2) codes [75]. Furthermore, their
approach is able to minimize the decoding latency, which is
kept at under 10 ms in the majority of the cases, with 802.11n
and 802.16e codes in the hundreds of µs range.

E. DATA-LEVEL PARALLELISM
Data-parallelism expresses how the same operations can be
applied to different data elements at the same time. Generally
speaking, we can define it, with regards to LDPC decod-
ing, as the number of codewords that are decoded simul-
taneously. The motivation for exploring data-parallelism is
clear since short to moderate length codes cannot utilize
all the resources that multi-core and many-core processor
architectures possess. Thus, to avoid wasting logic resources
that would otherwise be sitting idle, several codewords are
loaded and decoded simultaneously to elevate the decoding
throughput. However, herein lies a tradeoff. Not only does the
decoding throughput sees diminishing returns as the hardware
occupancy is elevated, but decoding latency, a figure of merit
of the computational performance that should be kept low,
also increases. Therefore, only a handful of data-parallelism
strategies elevate the decoding throughput to the desired high
levels without sacrificing latency beyond admissible levels
for real-time operation [64], [75].

1) TAXONOMY
Similar to the thread-parallelism case, a proper taxonomy
is due for data-parallelism within LDPC decoders on pro-
grammable hardware. Moreover, regarding data-parallelism,
the differences between methods that solely concern one type
of processor but not the other do not exist. Each of the pre-
sented methods is exploited on both CPUs and GPUs alike.
Furthermore, because data representation is tightly coupled
to the design decisions regarding data-parallelism, it is herein
discussed as well.

2) CODEWORD BATCH
CPU and GPU memory engines are optimized for certain
alignments.Memory transactions bandwidth can be increased
by moving increasingly larger data types until the mem-
ory engine saturates at the maximum permitted alignment.
Instead of storing an LLR using a float data type, a
float4 type can be utilized to store 4 LLR contiguously. In
fact, data-parallelism strategies go even further and apply bit
slicing operations, usually not natively supported by C/C++
languages, unless by SIMD intrinsics, to pack more data
elements into a vector type. Considering the negligible BER
performance loss when data is no longer represented using
floating-point, but instead low bitwidths fixed-point types are
used (typically between 4 and 8 bits [105]), an int data
type can be employed to store 4 data elements and an int4
128 bit vector type [99] can store 16 codewords [34]. Single
codeword and codeword batch storage is depicted in Fig. 10.

When data-parallelism levels cannot be raised by increas-
ing the number of elements in a data type, reducing each

6712 VOLUME 4, 2016



J. Andrade et al.: Survey on Programmable LDPC Decoders

FIGURE 10. Single codeword and codeword batch on a vector. Data
elements are stored a) several elements per vector type without resorting
to bit slicing operations, b) several elements per vector type but bit
slicing enables the packing of more data elements, or c) a single element
is stored per data type.

element bitwidth would hurt the BER performance, and going
as further as defining a custom data structure will fail short
of improving the bandwidth once the maximum alignment
permitted is surpassed [34]. At this point, increasing the
number of codeword batches must see the replication of the
memory layout of the methodology pursued for a single data
type, in one of two approaches possible.

3) PADDED CODEWORD BATCHES
Under this approach the basic level of data-parallelism within
a batch is replicated as whole with a memory stride equal to
the number of data type elements in memory. Thus, codeword
batches become padded in memory, as shown in Fig. 11,
with the Tanner graph indexing method applied D times to
D different base offsets to memory. This method does not
impose any relevant constraint to the BpC, TpC or CpC
approaches. In fact, throughput performance can only reach
acceptable levels once data-parallelism levels are raised [36],
[46]. Using a TpN approach this means the spawning of more
threads to deal with the extra batches of codewords in the TpN
approach [33], [47]–[49], [63].

FIGURE 11. Padded data-parallelism approach. The Tanner graph
indexing method is replicated for D codeword batches by padding copies
of layout consecutively in memory.

One of the disadvantages behind thismethod is the inability
to address unbalanced memory transactions that may occur
when thread-parallelism does not account for threads having
different memory access patterns. More data is accessed for
higher CN and VN degrees. Thus, for irregular codes, there
can be certain threads computing and moving a higher load
of data than others. This problem is addressed by Kang et al.
by evening out the accesses among threads in the same thread
block [43].

FIGURE 12. Interleaved data-parallelism approach. The Tanner graph
indexing method is replicated for D codeword batches by interleaving
data elements in memory.

4) INTERLEAVED CODEWORD BATCHES
This method, illustrated in Fig. 12, defines D codeword
batches as the data-parallelism level and interleaves data
elements from different batches at basic data type granular-
ity in memory. The advantage drawn here is that accesses
are evened out to large blocks of data moved to and from
contiguous locations, regardless of the Tanner graph index-
ing method. This method is highly suited for SIMD com-
putation in x86 CPUs, with cache hit rations for short to
moderate length codes reaching 90% [75]. Furthermore,
this method is also highly efficient for GPU architectures,
enabling real-time decoding throughputs and simultaneously
real-time decoding latencies [64].

F. DECODING ALGORITHMS
Among the countless decoding algorithms, by far, the most
popular ones are soft-decoding message-passing ones. In par-
ticular, LLR-based algorithms are adopted in the majority
of decoders on programmable hardware. Not only does the
support of floating-point data types makes them an appealing
choice due to easiness of implementation, but also because of
their BER performance, even when a step further is taken and
fixed-point data types are emulated—as they are not natively
supported on CPU and GPU hardware. An exception to this
observation is the decoder based on the impl.-efficient relia-
bility ratio-based weighted bit-flipping alg. (IRRWBF) [61].
However, the required arithmetic operations in fixed-point
and hard-decision operations are emulated using integer
types. The most favored choice is for decoding algorithms
whose underlying architecture instruction set architec-
ture (ISA) can provide the required datatypes without emula-
tion or with little overhead. In fact, the most popular choice is
the MSA in its uncorrected version, offset-corrected OMSA
or normalized-corrected NMSA variations. SPA decoders in
the probability domain, in the pmf Fourier domain
(FFT-SPA), in the LLR domain (LSPA), and in the signed-
log Fourier domain (signed-log FFT-SPA) can be found,
and also the odd Min-Max and parity likelihood ratio algo-
rithm (PLRA) decoder.
The decoding algorithm choice can be tightly coupled to

the data type representation chosen for a particular decoding
design. Probability domain decoders use floating-point types,
as they extensively rely on multiplication, with multiplication
not supported natively on programmable hardware in fixed-
point types. As a consequence, opportunities to improve
the decoding throughput by increasing data-parallelism will
be limited by this design decision. GPU hardware, usually
aligned for 128 bit data types can pack only 4 floating-point

VOLUME 4, 2016 6713



J. Andrade et al.: Survey on Programmable LDPC Decoders

words, while they can pack 16 fixed-point words with a
bitwidth of 8 bits [32], and a similar trade-off is expected
on CPUs, though they usually implement more sophisticated
integer arithmetic than GPUs. As a consequence, all the sum-
product algorithm (SPA) decoders explore single-precision
floating-point (32-bit), and though some MSA-based
decoders also do so, the majority of them rely on 6∼8 bit
fixed-point data representations. This way, parallelism can be
raised by increasing the number of words inside a data type
defined by the programming model and language.

G. DECODING SCHEDULES
The decoding of LDPC codes can be scheduled mainly in two
approaches. First approach is the so-called flooding or TPMP
schedule. In this type of scheduling, the exposed parallelism
lies at the complete dimension of the LDPC code, since all
nodes can be schedule for processing one type of node at a
time. Thus, all CNs can be updated at the same time, and
all VNs can also be updated at the same time, provided that
the CN and the VN processing is not concurrent. As a conse-
quence, when developing a parallel programmable decoder, a
memory fencing mechanism which prevents the scheduling
for execution of nodes that are consuming messages from
nodes which have not still updated their produced messages
is required. Otherwise write-after-reads (WARs) hazards
unfold. Notwithstanding, this is not particularly challenging
to guarantee on either CPU, GPU or other accelerator devices,
so as long as CN processing and VN process is defined by
different functions or kernels. This way, the function or kernel
call implicitly sets a synchronization routine preventing any
WAR hazard. LDPC decoders using this decoding schedule
are among those reaching the highest decoding throughputs,
since the TPMP schedule is usually accompanied by a heavily
multi-thread approach, usually TpN.

The TDMP schedule seen in the LDPC decoders that
implement it are CN-based, i.e., CNs are scheduled for execu-
tion sequentially and after each CN is updated, their adjacent
VNs (N (m)) are updated on-the-fly as well [106]. As this
decoding schedule is applied to LDPC codes designed for the
TDMP, such as QC-LDPC codes, this allows the execution of
zf CNs and their adjacent VNs simultaneously as it does not
unfold any WAR hazard. The potential for high throughputs
for this decoding schedule as been shown for both CUDA-
enabled GPUs [7], [48], [49], the Cell B.E. accelerator [8]
and a conventional Intel x86 CPU [75]—decoding through-
puts range from 140 to 900 Mbit/s. Other approaches [42],
[44], [45] fail short of such high throughputs, but are still in
the same range as those obtained with the TPMP schedule.
An interesting result is presented for a non-binary LDPC
code case, defined over GF(24). The authors [57] study
both a sequential and a TPMP schedule, based on the BpN
approach. For equivalent BER levels achieved, the authors
report lower throughputs (3∼8.5 Mbit/s) for the TPMP than
for the sequential approach (5∼12.5) Mbit/s.
The TPMP, or flooding schedule, is the most widely imple-

mented decoding schedule. However, a certainmisconception

may lie in the heart of this design preference. This type
of decoding algorithm is the one permitting highest level
of simultaneous scheduling of operations. All CNs can be
scheduled for execution at the same time, and the same holds
for the VNs, provided the execution of CNs and VNs does
not overlap in time. On the contrary the TDMP, despited con-
verging faster and reducing the number of required decoding
iterations to reach the same BER by roughly half, can only
schedule a limited number of operations. If the LDPC code
design has not been constructed with this scheduling in mind,
there can be as little as no opportunity to schedule more than a
single node at a time, though in practice this does not happen
as the widely standardized quasi-cyclic codes are designed
with this in mind. However, the TPMP schedule implies a
data consumption/production pattern for each individual node
where each message is accessed once per decoding iteration
and per processing phase—for instance, a qnm message is
produced by VNn and is consumed by CNm. This type of
access pattern benefits little from a cache system.On the other
hand, under the TDMP schedule, where data locality can be
exploited temporally for short to moderate code lengths [75].
For earlier GPU generations this advantage meant little, as
there was no caching system available. On newer models,
L1 caches can exploit this feature of the TDMP schedule.
In fact, among the surveyed LDPC decoders, the highest
decoding throughputs found for CPU and GPU architecture
uses the TDMP [48], [75].

IV. FUTURE DIRECTIONS: RECONFIGURABLE
ARCHITECTURES USING HIGH-LEVEL SYNTHESIS
Efforts to survey the LDPC decoders developed for reconfig-
urable computing [83] would span out of the intended scope
for this manuscript. In particular, we refrain from dwelling
into reconfigurable LDPC decoders that are not developed
using HLS models, with, by far and large, the great major-
ity of decoders found in the literature for reconfigurable
computing developed using traditional RTL approaches, and
as a consequence, a limited set of decoders fits in this
requirement [107]–[110].

A. PROGRAMMING MODELS
OpenCL has recently become supported by the major FPGA
manufacturers [87], [111], the OpenCL programming model
used for the development of an LDPC decoder [33] is the
Silicon-to-OpenCL academic tool [112]. The tool takes in
OpenCL kernel C descriptions, though not fully compliant
to the OpenCL specification [80], and generates a custom
wide-pipeline accelerator.

Moreover, the Vivado HLS [89] defines a comprehensive
support for the C/C++ programming languages that get
mapped onto circuits on the FPGA board based on a number
of HLS directives that instruct how the tool should perform
optimizations to different traits of the language (see Fig. 13).
It supports optimizations to 1) memory blocks, 2) arithmetic
functions, 3) dataflow directives for loops and functions,
through pipeline or unrolling and 4) instantiation of certain IP

6714 VOLUME 4, 2016



J. Andrade et al.: Survey on Programmable LDPC Decoders

FIGURE 13. Tanner graph isomorphic mapping under a generalized
reconfigurable computing approach.

cores in the C/C++ language for I/O interaction with other
logic blocks [111].

B. PARALLELISM
Notwithstanding, the fact that the OpenCL programming
model defines the concept of work-items, a similar concept to
execution threads, in the reconfigurable fabric, the generated
accelerator defines no such physical nor logical element that
is an execution thread. In fact, computation will be defined
by the circuits configuration, thus while data-parallelism con-
cepts remain perfectly valid, there is not thread-parallelism
equivalent taxonomy to the reconfigurable LDPC decoders
case.

Nevertheless, we are able to define the OpenCL LDPC
decoder on FPGA, in its inception a TPN decoder, as a
wide-pipeline decoder [33], and the Vivado HLS decoder as
a wid-epipeline accelerator as well, though, this approach
defined the TPMP node processing phases in computation
loops [58]. As a consequence, we prefer the designation of
loop-annotated decoder since it is through the optimization
directives written as annotations (directives) to loops where
computation occurs that the hardware generation is guided.
Both approaches see modest throughputs of dozens of Mbit/s
achieved for short to moderate length codes. The greatest
advantage with this approach is the low latency, ranging
<3 ms in the OpenCL decoder case and <500 µs in the
Vivado HLS case.

V. SUMMARY
LDPC decoders on programmable hardware can mostly be
applied to simulation purposes, due to the methodology pur-
sued in most of the literature be prone to increasing the
decoding latency. Notable exceptions to this tradeoff, are the
works of Le Gal and Jego [75] and Wang et al. [66], which
effectively keep latencies at low and real-time compliant
levels. Notwithstanding, surveying the decoders in the liter-
ature, we observe that the better suited strategies for LDPC
decoding are based on LLR-based decoding algorithms,

mostly defining fixed-point data representation. This allows
for the packing of multiple messages with small bitwidths,
usually in the 8 range, to be packed onto wider words. Fur-
thermore, data-parallelism levels are usually pushed beyond
the wide word, or vector datatype, granularity, often at the
expense of spawningmore threads in the decoding underlying
architecture. Task-parallelism employed in the literature is
explored at all conceived levels, from coarse (CpC) to fine-
granularity (TpE), although the strategies attaining the high-
est performance are mostly fine-grained ones. In particular,
the TPN task-parallelism granularity has scored the most
prevalent method to expose parallelism for computation.

Regarding LDPC decoders in reconfigurable hardware, the
surveyed LDPC decoders onHLS programmingmodels show
that this field provides interesting prospects, but remains a
larger untapped field. In particular, it remains unclear how
to best direct an HLS compiler to generate efficient hard-
ware [113]. The incipient maturity of the tools used in the
LDPC decoders [33], [58] already attain competitive decod-
ing throughput and latency, as observed during the inception
of LDPC decoding on programmable many-core and multi-
core architectures. Furthermore, other programming models
such as the Altera OpenCL, more recent versions of the
Vivado infrastructure and theMaxeler dataflow decoders [88]
promise much lower NRE efforts to target LDPC decoders
with high throughputs and higher energy efficiency than pro-
grammable computer architectures [85].

The reader is referred to Appendix A, in particular to the
exhaustive set of surveyed LDPC decoders (Table 1), which
can be found as a supplementary file to this manuscript.

REFERENCES

[1] R. G. Gallager, ‘‘Low-density parity-check codes,’’ IRE Trans. Inf.
Theory, vol. 8, no. 1, pp. 21–28, Jan. 1962.

[2] D. J. C. MacKay and R. M. Neal, ‘‘Near Shannon limit performance
of low density parity check codes,’’ Electron. Lett., vol. 33, no. 6,
pp. 457–458, 1997.

[3] C. Roth, A. Cevrero, C. Studer, Y. Leblebici, and A. Burg, ‘‘Area,
throughput, and energy-efficiency trade-offs in the VLSI implementation
of LDPC decoders,’’ in Proc. IEEE Int. Symp. Circuits Syst. (ISCAS),
May 2011, pp. 1772–1775.

[4] T. Brack et al., ‘‘A survey on LDPC codes and decoders for OFDM-based
UWB systems,’’ in Proc. IEEE 65th Veh. Technol. Conf. (VTC-Spring),
Apr. 2007, pp. 1549–1553.

[5] C. Studer, N. Preyss, C. Roth, and A. Burg, ‘‘Configurable high-
throughput decoder architecture for quasi-cyclic LDPC codes,’’ in Proc.
42nd Asilomar Conf. Signals, Syst. Comput., Oct. 2008, pp. 1137–1142.

[6] D. B. Kirk andW. H.Wen-Mei, ProgrammingMassively Parallel Proces-
sors: A Hands-On Approach. San Mateo, CA, USA: Morgan Kaufmann,
2012.

[7] K. K. Abburi, ‘‘A scalable LDPC decoder on GPU,’’ in Proc. 24th Int.
Conf. VLSI Design (VLSI Design), 2011, pp. 183–188.

[8] K. K. Abburi, ‘‘Cell processor based LDPC encoder/decoder for
WiMAX applications,’’ in Proc. Int. Conf. Soft Comput. Problem Solving
(SocProS), vol. 131. India, Dec. 2011, pp. 781–790.

[9] J. Andrade, G. Falcão, and V. Silva, ‘‘Flexible design of wide-pipeline-
based WiMAX QC-LDPC decoder architectures on FPGAs using high-
level synthesis,’’ Electron. Lett., vol. 50, no. 11, pp. 839–840, 2014.

[10] J. Andrade, G. Falcão, V. Silva, and K. Kasai, ‘‘FFT-SPA non-binary
LDPC decoding on GPU,’’ in Proc. IEEE Int. Conf. Acoust., Speech
Signal Process. (ICASSP), May 2013, pp. 5099–5103.

VOLUME 4, 2016 6715



J. Andrade et al.: Survey on Programmable LDPC Decoders

[11] J. Andrade, F. Pratas, G. Falcão, V. Silva, and L. Sousa, ‘‘Combining
flexibility with low power: Dataflow and wide-pipeline LDPC decoding
engines in the Gbit/s era,’’ in Proc. IEEE 25th Int. Conf. Appl.-Specific
Syst., Archit. Process. (ASAP), Jun. 2014, pp. 264–269.

[12] J. Andrade, G. Falcão, V. Silva, andK. Kasai, ‘‘Flexible non-binary LDPC
decoding on FPGAs,’’ in Proc. IEEE Int. Conf. Acoust., Speech Signal
Process. (ICASSP), May 2014, pp. 1936–1940.

[13] M. Beermann, E. Monró, L. Schmalen, and P. Vary, ‘‘High speed decod-
ing of non-binary irregular LDPC codes using GPUs,’’ in Proc. IEEE
Workshop Signal Process. Syst. (SiPS), Oct. 2013, pp. 36–41.

[14] F. L. Blasco and C. Tang, ‘‘Implementation of a multi-user detec-
tor for satellite return links on a GPU platform,’’ in Proc. 7th Adv.
Satellite Multimedia Syst. Conf., 13th Signal Process. Space Commun.
Workshop (ASMS/SPSC), Sep. 2014, pp. 66–72.

[15] C. H. Chan and F. C. M. Lau, ‘‘Parallel decoding of LDPC convolu-
tional codes using OpenMP and GPU,’’ in Proc. IEEE Symp. Comput.
Commun. (ISCC), Jul. 2012, pp. 000225–000227.

[16] C. H. Chan and F. C. M. Lau, ‘‘Simulation of LDPC convolutional
decoders with CPU and GPU,’’ in Proc. 2nd Int. Conf. Consum. Electron.,
Commun. Netw. (CECNet), Apr. 2012, pp. 2854–2857.

[17] C.-C. Chang, Y.-L. Chang, M.-Y. Huang, and B. Huang, ‘‘Accelerating
regular LDPC code decoders on GPUs,’’ IEEE J. Sel. Topics Appl. Earth
Observ. Remote Sens., vol. 4, no. 3, pp. 653–659, Sep. 2011.

[18] C.-C. Chang, M.-Y. Huang, and Y.-L. Chang, ‘‘Design of GPU-based
platform for LDPC decoder,’’ in Proc. IEEE Int. Geosci. Remote Sens.
Symp., Jul. 2011, pp. 3429–3432.

[19] Y.-L. Chang, C.-C. Chang, M.-Y. Huang, and B. Huang, ‘‘High-
throughput GPU-based LDPC decoding,’’ Proc. SPIE, vol. 7810,
pp. 781008-1–781008-8, Aug. 2010.

[20] H.-P. Cheng, Y.-C. Shen, J.-L. Wu, and K. Aizawa, ‘‘High efficient
distributed video coding with parallelized design for cloud computing,’’
in Proc. 19th ACM Int. Conf. Multimedia (MM), New York, NY, USA,
Nov. 2011, p. 1257.

[21] A. D. Copeland, N. B. Chang, and S. Leung, ‘‘GPU accelerated decoding
of high performance error correcting codes,’’ in Proc. 13th Workshop
High Perform. Embedded Comput., 2009.

[22] A. Diavastos, P. Petrides, G. Falcão, and P. Trancoso, ‘‘LDPC decoding
on the Intel SCC,’’ in Proc. 20th Euromicro Int. Conf. Parallel, Distrib.
Netw.-Based Process., Feb. 2012, pp. 57–65.

[23] G. Falcão, S. Yamagiwa, V. Silva, and L. Sousa, ‘‘Stream-based LDPC
decoding on GPUs,’’ in Proc. 1st Workshop General Purpose Process.
Graph. Process. Units (GPGPU), 2007, pp. 1–7.

[24] G. F. P. Fernandes, V. M. M. da Silva, M. A. C. Gomes, and
L. A. P. S. de Sousa, ‘‘Edge stream oriented LDPC decoding,’’ in Proc.
16th Euromicro Conf. Parallel, Distrib. Netw.-Based Process. (PDP),
Feb. 2008, pp. 237–244.

[25] G. Falcão, S. Yamagiwa, V. Silva, and L. Sousa, ‘‘Parallel LDPC decoding
on GPUs using a stream-based computing approach,’’ J. Comput. Sci.
Technol., vol. 24, no. 5, pp. 913–924, Sep. 2009.

[26] G. Falcão, J. Andrade, V. Silva, S. Yamagiwa, and L. Sousa, ‘‘Stressing
the BER simulation of LDPC codes in the error floor region using
GPU clusters,’’ in Proc. Int. Symp. Wireless Commun. Syst. (ISWCS),
Aug. 2013, pp. 1–5.

[27] G. Falcão, V. Silva, J. Marinho, and L. Sousa, ‘‘Parallel LDPC decoding
on the Cell/B.E. processor,’’ in High Performance Embedded Architec-
tures and Compilers (Lecture Notes in Computer Science), vol. 5409,
A. Seznec, J. Emer, M. O’Boyle, M. Martonosi, and T. Ungerer, Eds.
Berlin, Germany: Springer, 2009, pp. 389–403.

[28] G. Falcão, L. Sousa, and V. Silva, ‘‘Embedded multicore architectures for
LDPC decoding,’’ in Proc. Int. Conf. Embedded Comput. Syst., Archit.,
Modeling Simulation (SAMOS), Jul. 2010, pp. 349–356.

[29] G. Falcão, J. Andrade, V. Silva, and L. Sousa, ‘‘GPU-based DVB-S2
LDPC decoder with high throughput and fast error floor detection,’’
Electron. Lett., vol. 47, no. 9, pp. 542–543, Apr. 2011.

[30] G. Falcão, J. Andrade, V. Silva, and L. Sousa, ‘‘Real-time DVB-S2 LDPC
decoding on many-core GPU accelerators,’’ in Proc. Int. Conf. Acoust.,
Speech Signal Process. (ICASSP), May 2011, pp. 1685–1688.

[31] G. Falcão, L. Sousa, and V. Silva, ‘‘Massive parallel LDPC decoding on
GPU,’’ in Proc. 13th ACM SIGPLAN Symp. Principles Pract. Parallel
Program. (PPoPP), Feb. 2008, pp. 83–90.

[32] G. Falcão, L. Sousa, and V. Silva, ‘‘Massively LDPC decoding on mul-
ticore architectures,’’ IEEE Trans. Parallel Distrib. Syst., vol. 22, no. 2,
pp. 309–322, Feb. 2011.

[33] G. Falcão et al., ‘‘Shortening design time through multiplatform simula-
tions with a portable OpenCL golden-model: The LDPC decoder case,’’
in Proc. IEEE 20th Annu. Int. Symp. Field-Program. Custom Comput.
Mach. (FCCM), Apr./May 2012, pp. 224–231.

[34] G. Falcão, V. Silva, L. Sousa, and J. Andrade, ‘‘Portable LDPC decod-
ing on multicores using OpenCL [applications corner],’’ IEEE Signal
Process. Mag., vol. 29, no. 4, pp. 81–109, Jul. 2012.

[35] G. Falcão, V. Silva, L. Sousa, and J. Marinho, ‘‘High coded data rate and
multicodeword WiMAX LDPC decoding on Cell/BE,’’ Electron. Lett.,
vol. 44, no. 24, pp. 1415–1416, Nov. 2008.

[36] S. Grönroos and J. Björkqvist, ‘‘Performance evaluation of LDPC decod-
ing on a general purposemobile CPU,’’ inProc. IEEEGlobal Conf. Signal
Inf. Process., Dec. 2013, pp. 1278–1281.

[37] S. Grönroos, K. Nybom, and J. Björkqvist, ‘‘Efficient GPU and CPU-
based LDPC decoders for long codewords,’’ Analog Integr. Circuits Sig-
nal Process., vol. 73, pp. 583–595, Jun. 2012.

[38] S. Grönroos, K. Nybom, and J. Björkqvist, ‘‘Complexity analysis of
software defined DVB-T2 physical layer,’’ Analog Integr. Circuits Signal
Process., vol. 69, nos. 2–3, pp. 131–142, 2011.

[39] H. Ji, J. Cho, and W. Sung, ‘‘Massively parallel implementation of cyclic
LDPC codes on a general purpose graphics processing unit,’’ in Proc.
IEEE Workshop Signal Process. Syst. (SiPS), Oct. 2009, pp. 285–290.

[40] H. Ji, J. Cho, and W. Sung, ‘‘Memory access optimized implementation
of cyclic and quasi-cyclic LDPC codes on a GPGPU,’’ J. Signal Process.
Syst., vol. 64, no. 1, pp. 149–159, 2011.

[41] B. Jiang, J. Bao, and X. Xu, ‘‘Efficient simulation of QC LDPC decoding
on GPU platform by CUDA,’’ in Proc. IEEE Int. Conf. Wireless Commun.
Signal Process. (WCSP), Oct. 2012, pp. 1–5.

[42] J. Cui, Y. Wang, and H. Yu, ‘‘Systematic construction and verification
methodology for LDPC codes,’’ in Wireless Algorithms, Systems, and
Applications (Lecture Notes in Computer Science), vol. 6843, Y. Cheng,
D. Y. Eun, Z. Qin, M. Song, and K. Xing, Eds. Berlin, Germany: Springer,
2011.

[43] S. Kang and J. Moon, ‘‘Parallel LDPC decoder implementation on GPU
based on unbalanced memory coalescing,’’ in Proc. IEEE Int. Conf.
Commun. (ICC), Jun. 2012, pp. 3692–3697.

[44] J. A. Kennedy and D. L. Noneaker, ‘‘Decoding of a quasi-cyclic
LDPC code on a stream processor,’’ in Proc. MILITARY Commun.
Conf. (MILCOM), Oct./Nov. 2010, pp. 2062–2067.

[45] J. A. Kennedy and D. L. Noneaker, ‘‘Scheduling parity checks
for increased throughput in early-termination, layered decoding of
QC-LDPC codes on a stream processor,’’ EURASIP J. Wireless Commun.
Netw., vol. 2012, no. 1, pp. 1–10, 2012.

[46] F. C. M. Lau and L. Shi, ‘‘Programming graphics processing units for
the decoding of low-density parity-check codes,’’ in Proc. 14th Int. Conf.
Adv. Commun. Technol. (ICACT), 2012, pp. 1002–1005.

[47] Y. Zhao and F. C. M. Lau, ‘‘Implementation of decoders for LDPC block
codes and LDPC convolutional codes based on GPUs,’’ IEEE Trans.
Parallel Distrib. Syst., vol. 25, no. 3, pp. 663–672, Mar. 2014.

[48] B. Le Gal, C. Jego, and J. Crenne, ‘‘A high throughput efficient approach
for decoding LDPC codes onto GPU devices,’’ IEEE Embedded Syst.
Lett., vol. 6, no. 2, pp. 29–32, Jun. 2014.

[49] R. Li, J. Zhou, Y. Dou, S. Guo, D. Zou, and S. Wang, ‘‘A multi-standard
efficient column-layered LDPC decoder for software defined radio on
GPUs,’’ in Proc. IEEE 14th Workshop Signal Process. Adv. Wireless
Commun. (SPAWC), Jun. 2013, pp. 724–728.

[50] Y. Lin and W. Niu, ‘‘High throughput LDPC decoder on GPU,’’ IEEE
Commun. Lett., vol. 18, no. 2, pp. 344–347, Feb. 2014.

[51] F. J.Martínez-Zaldívar, A.M. Vidal-Maciá, A. Gonzalez, andV. Almenar,
‘‘Tridimensional block multiword LDPC decoding on GPUs,’’
J. Supercomput., vol. 58, no. 3, pp. 314–322, Mar. 2011.

[52] Y.-S. Pai, H.-P. Cheng, Y.-C. Shen, and J.-L. Wu, ‘‘Fast decod-
ing for LDPC based distributed video coding,’’ in Proc. Int. Conf.
Multimedia (MM), New York, NY, USA, 2010, pp. 1211–1214.

[53] Y.-S. Pai, Y.-C. Shen, and J.-L. Wu, ‘‘High efficient distributed video
coding with parallelized design for LDPCA decoding on CUDA based
GPGPU,’’ J. Vis. Commun. Image Represent., vol. 23, no. 1, pp. 63–74,
2012.

[54] J.-Y. Park and K.-S. Chung, ‘‘LDPC decoding for CMMB utilizing
OpenMP and CUDA parallelization,’’ in Proc. 17th Asia-Pacific Conf.
Commun. (APCC), Oct. 2011, pp. 910–914.

[55] J.-Y. Park and K.-S. Chung, ‘‘Parallel LDPC decoding using CUDA
and OpenMP,’’ EURASIP J. Wireless Commun. Netw., vol. 2011, no. 1,
pp. 1–8, 2011.

6716 VOLUME 4, 2016



J. Andrade et al.: Survey on Programmable LDPC Decoders

[56] F. Pratas, J. Andrade, G. Falcão, V. Silva, and L. Sousa, ‘‘Open the gates:
Using high-level synthesis towards programmable LDPC decoders on
FPGAs,’’ in Proc. IEEE Global Conf. Signal Inf. Process. (GlobalSIP),
Dec. 2013, pp. 1274–1277.

[57] D. L. Romero and N. B. Chang, ‘‘Sequential decoding of non-binary
LDPC codes on graphics processing units,’’ in Proc. IEEE ASILOMAR,
Nov. 2012, pp. 1267–1271.

[58] E. Scheiber, G. H. Bruck, and P. Jung, ‘‘Implementation of an LDPC
decoder for IEEE 802.11n using Vivado high-level synthesis,’’ in Proc.
Int. Conf. Electron., Signal Process. Commun. Syst., vol. 4. 2013,
pp. 45–48.

[59] T.-C. Su, Y.-C. Shen, and J.-L. Wu, ‘‘Real-time decoding for LDPC
based distributed video coding,’’ inProc. 19th ACM Int. Conf. Multimedia
(MM), New York, NY, USA, Nov. 2011, pp. 1261–1264.

[60] H. P. Thi, S. Ajaz, and H. Lee, ‘‘Efficient Min-Max nonbinary LDPC
decoding on GPU,’’ in Proc. Int. SoC Design Conf. (ISOCC), 2014,
pp. 266–267.

[61] H. Tiwari, H. N. Bao, and Y. B. Cho, ‘‘A parallel IRRWBF LDPC decoder
based on stream-based processor,’’ IEEE Trans. Parallel Distrib. Syst.,
vol. 23, no. 12, pp. 2198–2204, Dec. 2012.

[62] T.-H. Chiu, H.-K. Kuo, and B.-C. C. Lai, ‘‘A highly parallel design for
irregular LDPC decoding on GPGPUs,’’ in Proc. Asia-Pacific Signal Inf.
Process. Assoc. Annu. Summit Conf. (APSIPA ASC), 2012, pp. 1–5.

[63] G. Wang, M. Wu, Y. Sun, and J. R. Cavallaro, ‘‘GPU accelerated scalable
parallel decoding of LDPC codes,’’ inProc. Asilomar Conf. Signals, Syst.,
Comput. (ASILOMAR), 2011, pp. 2053–2057.

[64] G. Wang, H. Shen, B. Yin, M. Wu, Y. Sun, and J. R. Cavallaro, ‘‘Par-
allel nonbinary LDPC decoding on GPU,’’ in Proc. IEEE ASILOMAR,
Nov. 2012, pp. 1277–1281.

[65] G. Wang, M. Wu, Y. Sun, and J. R. Cavallaro, ‘‘A massively par-
allel implementation of QC-LDPC decoder on GPU,’’ in Proc. IEEE
Symp. Appl. Specific Process. (SASP), Washington, DC, USA, Jun. 2011,
pp. 82–85.

[66] G. Wang, M. Wu, B. Yin, and J. R. Cavallaro, ‘‘High throughput low
latency LDPC decoding onGPU for SDR systems,’’ inProc. IEEEGlobal
Conf. Signal Inf. Process. (GlobalSIP), Dec. 2013, pp. 1258–1261.

[67] S. Wang, S. Cheng, and Q. Wu, ‘‘A parallel decoding algorithm of
LDPC codes using CUDA,’’ in Proc. 42nd Asilomar Conf. Signals, Syst.
Comput., 2008, pp. 171–175.

[68] S. Wang, L. Cui, S. Cheng, and R. C. Huck, ‘‘GPU acceleration for
particle filter based LDPC decoding,’’ in Proc. nVidia Res. Summit GPU
Technol. Conf. (GTC), San Jose, CA, USA, 2009, pp. 1–6.

[69] X. Wen et al., ‘‘A high throughput LDPC decoder using a mid-
range GPU,’’ in Proc. IEEE Int. Conf. Acoust., Speech Signal Pro-
cess. (ICASSP), May 2014, pp. 7515–7519.

[70] S. F. Yau, T. L. Wong, and F. C. M. Lau, ‘‘Extremely fast simulator
for decoding LDPC codes,’’ in Proc. 13th Int. Conf. Adv. Commun.
Technol. (ICACT), 2011, pp. 635–639.

[71] Y. Wang, H. Yu, and Y. Xu, ‘‘Quasi-cyclic low-density parity-check con-
volutional code,’’ in Proc. IEEE 7th Int. Conf. Wireless Mobile Comput.,
Netw. Commun. (WiMob), Oct. 2011, pp. 351–356.

[72] L. Yuan, Z. Xing, Y. Zhang, and X. Chen, ‘‘An optimizing strategy
research of LDPC decoding based on GPGPU,’’ in Proc. 12th IEEE Int.
Conf. Trust, Secur. Privacy Comput. Commun., Jul. 2013, pp. 1901–1906.

[73] Y. Zhao, X. Chen, C.-W. Sham, W. M. Tam, and F. C. M. Lau, ‘‘Efficient
decoding of QC-LDPC codes using GPUs,’’ in Algorithms and Archi-
tectures for Parallel Processing (Lecture Notes in Computer Science),
vol. 7016, Y. Xiang, A. Cuzzocrea, M. Hobbs, and W. Zhou, Eds. Berlin,
Germany: Springer, 2011, pp. 294–305.

[74] A. Mink and A. Nakassis, ‘‘LDPC error correction for Gbit/s QKD,’’
Proc. SPIE, vol. 9123, p. 912304, May 2014.

[75] B. Le Gal and C. Jego, ‘‘High-throughput multi-core LDPC decoders
based on x86 processor,’’ IEEE Trans. Parallel Distrib. Syst., vol. 27,
no. 5, pp. 1373–1386, May 2015.

[76] J. D. Owens et al., ‘‘A survey of general-purpose computation on graphics
hardware,’’Comput. Graph. Forum, vol. 26, no. 1, pp. 80–113,Mar. 2007.

[77] J. Nickolls and W. J. Dally, ‘‘The GPU computing era,’’ IEEE Micro,
vol. 30, no. 2, pp. 56–69, Mar./Apr. 2010.

[78] R. Vuduc and K. Czechowski, ‘‘What GPU computing means for high-
end systems,’’ IEEE Micro, vol. 31, no. 4, pp. 74–78, Jul./Aug. 2011.

[79] S. Furber, ARM System-on-Chip Architecture, 2nd ed. Boston, MA, USA:
Addison-Wesley, 2000.

[80] OpenCL 2.0 Specification, Khronos Group, Beaverton, OR, USA, 2014.

[81] TOP500 The List, accessed on May 2016. [Online]. Available:
http://www.top500.org

[82] W. S. Carter et al., ‘‘A user programmable reconfigurable logic array,’’ in
Proc. IEEE Custom Integr. Circuits Conf., May 1986, pp. 233–235.

[83] R. Tessier, K. Pocek, and A. DeHon, ‘‘Reconfigurable computing archi-
tectures,’’ Proc. IEEE, vol. 103, no. 3, pp. 332–354, Mar. 2015.

[84] A. DeHon, ‘‘The density advantage of configurable computing,’’
Computer, vol. 33, no. 4, pp. 41–49, Apr. 2000.

[85] J. M. Rabaey, ‘‘Reconfigurable processing: The solution to low-power
programmable DSP,’’ in Proc. IEEE Int. Conf. Acoust., Speech, Signal
Process. (ICASSP), vol. 1. Apr. 1997, pp. 275–278.

[86] J. Varghese, M. Butts, and J. Batcheller, ‘‘An efficient logic emulation
system,’’ IEEE Trans. Very Large Scale Integr. (VLSI) Syst., vol. 1, no. 2,
pp. 171–174, Jun. 1993.

[87] Altera Corp. (2013). Altera SDK for OpenCL Optimization Guide.
[Online]. Available: http://www.altera.com/literature/hb/opencl-sdk/aocl
_optimization_guide.pdf

[88] O. Pell and V. Averbukh, ‘‘Maximum performance computing with
dataflow engines,’’ Comput. Sci. Eng., vol. 14, no. 4, pp. 98–103,
Jul. 2012.

[89] Xilinx. (2015). Vivado Design Suite User Guide; High-Level Synthesis.
[Online]. Available: http://www.xilinx.com/support/documentation/sw
_manuals/xilinx2014_3/ug902-vivado-high-level-synthesis.pdf

[90] R. H. Dennard, F. H. Gaensslen, V. L. Rideout, E. Bassous, and
A. R. LeBlanc, ‘‘Design of ion-implanted MOSFET’s with very small
physical dimensions,’’ IEEE J. Solid-State Circuits, vol. 9, no. 5,
pp. 256–268, Oct. 1974.

[91] H. Kaeslin, Digital Integrated Circuit Design: From VLSI Architectures
to CMOS Fabrication. Cambridge, U.K.: Cambridge Univ. Press, 2008.

[92] C. Roth, C. Benkeser, C. Studer, G. Karakonstantis, and A. Burg, ‘‘Data
mapping for unreliable memories,’’ in Proc. 50th Annu. Allerton Conf.
Commun., Control, Comput. (Allerton), Oct. 2012, pp. 679–685.

[93] H. Jin, A. Khandekar, and R. McEliece, ‘‘Irregular repeat-accumulate
codes,’’ in Proc. 2nd Int. Symp. Turbo Codes Rel. Topics, 2000,
pp. 1–8.

[94] Encyclopedia of Sparse Graph Codes, accessed on May 2016. [Online].
Available: http://www.inference.phy.cam.ac.uk/mackay/codes/data.html

[95] M. Gomes, G. Falcão, V. Silva, V. Ferreira, A. Sengo, and M. Falcão,
‘‘Flexible parallel architecture for DVB-S2 LDPC decoders,’’ in Proc.
IEEE Global Telecommun. Conf. (GLOBECOM), 2007, pp. 3265–3269.

[96] A. Morello and V. Mignone, ‘‘DVB-S2: The second generation stan-
dard for satellite broad-band services,’’ Proc. IEEE, vol. 94, no. 1,
pp. 210–227, Jan. 2006.

[97] S. Yamagiwa and L. Sousa, ‘‘Caravela: A novel stream-based distributed
computing environment,’’Computer, vol. 40, no. 5, pp. 70–77,May 2007.

[98] CUDA C Programming Guide 7.5, NVIDIA, Santa Clara, CA, USA,
Sep. 2015.

[99] J. Fang, A. L. Varbanescu, and H. Sips, ‘‘A comprehensive perfor-
mance comparison of CUDA and OpenCL,’’ in Proc. Int. Conf. Parallel
Process. (ICPP), Sep. 2011, pp. 216–225.

[100] T. Richardson and R. Urbanke, ‘‘The renaissance of Gallager’s low-
density parity-check codes,’’ IEEE Commun. Mag., vol. 41, no. 8,
pp. 126–131, Aug. 2003.

[101] D. J. Costello, Jr., and G. D. Forney, ‘‘Channel coding: The road to
channel capacity,’’ Proc. IEEE, vol. 95, no. 6, pp. 1150–1177, Jun. 2007.

[102] K. Kasai, R. Matsumoto, and K. Sakaniwa, ‘‘Information reconciliation
for QKD with rate-compatible non-binary LDPC codes,’’ in Proc. Int.
Symp. Inf. Theory Appl. (ISITA), Oct. 2010, pp. 922–927.

[103] K. Kasai and K. Sakaniwa, ‘‘Fourier domain decoding algorithm of non-
binary LDPC codes for parallel implementation,’’ IEICE Trans. Fundam.
Electron., Commun. Comput. Sci., vol. E93-A, no. 1, pp. 1949–1957,
2010.

[104] R. Hazra, ‘‘The explosion of petascale in the race to exascale,’’ in Proc.
Int. Supercomput. Conf., Hamburg, Germany, Jun. 2012.

[105] M. P. C. Fossorier, M. Mihaljevic, and H. Imai, ‘‘Reduced complexity
iterative decoding of low-density parity check codes based on belief prop-
agation,’’ IEEE Trans. Commun., vol. 47, no. 5, pp. 673–680, May 1999.

[106] M. M. Mansour, ‘‘A turbo-decoding message-passing algorithm for
sparse parity-check matrix codes,’’ IEEE Trans. Signal Process., vol. 54,
no. 11, pp. 4376–4392, Nov. 2006.

[107] Y. Cai, S. Jeon, K. Mai, and B. V. K. V. Kumar, ‘‘Highly parallel
FPGA emulation for LDPC error floor characterization in perpendicu-
lar magnetic recording channel,’’ IEEE Trans. Magn., vol. 45, no. 10,
pp. 3761–3764, Oct. 2009.

VOLUME 4, 2016 6717



J. Andrade et al.: Survey on Programmable LDPC Decoders

[108] J. Ding and M. Yang, ‘‘eIRA LDPC codes on FPGA,’’ IEEE Commun.
Lett., vol. 15, no. 6, pp. 665–667, Jun. 2011.

[109] F. Verdier and D. Declercq, ‘‘A low-cost parallel scalable FPGA architec-
ture for regular and irregular LDPC decoding,’’ IEEE Trans. Commun.,
vol. 54, no. 7, pp. 1215–1223, Jul. 2006.

[110] Y. Dai, Z. Yan, and N. Chen, ‘‘Optimal overlapped message passing
decoding of quasi-cyclic LDPC codes,’’ IEEE Trans. Very Large Scale
Integr. (VLSI) Syst., vol. 16, no. 5, pp. 565–578, May 2008.

[111] Xilinx Inc. The Xilinx SDAccel Development Envi-
ronment, accessed on May 2016. [Online]. Available:
http://www.xilinx.com/publications/prod_mktg/sdnet/sdaccel-
backgrounder.pdf

[112] M. Owaida, N. Bellas, K. Daloukas, and C. D. Antonopoulos, ‘‘Synthe-
sis of platform architectures from OpenCL programs,’’ in Proc. IEEE
19th Annu. Int. Symp. Field-Program. Custom Comput. Mach. (FCCM),
May 2011, pp. 186–193.

[113] P. Coussy and A. Morawiec, Eds.,High-Level Synthesis: From Algorithm
to Digital Circuit, 1st ed. The Netherlands: Springer, 2008.

[114] X.-Y. Hu, E. Eleftheriou, and D. M. Arnold, ‘‘Regular and irregular
progressive edge-growth tanner graphs,’’ IEEE Trans. Inf. Theory, vol. 51,
no. 1, pp. 386–398, Jan. 2005.

[115] J. Bao, Y. Zhan, J. Wu, and J. Lu, ‘‘Design of efficient low rate QCARA
GLDPC codes,’’ in Proc. IET Int. Commun. Conf. Wireless Mobile
Comput. (CCWMC), Dec. 2009, pp. 213–216.

[116] J. Lin, J. Sha, Z.Wang, and L. Li, ‘‘Efficient decoder design for nonbinary
quasicyclic LDPC codes,’’ IEEE Trans. Circuits Syst. I, Reg. Papers,
vol. 57, no. 5, pp. 1071–1082, May 2010.

JOAO ANDRADE received the Ph.D. degree
in electrical and computer engineering from
the Faculty of Science and Technology, Uni-
versity of Coimbra, in 2016. He conducted his
Ph.D. research with the MSP-Co Group, Instituto
de Telecomunicações, and performed two intern-
ships with the LAP Group, EPFL, Switzerland,
and Xilinx Research Labs, Dublin, in 2013/14.
Recently, he joined the R&D Department, Coriant
GmBH, Lisbon, Portugal, where he is a Hardware

Engineer. His research activities focus on architectures for error-correction
and their resiliency to unreliable memory systems. He is an Affiliated
Member of the HiPEAC network.

GABRIEL FALCAO (S’07–M’10–SM’14) rece-
ived the degree in electrical and computer
engineering and the M.Sc. degree in digital sig-
nal processing from the University of Porto, and
the Ph.D. degree from the University of Coimbra
in 2010. He became an Assistant Professor with
the University of Coimbra. In 2011 and 2012, he
was a Visiting Professor with EPFL, Switzerland.
In 2013, he was a recipient of a Google Faculty
Research Award and the Altera Europe-Wide Uni-

versity contest 2012-2013. Presently, he is studying efficient parallelization
strategies, novel algorithms and architectures for dealing with compute-
intensive applications used in medical, ultrasound, and deep neural network
imaging contexts, in parallel with continuous work in digital communica-
tions. He is a Researcher with the Instituto de Telecomunicações, and a
Senior Member of the Signal Processing Society and the HiPEAC Network
of Excellence.

VITOR SILVA received the Diploma and
Ph.D. degrees in electrical engineering from the
University of Coimbra, Portugal, in 1984 and
1996, respectively. He is currently an Assistant
Professor with the Department of Electrical and
Computer Engineering, University of Coimbra,
where he lectures digital signal processing, and
information and coding theory. His research activ-
ities in signal processing, image and video com-
pression, and coding theory are mainly carried out

with the Instituto de Telecomunicações, Coimbra, Portugal. He has published
more than 140 papers, successfully supervised more than 20 graduation
theses, is co-author of a patent in video coding, and has participated in eight
funded research projects. Currently, he is the Director of the Coimbra IT-site,
coordinating the research activities of 40 collaborators.

LEONEL SOUSA (SM’–) received the
Ph.D. degree in electrical and computer engi-
neering from the Instituto Superior Tecnico, Uni-
versidade de Lisboa (UL), Lisbon, Portugal, in
1996, where he is currently a Full Professor. He is
also a Senior Researcher with the R&D Insti-
tuto de Engenharia de Sistemas e Computadores.
His research interests include VLSI architectures,
computer architectures, parallel computing, com-
puter arithmetic, and signal processing systems.

He has contributed to more than 200 papers in journals and international
conferences, for which he got several awards, such as the DASIP’13 Best
Paper Award, the SAMOS’11 ’Stamatis Vassiliadis’ Best Paper Award,
the DASIP’10 Best Poster Award, and several Honorable Mention Awards
from the Universidade Tecnica de Lisboa/Santander Totta (2007, 2009) and
UL/Santander (2016) for the quality and impact of his scientific publications.
He has contributed to the organization of several international conferences,
namely, as the Program Chair and General and Topic Chair, and has given
keynotes in some of them. He has edited four special issues of international
journals, and he is currently an Associate Editor of the IEEE TRANSACTIONS

ON MULTIMEDIA, the IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO

TECHNOLOGY, the IEEE ACCESS, IET Electronics Letters, and Journal of Real-
Time Image Processing (Springer), and the Editor-in-Chief of the EURASIP
Journal on Embedded Systems. He is fellow of the IET and a Distinguished
Scientist of ACM.

6718 VOLUME 4, 2016


